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ABSTRACT

Classical continuum mechanics theories are largely insufficient in capturing size

effects observed in many engineering materials: metals, composites, rocks etc. This

is attributed to the absence of a length scale that accounts for microstructural effects

inherent in these materials. Enriching the classical theories with an internal length

scale solves this problem. One way of doing this, in a theoretically sound manner,

is introducing higher order gradient terms in the constitutive relations. In elasticity,

introducing a length scale removes the singularity observed at crack tips using the

classical theory. In plasticity, it eliminates the spurious mesh sensitivity observed

in softening and localisation problems by defining the width of the localisation zone

thereby maintaining a well-posed boundary value problem. However, this comes at

the cost of more demanding solution techniques.

Higher-order continuity is usually required for solving gradient-enhanced contin-

uum theories, a requirement difficult to meet using traditional finite elements. Her-

mitian finite elements, mixed methods and meshless methods have been developed to

meet this requirement, however these methods have their drawbacks in terms of effi-

ciency, robustness or implementational convenience. Isogeometric analysis, which ex-

ploits spline-based shape functions, naturally incorporates higher-order continuity, in

addition to capturing the exact geometry and expediting the design-through-analysis

process. Despite its potentials, it is yet to be fully explored for gradient-enhanced con-

tinua. Hence, this thesis develops an isogeometric analysis framework for gradient

elasticity and gradient plasticity.

The linearity of the gradient elasticity formulation has enabled an operator-split

approach so that instead of solving the fourth-order partial differential equation mono-

lithically, a set of two partial differential equations is solved in a staggered manner.

A detailed convergence analysis is carried out for the original system and the split set

using NURBS and T-splines. Suboptimal convergence rates in the monolithic approach
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and the limitations of the staggered approach are substantiated.

Another advantage of the spline-based approach adopted in this work is the ease

with which different orders of interpolation can be achieved. This is useful for con-

sistency, and relevant in gradient plasticity where the local (explicit formulation) or

nonlocal (implicit formulation) effective plastic strain needs to be discretised in addi-

tion to the displacements. Using different orders of interpolation, both formulations

are explored in the second-order and a fourth-order implicit gradient formulation is

proposed. Results, corroborated by dispersion analysis, show that all considered mod-

els give good regularisation with mesh-independent results. Compared with finite el-

ement approaches that use Hermitian shape functions for the plastic multiplier or

mixed finite element approaches, isogeometric analysis has the distinct advantage that

no interpolation of derivatives is required.

In localisation problems, numerical accuracy requires the finite element size em-

ployed in simulations to be smaller than the internal length scale. Fine meshes are also

needed close to regions of geometrical singularities or high gradients. Maintaining a

fine mesh globally can incur high computational cost especially when considering large

structures. To achieve this efficiently, selective refinement of the mesh is therefore re-

quired. In this context, splines need to be adapted to make them analysis-suitable.

Thus, an adaptive isogeometric analysis framework is also developed for gradient elas-

ticity and gradient plasticity. The proposed scheme does not require the mesh size to be

smaller than the length scale, even during analysis, until a localisation band develops

upon which adaptive refinement is performed. Refinement is based on a multi-level

mesh with truncated hierarchical basis functions interacting through an inter-level

subdivision operator. Through Beziér extraction, truncation of the bases is simplified

by way of matrix multiplication, and an element-wise standard finite element data

structure is maintained.

In sum, a robust computational framework for engineering analysis is established,

combining the flexibility, exact geometry representation, and expedited design-through-

analysis of isogeometric analysis, size-effect capabilities and mesh-objective results of

gradient-enhanced continua, the standard convenient data structure of finite element

analysis and the improved efficiency of adaptive hierarchical refinement.
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Chapter 1

INTRODUCTION

1.1 Background and motivation

With the ever-growing capacity of computers, numerical simulation is increasingly be-

coming an integral part of engineering. From automotive crash tests or collapse of civil

structures to design of prototypes, a virtual computer environment presents a readily

available and often cheap alternative for engineering analysis [32]. In computational

mechanics, materials can be assumed to be composed of a continuous body, and equa-

tions derived from the conservation laws are used to describe material behaviour. This

is the basic premise of classical continuum mechanics, and as long as the level of ob-

servation remains sufficiently large, the assumptions and relations still hold.

Experiments have shown that, for many engineering materials (metals, composites,

rocks, concrete, ceramics, alloys, polymers), geometrically similar specimens of the

same material, but of different sizes, exhibit different mechanical behaviour. This

phenomenon is called the size effect (figure 1.1). The source of this behaviour has

been traced to the underlying micro-structure of the material. Classical continuum

mechanics theories are insufficient for accurately capturing the size effect since they

are based on the assumption that the material is significantly larger than its micro-

structure.

The effects of micro-structure also become significant in localisation of deformation.

This occurs when, despite the monotonic external loading being applied, there emerges

a narrow region in a structure where all further deformation concentrates [39], cf. fig-

ure 1.2. When employing the finite element method with classical continuum theories,

the width of the localisation zone tends to depend on the finite element mesh. The

localisation zone width progressively decreases as the mesh size decreases until a line

of zero thickness is almost reached. The observed mesh-sensitivity is physically un-
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(a) Specimen dimensions

(b) Load-displacement curves showing softening behaviour

Figure 1.1: Size effect in rock (sandstone) under tension [138].

acceptable because it indicates a successive decrease in energy released until there is

no released energy, i.e. when the localisation zone becomes a line with zero thickness.

The mathematical basis behind this is that the boundary value problem describing the

classical continuum becomes ill-posed. In static problems, the elliptic equations of the

boundary value problem become hyperbolic; in dynamics or wave propagation prob-

lems, the hyperbolic equations of the initial boundary value problem become elliptic

[39].

Ill-posed problems can also be encountered, generally, when classical continuum

2
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Figure 1.2: Localisation in an alloy (metallic glass) under compression [148].

models are employed for materials with a softening behaviour, i.e. after reaching the

elastic limit and ultimate load, the load-carrying capacity of the material progressively

decreases until failure, see figure 1.1(b) left. This applies, for example, in the case of

continuum damage mechanics and softening plasticity [37, 72, 73].

Introducing a length scale - a parameter with the unit of length - into the field

equations or material description, implicitly or explicitly, directly or indirectly linked

to the micro-structure, solves the aforementioned problems [113]. This in turn provides

a more accurate and more robust prediction of material behaviour and failure - an

important aspect of engineering design.

1.2 The physics of length scales and strain gradients

The length scale embodies information about the microstructure of a material. There is

no consensus on its physical interpretation; it tends to be material/context dependent.

In gradient elasticity, the length scale has been related to the average cell size for

materials with a dominant microstructure such as bones and foams, based on bending

and torsion experiments. At the atomic scale size, it has been related to lattice spacing

for dislocation cores. In adopting gradient-enhanced beam theories for flexural wave

propagation in carbon nanotubes, the length scale was directly related to inter-atomic

spacing of the associated discrete lattice model [11]. This latter case is illustrated in

figure 1.3 in which the length scale is directly related to d, the inter-atomic spacing.

3
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A model consisting of particle and strings is in harmony with elasticity, where the

material returns to its initial state after unloading.

Figure 1.3: One-dimensional discrete model consisting of particles x(•) and strings [11].

In gradient plasticity, the length scale has been directly related to grain size or

grain boundary thickness for polycrystalline specimens or the dislocation spacing/source

distance in single crystals [4, 11]. Dislocation is an irregularity in a material crystal

at atomic level. In ductile materials like metals, dislocations are the carriers of plastic

deformation. Moreover, gradient effects can be physically explained by the existence

of two kinds of stored dislocations: statistically stored dislocations (SSDs) and geo-

metrically necessary dislocations (GNDs). SSDs are stored dislocations as a result of

dislocations trapping one another in a random way. GNDs are the stored dislocations

that relieve the incompatibilities of plastic deformation within a polycrystal caused by

non-uniform dislocation slip. The cumulative effect of SSDs cancels out in a homoge-

neous strain field, cf. figure 1.4, while GNDs are needed to make the plastic strain

field non-uniform, thereby producing a gradient of the plastic strain [4]. Material de-

formation enhances dislocation formation, dislocation motion and dislocation storage.

Hardening in turn results from the stored dislocations (SSDs and GNDs). SSDs have

been determined to be dependent on the effective plastic strain while GNDs are de-

pendent on the gradient of the effective plastic strain [4, 8]. This explains why several

strain gradient plasticity theories are based on GNDs to characterise size effect [4].

Furthermore, according to [141], Ls or the mean distance between SSDs characterises

the length scale in gradient plasticity and is the major factor influencing the evolution

of the length scale.

The usual mechanical tests at the macro level (large scale) are not sufficient to de-

termine/calibrate the length scale. Experiments at scales where the non-homogeneity
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Figure 1.4: Dislocations and strain gradient effects in plasticity based on square lat-
tices with atoms. (a) and (d) are the initial lattices before undergoing plastic deforma-
tion. When (a) deforms homogeneously, there can be SSDs (b) or no dislocations (c);
the strain is homogeneous in both cases, thus the cumulative contribution of the SSDs
in (b) to the overall deformation cancels out. When (d) deforms non-homogeneously,
GNDs form and they are characterised by the presence of lattice curves (strain gradi-
ents) [4].

of the material becomes pronounced are needed – this is when the strain gradient effect

becomes dominant, cf. figure 1.4(e). Thus, typically, experiments such as micro/nano-

indentation tests, micro-bending tests and micro-torsion tests along with digital image

correlation techniques are required to determine the length scale. These tests have

been used to determine the length scale in gradient elasticity [64], gradient plasticity

[5, 51, 135], and gradient damage [54] models. Numerically, Molecular Dynamics tests

[87] and homogenisation techniques [111] have also been used to determine gradient
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elasticity constants.

While the motivation for a length scale in gradient elasticity is different from gradi-

ent plasticity, it remains a material property linked to the material microstructure. It

is a representation of the dominant source of heterogeneity at the scale of observation.

This assumption is maintained throughout this thesis but no attempt has been made

to work with exact or experimentally derived values of the length scale. This is beyond

the scope of the current work.

1.3 Regularisation techniques

There are various ways of introducing a length scale, also called regularisation or lo-

calisation limiting. The main approaches can be grouped into the following [118, 128],

see figure 1.5:

Figure 1.5: Regularisation techniques

• Fracture energy-based approaches: Through the element size, the softening be-

haviour of the stress-strain curve is adjusted in order to ensure proper dissipa-

tion of internal energy at failure. Smeared crack models constitute an example

of models based on fracture energy [20].
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• Rate-dependent models: This involves the inclusion of rate-dependence in the

constitutive equations either through viscosity or material rate dependence [142].

• Higher-order continuum models: This involves the use of higher-order equa-

tions and boundary conditions obtained by (a) taking into account the strains

of a surrounding point to compute its stress either by integral formulations (non-

local) [19] or higher-order gradients (gradient-enhanced) [35]; or (b) adding micro-

rotational degrees of freedom to the continuum description [33].

See [39] and Chapter 2 of [106] for a concise description of all approaches. Other

methods such as the use of thermal conduction to regularise softening [23, 90] can also

be found in the literature.

While approaches based on fracture energy are able to capture size effect and solve

mesh-dependency of results, the fracture energy release rate takes place in a different

area for each mesh [106]. This is because the boundary value problem still remains ill-

posed. Addition of rate dependence makes the problem to be well-posed. However, this

is limited to transient loading conditions and the effect of regularisation is rapidly lost

as the rate-independent limit is approached. The addition of micro-rotational degrees

of freedom, also called micro-polar or Cosserat continuum, is only applicable to prob-

lems where shear deformation dominates. It fails in the case of pure tension [35, 106].

Non-local and gradient-enhanced continuum models make the problem well-posed,

are motivated from the micro-structure (physically sound), and can handle problems

with tensile or shear loading. In non-local models which involve integrals, the time-

consuming task of determining the neighbourhood for each integration point is re-

quired. Furthermore, the implementation of the consistent tangent operator into finite

element codes is cumbersome because it involves spatial interaction between material

points that can be at arbitrary distance from each other. In other words, the mechani-

cal nonlocality results in mathematical nonlocality. In gradient-enhanced models, the

non-local integral averaging is replaced by computing spatial derivatives. This pre-

serves the mechanical nonlocality and removes the mathematical nonlocality making

gradient-enhanced models more efficient and more suitable for implementation [9].
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1.4 The adopted approach and the problem

1.4.1 Discretisation with splines

This thesis focuses on adopting gradient-enhanced higher-order continuum models and

their solution using the finite element method. While this has a sound theoretical basis

[3], it can be mathematically intensive. Adding higher-order gradients to the constitu-

tive equations places more requirements on the continuity of the shape functions used

for discretisation. This raises issues and inconveniences when using the traditional fi-

nite element method which typically employs C0-continuous Lagrange shape functions

[11, 36].

Methods such as Hermitian finite elements and mixed finite element methods have

been developed to meet higher-order continuity requirement. However, these methods

are not robust as they are susceptible to unreliable solutions and too many constraints

[36, 39]. In the context of gradient plasticity, for Hermitian and mixed finite elements

to be robust, the balance of interpolations, suitable integration quadrature and addi-

tional boundary conditions are required [36]. If these are not met, the solution can

be unreliable. Moreover, patch tests are required for these elements and only few of

these elements pass the test and fulfil the required conditions. Meshless methods are

another option. However, implementational convenience is an issue, for example, with

respect to essential boundary conditions [9, 58]. This makes it worth-while to explore

other methods.

With the advent of isogeometric analysis [63], which naturally exploits higher-order

spline-based shape functions, came many possibilities in the realm of basis functions

with higher-order continuity. In addition to capturing the exact geometry for analysis

(which eliminates geometric discretisation errors), one easily attains Cp−1 continuity

by employing a Non-Uniform Rational B-Spline (NURBS) of order p. Isogeometric

analysis was developed as an extension of the finite element method where basis func-

tions used for geometrical modelling are also used for analysis. It presents a platform

to fast-track the design-through-analysis process by bypassing the cumbersome mesh-

ing process, see figure 1.6.
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Figure 1.6: In isogeometric analysis, the spline-based shape functions used for design
are employed for analysis as well

1.4.2 Adaptive mesh refinement

Sometimes in numerical analysis, accuracy necessitates a fine mesh close to certain

geometrical features, e.g. the point of singularity of the L-shaped beam in figure 1.7.

However, maintaining a fine mesh globally can be overly expensive. The tensor product

structure of NURBS, which restricts local refinement, makes it necessary to adapt

splines to make them analysis-suitable. This has attracted several research efforts

[60]. Computations using higher-order gradient models also stand to benefit from local

refinement, for example, in resolving areas around localisation bands [39, 76]. Mesh

refinement strategies generally ensure efficient computations especially in problems

with geometrical singularities, localisation and/or strong gradients.

1.4.3 Problem statement

Gradient elasticity captures size effect and removes the singularity observed at crack

tips using the classical theory [11]. Gradient plasticity eliminates the spurious mesh

sensitivity observed in softening and localisation problems by defining the width of

the localisation zone thereby maintaining a well-posed boundary value problem [35].

Isogeometric analysis naturally provides the higher-order continuity required in solv-
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Figure 1.7: In numerical simulation, refinement is needed close to the inner corner of
an L-shaped beam for accuracy.

ing gradient elasticity and gradient plasticity formulations but this has not been well

explored. In addition, there is no efficient isogeometric analysis framework backed by

extensive studies for these models.

1.5 Aims and scope

The aim of this work is to establish an efficient computational framework for engineer-

ing analysis by exploiting spline-based shape functions. The objectives of this work

include:

• development, implementation and assessment of an isogeometric analysis frame-

work for gradient-enhanced elasticity and gradient-enhanced plasticity models.

This facilitates consistent higher-order discretisation of variables, ensures the

preservation of exact geometry and expedites the design-through-analysis pro-

cess.

• development of a suitable adaptive scheme to enable efficient computations.

In principle, almost all materials can be considered within a gradient-enhanced
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elastoplastic framework. One would just need to accordingly tailor (i) the yield cri-

terion, (ii) the plasticity flow rule (for determining the magnitude and direction of

the plastic strain rate), and (iii) the hardening/softening law for evolution of the yield

stress. This thesis adopts a Von Mises yield criterion (which works for metals) and an

associated flow rule, i.e. the yield function coincides with the plastic potential used to

define the direction of flow. See [105] for example, for a non-associative Drucker-Prager

gradient-dependent yield function relevant for geo-materials.

An assumption of small deformations is made throughout this work. Only static

monotonic loading is considered. A deterministic description of isotropic and homoge-

neous continuum media is adopted.

1.6 Implementation and code

All formulations in this thesis have been implemented using Jem/Jive C++ libraries

[42]. This is an open source, research-oriented C++ programming toolkit for solving

partial differential equations. It has support for several shape functions, supports

sparse matrix operations and incorporates many solvers. The models in this work have

been implemented in this environment taking advantage of several relevant functions,

models and modules. While codes based on C++ have been written to solve the prob-

lems, MATLAB has been largely used for post-processing of results.

1.7 Thesis outline

A progressive approach has been adopted in this work. The work starts, in Chapter

2, with two formulations of gradient elasticity - one requiring C1-continuous shape

functions (monolithic approach) and the other, an operator-split (staggered) approach

where standard C0-continuous shape functions are sufficient. The aim is to see how

the staggered approach compares to the original fourth-order partial differential equa-

tion using the monolithic approach. The two formulations are discretised using iso-

geometric analysis with NURBS and from the comparison of results, it is shown that

the higher-order formulation is more versatile as the operator-split approach, strictly-

speaking, works only for infinite bodies where boundary conditions do not need to be
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imposed. T-spline discretisation that provides better and more flexible geometry de-

scription is also presented.

For localisation problems using classical plasticity, mesh-dependency is observed.

Chapter 3 addresses localisation problems with splines by adopting the explicit gra-

dient plasticity formulation. Here, the yield function depends on the Laplacian of the

plastic strain in addition to its usual dependence on the plastic strain. This explicit

addition of the Laplacian of the strain gives a rigorous regularisation of the boundary

value problem. One-dimensional and two-dimensional problems are presented.

The formulation of implicit gradient plasticity is detailed in Chapter 4. A second-

order formulation using Green’s nonlocal weighting function as well as a fourth-order

formulation using Gaussian nonlocal weighting function are presented. While the

implicit formulation gives better computational stability, the standard yield function

needs to be modified for full regularisation. The two formulations are shown to give

full regularisation and are compared with the explicit gradient formulation through

dispersion analysis.

With a computationally stable spline-based gradient plasticity formulation in place,

adaptive hierarchical refinement of NURBS is incorporated in Chapter 5. Refinement

is based on the concept of elements and their child elements, which are activated or

deactivated accordingly, in a hierarchical mesh. For gradient elasticity, elements are

marked for refinement using error in energy norm while a heuristic marking strategy

based on the effective plastic strain is presented for gradient plasticity. Transfer of

both old and current history variables between meshes is outlined and also tested,

first using classical plasticity. Next, an example for gradient plasticity is presented

which shows a nice match with standard gradient plasticity results.

Chapter 6 highlights the conclusions of the work and gives suggestions for future

research directions.

1.8 Thesis highlights

The main highlights of this work are summarised as follows:

• A comparison has been presented using isogeometric analysis for the fourth-order

gradient-elastic formulation between the monolithic solution and the staggered

12
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solution approach where boundary condition effects have been substantiated in-

dicating the limitations of the staggered approach. For the monolithic solution,

theoretical convergence rates were achieved for polynomials of order three and

above. For polynomial order of two, suboptimal convergence rate was observed,

confirming earlier studies for the Cahn-Hilliard equation.

• An isogeometric analysis approach to explicit and implicit gradient plasticity has

been developed using equal as well as unequal orders of interpolation within the

Beziér extraction framework which maintains standard finite element data struc-

ture. A fourth-order implicit gradient formulation was also formulated using the

Gaussian weighting function.

• Dispersion analysis has been performed for second-order explicit and implicit

gradient plasticity formulations as well as the proposed fourth-order formula-

tion which has more regularisation potential. The upward curving of the shear

band near the free boundary for the implicit gradient formulations has been high-

lighted and is related to the emergence of stationary Rayleigh waves.

• It has been observed that the explicit gradient plasticity formulation does not

guarantee convergence. Convergence was achieved only for low hardening mod-

ulus to elastic modulus ratio. On the other hand, the implicit formulation is com-

putationally more stable. However, it is necessary to modify the yield function of

the implicit formulation to achieve full regularisation.

• A hierarchical refinement framework based on isogeometric analysis has been

developed for gradient-elasticity and gradient-plasticity to enable efficient com-

putations. For hierarchical refinement in gradient plasticity, a heuristic element

marking strategy was proposed based on the measure of non-local plastic strain

and the length scale. Hence, computations do not necessarily need to start with

a fine mesh that can accommodate the localisation band, refinement is triggered

when required.
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Chapter 2

CONVERGENCE ANALYSIS OF

LAPLACIAN-BASED GRADIENT ELASTICITY

IN AN ISOGEOMETRIC FRAMEWORK1

2.1 Introduction

Classical continuum mechanics assumes that the solid or the structure under consider-

ation is of a dimension that is significantly larger than its underlying microstructure,

so that microstructural effects can be ignored. When the effects of microstructure be-

come dominant – as is the case with localised shear bands in softening geomaterials

[97] – classical continuum mechanics is no longer sufficient. Experiments have shown

that specimens of a material with the same geometry, but different dimensions, exhibit

different mechanical behaviour. This is called the size effect and has been recorded for

quasi-brittle materials (concrete, rock, ceramics) [21], metals [81], composites [102]

and micron-scale structures [80]. Indeed, the size effect, which has been attributed

to the existence of a material microstructure, is not captured by classical continuum

theories. Thus, enriching the classical continuum model with an internal length scale

which is related to its material microstructure, enhances its applicability. This is the

motivation behind the work of Mindlin [94] and Eringen and Suhubi [49], although

earlier work along the same lines has been done by the Cosserat brothers [31]. A

review and historical perspective is given in [11].

In Mindlin’s theory [94], twelve independent degrees of freedom at two scales of de-

formation were identified: three displacement components and nine microdeformation

components. Three possible assumptions that can relate the microscopic deformation

1Based on: I. Kolo, H. Askes, and R. de Borst. Convergence analysis of Laplacian-based gradient
elasticity in an isogeometric framework. Finite Elements in Analysis and Design, 135:56–67, 2017
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gradient and the macroscopic displacement were outlined. The strain energy density

can be expressed as a function of strains and second derivatives of macroscopic dis-

placements thereby obscuring the multiscale nature of the theory [93, 94, 137]. This

special case defines gradient elasticity. In statics, there are two additional parame-

ters with the dimension of length which could be related to the underlying material

microstructure [26, 136]. These two parameters result from grouping the five elastic

constants in the isotropic Mindlin theory. A simplification is achieved when these two

length scales are equal – an approach credited to Aifantis [2, 6]. A proper theoretical

framework was provided in [53] and [101] using the principle of minimum potential

energy and principle of virtual work respectively.

The Aifantis theory modifies the classical stress-strain relation by making the stress

also dependent on the Laplacian of the strain, thus resulting in a fourth-order gov-

erning partial differential equation. To solve the equation, standard C0-continuous

elements cannot be used. This is because higher order terms appear in the weak

form, thus requiring the derivatives of displacements to be continuous – C1-continuity

requirement. In principle, the problem can be solved by Hermitian finite elements

[108, 147], mixed methods [7, 88, 107, 127, 146], meshless methods [10] and subdi-

vision surfaces [30]. However, all these methods have their drawbacks in terms of

efficiency or implementational convenience. For Hermitian and mixed finite elements

to be robust, the balance of interpolations, suitable integration quadrature and addi-

tional boundary conditions may be required [36]. If these are not met, the solution can

be unreliable. Moreover, patch tests are required for these elements and sometimes,

only few of these elements pass the test and fulfil the required conditions. Meshless

methods are another option. However, implementational convenience is an issue, for

example, with respect to essential boundary conditions [9, 58]. Thus, it remains worth-

while to explore new methods for the implementation of gradient elasticity.

An alternative approach is to use an operator split that creates two second-order

partial differential equations. In this staggered approach [121], the solution from the

first equation (classical elasticity) serves as input for the second equation which solves

for the gradient-enriched variables. Since this is a set of two second order partial dif-

ferential equations, it can be solved with C0-continuous elements. It is noted that the
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approach suggested in Reference [121] is, strictly speaking, only applicable to an infi-

nite body where no enforcement of boundary conditions is required [82]. Although it

removes strain singularities, Skalka et al. [131] found it incapable of predicting the

desired stress field around a crack in composite foams (cusp-like closure at crack tip),

again pointing out issues with boundary conditions i.e. difference in boundary condi-

tions compared with the fourth-order partial differential equation. These differences

have also been pointed out in [11, 13].

These restrictions have motivated Skalka et al. [131] to propose a similar strategy

for Eringen’s model [46], i.e. a decoupling or one-way coupling for the two second or-

der partial differential equations. An iterative procedure was proposed for Eringen’s

model (also formulated by Askes and Gutiérrez [12] as implicit gradient elasticity) with

the length scale replaced by a parameter increment which is chosen to be arbitrarily

small. However, the choice of the number of iterations and the convergence criterion

are tied to crack properties; for an arbitrary geometry, the choices seem unclear and

may likely incur high computational cost. Eringen’s theory is an approximation of an

earlier nonlocal integral formulation[1, 47, 48]. However, it has been shown that for

certain loading conditions, fully nonlocal stress-strain laws used in modelling Euler-

Bernoulli elastic beams give solutions that coincide with the standard local solution,

and hence do not capture size effects [109]. This can only be avoided either by com-

bining local and nonlocal curvatures in the constitutive equation or using a gradient

elastic model [22, 27].

The staggered approach has been widely adopted because it can be implemented

easily in existing finite element packages since standard C0-continuous finite elements

can be used. Herein, we compare the two approaches to see how the staggered ap-

proach compares to the original fourth-order partial differential equation using the

monolithic approach. When comparing the two solution strategies, a method which

fulfils the C1-continuity requirement is needed. Isogeometric Analysis [63] is an exten-

sion of finite element analysis where the spline-based shape functions used to approx-

imate the geometry are used for the analysis as well. Although coined and standard-

ised in [63], other works along the same lines exist [61, 149]. The original drive behind

isogeometric analysis was to integrate the design and analysis processes, which has
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the additional benefit of capturing the exact geometry, unlike standard finite element

analysis. Moreover, it comes with the advantage of ease in achieving higher degree of

continuity. This is due to the Non-Uniform Rational B-Splines (NURBS) shape func-

tions. Isogeometric analysis has been used where higher continuity is required such

as in solving the Cahn-Hilliard equation [56, 69, 84], gradient damage models [139]

and also in the context of gradient elasticity [50, 86, 101, 123]. Herein, we employ a

Bézier extraction framework for both NURBS and T-splines and consider the gradient

elasticity formulation with and without operator-split. In [69], the direct fourth order

Cahn-Hilliard equation and a mixed formulation with coupled equations have been

studied using isogeometric analysis. The study concluded that direct discretisations of

higher order partial differential equations are more efficient than mixed formulations.

This is because the direct discretisation requires less degrees of freedom to obtain a

given level of accuracy; however, approximations of sufficient order are required to

obtain optimal convergence rates.

This chapter compares convergence rates for the Aifantis gradient elasticity the-

ory with and without operator split. The chapter is organised as follows: section 2.2

presents the Aifantis gradient elasticity formulation including the operator-split. Sec-

tion 2.3 starts with a brief description of NURBS and Bézier extraction in isogeometric

analysis [24] before discretisation of the gradient elasticity formulation with and with-

out operator split. In section 2.4, the two discretisation approaches are compared in

terms of error norms and convergence rates. T-splines are introduced in section 2.5

and finally, some more examples using gradient elasticity are presented.

2.2 Laplacian-based gradient elasticity formulations

2.2.1 Aifantis’ gradient elasticity formulation

The gradient elasticity theory of Aifantis [2, 6] is considered herein. The theory extends

the classical linear elastic constitutive relations by introducing the Laplacian of the

strain as follows:

σij = Dijkl(εkl − `2εkl,mm) (2.1)
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where σij is the stress tensor, εkl is the strain tensor, and ` is a length scale parameter.

Dijkl is the constitutive tensor, and for an isotropic linear elastic material, it is given

by:

Dijkl = λδijδkl + µδikδjl + µδilδjk (2.2)

λ and µ are Lamé constants, and δij is the Kronecker delta. The accompanying equi-

librium equations are:

σij,j + bi = 0 (2.3)

where a comma denotes partial differentiation and bi are the body forces. Substituting

the stress-strain relation, eq.(2.1), and assuming small displacement gradients, one

obtains the following fourth-order partial differential equation:

Dijkl(uk,jl − `2uk,jlmm) + bi = 0 (2.4)

where uk are the displacement components.

2.2.2 Ru-Aifantis theorem: Operator-split

In the staggered approach of the Ru-Aifantis theorem, the fourth-order equation in

eq.(2.4) is split into two second order partial differential equations [11, 16]:

Dijklu
c
k,jl + bi = 0 (2.5)

uk − `2uk,mm = uck (2.6)

where uck is the displacement field that obeys the classical elasticity equation eq.(2.5),

hence the superscript (•)c. Eq.(2.5) is first solved for uck and the result is used in eq.(2.6)

to solve for uk. Thus, there is one-way coupling between them.

2.3 Isogeometric finite element discretisation

In traditional finite element analysis, Lagrange polynomials serve as the basis or

shape functions. Isogeometric analysis replaces these Lagrange polynomials with splines
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which are also used in generating the geometry. This implies that both geometry and

finite element analysis are based on spline functions and hence the name isogeometric

analysis. NURBS or Non-Uniform Rational B-splines is the most widely used spline

technology and this influenced its choice as a starting point in the seminal work where

isogeometric analysis was proposed [63].

2.3.1 NURBS shape functions

A NURBS curve, T(ξ), is defined by a set of control points P = {Pa}na=1 ∈ Rd, a knot

vector with increasing parametric coordinate values Ξ = {ξ1, ξ2, . . . , ξn+p+1} , and a set

of rational basis functions R = {Rna,p}na=1 with p being the polynomial degree, and n

the number of basis functions:

T(ξ) =
n∑
a=1

PaRa,p(ξ) (2.7)

The individual coordinates of the knot vector are called knots which are analogous

to nodes in standard finite elements and the interval between knots is a knot span. Un-

like nodes, knots are usually not interpolatory. If the first and last knots are repeated

p+ 1 times, the knots become interpolatory, and the knot vector is said to be open. The

basis functions of a NURBS curve are expressed as:

Ra,p(ξ) =
waBa,p(ξ)

W(ξ)
(2.8)

where Ba,p is the B-spline basis function, wa is the corresponding weight and W is the

weight function given by:

W(ξ) =

n∑
b=1

wbBb,p(ξ) (2.9)

The B-spline basis is defined for p = 0, as:

Ba,0(ξ) =


1, ξa ≤ ξ ≤ ξa+1

0, otherwise
(2.10)

and by the Cox-de Boor recursion formula for p > 0:
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Ba,p(ξ) =
ξ − ξa

ξa+p − ξa
Ba,p−1(ξ) +

ξa+p+1 − ξ
ξa+p+1 − ξa+1

Ba+1,p−1(ξ) (2.11)

A NURBS geometry in Rd is obtained from projective transformations of B-splines

in Rd+1 through the weights. A NURBS curve (univariate) can be extended to a surface

(bivariate) through a tensor product of the bases [63]:

Np,q
a,b (ξ, η) =

Ba,p(ξ)Ab,q(η)wa,b∑nB
c=1

∑nA
d=1Bc,p(ξ)Ad,q(η)wc,d

(2.12)

where Np,q
a,b is the two-dimensional NURBS basis function; η, Ab,q, and q are the knot

vector, B-spline basis and the polynomial degree in the second spatial dimension re-

spectively. The number of basis functions in the ξ and η directions are nB and nA

respectively. Thus a NURBS surface, S, is defined by replacing Ra,p in eq.(2.7) by Np,q
a,b :

S(ξ, η) =
nA∑
a=1

nB∑
b=1

Pa,bN
p,q
a,b (ξ, η) (2.13)

A subdomain with uniform elements and material models is termed a patch. A

knot vector divides a patch into elements, and hence, insertion of knots is analogous

to h-refinement in standard finite elements. A knot could be inserted multiple times –

knot multiplicity (k) is the number of times a certain knot is inserted. The continuity

between elements is of order Cp−k or Cp−1 when there are no repeated knots.

2.3.2 Isogeometric analysis via Bézier extraction

Through multiple knot insertion in a procedure referred to as Bézier decomposition,

a NURBS mesh can be decomposed into C0-continuous Bézier elements (Figure 2.1),

thereby providing an element structure that can be easily incorporated in existing

finite element codes. This is achieved through a linear operator C such that:

N(ξ) = CB(ξ) (2.14)

where N contains the NURBS basis functions, B contains the Bézier basis functions,

and C is termed the Bézier extraction operator. For each nonzero knot span, the

NURBS curve is decomposed into C0-continuous Bézier elements [24]. It follows from
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eq.(2.13) that to represent any field variable using NURBS, the control point is re-

placed with any variable of interest:

X(ξ, η) =

nA∑
a=1

nB∑
b=1

xa,bN
p,q
a,b (ξ, η) (2.15)

where X is the variable of interest (e.g. displacement) and x is the value (displacement)

at the control point. With this, both the geometry and solution of desired variables

(analysis) use the same basis or shape functions.

Figure 2.1: Bézier decomposition and extraction for a quadratic NURBS curve with
knot vector Ξ = {0, 0, 0, 1, 2, 2, 2}. The interior knot divides the curve into two elements.
A knot of value {1} is inserted so that the multiplicity of the interior knot equals the
polynomial degree, 2. Each element is then decomposed into equivalent Bézier curves
which are C0-continuous between elements. Through the Bézier extraction operator,
the Bézier finite elements ensue and are used directly in analysis.

It is important to note that, notwithstanding Bézier extraction being local to the

element, the Cp−k-continuity of NURBS is maintained within a single patch. However,

when more than one patch is used to represent the geometry, special techniques need

to be adopted to raise the C0-continuity that exists between patches [50].

2.3.3 Spatial discretisation

Direct discretisation

The fourth-order equation – eq.(2.4) – can be written in Voigt matrix notation as fol-

lows:

(LTDL)(u− `2∇2u) + b = 0 (2.16)
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where ∇2 ≡ ∇T · ∇ is the Laplacian operator with ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ]T , and L is the

differential operator:

L =


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y


T

(2.17)

Eq.(2.16) is obtained directly by substituting the matrix-vector form of eq.(2.1),

σσσ = D(εεε− `2∇2εεε) (2.18)

and the kinematic relation for small displacement gradients

εεε = Lu (2.19)

into the equilibrium equation in Voigt notation:

LTσσσ + b = 0 (2.20)

We recall that, unlike finite elements where variables are computed at the

nodes, variables are computed at the control points in isogeometric analysis. Thus,

the displacements u = [ux, uy, uz]
T are related to the discrete displacements a =

[a1x, a1y, a1z, a2x, a2y, a2z, . . .]
T in the control points via:

u = Nua (2.21)

where Nu is the matrix which contains the NURBS shape functions:

Nu =


N1 0 0 N2 0 0 · · · Nns 0 0

0 N1 0 0 N2 0 · · · 0 Nns 0

0 0 N1 0 0 N2 · · · 0 0 Nns

 (2.22)

and ns is the number of shape functions at each control point. The number of rows

corresponds to the number of degrees of freedom per control point.

To discretise eq.(2.16), we premultiply it by a test function ũ and integrate over the

domain Ω:
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∫
Ω

ũT
[
LTDL(u− `2∇2u) + b

]
dΩ = 0 (2.23)

The first term is integrated by parts and the use of Green’s theorem yields [10]:

∫
Ω
ε̃TDεdΩ +

3∑
i=1

∫
Ω
`2
∂ε̃T

∂xi
D
∂ε

∂xi
dΩ =

∫
Ω

ũTbdΩ +

∫
Γn

ũT tdΓ +
3∑
i=1

∮
Γ
`2(n · ∇ũ)TD

∂ε

∂xi
dΓ

(2.24)

where t represents the prescribed tractions on the Neumann part of the boundary Γn

and n is the normal vector to the boundary, cf. [127]. Next, the derivatives of ε̃ are

assumed to vanish on the boundary. Hence, the last term in eq.(2.24) vanishes.

In a Bubnov-Galerkin sense, the test and trial functions are discretised in the same

space, so that

ũ = Nuã (2.25)

Substituting eq.(2.25) into eq. (2.24), and requiring the result to hold for all admissible

ã, the following ensues:

[K1 + K2]a = f ext (2.26)

where K1 is the standard stiffness matrix expressed as:

K1 =

∫
Ω

BTDBdΩ (2.27)

and B = LNu. The higher order derivatives of the shape functions are assembled in

K2 and are given by:

K2 =

3∑
i=1

∫
Ω
`2
∂BT

∂xi
D
∂B

∂xi
dΩ (2.28)

The external force vector f ext reads:

f ext =

∫
Ω

Nu
TbdΩ +

∫
Γn

Nu
T tdΓ (2.29)
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As evident from eq.(2.26), C1-continuous shape functions are required since second

spatial derivatives have to be computed. This is provided automatically by the NURBS

shape functions which are used in isogeometric analysis. The finite element implemen-

tation via Bézier extraction is achieved using the Jive open source C++ library [42].

Operator split: One-way coupling

An alternative approach is to split the fourth-order partial differential equation into

a sequence of two second-order partial differential equations. In matrix-vector format,

this is expressed as:

LTDLuc + b = 0 (2.30)

u− `2∇2u = uc (2.31)

cf. eqs. (2.5) and (2.6). After resolution of eq.(2.30), eq.(2.31) can be solved for the non-

local displacements u.

To discretise eq.(2.30), we first premultiply it by the test function ũc and integrate

by parts to obtain the weak form:

∫
Ω

(Lũc)TDLucdΩ =

∫
Ω

(ũc)TbdΩ +

∫
Γn

(ũc)T tdΓ (2.32)

where t are the prescribed tractions on the Neumann part of the boundary Γn. The test

function and trial functions are discretised as in the previous section using NURBS

shape functions:

ũc = Nuãc (2.33)

uc = Nuac (2.34)

where ãc and ac are the displacements at the control points. For eq.(2.32) to hold for

any ãc, we derive:

∫
Ω

BTDBdΩ ac = f ext (2.35)

with f ext the external force. K1 and B represent the standard stiffness and strain-

displacement matrices, respectively, defined in the previous section.
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Eq.(2.31) can also be expressed in terms of strains pre-multiplied by DL. This ren-

ders a stress form of the equation [13]:

σσσ − `2∇2σσσ = DLuc (2.36)

With the use of a test function σ̃̃σ̃σ, one obtains the weak form:

∫
Ω

[
σ̃Tσ + `2

3∑
i=1

∫
Ω

∂σ̃T

∂xi

∂σ

∂xi

]
dΩ−

∮
Γ
σ̃T `2(n · ∇σ)dΓ =∫

Ω
σ̃TDLucdΩ

(2.37)

where n is the normal vector to the boundary Γ. Assuming natural boundary condi-

tions (n · ∇σ = 0 ) implies that the boundary integral term vanishes. When the usual

essential boundary condition is applied, i.e. σ = σc, we have σ̃ = 000, and again, the

boundary integral term vanishes.

Discretisation is achieved using the shape functions for the stresses:

σ = Nσs (2.38)

σ̃ = Nσ s̃ (2.39)

where s, s̃ are control point variables. For three spatial dimensions, Nσ is a 6-row

matrix which is an extension of the 3-row matrix Nu:

Nσ =



N1 0 0 0 0 0 N2 0 0 0 0 0 · · ·

0 N1 0 0 0 0 0 N2 0 0 0 0 · · ·

0 0 N1 0 0 0 0 0 N2 0 0 0 · · ·

0 0 0 N1 0 0 0 0 0 N2 0 0 · · ·

0 0 0 0 N1 0 0 0 0 0 N2 0 · · ·

0 0 0 0 0 N1 0 0 0 0 0 N2 · · ·


(2.40)

Eq.(2.37) is therefore discretised as [16]:∫
Ω

[
Nσ

TNσ + `2
3∑
i=1

∫
Ω

∂Nσ
T

∂xi

∂Nσ

∂xi

]
dΩ s =

∫
Ω

Nσ
TDBdΩ ac (2.41)

This discretisation is also implemented via Bézier extraction using the Jive C++

library. Nσ and Nu could in principle be chosen independently but the requirement in
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this case is only C0-continuity for the shape functions. This is one attractive attribute

of the Ru-Aifantis theorem which propelled its application to remove singularities in

crack problems [16].

It is important to note that the second reaction-diffusion equation is associated with

nonlocal or gradient-enriched strains and thus, the related gradient-enriched stresses

are not necessarily in equilibrium [11, 13]. This was also pointed out by [82] where it

was argued that the operator split is only valid where the body under consideration is

infinite, eliminating the need to enforce any boundary conditions.

2.4 Errors and Convergence rates

To determine the convergence rate, the L2 norm of the stress error is considered:

‖e‖L2 =

[ ∫
Ω

(σ− σ̂)T (σ− σ̂)

] 1
2

dΩ (2.42)

where σ is the exact solution and σ̂ is the approximated solution. For 2D classical

elasticity, the theoretical convergence rate for the stress based on the total number of

the degrees of freedom (nDOF ) is O(nDOF−
p
2 ); based on a defined mesh-parameter

(h), it is O(hp) for a polynomial order of p. Prior to gradient elasticity, the convergence

rates for classical elasticity are briefly presented.

A plane-strain, thick hollow cylinder subjected to external pressure is considered

[50, 147]. Only a quarter of the cylinder is analysed due to symmetry (shaded region

in Figure 2.2). The problem is illustrated in Figure 2.2 where ri = 0.05 m is the inner

radius, ro = 0.5 m is the outer radius and P = 1.0 MPa is the applied external pressure.

Young’s modulus, E = 8100 MPa and Poisson’s ratio, ν = 0.35.

2.4.1 Classical elasticity

In this case where the length scale ` = 0, it suffices to restrict the x-displacement

[ux(0,y)=0] at the left end and the y-displacement [uy(x, 0)=0] at the bottom to achieve

symmetry. Six meshes with 2k × 2k elements, k = 2 − 7 have been considered. Three

polynomial orders of the NURBS shape functions have been investigated: p = 2, 3, 4.

The exact solution (plane-strain) is [57]:
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Figure 2.2: Geometry and boundary conditions for a thick-walled cylinder subjected to
an external pressure, P

ur = −(1 + ν)
Prr2

o

E(r2
o − r2

i )

{
1− 2ν +
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}
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Pr2
o
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r2
i

r2
− 1

)
σθθ =

Pr2
o

r2
o − r2

i

(
r2
i

r2
+ 1

) (2.43)

The results are presented in Figure 2.3 where hmax is the maximum diagonal be-

tween two opposite knot locations in the physical space. It is apparent from the com-

puted convergence rates, denoted by m, that the theoretical predictions are obtained.

For example, the values of m ≈ −1.5 = −p
2 and m ≈ 3 = p are obtained in the case of cu-

bic NURBS (p = 3) considering total degrees of freedom (nDOF ) and mesh parameter

(hmax) respectively.

While the fourth order (direct) equation for the cylinder has an exact solution [147],

for the set of second order equations, the solution can only be approximated [16]. This

has been achieved using Richardson extrapolation [119], which involves using the so-

lution of three (uniformly refined) meshes to approximate the exact solution. For a

quadrilateral, it is required that each successive mesh doubles the number of elements

in each direction, see Figure 2.4. Indeed the solution is approximated at points present

in all three meshes (red boxes in Figure 2.4) as:
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(a)

(b)

Figure 2.3: L2 norm of the stress error against: (a) maximum mesh parameter; (b) total
number of degrees of freedom for quadratic (p = 2), cubic (p = 3) and quartic NURBS
(p = 4). Convergence rate is the slope (m). Results are for classical elasticity.
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fexact(i, j) =
1

3
f∆x(i, j)− 2f∆x

2
(i, j) +

8

3
f∆x

4
(i, j) (2.44)

Figure 2.4: Richardson extrapolation. Three meshes: (a) f∆x, (b) f∆x
2

, (c)f∆x
4

are used to
approximate the solution of a second order partial differential equation. The approxi-
mation points of interest (red boxes) must be present in all meshes.

Since Richardson extrapolation is mesh-based, variables are involved at vertex

points rather than at integration points. A suitable error estimation technique is pro-

vided by the L2-relative norm of the stress [16]:

‖e‖L2−relative =

√√√√√√√√
nDOF∑
i=1

(σei − σci )2

nDOF∑
i=1

(σei )
2

(2.45)

where σe is the exact solution, σc is the numerical solution and nDOF is the total

number of stress components. Note that for the set of second-order equations, this is

the total degrees of freedom in the discretisation of the second partial differential equa-

tion. The results based on Richardson extrapolation for classical elasticity are shown

in Figure 2.5. The three finest meshes are used in approximating the solution. Again,

from the slopes which represent the convergence rates, the theoretical values are re-

trieved fairly well. It is observed that use of the exact solution leads to slightly better

results. The existence of an exact solution only for the direct and not the staggered

solution approach, is another indication that the staggered approach is not equivalent

to the direct approach [13].
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(a)

(b)

Figure 2.5: L2-relative norm of the stress error against: (a) mesh parameter; (b) total
number of degrees of freedom for quadratic (p = 2), cubic (p = 3) and quartic NURBS
(p = 4). The slope (m) represents the convergence rate. Richardson extrapolation is
used to approximate the exact solution. Results are for classical elasticity.
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2.4.2 Gradient elasticity

The length scale parameter is taken as ` = 0.01 m. Additional boundary conditions

must be imposed at the left and at the bottom [147]. The set of control points immedi-

ately next to the boundaries are used as follows [50]:

∂uy
∂x

= 0; enforced as uy(2, j) = uy(1, j) at the left boundary

∂ux
∂y

= 0; enforced as ux(i, 2) = ux(i, 1) at the bottom boundary
(2.46)

where i = {1, 2, ...} (from left to right) and j = {1, 2, ...} (from bottom to top) are the

respective x and y indices of the control points at each boundary. When the operator

split is used, the first equation maintains the same boundary conditions as described

for classical elasticity. In the second equation, which solves for the stresses that in-

clude the gradient effect, the additional fourth-order boundary condition is imposed

as τxy = 0 on the left and bottom boundaries while a Neumann boundary condition is

maintained elsewhere, i.e. n · ∇σ = 0 where σ = [σxx, σyy, τxy]
T .

The exact solution for the fourth-order partial differential equation is given in [147]

while the solution for the case with operator split (staggered approach) is approxi-

mated using Richardson extrapolation. The results based on error estimates discussed

in the previous section are shown in Figure 2.6. The relative L2-error norm of the

stresses is used for the staggered approach while the L2-error norm is used for the

fourth-order partial differential equation (direct discretisation). The results suggest

that Richardson extrapolation may not be fully appropriate for obtaining a reference

solution.

On the other hand, the solutions for the direct case show the same convergence rate

as with classical elasticity. It is noted that in estimating the convergence rates, empha-

sis has been placed on points along the major trend line. Another point of interest is

the comparison of the convergence rates for the direct and the staggered approaches.

The classical elasticity solution applies in this case to the first step of the staggered ap-

proach. Results are presented in Figure 2.7 using the L2-norm of displacement error.

The theoretical convergence rate for displacement is O(hp+1) or based on the degrees

of freedom, O(nDOF−
p+1

2 ), where p is the polynomial order [150]. Results in Figure 2.7

show a close match with theoretical prediction especially for p = 3 and p = 4. Gradient
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(a)

(b)

Figure 2.6: Error in the stress against: (a) mesh parameter; (b) total number of degrees
of freedom for quadratic (p = 2), cubic (p = 3) and quartic NURBS (p = 4). The slope
(m) represents the convergence rate. While the exact solution of the fourth order par-
tial differential equation (Direct) is based on the exact solution, the solution for the
approach with the operator split (Staggered) is based on Richardson extrapolation.
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elasticity (Direct) has a suboptimal convergence rate (m) for p = 2 but when p = 4, m

for the gradient case surpasses that of classical elasticity (Staggered). This indicates

that, for both cases, the theoretical prediction holds. The suboptimal convergence rate

observed for the direct discretisation is in accordance with the explanation given by

Kästner et al. [69]. Considering a linear fourth-order partial differential equation for

an infinitely continuous reference solution (r =∞), the convergence rate is given by:

‖u− û‖H0≡L2 ≤ C0h
min{p+1,2(p−1)}‖u‖Hr (2.47)

where u is the exact displacement, û is the numerical solution and p is the polynomial

order. Optimal convergence rate is thus the minimum of {p + 1, 2(p − 1)} which is

2(p − 1) = 2 for a polynomial order of two. This is in line with the result depicted in

Figure 2.7(a).
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(a)

(b)

Figure 2.7: L2 norm of the displacement error against: (a) maximum mesh parameter;
(b) total number of degrees of freedom for quadratic (p = 2), cubic (p = 3) and quartic
NURBS (p = 4). The slope (m) is the convergence rate.
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2.5 Gradient elasticity with T-Splines

2.5.1 T-splines and T-mesh

The T-spline technology is based on the notion of a T-mesh [124, 126] which is composed

of quadrilateral-shaped elements [124, 125] in two-dimensions (Figure 2.8). Each ele-

ment in the T-mesh has one or more edges split by T-junctions. T-junctions are anal-

ogous to hanging nodes in finite elements where an internal node has less than four

linked neighbours. Each T-vertex is associated with a control point and control weight.

Valid knot intervals are defined which ensure that opposite sides of an element in the

T-mesh have knot intervals summing to the same value (i.e. a1 + a2 = b in Figure 2.8).

Figure 2.8: Illustration of T-mesh and local knot intervals, p=3

To define the T-spline basis function, local knot interval vectors are used. Unlike

NURBS, T-splines are not based on a global tensor product. Each vertex has its local

interval vector which is a sequence of knot intervals, ∆Ξ = {∆ξ1,∆ξ2, . . . ,∆ξp+1} such

that ∆ξi = ξi+1−ξi [124], where p is the polynomial degree (p+1 = 4). A set of local knot

intervals for each vertex A is constructed by moving in each topological direction from

the vertex until p − 1 = 2 vertices or perpendicular edges are intersected. In the case

where a T-mesh boundary is crossed before p−1 = 2 knot intervals are intersected, the

local knot interval is set to zero. This makes the T-mesh boundary to have open knot

vectors.

From the local knot interval vectors, a local knot vector is defined as ΞA = {ΞiA}di=1

and ΞiA = {ξi1, ξi2, . . . , ξip+2} where ξi1 = 0, ξi2 = ∆ξi1 and for n ≥ 3, ξin = ∆ξin−1 + ∆ξin−2 +

. . . + ∆ξi1. Each T-spline basis function is defined over a local basis function domain
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Ω̂A ∈ Rd by the local knot vector:

Ω̂A =
d⊗
i=1

Ω̂i
A (2.48)

where Ω̂i
A =

[
0,∆ξip+1 + . . . + ∆ξi2 + ∆ξi1

]
⊂ R for polynomial degree (p). A coordinate

system called the basis coordinate system is defined for each local basis function: ξA =

(ξ1
A, ξ

2
A) = (ξA, ηA). With this localisation, the basis function of a T-spline is defined

over each local basis function domain in the same way as NURBS, by employing Cox-

de-Boor recursion formula. Also, Bézier extraction is extensible to T-splines [125].

2.5.2 Thick hollow cylinder subjected to external pressure

The problem of a thick hollow cylinder subjected to external pressure is revisited. The

T-spline geometry generated using the Rhino T-Spline plug-in [15] is presented in Fig-

ure 2.9. Both classical and gradient elasticity are considered. For the additional bound-

ary condition required in gradient elasticity, the immediate vertex after the boundary

is used as with NURBS. Two finer meshes have been generated to qualitatively show

the errors in the displacement, see Figure 2.10. Evidently, the convergence rate is sim-

ilar to that obtained with NURBS but T-splines are more efficient since less degrees

of freedom are used to obtain a given error level. A representative plot of σxx is pre-

sented in Figure 2.11 for the direct and the staggered approach. Slight differences can

be observed close to the inner boundary.

2.5.3 L-shaped panel subjected to traction

An L-shaped panel subjected to traction is considered next, Figure 2.12. The length

and traction are a = 30 m and t = 1 MPa respectively. Essential boundary conditions

are imposed as displacements on the top (uy = 0) and right edge (ux = 0). As in the

previous problem, E = 8100 MPa, ν = 0.35 and ` = 0.01 m. The T-mesh with local

refinement is depicted in Figure 2.12(b). This illustrates the flexibility of T-splines,

and the ensuing lower computational cost.

The three stress components using direct discretisation and using the operator split

are shown in Figure 2.13. There is only a slight variation in the stress distribution
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Figure 2.9: T-Spline representation of quarter cylinder.

between the two discretisation schemes. The difference is minimal due to absence of

any boundary condition required in the second step of the operator-split approach. This

is in line with the argument that the latter works best when there is no need to impose

boundary conditions [82], i.e. n · ∇σ = 0 everywhere.

The effect of varying the length scale parameter (`) on σxy is shown in Figure 2.14.

For lower values of `, the region of high stress is obviously more localised. Results

are presented for both discretisation schemes. It is noted that even when ` = 0, the

stress contours are not exactly identical. This could be attributed to the difference

in discretised variable – while displacement is discretised in the direct approach, the

stress is discretised in the staggered approach.
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(a)

(b)

Figure 2.10: L2 norm of the displacement error against: (a) maximum mesh parameter;
(b) total number of degrees of freedom for cubic NURBS and T-Splines.
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(a)

(b)

Figure 2.11: σxx-components of stress [MPa]: (a) direct discretisation; (b) staggered
approach.
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(a)

(b)

Figure 2.12: L-shaped panel: (a) Geometry and boundary conditions; (b) T-mesh.
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(a) σxx direct (b) σxx staggered

(c) σyy direct (d) σyy staggered

(e) σxy direct (f) σxy staggered

Figure 2.13: Stresses [MPa] in L-shaped panel using the Staggered – (·)S and Direct –
(·)D approaches: (a) σDxx; (b) σSxx; (c) σDyy; (d) σSyy; (e) σDxy; (f) σSxy. Lenth scale ` = 0.01 m

.
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(a) direct ` = 1.0 m (b) staggered ` = 1.0 m

(c) direct ` = 0.1 m (d) staggered ` = 0.1 m

(e) direct ` = 0.0 m (f) staggered ` = 0.0 m

Figure 2.14: σxy [MPa] distribution in L-shaped panel with varying length scales (`) for
Staggered – (·)S and Direct – (·)D approach: (a) `D = 1.0 m; (b) `S = 1.0 m; (c) `D = 0.1
m; (d) `S = 0.1 m; (e) `D = 0.0 m; (f) `S = 0.0 m.
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2.6 Conclusion

This chapter presents a convergence analysis of the Laplacian-based gradient elastic-

ity theory. Both direct discretisation of the fourth-order partial differential equation

and an operator split approach have been considered. The analyses have been carried

out in an isogeometric framework for global refinement using NURBS shape functions,

and for local refinement using T-splines. These shape functions naturally provide the

smoothness required for the direct discretisation of the fourth-order partial differential

equation. Direct discretisation shows better convergence rates for polynomial orders

greater than two and follows theoretical predictions. For a polynomial order equal to

two, recent results for the (fourth-order) Cahn-Hilliard equation are confirmed, i.e. that

the convergence rate is suboptimal [43]. Results from the numerical examples support

the argument that, strictly speaking, the opera- tor split approach only applies to an

infinite body where boundary conditions do not need to be imposed.

In this chapter, we have studied a gradient elasticity formulation which can remove

singularities as illustrated using an L-shaped geometry. In the next chapter, a different

motivation for gradient enhancement is considered – obtaining mesh-objective results

for softening plasticity.
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Chapter 3

AN ISOGEOMETRIC ANALYSIS APPROACH TO

GRADIENT-DEPENDENT PLASTICITY1

3.1 Introduction

In the numerical analysis of strain-softening solids, the use of conventional rate-

independent constitutive models can lead to mesh-dependent results. This is because

strain softening triggers the development of localised zones, and the absence of an in-

ternal length scale in conventional strain-softening models makes these localisation

bands to have a zero width. As a consequence, the width of the localised zone that

results from simulations equals the smallest width allowed by the discretisation. The

origin of the problem lies in the governing boundary value problem which becomes ill-

posed at the onset of strain softening, or in some cases when stress-strain relations

with a non-symmetric tangential operator are employed, possibly in combination with

a large-strain description. In quasi-static problems the character of the partial differ-

ential equations then locally changes from elliptic into hyperbolic, giving rise to the

possibility of displacement discontinuities [18, 35, 36, 39].

Among other approaches, higher-order continuum theories, which incorporate a

material length scale, can maintain well-posedness, even when a localisation zone de-

velops. Thus, they can offer a regularisation of the governing field equations. Gradient

plasticity models form one class of such theories. It is noted that some works have

also tried to address the problem using gradient elasticity and/or classical plasticity

[23, 79, 90, 120]. The regularisation technique adopted in [79] to solve mesh depen-

dency succeeded in the initial post peak, but stress locking and lack of clear conver-

1Based on: I. Kolo and R. de Borst. An isogeometric analysis approach to gradient-dependent plasticity.
International Journal for Numerical Methods in Engineering, 113(2):296–310, 2018
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gence were observed in the far post peak. Herein, we focus on a gradient plasticity

model in which the yield function depends on second-order spatial derivatives of the

hardening parameter, in particular on its Laplacian. As a result, the consistency con-

dition becomes a partial differential equation [98].

In numerical implementations of this gradient-enhanced plasticity theory, the hard-

ening parameter, which is an invariant measure of the plastic strain, is considered as

a fundamental unknown and hence becomes an independent degree of freedom that is

discretised in addition to the displacements. Different from standard plasticity mod-

els, both the equilibrium equation and the consistency condition are now cast in a weak

format, and are solved simultaneously. The second-order derivatives of the hardening

parameter which appear in the consistency parameter can, in principle, be reduced by

an order through a standard application of Gauss’ theorem. However, there is an issue

at the internal boundary in the body between the elastic and the plastified parts, where

a boundary condition on the hardening parameter has to be enforced. As in [35, 36] this

internal boundary condition is not enforced explicitly, but is met by interpolating the

hardening parameter by C1-continuous shape functions on the entire domain.

Interpolating the hardening parameter with C1-continuous shape functions is not

straightforward using conventional finite elements. Only a limited class of elements

exist which can satisfy a requirement of C1-continuity, e.g. Hermitian finite elements

and mixed finite elements [36, 52, 92, 96]. Unfortunately, these formulations are often

not so robust, and can be limited to uniform and regular meshes. However, the re-

quirement of higher-order continuity poses no issues when considering discretisation

methods that can exploit rational basis functions, such as meshless methods [105], or

isogeometric analysis.

Isogeometric analysis [63] can be conceived as a finite element framework where B-

splines (or NURBS) are being used as the basis functions rather than the traditional

Langrange polynomials. B-splines, or nowadays rather their generalisation – Non-

Uniform Rational B-Splines (NURBS) – have been widely used in Computer-Aided

Geometric Design. Isogeometric analysis seeks to integrate the design and analysis

processes by using the NURBS shape functions directly in analysis. For simple (one-

patch) geometries, Cp−1 continuity is achieved for NURBS of order p. The straightfor-
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ward manner to achieve higher-order continuity with spline-based shape functions, has

propelled their application in areas where higher-order continuity is necessary, such

as gradient elasticity [50, 79, 86, 101, 123], gradient damage models [139], fluid flow in

cracks of porous media [140], Kirchoff-Love shell theory [71, 89] and the Cahn-Hilliard

equation [56, 69, 84].

Herein, we show how a plasticity theory with a gradient-dependent yield function

is formulated and implemented exploiting isogeometric analysis. We employ Bézier ex-

traction [24], which furnishes a convenient finite element data structure for analysis.

The chapter is organised as follows. Section 3.2 presents the incremental formulation

of the governing equations for gradient plasticity, their weak forms, and succinctly

discusses issues like the stress update algorithm and consistent tangent operator. In

section 3.3, the governing equations are discretised in an isogeometric analysis frame-

work, including the formulation of Bézier elements for NURBS and the unequal or-

der interpolation for displacements and the plastic multiplier. Representative numeri-

cal examples are given in one and two dimensions, and some concluding remarks are

drawn.

3.2 Gradient-dependent plasticity

3.2.1 Incremental boundary value problem

Under static loading conditions and ignoring the effect of body forces, the equilibrium

equation (in Voigt matrix notation) becomes:

LTσ = 0 (3.1)

where σ = (σxx, σyy, σzz, σxy, σyz, σzx)T is the stress tensor in vector form, and L is the

differential operator:

L =


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y


T

. (3.2)

Under the assumption of small displacement gradients, the following kinematic rela-

tion holds:

εεε = Lu (3.3)
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with the strain vector εεε = (εxx, εyy, εzz, τxy, τyz, τzx)T and the displacement vector

u = (ux, uy, uz)
T . The incremental constitutive relation between the stress and strain

increments is expressed as:

dσσσ = De( dεεε− dεεεp) (3.4)

where De is the elastic stiffness matrix and dεεεp is the plastic strain increment vector.

We adopt an associated plasticity flow rule,

dεεεp = dλm, m =
∂F

∂σσσ
(3.5)

in which dλ is a non-negative plastic multiplier and m is a vector that defines the

direction of plastic flow relative to the yield function F .

In the form of gradient plasticity which we consider, the yield function is made

dependent not only on the invariant plastic strain measure (effective plastic strain), κ,

but also on its Laplacian, ∇2κ:

F = F (σσσ, κ,∇2κ) (3.6)

For isotropic hardening or softening, the gradient dependent yield function reduces to:

F = Φ(σσσ)− σ̄σσ(κ,∇2κ) (3.7)

To relate the hardening parameter, κ, to the plastic multiplier, λ, the strain-hardening

hypothesis is adopted in the remainder:

dκ =

√
2

3
(dεεεp)TQdεεεp (3.8)

in which Q = diag[1, 1, 1, 1
2 ,

1
2 ,

1
2 ].

Equations (3.1), (3.3) and (3.4) are complemented by the Karush-Kuhn-Tucker

loading-unloading conditions:

dλ ≥ 0, F ≤ 0, Fdλ = 0 (3.9)

Finally, standard static and kinematic boundary conditions must be specified on com-

plementary parts of the body surface S:

ΥΥΥns = t, u = us (3.10)

where ΥΥΥ denotes the stress tensor in matrix form, ns is the outward normal to the

surface S, and t is the boundary traction vector.
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3.2.2 Weak formulation

Due to the gradient dependence of the yield function, second-order spatial derivatives

of the hardening parameter, κ, need to be computed. For this purpose, the yield func-

tion, will be satisfied in a weak sense, at the end of every loading step. Consequently,

the plastic strain field has to be discretised in addition to the discretisation of the

displacements. This leads to the following coupled equations at iteration j + 1 of the

current loading step:

LTσj+1 = 0 (3.11)

F (σσσj+1, κj+1,∇2κj+1) = 0 (3.12)

The weak form of these equations is obtained by setting:∫
V
δuT (LTσj+1)dV = 0 (3.13)

and ∫
V
δλF (σσσj+1, κj+1,∇2κj+1)dV = 0 (3.14)

where δ denotes the variation of a quantity. When Equation (3.13) is integrated by

parts and the divergence theorem is invoked, the following equation ensues:∫
V
δεεεTσσσj+1dV −

∫
S
δuT tj+1dS = 0 (3.15)

We next decompose the stress at iteration j + 1 as sum of the stress at the previous

iteration and an increment: σσσj+1 = σσσj + dσσσ. With Equations (3.4) and (3.5)1, we obtain:∫
V
δεεεTDe( dεεε− dλm)dV =

∫
S
δuT tj+1dS −

∫
V
δεεεTσσσjdV (3.16)

Through a Taylor’s series expansion around (σσσj , κj ,∇2κj) and truncating after the

linear terms, the yield function F can be developed as follows:

F (σσσj+1, κj+1,∇2κj+1) = F (σσσj , κj ,∇2κj) +

(
∂F

∂σσσ

)T ∣∣∣∣∣
j

dσσσ

+
∂F

∂κ

∣∣∣∣
j

dκ+
∂F

∂∇2κ

∣∣∣∣
j

∇2(dκ)

(3.17)

where dκ = κj+1 − κj . Next, we define the hardening modulus, H:

H(κ,∇2κ) = −dκ

dλ

∂F

∂κ
(3.18)
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and the gradient influence variable g:

g(κ) =
dκ

dλ

∂F

∂∇2κ
(3.19)

and substitute them along with Equation (3.5)2 into Equation (3.17) to obtain:

F (σσσj+1, κj+1,∇2κj+1) = F (σσσj , κj ,∇2κj) + mTdσσσ −Hdλ+ g∇2(dλ) (3.20)

Using Equations (3.4), (3.5) and (3.20), Equation (3.14) is now expressed as:∫
Vλ

δλ
[
mTDedεεε− (H + mTDem)dλ+ g∇2(dλ)

]
dV =

−
∫
Vλ

δλF (σσσj , κj ,∇2κj)dV

(3.21)

where Vλ is the volume of the plastic region of the body. The values of m, H and g are

determined for the state defined by (σσσj , κj ,∇2κj). Integrating the Laplacian term in

Equation (3.21) by parts, we obtain:∫
Vλ

δλ
[
mTDedεεε− (H + mTDem)dλ

]
dV −

∫
Vλ

g(∇δλ)T (∇dλ)dV =

−
∫
Vλ

δλF (σσσj , κj ,∇2κj)dV

(3.22)

and the following (non-standard) boundary conditions need to be fulfilled on Sλ, the

boundary of the plastified part of the domain:

δλ = 0 or (∇dλ)Tnλ = 0 (3.23)

in which nλ is the outward normal to the plastic region of the surface.

For finite increments, the elastic-plastic boundary moves stepwise as the plastic

zone evolves. When this occurs, the first boundary condition Equation (3.23)1 may not

be satisfied and Equation (3.23)2 must hold. This can be achieved either by enforcing

Equation (3.23)2 explicitly at Sλ, or by using C1-continuous basis functions for λ, so that

the fact that λ = 0 on the entire elastic part of the domain directly leads to Equation

(3.23)2 to be satisfied at Sλ. It is noted that, different from Hermitian or mixed finite

elements, where the derivatives of λ are required as independent degrees of freedom,

the isogeometric formulation only requires the interpolation of λ, and no additional

boundary conditions are necessary other than Equations (3.23).
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3.2.3 Stress-strain relation and algorithmic tangent operator

The stress update in gradient plasticity follows the procedure from standard elasto-

plasticity. It is computed as an integral along a given path from the initial state (σσσ0, εεε0)

to the final state (σσσj , εεεj):

σσσ = σσσ0 +

∫ εεεj

εεε0

Dedεεε (3.24)

The algorithmic stress update in iteration j follows the format [36]:

σσσj = σσσ0 + S(εεε0,∆∆∆εεεj) (3.25)

where S is a non-linear mapping operator and ∆∆∆ is a total increment, i.e. sum of incre-

ments in all iterations for the current load step:

∆∆∆εεεj =

j∑
i=1

dεεεi (3.26)

The stress update in gradient plasticity uses an Euler backward algorithm [36]:

σσσj = σσσ0 + De∆ε∆ε∆εj −∆λjD
emj . (3.27)

The algorithmic or consistent tangent operator is defined as [36]:

Dalg =
∂σσσj
∂∆ε∆ε∆ε

∣∣∣∣
εεε0,∆ε∆ε∆εj

=
∂S

∂∆ε∆ε∆ε

∣∣∣∣
εεε0,∆ε∆ε∆εj

(3.28)

and is generally non-symmetric [103]. The full algorithm is summarised in Box 3.1.
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1. Compute the matrices Kaa, Kaλ, Kλa and Kλλ, and forces fe, fa and fλ, according

to Equations (3.49) – (3.54) while replacing De with Dalg

2. Solve for da and dΛ using Equation (3.48)

3. Update the total increments ∆aj+1 = ∆aj + da, and ∆Λj+1 = ∆Λj + dΛ.

4. Compute the following at each integration point:

∆εεεj+1 = B∆aj+1,

∆λj+1 = hT∆Λj+1,

∇2(∆λj+1) = pT∆Λj+1,

κj+1 = κ0 + η∆λj+1,

∇2κj+1 = ∇2κ0 + η∇2(∆λj+1),

trial stress σσσt = σσσ0 + De∆εεεj+1.

If F (σσσj+1, κj+1,∇2κj+1) > 1× 10−6,

then plastic state:

compute mt using the trial stress update: σσσj+1 = σσσt −∆λj+1D
emt

compute the algorithmic stiffness operator

compute H for the next iteration,

else

elastic state:

mt = 0

σσσj+1 = σσσt

Dalg = De

H = E

5. Check the global convergence criterion. If not converged, go to 1.

(•)0 denotes value at previous converged load step and (•)j indicates value at previous

iteration.

Box 3.1. Algorithm: C1 formulation for explicit gradient plasticity (iteration j + 1)

51



Chapter 3 An isogeometric analysis approach to gradient-dependent plasticity

3.3 Isogeometric discretisation: C1-continuous formulation

Herein, we use NURBS as shape functions and through Bézier extraction, cast them

in an element data structure as in standard finite element analysis.

3.3.1 NURBS shape functions

The basis functions of a univariate NURBS are given by:

Ra,p(ξ) =
waBa,p(ξ)

W(ξ)
(3.29)

where Ba,p is the basis function of the underlying B-spline, wa is the corresponding

NURBS weight and W is the weight function:

W(ξ) =

n∑
b=1

wbBb,p(ξ) (3.30)

The B-spline basis is defined for a polynomial of degree p = 0, as:

Ba,0(ξ) =


1, ξa ≤ ξ ≤ ξa+1

0, otherwise
(3.31)

and by the Cox-de Boor recursion formula for p > 0:

Ba,p(ξ) =
ξ − ξa

ξa+p − ξa
Ba,p−1(ξ) +

ξa+p+1 − ξ
ξa+p+1 − ξa+1

Ba+1,p−1(ξ) (3.32)

where ξ is the parametric coordinate (knot) of a knot vector with increasing knot val-

ues:

Ξ = {ξ1, ξ2, . . . , ξn+p+1} (3.33)

in which p is the polynomial degree and n is the number of basis functions. Projective

transformations of B-splines in Rd+1 produce NURBS in Rd. Through a tensor product

of the univariate NURBS bases, we obtain the two-dimensional NURBS shape func-

tions:

Np,q
a,b (ξ, η) =

Ba,p(ξ)Ab,q(η)wa,b∑nB
c=1

∑nA
d=1Bc,p(ξ)Ad,q(η)wc,d

(3.34)

where η, Ab,q, q and nA are the knot vector, the B-spline basis, the polynomial de-

gree and the number of basis functions in the second spatial dimension respectively.
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NURBS shape functions of order p are Cp−1-continuous provided there are no repeated

knots [63].

3.3.2 Bézier element

Different from Lagrange polynomials, NURBS basis functions are not local to an el-

ement. To facilitate isogeometric analysis in a classical finite element structure, the

concept of Bézier extraction has been proposed [24]. In this approach, a NURBS mesh

can be decomposed into C0-continuous Bézier elements through a Bézier extraction

operator C. While this gives a convenient element structure, it does not restrict the

continuity of NURBS. For a two-dimensional element e, the NURBS shape functions

become:

Ne(ξ, η) = WeCe Be(ξ, η)

W e(ξ, η)
(3.35)

with

W e(ξ, η) = (we)TCeBe(ξ, η) (3.36)

where N contains the NURBS basis functions, w is a vector of the NURBS weights,

and B contains the Bézier basis functions (Bernstein polynomials). The procedure for

computing the Bézier extraction operator of a NURBS has been presented in [24].

3.3.3 Orders of interpolation

The displacement field, u, and the plastic multiplier, λ, are discretised as follows:

u = Na (3.37)

λ = hTΛΛΛ (3.38)

where a is a vector of discrete displacements at the control points, ΛΛΛ is a vector of the

plastic multiplier degrees of freedom at the control point, N is a matrix, and h, a vector,

both containing NURBS shape functions. According to the linear kinematic relation in

Equation (3.3), the strain vector can be expressed as:

εεε = Ba (3.39)
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where B = LN. In a similar way, we discretise the gradient of the plastic multiplier

∇λ and its Laplacian as:

∇λ = qTΛΛΛ (3.40)

∇2λ = pTΛΛΛ (3.41)

where

q = [∇h1,∇h2, . . . ,∇hns]T (3.42)

p = [∇2h1,∇2h2, . . . ,∇2hns]
T (3.43)

and ns is the number of shape functions at each control point.

The strain vector is one order lower than the displacement, cf. Equation (3.3). Since

the plastic multiplier is of the same order as the (plastic) strain, the interpolation

functions of the displacements, contained in N, should be taken to be one order higher

than those used for the plastic multiplier (h). To satisfy the C1-continuity requirement,

the NURBS shape functions in h, must be, at least, of order two. Therefore, the shape

functions in N are taken to be of the order three.

In isogeometric analysis, Bézier projection is generally required to construct con-

forming meshes of different orders and matching element boundaries. The procedure

for achieving this has been presented in [140]. Starting with p-refinement, which ele-

vates a NURBS from order p to order p′, the control points for the p′ curve/surface are

computed for each element e as follows:

Pe,p′ = (Re,p′)T (Ep,p′)T (Ce,p)T (Pe,p) (3.44)

where Pe,p contains the control points of the initial curve/surface of order p, Pe,p′ con-

tains the control points of the target curve/surface of order p′, Ce,p contains the initial

Bézier extraction operator, Re,p′ is the inverse of the target Bézier extraction opera-

tor, i.e. Re,p′ = (Ce,p′)−1, and Ep,p′ is the elevation matrix from degree p to p′. For a

univariate elevation from quadratic to cubic NURBS, the elevation matrix is given by

[140]:

E2,3
uni =


1 1

3 0 0

0 2
3

2
3 0

0 0 1
3 1

 . (3.45)
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The corresponding bivariate elevation matrix is obtained as a tensor product of the

univariate matrices [24, 140]:

E2,3
bi = E2,3

uni ⊗E2,3
uni (3.46)

When considering a one-dimensional 100 mm bar with one element, the ini-

tial quadratic knot vector is Ξ2 = {0, 0, 0, 1, 1, 1} with control points P1,2 =

[0 0; 50 0; 100 0] and the target cubic knot vector is Ξ3 = {0, 0, 0, 0, 1, 1, 1, 1}. Equa-

tion (3.44) then specialises as:


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



−1

T 
1 1

3 0 0

0 2
3

2
3 0

0 0 1
3 1


T 

1 0 0

0 1 0

0 0 1


T 

0 0

50 0

100 0

 =


0 0

33.3333 0

66.6667 0

100.000 0

 (3.47)

3.3.4 Spatial discretisation

The weak forms, Equations (3.16) and (3.21), are discretised using the interpolations

of Equations (3.37) – (3.41). Requiring that the result holds for all admissible δa and

δΛΛΛ, we obtain the following set of non-linear algebraic equations [36]:Kaa Kaλ

Kλa Kλλ

 da

dΛΛΛ

 =

 fe + fa

fλ

 (3.48)

with the elastic stiffness matrix

Kaa =

∫
V

BTDeBdV, (3.49)

the off-diagonal matrices

Kaλ = −
∫
V

BTDemhTdV, Kλa = KT
aλ, (3.50)

the non-symmetric gradient-dependent matrix

Kλλ =

∫
V

[(H + mTDem)hhT − ghpT ]dV, (3.51)

the external force vector

fe =

∫
S

NT tj+1dS, (3.52)
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the vector of control point forces (equivalent to internal stresses)

fa = −
∫
V

BTσσσjdV, (3.53)

and the vector of residual forces due to inexact fulfilment of the yield function

fλ =

∫
V
F (σσσj , λj ,∇2λj)h dV. (3.54)

For associated flow, the gradient-dependent matrix can be made symmetric when

Equation (3.22) is discretised instead of Equation (3.21):

Kλλ =

∫
V

[(H + mTDem)hhT + gqqT ]dV (3.55)

It has been proposed to initially set the hardening modulus H equal to the Young’s

modulusE for elastic elements [36] in order to avoid singularity of the tangent operator

for these elements. Also, when all elements are elastic, the gradient vector m is set to

zero, and subsequently, Kaλ = KT
aλ = 0.

3.4 Numerical examples

We demonstrate the suitability of isogeometric finite element analysis for gradient

plasticity. In all examples considered, NURBS shape functions of order p = 3 have

been used to discretise the displacements and for the plastic multiplier NURBS basis

functions of order p = 2 have been employed. The non-symmetric formulation has been

used.

3.4.1 Gradient-dependent yield function

The Maxwell-Huber-Hencky-von Mises yield criterion is adopted for all numerical sim-

ulations:

F =

√(
3

2
σσσTPσσσ

)
− σ̄σσ(κ,∇2κ) (3.56)
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where σ̄σσg is the gradient dependent yield strength and P is the symmetric projection

matrix:

P =



2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0

−1
3 −1

3
2
3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


. (3.57)

The simple case of linear softening and a constant gradient influence variable (g) is

considered. This renders the following form for the gradient-dependent yield strength:

σ̄σσ(κ,∇2κ) = σy +Hκ− g∇2κ, g = −`2H (3.58)

where σy is the initial yield strength and ` is an internal length scale.

3.4.2 One-dimensional tensile bar with and without imperfection

A one-dimensional bar with specifications as listed in Table 3.1 and shown in Figure

3.1 is investigated using classical plasticity (g = 0) and gradient plasticity (g = 50000

N), cf. [36]. First, an ideally plastic homogeneous bar is considered, and then, in order

to trigger localisation, a small imperfection is introduced in the central part of the bar.

The stress and displacement at the right end are σr and ū respectively. We consider

two refined meshes with 26 and 27 elements respectively. For each mesh, four Gauss

integration points are employed.

Figure 3.1: Tensile bar with imperfection

Figure 3.2 shows the load-displacement diagram for a homogeneous bar assuming

ideal plasticity (H = 0). A mesh of 64 elements is used. It is noted that g is zero since
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Specification Notation Value

Length L 100 mm

Young’s modulus E 20000 N/mm2

Tensile strength σy 2 N/mm2

Reduced tensile strength σyr 1.8 N/mm2

Softening modulus H −2000 N/mm2

Gradient constant g 50000 N

Thickness t 1 mm

Table 3.1: Specifications for one-dimensional tensile bar

H is zero. A nonzero H as well as an imperfection are needed to trigger localisation.

The latter is implemented by introducing an imperfect zone at the middle of the bar

with H and g as given in Table 3.1. This is done by reducing the yield strength in the

affected zone by 10%. The imperfection zone length is not very crucial [105], thus we

use a length of 3.125 mm (two mid-elements).

Figure 3.2: Perfectly plastic homogeneous bar without imperfection.

Results for the imperfect bar are shown in Figures 3.3 and 3.4. It is evident from
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the load-displacement diagram that there is no mesh dependence. In fact, the slope

of the softening regime matches the analytical solution perfectly, cf. [35]. The cosine

distribution of the effective plastic strain that comes from the analytical solution is also

reproduced. A localisation zone width of 10π ≈ 31.4 mm was calculated analytically.

This matches very closely with the localisation zone widths for both discretisations,

see Figure 3.4. It is noted that for ` = 5 mm, the load-displacement curve shows a

sharp cusp beyond an end displacement of 0.02 mm [35]. This leads to non-symmetric

evolution of the plastic strain distribution. Thus, to conveniently compare the results

with the analytical solution, the maximum end displacement has been chosen before

the cusp develops.

end displacement [mm]

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

fo
rc
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N
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1
E
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Figure 3.3: Imperfect bar: Load-displacement diagrams for discretisations with 64 and
128 elements (el).

Figure 3.5 exhibits stress oscillations which do not disappear even upon mesh re-

finement. This was also observed using the element-free Galerkin method [105] and

is due to the satisfaction of the yield function only in a weak sense rather than in a

point-wise fashion. This manifests in the additional partial differential equation that

arises from a Taylor expansion of the yield function which makes the plastic multiplier

an independent discretised variable. The norm of non-standard residuals does not fully

converge to zero, and neither does the norm of out-of-balance forces.
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Figure 3.4: Evolution of effective plastic strain for the bar with imperfection discretised
with (a) 64 elements and (b) 128 elements. w is the analytical solution: 10π ≈ 31.4 mm.

3.4.3 Two-dimensional panel under uniaxial tension

Next, we consider a square panel subjected to uniaxial tension as shown in Figure

3.6 with material properties summarised in Table 3.2, cf. [83, 145]. The left edge is

restricted in the x-direction with its midpoint fixed in both directions, while the right
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Figure 3.5: Non-zero values of the yield function in the final step – (a),(b), and evolution
of stress oscillations – (c),(d) for the imperfect bar discretised with 64 elements (left)
and 128 elements (right).

edge is pulled in the x-direction. In order to avoid a homogeneous deformation with

no gradient effect, some elements at the bottom-left corner have been weakened. We

consider two meshes with 24 × 24 and 25 × 25 elements, respectively.

The two meshes and the corresponding weak elements with a 10% reduction in yield

strength are shown in Figure 3.7. Starting from the region of weak-strong elements

interface, a localisation band develops. This is depicted in Figure 3.8. For classical

plasticity (Figure 3.8(a) and (b)), the localisation width is strongly mesh dependent.

This also becomes clear from the load-displacement diagram of Figure 3.9(a), where

the curve using 256 elements deviates from the discretisation with 1024 elements. It

is noted that the difference is moderate due to the fact that in this example only a very

moderate rate of softening has been used (H/E = −0.02). A rather moderate rate of

softening was chosen because otherwise convergence problems were encountered for

this 2–dimensional problem.
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Figure 3.6: Geometry and boundary conditions of square panel under uniaxial tension.

Specification Notation Value

Length L 10 mm

Young’s modulus E 20000 N/mm2

Poisson ratio ν 0.25

Tensile strength σy 2 N/mm2

Reduced tensile strength σyr 1.8 N/mm2

Softening modulus H −400 N/mm2

Gradient constant g 100 N (` = 0.5 mm)

400 N (` = 1.0 mm)

Table 3.2: Specifications for square panel under tension.

When an internal length scale is introduced, unsurprisingly, results are obtained

that are fully mesh-objective. This is very clear from the contour plots for the effective

plastic strain, Figures 3.8(c)-(d) for an internal length scale ` = 0.5 mm, and Figures

3.8(e)-(f) for an internal length scale ` = 1.0 mm. It is noted that for convenience,

the scales of plots comparing classical and gradient plasticity have been synchronised.

Comparing the contour plots for ` = 0.5 mm on one hand, and those for ` = 1.0 mm,

on the other hand, we clearly observe that the width of the localisation zone is propor-

tional to the internal length scale. Figures 3.9 also show full mesh-objectivity when a
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(a) (b)

Figure 3.7: Meshes of square panel showing weakened elements: (a) 256 elements; (b)
1024 elements.

gradient dependence is introduced in the yield function, and confirm that for higher

values of ` a more ductile behaviour is obtained, which is concomitant with an in-

creased width of the localisation zone. The localisation pattern is a point of further

study. The orientation of the shearband is affected by the assumptions related to the

constitutive model, the Poisson’s ratio and plane stress or plane strain configuration

[130]. Different shearband orientations have been shown for plane stress and plane

strain configurations of a biaxial compression test [132]. One method that can be

looked into is the B-bar method related to volumetric locking as suggested by [23].

On another note, when the elements along the diagonal are weakened, this maintains

the band along the diagonal of the specimen [83].

The finite element size needs to be smaller than the internal length scale for suf-

ficient accuracy to be achieved [62]. The mesh size needs to be at least three times

smaller than 2π` [35]. For a length scale of 0.5 mm for example, the mesh size needs

to be 1.05 mm or lower; we have 0.625mm (16 × 16 elements) which is sufficient.

For a coarser mesh (8 × 8 elements with a finite element size of 1.25 mm), the load-

displacement curve failed to converge for ` = 0.5 mm. In transient finite element anal-

ysis which tries to accurately capture the propagation of plastic strain, the observation

implies that the size of the finite elements should be small relative to the size of the

structure. Adaptive remeshing may therefore be required particularly in the localisa-
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tion area [39, 62].

As emphasised in [43], contour plots are important in assessing higher-order

NURBS elements in plasticity as load-displacement diagrams may not be sufficient.

The least squares approach [43, 95] has been used for plotting the effective plastic

strain contours employing the relevant (quadratic) shape functions. A brief description

of how to extrapolate the effective plastic strain values from Gauss points to control

points is explained next.

History variables are normally computed at integration points. However, these vari-

ables must be extrapolated to the control points for post-processing purposes. Herein,

we have adopted a global least-squares fit to extrapolate the effective plastic strain

from the Gauss points to the control points. The control variables contained in the vec-

tor κκκc are obtained from the Gauss point values contained in the vector κκκg by solving

[95]:

Mκκκc =

∫
V

hTκκκgdV (3.59)

where M is the least-squares fit matrix or Gramm matrix given by:

M =

∫
V

hhTdV (3.60)

and h a vector that contains the NURBS shape functions used for discretising the plas-

tic multiplier as in Equation (3.38). The same approach can be used for other history

variables.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Square panel: Distribution of effective plastic strain measure (κ) for the
case of classical plasticity – (a) and (b), and gradient plasticity for ` = 0.5 mm – (c) and
(d), as well as ` = 1.0 mm – (e) and (f).
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(a)

(b)

Figure 3.9: Load-displacement diagrams for square panel (a) using classical plasticity
(` = 0 mm) and gradient plasticity with ` = 0.5 mm and (b) using gradient plasticity
with ` = 0.5 mm and ` = 1.0 mm.
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3.5 Concluding remarks

An isogeometric approach to gradient-dependent plasticity has been presented in this

chapter. Compared to finite element or meshless approaches, isogeometric analysis has

the advantage that the displacements and the plastic multiplier can be interpolated

with different orders in a straightforward manner, which enables a consistent, equal-

order approximation of the strains and the plastic strains. Herein, we have employed

NURBS with a cubic interpolation for the displacements and a quadratic interpolation

for the plastic multiplier. Through Bézier projection, meshes with matching element

boundaries have been obtained.

Compared to finite element approaches that use Hermitian shape functions for the

plastic multiplier or mixed finite element approaches, isogeometric analysis has the

distinct advantage that no interpolation of derivatives is required. This advantage

shows up especially in the boundary conditions, where no non-physical constraints

have to be imposed.

The ability of gradient plasticity to maintain the well-posedness of the govern-

ing equations for softening problems with the ensuing band width that is mesh-

independent, has been demonstrated in an isogeometric analysis framework for one-

dimensional and two-dimensional boundary value problems.

While regularisation has been shown for a 2-dimensional problem, steeper ratios of

hardening modulus to elastic modulus did not converge. An implicit gradient formula-

tion is thus pursued in the next chapter.
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Chapter 4

DISPERSION AND ISOGEOMETRIC ANALYSES

OF SECOND-ORDER AND FOURTH-ORDER

IMPLICIT GRADIENT-ENHANCED

PLASTICITY MODELS1

4.1 Introduction

Softening caused by inherent microstructural defects can lead to the formation of lo-

calisation bands. Constitutive modelling of this process in the framework of standard

continuum plasticity leads to ill-posed problems, which feature unphysical solutions

with a vanishing energy dissipation upon refinement of the discretisation. This can be

considered as a consequence of the absence of an internal length scale, which causes

the localisation band to have a zero width.

This mesh sensitivity is removed when incorporating a length scale in the mate-

rial description. Often, standard continuum plasticity is enhanced by replacing quan-

tities like the inelastic strain by weighted averages (nonlocal theories) or by adding

higher-order gradients of an internal variable such as the accumulated plastic strain

(gradient theories). Doing so, a continuum description can ensue which allows for

localised solutions, while preserving well-posedness of the boundary value problem

[17, 18, 35, 39, 98].

In nonlocal models, volume integrals have to be computed at every material point.

This can make such models numerically inefficient, which provides a rationale for de-

veloping gradient approximations [14, 45, 110, 139]. Indeed, gradient regularisation

1Based on: I. Kolo and R. de Borst. Dispersion and isogeometric analyses of second-order and fourth-
order implicit gradient-enhanced plasticity models. International Journal for Numerical Methods in
Engineering, 114(4):431–453, 2018
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can also be considered as an approximation of a fully nonlocal, integral-type model.

When a truncated Taylor series of the averaged quantity is substituted in a nonlocal

model, a gradient formulation can be derived [100, 113, 139]. It is important to note

that the approximation of the nonlocal variable can be based on either the higher-order

derivatives of the local variable (explicit formulation), or on the nonlocal variable (im-

plicit formulation). A Taylor series expansion of the nonlocal variable results in an

expression which is an explicit formulation with higher-order derivatives on the lo-

cal variable. When higher-order derivatives of this expression are taken, higher-order

derivatives of the nonlocal variable emerge leading to the implicit formulation.

Early studies in plasticity focused on an explicit gradient enhancement, which usu-

ally requires C1-continuity of the shape functions [35]. It has been attempted to satisfy

this requirement using Hermitian finite elements [36], using meshless methods [105],

and recently, isogeometric analysis [75] as demonstrated in chapter 3. The ability of

this explicit gradient plasticity model, in which the yield stress is made a function of

the Laplacian of the accumulated plastic strain in addition to the plastic strain itself,

to fully regularise the boundary value problem has been demonstrated through one-

dimensional dispersion analysis [37], spectral analyses [41, 85, 117], and shear band

simulations [36, 105].

The implicit gradient plasticity formulation was proposed to overcome some of the

limitations of the explicit gradient plasticity formulation such as (i) difficulty in mod-

elling complete failure, (ii) numerical problems when the total enhanced yield strength

approaches zero, and (iii) the additional partial differential equation related to the

gradient-enhanced consistency condition is only valid in the plastic region [45]. How-

ever, implicit gradient plasticity models with second-order gradients do not fully regu-

larise the boundary-value problem, as has been demonstrated through spectral analy-

sis [41, 66, 117] and three-dimensional simulations [117]. Two approaches have been

identified to improve this situation, namely the use of a multiplicative yield func-

tion with a damage term, and over-nonlocal implicit gradient plasticity [41, 66, 67].

The localisation properties of both methods have been analysed using one-dimensional

spectral analysis and the latter approach has been scrutinised whether it can produce

shear-band which are mesh-objective [117]. It is noted that the multiplicative yield
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function proposed in [45] can be conceived as a special case of the over-nonlocal formu-

lation which is a linear combination of the local and non-local history variable. In this

context, the ratio of the local and non-local moduli determines whether regularisation

is achieved or not [44, 67].

The practical use of implicit gradient plasticity models derived from nonlocal aver-

aging seems to be limited to a Taylor series truncated after the second-order gradient

[44, 45]. This can be partly attributed to the fact that the ensuing formulation rep-

resents a special case of the nonlocal model when an appropriate (Green’s) weighting

function is adopted [45, 113]. Perhaps more importantly, the formulation requires only

C0-continuity of the shape functions, which is compatible with standard finite elements.

However, the inclusion of fourth-order gradients requires C1-continuity of shape func-

tions, which results in the same continuity requirements as an explicit second-order

enrichment, with the computational inconveniences that come with it. Herein, we con-

sider inclusion of second-order gradients as well as fourth-order gradients. Higher-

order continuity is achieved using higher-order NURBS shape functions within the

context of isogeometric analysis [63].

This chapter expounds the formulation and implementation of implicit gradient-

enhanced plasticity models, exploiting isogeometric analysis. The implicit gradient

plasticity formulations are presented first. Next, a one-dimensional dispersion anal-

ysis is carried out to study the localisation properties of different formulations. The

isogeometric finite element discretisation of the field equations is outlined and the

interpolation requirements for the discretised variables are highlighted. Bézier ex-

traction [24] is employed to arrive at a standard finite element data structure. One-

dimensional simulations and two-dimensional shear band simulations further illus-

trate the responses of both formulations.

4.2 Implicit gradient-enhanced plasticity

4.2.1 Incremental boundary value problem

We consider the equilibrium equation:

LTσ = 0 (4.1)
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where σ = [σxx, σyy, σzz, σxy, σyz, σzx]T is the stress vector, and L is the differential

operator:

L =


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y


T

. (4.2)

Under the assumption of small displacement gradients, the following kinematic rela-

tion holds:

εεε = Lu (4.3)

with the strain vector εεε = [εxx, εyy, εzz, τxy, τyz, τzx]T and the displacement vector

u = [ux, uy, uz]
T. The incremental constitutive relation between the stress and strain

increments is given by:

dσσσ = De( dεεε− dεεεp) (4.4)

where De is the material elastic stiffness matrix and dεεεp is the plastic strain increment

vector. An associated plasticity flow rule is adopted:

dεεεp = dλm, m =
∂F

∂σσσ
(4.5)

in which dλ is a non-negative plastic multiplier and m is a vector that defines the

direction of plastic flow relative to the yield function F .

The following yield function is considered [45]:

F (σσσ, κ, κ̄) = σe(σσσ)− (1− ω(κ̄))σy(κ) (4.6)

where σe(σσσ) is the Von Mises equivalent stress, κ is the local effective plastic strain

measure, κ̄ is the nonlocal effective plastic strain measure, ω ∈ [0, 1] can be interpreted

as a nonlocal damage variable, and σy is the yield or flow stress. The yield stress can

be written as:

σy = σy,0 +Hκ (4.7)

where σy,0 is the initial yield strength, and H > 0 a hardening modulus. The yield

stress is progressively reduced by the factor (1 − ω) as the damage variable increases

from ω = 0 until complete loss of strength, ω = 1. The damage evolution can be de-
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scribed by an exponential relation, a power law, or a linear relation, e.g.,

ω(κ̄) =


κ̄−κ̄i
κ̄u−κ̄i if κ̄ ≤ κ̄u

1 if κ̄ > κ̄u

(4.8)

in which κ̄i is the nonlocal effective plastic strain measure at which damage is initi-

ated and κ̄u is the ultimate nonlocal effective plastic strain measure at complete loss of

integrity. The implicit gradient plasticity formulation was proposed to overcome some

of the limitations of the explicit gradient plasticity formulation such as (i) difficulty

in modelling complete failure, (ii) numerical problems when the total enhanced yield

strength approaches zero, and (iii) the additional partial differential equation related

to the gradient-enhanced consistency condition is only valid in the plastic region [45].

However, the implicit formulation with a standard yield function leads to only partial

regularisation [66, 117]. To achieve full regularisation, the yield function is modified

using a damage variable [45]. The motivation for using damage is, on one hand to en-

sure proper regularisation, and on the other hand to properly capture the material

softening. Different from the yield function used in chapter 3 where a softening mod-

ulus is directly used, this yield function only allows a (positive) hardening modulus.

Degradation in material integrity is incorporated through damage.

The hardening parameter κ is related to the plastic multiplier λ according to the

strain-hardening hypothesis:

dκ =

√
2

3
(dεεεp)TPdεεεp (4.9)

where, cf. [34],

P =



2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0

−1
3 −1

3
2
3 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2


. (4.10)

Substitution of the flow rule, Equation (4.5) into the strain-hardening hypothesis,

Equation (4.9), then yields dκ = dλ. The yield function F and the plastic multiplier
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dλ obey the the Karush-Kuhn-Tucker loading-unloading conditions, similar to stan-

dard plasticity:

dλ ≥ 0, F ≤ 0, Fdλ = 0 (4.11)

The nonlocal effective plastic strain measure, κ̄(x), can be defined as the volume

average of the local effective plastic strain measure, κ = κ(εεεp), as follows:

κ̄(x) =

∫
Ω φ(x,y)κ(y)dΩ∫

Ω φ(x,y)dΩ
(4.12)

where y is the position vector of the infinitesimal volume dΩ and φ is a weight function.

A Gaussian weight function is often assumed:

φ(x,y) =
1

(2π)3/2`3
exp

[
− ‖x− y‖2

2`2

]
(4.13)

where ` is a length scale that sets the averaging volume. The nonlocal formulation in

Equation (4.12) requires the computation of a volume integral at each material point,

which is cumbersome and leads to inefficiency. This is usually obviated by using a

gradient approximation of the nonlocal model, e.g., [113, 139].

The nonlocal hardening parameter κ̄ can be approximated when κ(y) is expanded

in a Taylor series around x,

κ(y) = κ|y=x +
∂κ

∂yi

∣∣∣∣
y=x

(yi − xi) +
1

2!

∂κ

∂yi

∣∣∣∣
y=x

(yi − xi)(yj − xj) +O((xi − yi)3) (4.14)

Substitution into Equation (4.12) and integration in R3 leads to:

κ̄(x) = κ(x) + c1∇2κ(x) + c2∇4κ(x) + c3∇6κ(x) + · · · (4.15)

in which ∇2n = (∇2)n and ∇2 =
∑

i
∂2

∂x2
i
. The coefficients ci(`) depend on the nonlocal

averaging function φ, and odd derivatives vanish in the integration process due to the

isotropic character of φ [14, 139]. The nonlocal effective plastic strain measure, κ̄, can

be approximated by truncating the series in Equation (4.15) after the second-order

term. This gradient approximation is known as the explicit gradient formulation and

it requires C1-continuous shape functions for the interpolation of κ.

We next take the second-order derivative of Equation (4.15), multiply by c1 and

substitute the result back into Equation (4.15). This gives [14]:

κ̄(x)− c1∇2κ̄(x) = κ(x) + (c2 − c2
1)∇4κ(x) + (c3 − c1c2)∇6κ(x) + · · · (4.16)
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A formulation requiring only C0-continuous shape functions is obtained when fourth-

order and higher-order terms are omitted in Equation (4.16) [14, 110]. This implies

that coefficients of higher-order terms are set equal to zero, starting with c2 − c2
1 = 0.

It is noted that when Green’s weighting function

φ(x,y) =
1

4π‖x− y‖`2 exp

[
− ‖x− y‖

`

]
(4.17)

‖x − y‖ being the distance between two points, is substituted for φ, no higher-order

terms are neglected [45, 113]. The coefficient c1 then reads:

c1(`) = `2. (4.18)

Accordingly, the second-order implicit gradient formulation is given by:

κ̄(x)− `2∇2κ̄(x) = κ(x) (4.19)

When we include the fourth-order derivatives of Equation (4.15), multiply by the

terms ci and substitute the result back into Equation (4.15), the following expression

ensues:

κ̄(x)− c1∇2κ̄(x)− (c2 − c2
1)∇4κ̄(x) = κ(x) + (c3 − 2c1c2 − c3

1)∇6κ(x) + · · · (4.20)

For the Gaussian weight function, c1 = 1
2`

2, c2 = 1
8`

4, etc. [112]. When these coeffi-

cients are substituted into Equation (4.20) and sixth-order and higher-order terms are

neglected, we obtain the fourth-order implicit gradient formulation:

κ̄(x)− 1

2
`2∇2κ̄(x) +

1

8
`4∇4κ̄(x) = κ(x). (4.21)

For the implicit gradient formulations, the strain-hardening hypothesis is assumed

to hold for κ̄. A state variable λ̄ is defined as

λ̄(t) = max{κ̄(τ)|0 ≤ τ ≤ t} (4.22)

such that:

dλ̄ ≥ 0, κ̄− λ̄ ≤ 0, dλ̄
[
κ̄− λ̄

]
= 0 (4.23)

Standard static and kinematic boundary conditions are specified on complementary

parts of the body surface S:

ΥΥΥns = t, u = us (4.24)
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where ΥΥΥ denotes the stress tensor in matrix form, ns is the outward normal to the

surface S, and t is the boundary traction vector. Natural boundary conditions apply on

the odd derivatives of κ̄ [14]:

(nT
s∇)∇nκ̄ = 0, n = 0, 2 (4.25)

4.2.2 Weak formulation

The weak form of the governing equations is obtained by setting:∫
V
δuT(LTσj+1)dV = 0 (4.26)

and ∫
V
δλ̄

(
κ̄j+1 − ca∇2κ̄j+1 + cb∇4κ̄j+1 − κj+1

)
dV = 0 (4.27)

where δ denotes the variation of a quantity. We obtain the second-order implicit gradi-

ent formulation when ca = `2 and cb = 0, while the fourth-order formulation is obtained

when ca = 1
2`

2 and cb = 1
8`

4. Integrating by parts and applying the divergence theorem

yields: ∫
V
δεεεTσσσj+1dV −

∫
S
δuTtj+1dS = 0 (4.28)

and ∫
V

(
δλ̄κ̄j+1 − ca(∇δλ̄)T(∇κ̄j+1) + cb∇2δλ̄∇2κ̄j+1 − δλ̄κj+1

)
dV = 0 (4.29)

where the boundary condition (4.25) has been substituted in Equation (4.29), and the

boundary condition for t, Equation (4.24)1, is applied along the entire external bound-

ary S of the body V .

The following linearisations are carried out at iteration j + 1 for use in a Newton-

Raphson iterative solution procedure:

σσσj+1 = σσσj + dσσσ, κj+1 = κj + dκ, κ̄j+1 = κ̄j + dκ̄ (4.30)

where d represents an iterative contribution. Substituting Equation (4.30)1 into Equa-

tions (4.28) and using (4.4) gives the weak form:∫
V
δεεεTDe( dεεε− dλm)dV =

∫
S
δuTtj+1dS −

∫
V
δεεεTσσσjdV (4.31)

75



Chapter 4
Dispersion and isogeometric analyses of second-order and fourth-order implicit

gradient-enhanced plasticity models

Similarly, Equations (4.30)2,3 are substituted into Equation (4.29) to give∫
V

(
δλ̄dκ̄− ca(∇δλ̄)T(∇dκ̄) + cb∇2δλ̄∇2dκ̄− δλ̄dκ

)
dV =

−
∫
V

(
δλ̄κ̄j − ca(∇δλ̄)T(∇κ̄j) + cb∇2δλ̄∇2κ̄j − δλ̄κj

)
dV

(4.32)

4.2.3 Stress update

Similar to standard elastoplasticity, the stress update is computed as an integral along

a given path from the initial state (σσσ0, εεε0) to the final state (σσσj+1, εεεj+1):

σσσ = σσσ0 +

∫ εεεj+1

εεε0

Dedεεε (4.33)

The algorithmic stress update in iteration j + 1 follows the format [36]:

σσσj+1 = σσσ0 + S(εεε0,∆∆∆εεεj+1) (4.34)

where S is a non-linear mapping operator and ∆∆∆ is the sum of increments in all itera-

tions for the current load step:

∆∆∆εεεj+1 =

j+1∑
i=1

dεεεi (4.35)

The yield function is evaluated at every iteration j + 1 as [45]:

Ft = F (σσσt, κ0, κ̄j+1) = σe,t − σy,0
(
1− ωj+1

)
(4.36)

where (•)•,t indicates use of the trial stress which is given by:

σσσt = σσσ0 + De∆εεεj+1. (4.37)

and (•)0 denotes value at previous converged load step. If Ft ≤ 0, we have an elastic

state and the stress is updated as σσσj+1 = σσσt. When Ft > 0, we have a plastic state

which is updated by [35, 117]:

σσσj+1 = σσσt −∆γj+1D
emt (4.38)

where mt is given by Equation (4.5)2, and ∆γj+1 is the amount of plastic strain for the

current iteration, expressed as [45],

∆γj+1 =
Ft

H
[
1− ωj+1

][
∂κ
∂λ

]
+ 3E

2(1+ν)
(4.39)

in which E is the Young’s modulus and ν is the Poisson ratio. This ensures that the

consistency condition is satisfied.
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4.3 Dispersion analyses

We consider the one-dimensional equation of motion for a bar under uniform tensile

loading in rate form:
∂σ̇

∂x
= ρ

∂2u̇

∂t2
(4.40)

where σ is the stress, ρ is the mass density, u is the displacement, and (•̇) denotes the

time derivative. The rate of deformation is expressed as

ε̇ =
∂u̇

∂x
. (4.41)

An additive decomposition of the strain holds, so that Hooke’s law is given by:

σ̇ = E(ε̇− κ̇) (4.42)

The current yield stress has a multiplicative format:

σy = (1− ω(κ̄)) (σy,0 +Hκ) (4.43)

while the stress rate σ̇ has to satisfy the consistency condition: Ḟ ≡ σ̇ − σ̇y = 0. Differ-

entiating Equation (4.43) with respect to time yields [67]:

σ̇y = (1− ω)H︸ ︷︷ ︸
HL

κ̇+ ω′(−σy,0 −Hκ)︸ ︷︷ ︸
HN

˙̄κ (4.44)

in which ω′ = dω/dκ̄, and HL and HN can be considered as the current local and

nonlocal plastic moduli, respectively. The time derivative of Equation (4.21) reads:

˙̄κ− ca∇2 ˙̄κ+ cb∇4 ˙̄κ = κ̇. (4.45)

For a dispersion analysis, we consider the following harmonic functions

u̇ = ûeik(x−ct), κ̇ = κ̂eik(x−ct), ˙̄κ = ˆ̄κeik(x−ct) (4.46)

with k the wave number, c the phase velocity, and the amplitudes û, κ̂ and ˆ̄κ. The

amplitudes κ̂ and ˆ̄κ can be related by substituting the respective harmonic fields into

Equation (4.45). Using the result together with Equations (4.41) and (4.42), the am-

plitude of the plastic strain, κ̂, can be related to û, the amplitude of the displacement.
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Subsequently, satisfaction of the consistency condition can be exploited to equal the

right-hand sides of Equations (4.42) and (4.44). The resulting expression reads:

Ek2

[
HL(1 + cak

2 + cbk
4) +HN

(HL + E)(1 + cak2 + cbk4) +HN

]
= ρk2c2 (4.47)

Using the bar velocity, ce =
√
E/ρ, the phase velocity c can be expressed as:

c2

c2
e

=

[
HL(1 + cak

2 + cbk
4) +HN

(HL + E)(1 + cak2 + cbk4) +HN

]
. (4.48)

The normalised wave velocity c/ce is plotted as a function of the normalised wave

number k` in Figure 4.1 for HL = 1819 N/mm2, HN = −2148 N/mm2, E = 20000 N/mm2

and ` = 1.0 mm, being representative values for a low-strength concrete. For compari-

son, the dispersion relation for the explicit gradient plasticity model [37],

c2

c2
e

=

[
HE + gk2

E +HE + gk2

]
(4.49)

has been plotted in the same figure for a softening modulus HE = −329 N/mm2 and

g = −`2HE . The frequency ω = kc is a function of wave number, ω = ω(k). Since

ω′′(k) 6= 0, wave propagation is dispersive [37, 144]. It is noted that emphasis is on the

comparison of the regularisation properties of the models considered.
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Figure 4.1: Normalised phase velocity c/ce as a function of normalised wave number
k`.
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The critical wave number kcrit is the minimum wave number below which only

imaginary values of phase velocity exist. It is obtained by setting the phase velocity

c = 0. The critical wave length µcrit = 2π/kcrit is the wave length above which no waves

will propagate:

second-order implicit formulation µcrit = 2π`

√
−(HN +HL)

HL

fourth-order implicit formulation µcrit = 2π`

√√√√−2 + 2

√
−(HL + 2HN )

HL

second-order explicit formulation µcrit = 2π` (4.50)

We now proceed by using the linear damage relation of Equation (4.8) and use this

to derive the expressions for the local and nonlocal hardening moduli for the implicit

gradient plasticity formulation:

HL =


H

(
1− κ̄−κ̄i

κ̄u−κ̄i

)
if κ̄ ≤ κ̄u

0 if κ̄ > κ̄u

(4.51)

and

HN =


−(σy,0 +Hκ)

(
1

κ̄u−κ̄i

)
if κ̄ ≤ κ̄u

0 if κ̄ > κ̄u

(4.52)

The normalised critical wave length µcrit/` is plotted vs the strain level κ = κ̄ in Figure

4.2 for κ̄i = 0, κ̄u = 0.001, H = 2000 N/mm2 and σy,0 = 2 N/mm2. For the explicit

gradient plasticity formulation, the critical wavelength is non-zero and independent

of the accumulated damage, so that there is localisation into a non-zero band width.

For the implicit gradient plasticity formulations, a non-zero band width results, except

when the damage attains a maximum, when the localisation width becomes zero. It

has been argued that this can be conceived as an an advantage of implicit gradient

plasticity formulations, since they ultimately result in a sharp crack [45]. Conversely,

it can be considered as a disadvantage, as in the limiting case of a sharp crack, the

topology changes and boundary conditions have to be supplied locally in order to keep

the boundary value problem well-posed.

Indeed, the critical wave length represents the width of the localisation band. It is

clear from Figure 4.2 that, at the initial stages of the deformation, the second-order
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implicit formulation has a localisation band that is wider than that which results from

the fourth-order implicit formulation. However, at some point, before complete fail-

ure, the localisation band width of the fourth-order formulation becomes higher, and

remains so.
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Figure 4.2: Normalised critical wavelength µcrit/` vs the strain level κ = κ̄ for a piece-
wise linear damage law.

When using an exponential damage law [45], for instance

ω = 1− e−βκ̄ (4.53)

the results become different, see Figure 4.3 for β = 1000. Now, neither the explicit

formulation, nor either of the implicit gradient plasticity formulations result in a zero

critical wave length at complete damage, and thus, convergence to a line crack does

not take place in either of the cases which have been considered. As a minor detail we

note that the band width of the second-order gradient plasticity model remains wider

than that of the fourth-order model for all strain levels.

The relations for the critical wave length, Equations (4.50), indicate that the sum of

the local and nonlocal hardening moduli,HL andHN determine whether or not regular-

isation is achieved for the implicit gradient formulations. For the second-order implicit

gradient plasticity formulation, HL +HN has to be negative. According to the adopted
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Figure 4.3: Normalised critical wavelength µcrit/` vs the strain level κ = κ̄ for an
exponential damage law.

yield function, Equation (4.43), HL is always positive and HN is always negative be-

cause H > 0. The sum of the two moduli is initially positive but at a certain loading

stage, it becomes negative. The same holds for the fourth-order implicit gradient plas-

ticity formulation, except that now the sum under consideration is HL + 2HN . For the

second-order explicit formulation, HE < 0, and regularisation is always achieved.

The behaviour of localised zones in softening systems depends on the dispersive

properties of the material [133, 134]. At wave lengths below µcrit, waves with real phase

velocities exhibit dispersion. Hence, the localisation zone can extend, and the strain

profile in the localisation zone can be transformed due to different modes travelling at

different speeds. In the static case, phase velocity c = 0, the localisation zone acts as

a stationary wave and the width of the localisation zone is equal to the lowest-order

wave that the system can transmit [37, 134].

4.4 Isogeometric finite element discretisation

See section 2.3 and section 3.3 for a description of NURBS shape functions as well as

their Bézier element representation.
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4.4.1 Orders of interpolation

The displacement field, u, and the nonlocal effective plastic strain measure (nonlocal

plastic multiplier), λ̄, are discretised as follows:

u = Na (4.54)

and

λ̄ = hTΛ̄̄Λ̄Λ (4.55)

where a is a vector of discrete displacements at the control points, Λ̄ΛΛ is a vector of the

nonlocal plastic multiplier degrees of freedom at the control point, N is a matrix, and

h, a vector, both containing NURBS shape functions. Based on the linear kinematic

relation (4.3), the strain vector can be expressed as:

εεε = Ba (4.56)

where B = LN. In a similar way, the gradient of the nonlocal plastic multiplier∇λ̄ and

its Laplacian can be discretised as:

∇λ̄ = QTΛ̄ΛΛ (4.57)

∇2λ̄ = pTΛ̄ΛΛ (4.58)

where

Q = [∇h1,∇h2, . . . ,∇hns]T (4.59)

p = [∇2h1,∇2h2, . . . ,∇2hns]
T (4.60)

and ns the number of shape functions at each control point. The interpolation functions

contained in h must be C0-continuous and C1-continuous for the second-order and

fourth-order formulations, respectively. Quadratic NURBS are used for h, and since

the strain vector (which is of the same order as the nonlocal plastic multiplier) is one

order lower than the displacement, cubic NURBS are used for N. This is investigated

further in Section 4.5.

To construct conforming meshes of different orders and matching element bound-

aries, we use Bézier projection [140]:

Pe,p′ = (Re,p′)T(Ep,p′)T(Ce,p)T(Pe,p) (4.61)
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where Pe,p contains the control points of the initial curve of order p, Pe,p′ contains

the control points of the target curve of order p′, Ce,p contains the initial Bézier ex-

traction operator, Re,p′ is the inverse of the target Bézier extraction operator, i.e.

Re,p′ = (Ce,p′)−1, and Ep,p′ is the elevation matrix from degree p to p′. It is noted that

the Bézier extraction/projection procedure preserves the original continuity.

4.4.2 Spatial discretisation

The interpolation functions of Equations (4.54)–(4.55) are used to discretise the weak

forms, Equations (4.31) and (4.32). Requiring that the result must hold for all admis-

sible δa and δΛΛΛ leads to the following set of non-linear algebraic equations [45]:Kaa Kaλ

Kλa Kλλ

 da

dΛ̄̄Λ̄Λ

 =

 fe − fa

−fλ

 (4.62)

with the elastic stiffness matrix

Kaa =

∫
V

BTAaaBdV, (4.63)

the off-diagonal matrices

Kaλ = −
∫
V

BTAaλh dV, Kλa = −
∫
V

hTAλaB dV, (4.64)

the gradient-dependent matrix

Kλλ =

∫
V

hT
(
1−Aλλ

)
h + caQ

TQ + cbp
Tp dV, (4.65)

the external force vector

fe =

∫
S

NTtj+1dS, (4.66)

the vector of control point forces (equivalent to internal stresses)

fa = −
∫
V

BTσσσjdV, (4.67)

and the vector associated with the nonlocal averaging

fλ = Kλλ̄j −
∫
V

hTλj dV (4.68)

where

Kλ =

∫
V

hTh + caQ
TQ + cbp

Tp dV. (4.69)
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The arrays Aaa, Aaλ and Aλa, and the scalar Aλλ are defined as [45, 117]:

Aaa = A− AmmTA

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(4.70)

Aaλ =
σy
(
∂ω
∂κ̄

)(
∂κ̄
∂λ̄

)
Am

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(4.71)

Aλa =
mTA

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(4.72)

Aλλ =
σy
(
∂ω
∂κ̄

)(
∂κ̄
∂λ̄

)
H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(4.73)

respectively, where A is the algorithmic stiffness operator

A =

[
(De)−1 + ∆γ

∂m

∂σσσ

]−1

(4.74)

A concise algorithm is given in Box 4.1.
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1. Compute the matrices Kaa, Kaλ, Kλa and Kλλ, and forces fe, fa and fλ, according

to Equations (4.63) – (4.68)

2. Solve for da and dΛ̄ using Equation (4.62)

3. Update the total increments ∆aj+1 = ∆aj + da, and ∆Λj+1 = ∆Λj + dΛ.

4. Compute the following at each integration point:

∆εεεj+1 = B∆aj+1,

∆λ̄j+1 = hT∆Λ̄j+1,

∇2(∆λj+1) = pT∆Λj+1,

κ̄j+1 = κ̄0 + ∆λj+1,

∇2κ̄j+1 = ∇2κ̄0 +∇2(∆λ̄j+1),

compute ωj+1 according to adopted damage evolution law

trial stress σσσt = σσσ0 + De∆εεεj+1.

If F (σσσt, κ0, κ̄j+1) > 1× 10−6,

then plastic state:

compute mt and ∆γj+1

κj+1 = κ0 + ∆γj+1,

compute the algorithmic stiffness operator A

update the trial stress update according to Equation 4.38

else

elastic state:

mt = 0

σσσj+1 = σσσt

A = De

5. Check the global convergence criterion. If not converged, go to 1.

(•)0 denotes value at previous converged load step and (•)j indicates value at previous

iteration.

Box 4.1. Algorithm for implicit gradient plasticity formulations (iteration j + 1)
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4.5 Interpolation requirements

Taking the order of interpolation for the nonlocal effective plastic strain measure to

be an order lower than the displacement gives a balanced interpolation. It is useful to

investigate the effect of the same orders of interpolation, because when using adaptive

or hierarchical refinement, the same order of interpolation may be simpler to imple-

ment. Indeed, it has been argued that nonlocal gradient models are coupled problems

and the interpolation orders of variables do not have to be balanced [129]. Finally,

there are indications from calculations with the second-order explicit gradient plastic-

ity model that stress oscillations can occur in spite of the use of different interpolation

orders for the displacements and the plastic multiplier [105].

We consider a one-dimensional bar, which is fixed at one end and subjected to ten-

sion at the other end, see Figure 4.4. The bar has a length L = 100 mm, a Young’s

modulus E = 20000 N/mm2, area = 100 mm2 and an initial tensile strength σy,0 = 2

N/mm2. The tensile strength in the central part of the bar (21.875mm) is reduced by 5%

to trigger localisation. A length scale ` = 5 mm is used and the bar is discretised with

64 and 128 elements, respectively. Only the second-order implicit gradient plasticity

formulation is considered in this section.

Figure 4.4: Tensile bar with imperfection

First, the effect of material parameters is studied for the tensile bar without im-

perfection. The load displacement curves are given in Figure 4.5 considering a linear

damage evolution, Equation (4.8), with H = 6000 N/mm2 and κ̄i = 0, and for an expo-

nential damage evolution, Equation (4.53), withH = 6000 N/mm2. The critical nonlocal

effective plastic strain at full damage κ̄u shows a significant influence on the linear re-

lation, while β is the dominating parameter when using the exponential relation, cf.

[45].
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All subsequent simulations are for the tensile bar with an imperfection. The load-

displacement curves are shown in Figure 4.6 for a quadratic interpolation of the non-

local plastic multiplier and a cubic interpolation of the displacement. The parameters

H = 2000 N/mm2, κ̄i = 0 and κ̄u = 0.001 are used for linear damage evolution, while

H = 9000 N/mm2 and β = 4300 are adopted for exponential damage evolution. It is

clear that mesh-objective results are obtained, since the curves are identical for both

discretisations (64 and 128 elements). The evolution of nonlocal effective plastic strain

has been plotted in Figure 4.7. The load-displacement curves as well as the nonlocal ef-

fective plastic strain profiles converge throughout the loading history. No visible mesh

dependency exists.

Next, we consider the same interpolation order for the displacements and for the

nonlocal effective plastic strain, using an exponential damage evolution. The load-

displacement curves as well as the nonlocal strain profiles converge upon refinement

of the discretisation. For 128 elements, the results are compared in Figure 4.8 for

quadratic/quadratic, cubic/cubic and cubic/quadratic interpolations. There seems to be

no visible differences among the results. The axial stress and the yield stresses are

shown in Figures 4.9 and again, there seems to be no significant differences, which

supports the assertion that gradient formulations are coupled problems and the inter-

polation functions of different variables that have to be discretised are not necessarily

related [129]. Oscillations in the axial stress persist for all interpolations, which is as-

cribed to the weak satisfaction of the yield condition, similar to results obtained for the

second-order explicit gradient plasticity model [105].
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Figure 4.5: Influence of material parameters for bar without imperfection discretised
with 64 elements using linear (a) and exponential (b) damage evolution law. Results
are shown for an interpolation order p = 2 of the nonlocal plastic multiplier and p = 3
of the displacement.
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Figure 4.6: Load-displacement curves using an interpolation order p = 2 for the non-
local plastic multiplier and p = 3 for the displacements. Results are shown for linear
and exponential damage evolution relations, with 64 and 128 elements. The lines for
the two meshes coincide and are thus indistinguishable.
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Figure 4.7: Evolution of the nonlocal effective plastic strain for linear (a) and expo-
nential (b) damage evolution law with 64 and 128 elements. Results are shown for an
interpolation order p = 2 of the nonlocal plastic multiplier and p = 3 of the displace-
ment. The lines for the two meshes coincide and are thus indistinguishable.
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Figure 4.8: Load-displacement curves (a) and nonlocal effective plastic strain profiles
(b) for different and same interpolation orders for the displacement/nonlocal effective
plastic strain. Discretisation with 128 elements and an exponential damage evolution
is adopted. The lines for all discretisations coincide and are thus indistinguishable.
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Figure 4.9: Yield stress (a) and axial stress (b) for different and same interpolation
orders for the displacement/nonlocal effective plastic strain. Discretisation is with 128
elements and a exponential damage evolution is adopted. The lines for all discretisa-
tions nearly coincide and are thus indistinguishable.
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Figure 4.10: Tensile bar: Load-displacement curves (a) and nonlocal effective plastic
strain profiles (b) for the second-order and fourth-order formulations discretised with
different number of elements. The lines for the two meshes coincide and are thus in-
distinguishable.
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Figure 4.11: Tensile bar: Load-displacement curves (a) and nonlocal effective plas-
tic strain profiles (b) for second-order and fourth-order gradient formulations discre-
tised with different number of elements. An exponential damage evolution relation is
adopted. The lines for the two meshes coincide and are thus indistinguishable.
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4.6 Comparison of second-order and fourth-order gradient formulations

4.6.1 One-dimensional bar in tension

We revisit the problem of an imperfect bar subjected to tension discussed in the pre-

vious section (Figure 4.4). We now consider the second-order and the fourth-order im-

plicit gradient plasticity formulations using a cubic interpolation for the displacements

and a quadratic interpolation for the nonlocal effective plastic strain. We recall that

for the second-order gradient formulation, ca = `2, cb = 0, and that for the fourth-order

formulation ca = `2/2, cb = `4/8. The load-displacement curves and nonlocal effective

plastic strain profiles are shown in Figure 4.10 for a linear damage evolution.

Convergence is achieved in all cases, but significant differences occur between both

formulations. The second-order implicit gradient formulation shows a more ductile re-

sponse and a broader localisation band than the fourth-order formulation. This sup-

ports the results of the dispersion analysis, Figure 4.2, which point at a broader locali-

sation band for the second-order formulation. The additional term due to the non-zero

coefficient cb in the fourth-order formulation leads to a higher peak of the nonlocal

effective plastic strain in the fourth-order formulation, see Figure 4.10(b). The same

trend is observed for the exponential damage evolution law, see Figure 4.11.

4.6.2 Square plate under uniaxial tension

Next, the two-dimensional panel is considered as shown in Figure 4.12. The left side is

fixed in the x direction and the midpoint of this side is fixed in the y direction as well.

A displacement ū is imposed on the right side. Regarding the panel dimensions L = 10

mm, and the material properties are E = 20000 N/mm2, H = 2000 N/mm2, and σy,0 = 2

N/mm2. An exponential damage evolution is assumed with β = 3500 and a length scale

` = 0.7 mm. The yield strength is reduced by 5% at the bottom left corner of the panel

to trigger localisation. Three uniformly refined meshes are considered with 256, 1,024

and 4,096 elements, respectively, see Figure 4.13, with a cubic interpolation for the

displacements and a quadratic interpolation for the pressure.

The load-displacement curves are shown in Figure 4.14 for different meshes. The

results show no mesh dependency indicating that regularisation is achieved. The con-
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Figure 4.12: Geometry and boundary conditions of two-dimensional panel subjected to
uniaxial tension

(a) (b) (c)

Figure 4.13: Meshes of square panel indicating weakened elements: (a) 256 elements;
(b) 1,024 elements; (c) 4,096 elements

tours of the nonlocal effective plastic strain are given in Figure 4.15, while Figure

4.16 shows its distribution along the diagonal AB (Figure 4.12). The second-order for-

mulation shows a wider localisation band. This is similar to the findings for implicit

second-order and fourth-order gradient damage formulations [14]. Moreover, this cor-

roborates the results of the dispersion analysis which indicate that the second-order

formulation has a bigger band width. Conversely, for explicit gradient plasticity for-

mulations, shear localisation analyses [91, 143] show a broader localisation band for

an explicit fourth-order gradient model compared to an explicit gradient model with
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Figure 4.14: Load-displacement curves for square panel.

second-order gradients.

Figure 4.17 presents the evolution of the local and the nonlocal effective plastic

strains. The second-order formulation with a mesh of 256 elements is employed. After

localisation at ū = 0.00096 mm, further localisation within the band is observed in Fig-

ures 4.17(e) and 4.17(f). This is in agreement with results from standard finite element

simulations [45].

Figures 4.15 and 4.17 indicate that the localisation zone first propagates along the

vertical boundary before evolving into a shear band. This is consistent with earlier cal-

culations for explicit and implicit gradient plasticity models using meshless methods

[105] and isogeometric analysis [78] as shown in chapter 3. The results using standard

finite elements are not presented very clearly [45]. This initial propagation along the

vertical boundary can be due to the physical effect of damage since simulations using

damage show the same trend [116]. More importantly, a study of non-local averaging

models [130] has shown that due to the non-local averaging, a non-stationary shear-

band evolves sometimes leading to incorrect or unrealistic failure patterns. It was also

stated that such effect is not only valid for damage but for other dissipation mech-
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anisms like plasticity. Further investigation into this is warranted. The angle of the

shear band is lower than 45o which is the theoretical solution for a shear band when

using a Tresca plasticity model. Unlike for the Tresca yield function, the intermediate

principal stress enters the Von Mises yield condition, and this results in a different

condition for the onset of localisation, including the angle of shear bands, cf. [122]. It

is finally noted that the curving upward of the shear band near the free boundary is

related to the emergence of stationary Rayleigh waves [99], and has been observed in

other simulations as well [38].

4.6.3 Biaxially compressed specimen

To further assess the capability of the model, a biaxially compressed plane-strain spec-

imen is considered, Figure 4.18, cf. [36, 45]. The width L = 10 mm. All material param-

eters are as in the previous section except that now β = 2500 and ν = 0.3. The elements

with reduced yield strength (by 5%) are shown in Figure 4.19.

The load-displacement curves are shown in Figure 4.20. It is noted that for the

second-order formulation, the load-displacement curve (after the cusp) has not fully

converged with 200 elements. This is because the smallest element size (1 mm) is larger

than the length scale considered [78]. However, the fourth-order formulation shows

convergence, which may suggest a stronger regularisation property for the fourth-order

formulation. The nonlocal effective plastic strains are plotted in Figure 4.21. No mesh

dependency is observed.
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Figure 4.15: Square panel: Distribution of nonlocal effective plastic strain for the
second-order (left) and fourth-order (right) formulations

.
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Figure 4.16: Distribution of nonlocal effective plastic strain along the diagonal AB, cf.
Figure 4.12
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Figure 4.17: Evolution of the local (left) and the nonlocal (right) effective plastic strain
at maximum displacement: ū = 0.00093 mm – (a), (b); ū = 0.00096 mm – (c), (d); ū =
0.001 mm – (e), (f)
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Figure 4.18: Biaxially compressed specimen: Geometry and boundary.

(a) (b) (c)

Figure 4.19: Mesh sizes and weakened elements for biaxially compressed specimen: (a)
200 elements; (b) 800 elements; (c) 3200 elements
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Figure 4.20: Load-displacement curves for biaxial compression test.
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Figure 4.21: Biaxial compression: Distribution of nonlocal effective plastic strain for
the second-order (left) and fourth-order (right) formulations.

.

104



Chapter 4
Dispersion and isogeometric analyses of second-order and fourth-order implicit

gradient-enhanced plasticity models

4.7 Concluding remarks

The introduction of strain softening in plasticity models leads to a loss of well-

posedness of the boundary value problem. Various approaches to regularise the prob-

lem exist, such as the use of nonlocal models, either in an integral sense by spatial

averaging, or in a differential sense, by including higher-order spatial gradients of a

history variable. It is now well established that both approaches are closely related

[113].

Computationally, the addition of gradients is preferred, since in this approach a

sparse, banded stiffness matrix is preserved, and it is possible to retain symmetry of

the tangential stiffness matrix, which is different from nonlocal integral approaches

[115]. Explicit second-order gradient plasticity models properly regularise the bound-

ary value problem, as has been shown by dispersion analyses, and one-dimensional

and two-dimensional finite element analyses of localisation. However, in explicit gra-

dient plasticity the interpolation of the plastic multiplier must satisfy C1-continuity,

since this is a necessary condition at the moving, internal elasto-plastic boundary [35].

This degree of continuity is difficult to satisfy using finite element approaches, and

alternative formulations have been put forward [36, 78, 105].

The use of a second-order implicit gradient plasticity model, in which the nonlocal

plastic strain is interpolated [45], is an alternative way to solve this issue since a C0-

continuous interpolation for the nonlocal plastic equivalent strain suffices. However,

it does not rigorously regularise the boundary value problem [117]. In this chapter we

have explored the use of a fourth-order implicit gradient plasticity model. A disper-

sion analysis and one-dimensional and two-dimensional numerical analyses show that

a regularisation, with mesh-independent results, can be obtained. Unfortunately, as

with the explicit second-order gradient plasticity model, this requires a C1-continuous

interpolation, now for the nonlocal plastic strain. Herein, it has been proposed to ex-

ploit isogeometric finite element analysis to meet this requirement.

It depends on the chosen damage relation whether the width of the localisation

band tends to zero, thus resulting in a sharp crack, but also in a local loss of ellipticity.

This is not different from the situation for second-order implicit gradient plasticity,

but marks a clear difference with that for the second-order explicit gradient-plasticity
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model.

Finally, it is noted that for the present class of problems, an equal-order inter-

polation for both types of variables, displacements and (nonlocal) equivalent plastic

strains, is sufficient, with the advantages that come when considering adaptive or hi-

erarchical meshing. The implicit gradient plasticity formulation allows for a steeper

load-displacement curve without losing convergence. This makes it more stable than

the explicit gradient formulation. In the next chapter, the second-order implicit gra-

dient plasticity formulation is adopted with an equal order of interpolation for both

discretised variables.
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Chapter 5

STRAIN-GRADIENT ELASTICITY AND

GRADIENT-DEPENDENT PLASTICITY WITH

HIERARCHICAL REFINEMENT OF NURBS1

5.1 Introduction

Isogeometric analysis has been proposed as a means to integrate engineering design

and analysis [63]. Essentially, the spline-based basis functions used in design - such

as the widely-used Non-Uniform Rational B-splines (NURBS) - are used in analysis

as well. This eliminates geometrical approximation errors in converting a geometry

to a standard finite element mesh based on Lagrange polynomial functions. Further-

more, NURBS have a natural higher-order character. This has motivated their use in

higher-order gradient models where higher-order continuity is needed [50, 69, 74, 139].

In these models, a length scale is incorporated in order to capture size effects and/or

maintain a mesh-objective solution after the onset of softening.

Incorporating a length scale makes gradient elasticity models capable of resolving

stress singularities at crack tips [11]. In problems associated with softening such as

gradient plasticity and damage, localisation of deformation can develop. To accurately

capture localisation bands and geometrical singularities, and in areas with strong gra-

dients, there is need for a finer mesh in certain regions of the geometry [39, 151].

However, NURBS have a tensor-product nature which makes this local refinement a

non-trivial task. Truncated-Hierarchical B-Splines (THB) and NURBS have been de-

veloped to address this [55]. More recently, THB splines have been expressed in a

convenient element-wise data structure via Beziér extraction, thereby eliminating the

1This is an article in preparation
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need for explicit truncation of bases [29, 60].

Several works have addressed adaptive refinement of generalized or gradient con-

tinua in the standard finite element context including the associated transfer of vari-

ables, e.g. [65, 68, 70, 104, 114]. In the context of hierarchical NURBS, Hennig et

al. [59] explored various transfer operators and applied them to both linear and non-

linear problems. However, adaptive refinement of gradient-plasticity using hierarchi-

cal NURBS still remains to be addressed. If strain-gradient continua are to be widely

adopted for analyses, the use of adaptive refinement techniques is a conditio sine qua

non. Herein, strain-gradient models, gradient elasticity and gradient plasticity specif-

ically, are explored using adaptive meshing techniques to efficiently capture failure

and/or geometrical singularities.

We start by giving an overview of the gradient formulations considered in this chap-

ter - Aifantis’ gradient elasticity formulation [2, 6] and the implicit gradient plasticity

formulation [45]. The weak forms and discretisation in the isogeometric analysis con-

text are outlined next. The next section highlights hierarchical basis functions and

their implementation via inter-level subdivision operators. Section 5.5 discusses the

adaptive hierarchical refinement procedure including element marking and the trans-

fer of variables between levels. We proceed with a section on numerical examples. First,

for gradient elasticity and classical plasticity, for which exact solutions exist, and then

gradient plasticity. The energy norm of the error is used in the former case, while a

largely heuristic marking strategy is used for the latter. A concluding section ends the

chapter.

5.2 Strain-gradient formulations

5.2.1 Aifantis’ gradient elasticity

The gradient elasticity theory of Aifantis [2, 6] is considered here. In this theory, the

Laplacian of the strain is introduced into the classical linear elastic constitutive rela-

tions as follows:

σ = De(ε− `2∇2ε) (5.1)
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where σ = [σxx, σyy, σzz, σxy, σyz, σzx]T is the stress vector, ` is a length scale param-

eter, ε = [εxx, εyy, εzz, τxy, τyz, τzx]T is the strain vector, and De is the material elastic

stiffness matrix given by

De =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


. (5.2)

for an isotropic linear elastic material where λ and µ are the Lamé constants. The

accompanying equilibrium equations are:

LTσ = 0 (5.3)

where body forces have been neglected and L is the differential operator:

L =


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y


T

. (5.4)

Substituting the stress-strain relation, eq.(5.1), and assuming small displacement gra-

dients,

ε = Lu, (5.5)

the following fourth-order partial differential equation results:

LTDeL(u− `2∇2u) = 0 (5.6)

where u = [ux, uy, uz]
T is the displacement vector and ∇2 ≡ ∇T · ∇ is the Laplacian

operator with ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ]T .

5.2.2 Implicit gradient plasticity

We adopt the implicit gradient plasticity formulation [45]. As in the previous section,

limiting our scope to small deformations with no body forces, the problem is defined by

the equilibrium equation:

LTσ = 0 (5.7)
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the kinematic relation

ε = Lu (5.8)

and the following incremental constitutive equations

dσ = De( dε− dεp) (5.9)

dεp = dλm, m =
∂F

∂σ
(5.10)

where an associated plasticity flow rule has been adopted for the yield function F . In

equations (5.7)-(5.10), σ, ε, u, De and L are as defined for gradient elasticity, dεp is

the plastic strain increment vector, dλ is a non-negative plastic multiplier, and m is a

vector that defines the direction of plastic flow relative to F . The yield function F is

given by [45]:

F (σ, κ, κ̄) = σe(σ)− (1− ω(κ̄))σy(κ) (5.11)

σy = σy,0 +Hκ (5.12)

ω(κ̄) = 1− e−βκ̄ (5.13)

dκ = dλ (5.14)

subject to the constraints

dλ ≥ 0, F ≤ 0, Fdλ = 0 (5.15)

where σe(σ) is the Von Mises equivalent stress, κ is the local effective plastic strain

measure or hardening parameter, κ̄ is the nonlocal effective plastic strain measure,

σy is the yield or flow stress, σy,0 is the initial yield strength, H > 0 is the hardening

modulus, ω ∈ [0, 1] is a nonlocal damage variable, and β is a material constant. The

strain-hardening hypothesis has been adopted to obtain a relation for the hardening

parameter increment dκ in eq.(5.14).

The nonlocal effective plastic strain measure, κ̄(x), is defined as the volume average

of the local effective plastic strain measure, κ = κ(εεεp). The ensuing formulation can be

approximated as [45]:

κ̄(x)− `2∇2κ̄(x) = κ(x) (5.16)

where ` is the length scale that sets the averaging volume. The length scale, which can

be correlated with micro-properties of a material, sets requirements on the mesh. In
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localisation problems, the mesh size needs to be at least three times smaller than 2π`

for sufficient accuracy to be achieved [35, 78, 115].

The strain-hardening hypothesis is assumed to also hold for κ̄. For a state variable

λ̄ defined as

λ̄(t) = max{κ̄(τ)|0 ≤ τ ≤ t} (5.17)

the following constraints apply:

dλ̄ ≥ 0, κ̄− λ̄ ≤ 0, dλ̄
[
κ̄− λ̄

]
= 0 (5.18)

Standard static and kinematic boundary conditions are adopted on the body surface S:

Υns = t, u = us (5.19)

where Υ is the stress tensor in matrix form, ns is the outward normal to the surface

S, and t is the boundary traction vector. Natural boundary conditions are assumed to

apply on the derivative of κ̄ [14]:

(nT
s∇)κ̄ = 0. (5.20)

Eq.(5.16) has to be satisfied in addition to the equilibrium equation, and thus, two

equations have to be discretised and solved at each load step.

To update the stress, the trial yield function is evaluated at every iteration j + 1

using [45]:

Ft = F (σt, κ0, κ̄j+1) = σe,t − σy,0
(
1− ωj+1

)
(5.21)

where σe,t = σe(σt) is the Von Mises equivalent stress evaluated with the trial stress,

σt :

σt = σ0 + De∆εεεj+1. (5.22)

and (•)0 indicates value at previous converged load step. When Ft ≤ 0, there is an

elastic state and the stress is simply updated as σj+1 = σt. When Ft > 0, the state is

plastic and is updated using [35, 117]:

σj+1 = σt −∆γj+1D
emt (5.23)

where mt is given by Equation (5.10)2, and ∆γj+1 is the amount of plastic strain for

the current iteration, given by [45],

∆γj+1 =
Ft

H
[
1− ωj+1

][
∂κ
∂λ

]
+ 3E

2(1+ν)
(5.24)
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in which E is the Young’s modulus and ν is the Poisson ratio.

5.3 Isogeometric finite element discretisation

Refer to section 2.3 and section 4.4 for the weak forms and the spatial discretisations

of the gradient elasticity and implicit gradient plasticity formulations respectively.

5.4 Hierarchical refinement of NURBS

In hierarchical refinement, a multi-level mesh is used after determining the appro-

priate active elements across different hierarchical levels. Here, an element-wise ap-

proach conforming with the Beziér extraction framework is adopted.

5.4.1 Hierarchical bases

We consider a univariate B-spline in a parametric domain Ωd with knot vector Ξ and

polynomial degree p. A hierarchy of P levels is constructed by successive uniform knot

insertions from an initial knot vector Ξ0 until ΞP−1 within Ωd. Hence, nested para-

metric domains Ωi
d ⊂ Ωi+1

d and nested knot vectors Ξi ⊂ Ξi+1 arise. The NURBS basis

functions Ni =
{
N i
j

}ni
j=1

, defined by the knot vector of each level Ξi (i = 0, 1, . . . , P − 1),

form a nested approximation space N i. The basis function of each hierarchical level

i can be expressed as a linear combination of each higher level j due to the nested

nature of N i:

Ni = Si,jNj =

j−1∏
l=i

SL,L+1NL+1 (5.25)

where SL,L+1 is the refinement or subdivision operator given by:

SL,L+1
IJ =

wLI
wL+1
J

ML,L+1
IJ (5.26)

in which ML,L+1
IJ is an entry in the linear subdivision operator for the B-spline shape

functions between the hierarchical levels L and L+ 1. The B-spline shape functions of

the hierarchical levels L and L+1 are defined by knot vectors ΞL and ΞL+1 respectively,

using a weight factor w = 1. wLI represents the weight factor of the Ith shape function

on hierarchical level L.
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The hierarchical basis function space A is defined as

A =
P−1⋃
L=0

ALa with ALa = AL\AL− (5.27)

where “\” is the logic NOT and ALa are the active basis functions of hierarchical level

L. AL is the union of basis functions defined over the active elements on hierarchical

level L. AL− denotes the shape functions in AL with support over the active elements

on coarser hierarchical levels. Another shape function variable AL+ denotes those with

support over active elements on finer hierarchical levels. Succinctly, we have the fol-

lowing set of basis functions:

AL =
{
NL
j ∈ NL : supNL

j

⋂
ELA 6= ∅

}
A+ =

P−1⋃
L=0

AL+ with AL+ =
{
NL
j ∈ AL : supNL

j

⋂
ΩL+
d 6= ∅

}
A− =

P−1⋃
L=0

AL− with AL− =
{
NL
j ∈ AL : supNL

j

⋂
ΩL−
d 6= ∅

} (5.28)

where ELA is the parametric domain of all active elements on hierarchical level L and

belongs to the parametric domain of active elements:

Ωd =
P−1⋃
L=0

ELA with ELA =
⋃
e

Ωe,L
d (5.29)

where Ωe,L
d represents the parametric domain of element e on hierarchical level L. The

parametric domains ΩL+
d and ΩL−

d are expressed as:

ΩL+
d =

P−1⋃
i=L+1

EiA ΩL−
d =

L−1⋃
i=0

EiA (5.30)

As stated earlier, cf. eq. (5.25), the basis functions at level L can be expressed as a

linear combination of the bases at level L + 1. When lower level bases are eliminated,

the truncated hierarchical basis function space is obtained as:

AT =

P−1⋃
L=0

ALT,a with ALT,a =
{
τLj ∈ ALa : sup τLi * EL+1

A

}
(5.31)

where

τLi =
{
τLi ∈ NL : τLi =

∑
SL,L+1
ij NL+1

j

}
(5.32)

Truncated hierarchical bases give a better conditioning of the system of equations and

fulfill the partition of unity property [29, 60].
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5.4.2 Multi-level implementation of hierarchical bases

Using Beziér extraction, the active elements are used in assembling the stiffness ma-

trix for all levels which results in a global system of equations. In gradient elasticty for

example, the resulting system of equations is:

Kb = f (5.33)

where K = K1 + K2, cf. eq. (2.26). b (which equals a for gradient elasticity) includes

the degrees of freedom for control points from each hierarchical level and K is a sparse

matrix with submatrices KL corresponding to each hierarchical level L. Since only

active elements are considered, KL is very sparse.

It is noted that K does not incorporate the interaction between different hierar-

chical levels. This is incorporated through the hierarchical subdivision or refinement

operator:

Mh =



I0 M̂0,1 M̂0,2 · · · M̂0,P−1

I1 M̂1,2 · · · M̂1,P−1

I2 · · · M̂2,P−1

. . .

0 IP−1


(5.34)

where

ILIJ =


1 for I = J and NL

I ∈ ALa

0 else

(5.35)

and the entries M̂L,k are defined as follows for truncated hierarchical basis functions:

M̂L,k =


SL,kIJ for NL

I ∈ AL+ and NK
J ∈ AL−

0 else

(5.36)

in which SL,kIJ is given in eq.(5.26). When the hierarchical subdivision operator Mh is

used, the system of equations becomes:

Kh bh = fh where Kh = Mh KMT
h , fh = Mh f . (5.37)

It is also noted that in a non-linear iteration procedure - e.g. in gradient plasticity, K

is computed using b (and not bh) from the previous iteration. It is retrieved by using

b = MT
hbh. (5.38)
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5.5 Adaptive hierarchical refinement

To perform adaptive isogeometric analysis using NURBS, the following procedure is

followed:

1. Solve the hierarchical system of equations Khbh = fh.

• For gradient elasticity, Kh = f(K1,K2,Mh), bh = f(Mh,a) and fh =

f(Mh, f
ext)

• For gradient plasticity, Kh = f(Kaa,Kaλ,Kλa,Kλλ,Mh), bh = f(Mh,da,dΛ̄)

and fh = f(Mh, fe, fa, fλ)

2. Project the solution on all active basis functions using b = MT
hbh

3. Estimate the approximation error in each element

• For gradient elasticity, the relative energy norm is used

• For gradient plasticity, a measure of the plastic strain and the length scale

are used

4. Mark elements to be refined according to step 3.

5. If some elements are marked for refinement,

• Refine the elements

• Transfer the state variables (gradient elasticity) and the history variables

(gradient plasticity) from the old mesh to the new mesh

• Return to step 1

6. If no elements are marked, stop the procedure

Clearly, the following are required: (I) marking of elements - mainly based on an error

estimation technique; (II) a refinement strategy, and (III) data transfer between two

consecutive levels/meshes.
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5.5.1 Element marking

For gradient elasticity, the element error is estimated using the relative energy norm.

The relative energy norm for each element, e, is calculated using the error in energy

norm ‖e‖ and the energy norm ‖U‖ as follows [28]:

φe =
‖e‖e
‖U‖e

=

√
1
2

∫
Ωe

(σ̂ − σ)T · (De)−1 · (σ̂ − σ)dS√
1
2

∫
Ωe
σ̂ · (De)−1 · σ̂dS

(5.39)

where σ̂ represents the analytical solution, σ represents the approximate solution and

De is the material elastic stiffness matrix. Only two-dimensional plane-strain prob-

lems are considered in this work, so that:

De =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 (5.40)

In practice, an error estimator such as a residual-based error estimator can be used

such that the exact solution is not necessarily required. However, an appropriate error

estimator is beyond the scope of this thesis. Therefore error indicators which require an

exact solution are employed here for the purpose of developing a working framework.

The exact solution is used when available, otherwise, a sufficiently finer mesh is used

as reference. The element-wise errors (φQ), where Q is an element in mesh Ω with

N number of elements, are arranged in descending order – for Ω = {Q1, · · · , QN},

φQ1 ≥ · · · ≥ φQN . A marking parameter η ∈ [0, 1] is defined such that k elements are

marked for refinement:

M = Q1, · · · , Qk with k = ceil(ηN) (5.41)

where the ‘ceil()’ function rounds up to the nearest integer. This approach is also re-

ferred to as the quantile marking strategy. It should be noted that when an element

is already at the highest hierarchical level, it is not marked for refinement. Also, to

ensure that the stiffness matrix Kh has a good condition number, elements adjacent to

the marked elements are forced to be from the same level, or at most, two hierarchy

levels [28].
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According to Perić et al. [114], the relative energy norm can be used with classical

elastoplasticity, as well as generalised plasticity models. Hence, we also adopt the error

in energy norm with quantile marking for classical plasticity.

As stated earlier, for localisation problems using gradient plasticity, the length scale

` should be larger than the mesh size such that two to four elements lie within the

localisation band. If this is not the case, the model will not properly offer the needed

regularisation. In the case of gradient plasticity, we use the following parameter:

d =
he
`

(5.42)

where he is the size of element e. The lower the value of d, the more capable the mesh

is to capture a localisation band.

5.5.2 Refinement strategy

Hierarchical refinement is performed based on the concept of active and inactive ele-

ments. Thus, all elements in different hierarchy levels exist a priori before computa-

tion, but, the relevant elements to be activated are chosen successively such that at

each instant, the whole geometry is fully covered. To this end, two indicator arrays,

each of the same size as the number of elements, are defined and initialised as false:

• Ea - indicator of active elements. Eia is true when element i is active

• Eac - indicator of active child elements. Eiac is true when the child elements of ele-

ment i are active

Based on these two arrays, the indicators for the total number of basis functions across

all levels are defined. The basis functions are defined as N = {N i}, i = 1, 2, · · · , nb
where nb is the total number of basis functions. The following Boolean arrays are de-

fined and initialised as false, see section 5.4:

• Aa - indicator of basis function in the hierarchical basis function space A or AT , cf.

eq. (5.27) and eq. (5.31). Aia is true when N i ∈ A or AT

• A_ - indicator of basis function in the hierarchical basis function space A−, cf. eq.

(5.28). Ai_ is true when N i ∈ A−
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• A+ - indicator of basis function in the hierarchical basis function space A+, cf. eq.

(5.28). Ai+ is true when N i ∈ A+

Let some elements Er be elements marked for refinement and Erc be all child ele-

ments of Er. To obtain the new list of active elements and active child elements, the

following procedure is followed:

• Obtain the old list of Ea and Eac

• Set Ea(Er) = false and Eac(Er) = true

• Set Ea(Erc) = true and Eac(Erc) = false

5.5.3 Transfer of state vector and history variables

When moving from a time step t to time step t + ∆t where some elements have been

marked for refinement, the old state vector tb needs to be mapped onto the new state
t+∆tb. We call this mapping transfer operation T 0. This is done in a straightforward

manner, as follows:
t+∆tbL+1 = (S̃L,L+1)T tbL (5.43)

in which L is the hierarchical level and S̃L,L+1 is the modified refinement operator:

S̃L,L+1
IJ =


SL,L+1
IJ for NL+1

J ∈ t+∆tAL+1 or t+∆tAL+1
T

0 else

(5.44)

where t+∆tAL+1 and t+∆tAL+1
T are hierarchical basis function spaces at hierarchical

level L + 1 and time step t + ∆t. The transfer of the state vector from the old control

points to the new control points suffices for gradient elasticity.

In the case of gradient plasticity, there are also history variables at the old inte-

gration points which need to be transferred to the integration points of the new mesh.

This is done in three mapping steps:

1. T 1 - the history variables from the old integration points are extrapolated to the

control points of the old mesh;
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2. T 2 - these control variables on the old mesh are mapped to the control points of

the new mesh, and

3. T 3 - the history data is interpolated from the control points of the new mesh to

the integration points of the new mesh

To perform T 1, a global least-squares projection is used [78]. For any history variable,

the control variables contained in a vector ζc can be obtained from the values at the

Gauss points contained in a vector ζg by solving [95]:

Mζc =

∫
V

hT ζgdV (5.45)

where M is the least-squares fit matrix or Gramm matrix given by:

M =

∫
V

hhTdV (5.46)

and h a vector that contains the NURBS shape functions used to discretise the relevant

history variable (e.g. the plastic multiplier as in eq. (??)). T 2 is done in a similar way

as T 0 for the state vector. T 3 is performed by interpolation using the shape functions:

ζg = hζc. (5.47)

It is noted that we transfer both the old history variables (at the previous, converged

loadstep) and the current history variables.

5.6 Numerical examples

We consider three classes of problems: gradient elasticity, classical plasticity and gra-

dient plasticity. A plane strain assumption is made in all cases.

5.6.1 Gradient elasticity

Two problems are addressed - a thick cylinder subjected to external pressure for which

an exact solution exists, and an L-shaped beam subjected to tractions. In both prob-

lems, Young’s modulus E = 8100 MPa, Poisson ratio ν = 0.35 and the length scale ` =

0.01 m. Meshes with 5 hierarchical levels have been used. At each level k (k = 1, · · · , 5),

2k × 2k elements are employed to discretise the domain.
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Thick hollow cylinder subjected to external pressure

Figure 5.1: Geometry and dimensions of cylinder subjected to external pressure

Figure 5.2: Convergence rates for different values of η. The results of hierarchical re-
finement and uniform refinement are shown.

The cylinder considered has an internal radius, ri = 0.05 m and an external radius,

ro = 0.5 m. It is subjected to an external pressure P = 1 MPa. Only a quarter of the
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cylinder is considered due to symmetry, see figure 5.1. The exact solution is given in

[147]. The error in energy norm is used to mark elements for refinement using quantile

marking. Three values of η are used - η = {0.1, 0.2, 0.5}. Uniform mesh refinement to

the highest hierarchy level is also considered.

It is necessary to impose higher-order boundary conditions on the cylinder [147].

The set of control points immediately next to the boundaries are used as follows [50]:
∂uy
∂x

= 0; enforced as uy(2, j) = uy(1, j) at the left boundary

∂ux
∂y

= 0; enforced as ux(i, 2) = ux(i, 1) at the bottom boundary
(5.48)

The boundary conditions have been imposed on control points across all hierarchy lev-

els a priori.

The convergence rates are illustrated in figure 5.2. For uniform refinement, a con-

vergence rate of −P/2 = −1 is obtained. It is clear that with hierarchical refinement,

there is a reduction in the error. Hence, with less degrees of freedom, a higher accu-

racy, and therefore, a higher efficiency is obtained which is the main goal of adaptive

analysis. The value of η does not seem to have a significant influence on the results.

The σxy plots and the relative error φe (cf. eq. (5.39)) in each element are shown in

figures 5.3 and 5.4 respectively. The fact that there is no refinement close to the left and

bottom boundaries is an indication that the boundary conditions have been imposed

consistently. The error is concentrated at the inner boundary where the gradient of the

strain is high. This is in line with results obtained in [50].

L-shaped panel subjected to traction

An L-shaped panel with dimension a = 30 m and subjected to a traction t = 1 MPa is

considered next, figure 5.5. The top boundary is restricted in the vertical direction and

the right boundary is constrained in the horizontal direction. To estimate the error, we

use results of a mesh with 26 × 26 elements as the reference solution. Since the error

estimation is now element-based, we use a slightly modified relation to calculate the

relative error in each element [74]:

φ̂e =

√
1
2

∑4
i=1(σ̂ − σ)Ti · (De)−1 · (σ̂ − σ)i√

1
2

∑4
i=1 σ̂i · (De)−1 · σ̂i

(5.49)
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(a) σxy, η = 0.1 (b) σxy, η = 0.2

(c) σxy, η = 0.5 (d) σxy, uniform

Figure 5.3: σxy [MPa] components of the stress of each element for different values of
η.

where summation is over the vertices; σ̂i and σi denote the stress at the vertex i for

the reference solution and the numerical solution respectively.

The convergence plot is given in figure 5.6 but only serves as an indicator con-

sidering the reference solution employed. It again shows that hierarchical refinement

reduces the error while maintaining minimal number of degrees of freedom. Quantile

marking for element refinement is considered here with η values of 0.13 and 0.17. The

σxy stress component as well as the relative error in each element are presented in

figure 5.7 up to results for the highest hierarchical level.

It is clear from figure 5.7 that the stress concentration at the inner corner is cap-

tured well. The gradient elasticity effect in removing the stress singularity is also seen
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(a) φe, η = 0.1 (b) φe, η = 0.2

(c) φe, η = 0.5 (d) φe, uniform

Figure 5.4: Relative error norm φe of each element for different values of η.

Figure 5.5: Geometry of L-shaped panel

123



Chapter 5
Strain-gradient elasticity and gradient-dependent plasticity with hierarchical

refinement of NURBS

Figure 5.6: Indicative convergence for uniform and hierarchical refinement for L-
shaped panel.

near the singularity.

5.6.2 Classical plasticity

In a step-wise manner, classical plasticity is considered as the first non-linear problem.

We again consider a plane strain cylinder (a quarter of the geometry due to symmetry)

but this time subjected to internal pressure Pi. The cylinder, with inner radius a and

outer radius b, is assumed to be elastic-perfectly plastic using the Von Mises yield

criterion. Beyond a certain critical pressure Pcr, there is a region of plastic deformation,

a ≤ r ≤ c, defined by the radius r and the elastic-plastic boundary c. The value of c is

determined by solving the following equation numerically [40]:

Pi = k

(
ln

(
c

a

)
+

1

2

(
1− c2

b2

))
(5.50)

where k = σy/
√

3 and σy is the yield stress. The critical pressure is calculated using:

Pcr =
k

2

(
1− c2

b2

)
(5.51)
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(a) η = 0.13 (b) η = 0.13

(c) η = 0.17 (d) η = 0.17

(e) uniform (f) uniform

Figure 5.7: σxy [MPa] components of the stress (left) and relative error norm φe (right)
of each element for different values of η.
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(a) plastic strain (b) error in energy norm

(c) σxy (d) σxy uniform

Figure 5.8: Plastic strain, error in energy norm, σxy [MPa] as well as its analytical
solution for elastic-perfectly plastic cylinder.

For a cylinder with a = 0.1 m, b = 0.2 m, ν = 0.3, σy = 0.24 GPa and E = 210 GPa,

Pcr = 0.10375 GPa. For an applied pressure of 0.18 GPa(> Pcr), c = 0.15979 m. In the

plastic region, the stresses are (σrθ = 0):

σr = −k

(
1− c2

b2
+ ln

c2

r2

)
, σθ = k

(
1 +

c2

b2
− ln

c2

r2

)
; for a < r < c (5.52)

In the elastic region, they are computed as

σr = −k

(
1− c2

b2
+ ln

c2

r2

)
, σθ = k

(
1 +

c2

b2
− ln

c2

r2

)
; for c < r < b (5.53)

The problem is solved using adaptive isogeometric analysis. Similar to gradient elastic-

ity, the relative error in energy norm is adopted with quantile marking using η = 0.2.

The plots of the plastic strain and the σxy component of the stress are presented in

figure 5.8. σxy is retrieved as σxy = (σr − σθ)(xy/r2). A good match with the reference
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result is obtained, which indicates that the hierarchical refinement model works well

and that the variables are transferred properly. Moreover, from the plot of the plastic

strain in figure 5.8a, the radius c at the elastic-plastic boundary is close to the analyt-

ical value of 0.16. The relative error in energy norm is also plotted and it is clear that

the error is highest at the elastic-plastic boundary.

5.6.3 Gradient plasticity

Figure 5.9: Geometry of square plate under uniaxial tension.

Finally, a localisation problem is considered using implicit gradient plasticity [77],

see chapter 4. The problem is illustrated in figure 5.9. A square panel of length L = 10

m is constrained on the left side and uniaxial tension is applied on the opposite side.

For the material parameters, E = 20000 N/mm2, H = 2000 N/mm2, σy,0 = 2 N/mm2,

β = 3500 and ` = 0.7 mm. A mesh with four levels is considered. At each level k

(k = 1, · · · , 4), 2k+1 × 2k+1 elements are employed to discretise the domain. To trigger

localisation, the bottom left element in the coarsest mesh and all children down the

hierarchy are weakened by assuming a 5% reduction in the yield strength.

Elements are marked for refinement only after the nonlocal plastic strain has be-

come non-zero. Let κmax be the maximum plastic strain. Elements with up to 9% of

κmax are marked for refinement and refinement is continued until d < 0.5 (cf. (5.42)).
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(a) ū = 0.00091 mm (b) ū = 0.00091 mm

(c) ū = 0.00093 mm (d) ū = 0.00100 mm

(e) ū = 0.00101 mm (f) ū = 0.00114 mm

Figure 5.10: Nonlocal effective plastic strain: Adaptive refinement as localisation band
progresses.
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Hence, there is progressive refinement as the deformation localises. This is clear from

the results which are shown in figure 5.10.

Here, the robustness of the scheme is also apparent since we start with elements

that would normally not allow the shearband to develop. This is particularly seen in

the first case (in figure 5.10) when localisation starts. With further refinement, the

band propagates smoothly. It is important to ensure that the presented results are

similar to those obtained from a standard uniformly refined mesh in the literature

[45, 77] as well as chapter 4. A comparison is shown for the local and nonlocal effective

plastic strain (figure 5.11). Further confirmation is pursued by comparing the force-

(a) local, hierarchical (b) local, uniform

(c) nonolocal, hierarchical (d) nonlocal, uniform

Figure 5.11: Comparison of local and nonlocal effective plastic strains for standard
and adaptive implicit gradient plasticity, ū = 0.0012 mm. The local measure has a less
pronounced nonlocal or smearing effect.
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displacement curves which show also very good agreement, see figure 5.12. Moreover

in terms of computational time, about half of the time required for the fine mesh (figure

5.11 (b) and (d)) is needed in the case of adaptive refinement (figure 5.11 (a) and (c)).

Figure 5.12: Force-displacement curves for uniform and adaptive implicit gradient
plasticity analyses.

5.7 Conclusion

This work has extended adaptive isogeometric analysis to strain-gradient continuum

models - gradient elasticity and gradient plasticity. Hierarchical refinement using

truncated multi-level basis functions which interact through a subdivision operator

has been adopted within the Beziér element framework. Elements are marked for re-

finement using the relative error in energy norm for gradient elasticity. For gradient

plasticity, a measure of the effective plastic strain is used to mark and refine elements

which need to better capture the localising deformation. Refinement is based on the

concept of elements and their child elements which are activated or deactivated ac-

cordingly. When an element is refined, the current as well as the old history variables
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are transferred from the integration points of the old mesh to its control points using

global least-squares approximation. Next, they are transferred to the control points of

the new mesh using a modified subdivision operator. They are finally transferred to

the integration points of the new mesh by shape function interpolation. The results

have been verified against benchmarks in the literature.
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CONCLUSION AND FUTURE PROSPECTS

6.1 Conclusion

6.1.1 Research objectives addressed

This work aimed at developing an efficient computational framework that incorporates

gradient-enhanced elasticity and gradient-enhanced plasticity based on isogeometric

analysis. The first objective is the development, implementation and assessment of an

isogeometric analysis framework for gradient elasticity and gradient plasticity. This

was achieved by:

• development of an isogeometric analysis framework for gradient elasticity con-

sidering direct and staggered discretisation, as well as NURBS and T-splines.

• convergence analysis and comparison of both solution approaches using L2 error

norm of the displacements and stresses

• development of an isogeometric analysis framework for explicit and implicit

second-order gradient plasticity models

• development of a fourth-order implicit gradient plasticity model using the Gaus-

sian weight function

• dispersion analysis of the explicit and implicit gradient plasticity models

The second objective of this work is the development of an adaptive scheme to enable

efficient computations. This was achieved by:

• development of a hierarchical refinement framework for gradient elasticity based

on error in energy norm
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• development of a hierarchical refinement framework for gradient plasticity using

the length scale and nonlocal plastic strain measure

6.1.2 Summary

Gradient elasticity

The size effect is a phenomenon observed in several engineering materials and it occurs

due to heterogenities of the material at the micro-scale. The usual classical continuum

theories cannot account for it because of a macro-scale assumption. By introducing an

internal length scale into the constitutive equations, this problem is solved. For mate-

rials that deform elastically, the Laplacian of the strain is used to modify the constitu-

tive relations so that a gradient elasticity model results. If this equation is to be solved

monolithically, the continuity requirements for the discretisation of this model move

from C0 to C1. This is not easily achieved with traditional finite elements. In this work,

isogeometric analysis has been employed to meet the discretisation requirements. This

approach to analysis has the advantage that the specimen geometry is exact because it

eliminates the extra step (in standard finite elements) where the geometry is approx-

imated before analysis. Isogeometric analysis adopts spline shape functions (like the

widely-adopted Non-Uniform Rational B-Splines - NURBS) which are usually used for

design, and thus both design and analysis employ the same functions. One particular

edge that isogeometric analysis has over other discretisation methods is that splines

are naturally higher-order, and therefore, higher-order continuity is only a matter of

choice.

In an effort to proffer alternatives to the higher-order continuity requirement for

gradient elasticity, a staggered solution scheme has been proposed, where the differen-

tial equation is solved in two steps. This can be achieved with standard C0-continuous

finite elements. A convergence analysis was carried out in this thesis for both the mono-

lithic and staggered approaches. In short,

• Slight differences were observed in the results for cases where boundary

conditions need to be imposed. This suggests that the staggered approach,

strictly speaking, only applies to infinite problems where there is no need to im-
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pose any boundary conditions.

• For the monolithic approach, theoretical convergence rates were retrieved for

splines of polynomial order three and above. For polynomial order of two, sub-

optimal convergence rate was observed, confirming earlier studies for another

fourth-order partial differential equation, the Cahn-Hilliard equation.

The restrictive tensor-product nature of NURBS motivated a further study of gradient

elasticity with the more flexible T-splines. Local refinement was performed based on

T-splines and good results were obtained.

Gradient plasticity

For softening materials that deform plastically, a spurious dependency of the solu-

tion on the mesh used for analysis is observed. This is nonphysical because the

force-displacement curve, which represents the energy dissipated during deformation,

should remain constant. Making the yield function dependent on the Laplacian of

the plastic strain solves this problem but gives rise to an additional partial differ-

ential equation (for the plastic multiplier) that needs to be solved. This is referred to

as the explicit gradient plasticity formulation. Appropriate boundary conditions need

to be imposed on the moving elastic-plastic boundary. To avoid tracking the moving

boundary, C1 continuity condition is required for discretising the plastic multiplier. To

consistently discretise the problem with C1-continuous shape functions for the plastic

multiplier and C2-continuous shape functions for the displacements, again splines were

adopted. A nice property of the isogeometric analysis approach adopted in this the-

sis is that the standard finite element data structure is maintained. This is achieved

through Beziér extraction which decomposes NURBS or T-spline basis functions using

Bernstein polynomials. To facilitate the cubic-quadratic interpolation of variables and

ensure conforming meshes, Beziér projection was employed. In a nutshell,

• The results obtained were in agreement with the available analytical solution for

a tensile bar in one dimension

• Problems in both one and two dimensions were addressed and results confirmed
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earlier reports of the need for the finite element size to be smaller than the length

scale

• Compared with finite element approaches that use Hermitian shape functions for

the plastic multiplier or mixed finite element approaches, isogeometric analysis

has the distinct advantage that no interpolation of derivatives is required. This

advantage showed up especially in the boundary conditions, where no nonphysi-

cal constraints had to be imposed.

• Explicit gradient plasticity works fine, but convergence is not guaranteed. Con-

vergence was achieved only for a low ratio of the hardening modulus H to elastic

modulus E and was difficult for higher ratios.

A more stable computational framework was achieved by using the

Laplacian of the nonlocal plastic strain in the yield function. This is the

implicit gradient plasticity formulation. However, in this formulation, the yield

function has to be modified further to achieve full regularisation. One way of doing

this, which was considered in this work, is to multiply the yield function by a damage

function. However, the damage variable can potentially have some physical effects.

Incorrect failure patterns can also arise due to the non-local averaging of the implicit

formulation [130]. Succinctly,

• Both second-order and fourth-order implicit gradient formulations were consid-

ered with unequal as well as equal orders of interpolation. The former was formu-

lated using a Green’s weighting function, while in the latter, a Gaussian weight-

ing function was used.

• Although the fourth-order implicit gradient formulation has higher regularisa-

tion potential, the second-order formulation also gives good regularisation. The

shear band of the second-order formulation is also slightly wider, corroborating

the results from dispersion analysis.

• An upward curving of the shear band near the free boundary was observed for

the implicit gradient formulations. This is related to the emergence of stationary
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Rayleigh waves, and has been observed in other simulations as well.

• While the length scale sets the localisation band width, the yield function adopted

influences the orientation of the shearband

• The study on equal and unequal orders of interpolation revealed the same results

for both cases. This asserts that gradient formulations are coupled problems and

the interpolation functions of different variables that have to be discretised are

not necessarily related.

Largely due to the computational stability of the implicit gradient formulation, it was

chosen for further development within the spline-based framework developed.

Adaptivity for gradient elasticity and gradient plasticity

Good accuracy requires the finite element size employed in simulations to be smaller

than the internal length scale. This can incur high computational cost especially when

considering large structures. Hence, adaptive refinement, particularly close to the lo-

calisation area, becomes an attractive option. NURBS have a tensor-product nature

which makes adaptive refinement non-trivial. This thesis adopted the truncated hier-

archical NURBS bases, cast in the Beziér extraction framework, for refinement. Re-

finement was performed based on a multi-level mesh with element-wise hierarchical

basis functions interacting through an inter-level subdivision operator. Concisely,

• The error in energy norm was adopted for gradient elasticity and classical plas-

ticity and this gave very promising results along with the quantile marking strat-

egy.

• The heuristic marking of elements using the effective plastic strain measure and

the length scale enabled analysis even with a mesh size well above the length

scale, which is then refined accordingly when needed. This significantly improved

efficiency.

• Standard transfer operations for history variables between the integration points

of the old mesh to the integration points of the new mesh gave good results.
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• A robust computational framework for engineering analysis materialised, com-

bining the flexibility, exact geometry representation, and expedited design-

through-analysis of isogeometric analysis, size-effect capabilities and mesh-

objective results of gradient enhanced continua, the standard convenient

data structure of finite element analysis and the improved efficiency of

adaptive hierarchical refinement.

6.1.3 Contributions

The contributions of this work can be outlined as follows:

• New insight from the convergence analysis of the monolithic gradient-elastic for-

mulation and limitations of the staggered scheme

• Development of an isogeometric analysis framework for explicit gradient plastic-

ity

• Development of an isogeometric analysis framework for implicit gradient plastic-

ity formulations

• Development of a fourth-order implicit gradient plasticity model and associated

dispersion analyses

• New deductions from the results of the implicit gradient plasticity formulations

• New observations into computational stability of explicit vs implicit gradient

plasticity formulations

• Development of a hierarchical refinement framework based on isogeometric anal-

ysis for gradient-elasticity and gradient-plasticity

6.2 Future prospects

The aims of this work have been achieved, nevertheless, there remain various avenues

for future exploration.
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• The computational framework has been put in place. A natural progression would

be to apply the approach towards more practical engineering problems. Some

further work might be required in using the framework in a practical context. For

example, for gradient elastic problems, the exact solution is not ideally available.

Thus other error estimators such as those based on residuals or superconvergent

patch recovery can be used [25].

• The evolution of the effective plastic strain in the implicit formulation considered

assumes that the interaction domain increases with plastic deformation. This can

lead to incorrect failure patterns [130]. A contrary view where the interaction

domain decreases with plastic deformation can be considered. This might give

a more realistic evolution of the plastic strain as has been shown for damage

models [116].

• Another possibility is adaptive gradient plasticity through state variable trans-

fer. For both explicit and implicit gradient plasticity formulations, an additional

partial differential equation which necessitates the discretisation of the local or

nonlocal plastic strains, respectively, comes into play. This might eliminate the

need to transfer any history variable. Transfer can be limited to state variables,

and then history variables are re-computed from them.

• Various transfer operators have been proposed for variable transfer between two

consecutive mesh levels, e.g. [59]. It might be worthy to employ other transfer

operators that might result in better efficiency and/or accuracy.

• The problems considered in this thesis were limited to two-dimensional small-

strain analyses. Full three-dimensional analyses that allow large deformations

would make the framework more versatile. A little more work may be required

for three-dimensional hierarchical refinement.

• An initial study based on the Von Mises yield criterion suggested influence of the

yield function on the shearband orientation. It will be useful to consider various

yield functions and compare the results with experiments.

138



Chapter 6 Conclusion and future prospects

• Only simple geometries have been considered in this work. More practical en-

gineering problems would require multi-patch geometries in the isogeometric

analysis framework. Adopting an appropriate technique for multi-patch analy-

sis would be worth-while.
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VI, 3:31–37, 1961.

[27] N. Challamel and C. Wang. The small length scale effect for a non-local can-

tilever beam: A paradox solved. Nanotechnology, 19(34):345703, 2008.

[28] L. Chen and R. de Borst. Adaptive refinement of hierarchical T-splines. Com-

puter Methods in Applied Mechanics and Engineering, 337:220–245, 2018.

[29] L. Chen, E. J. Lingen, and R. de Borst. Adaptive hierarchical refinement of

NURBS in cohesive fracture analysis. International Journal for Numerical

Methods in Engineering, 112(13):2151–2173, 2017.

[30] F. Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: A new paradigm for

thin-shell finite-element analysis. International Journal for Numerical Methods

in Engineering, 47(12):2039–2072, 2000.
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[55] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for

hierarchical splines. Computer Aided Geometric Design, 29(7):485–498, 2012.
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[69] M. Kästner, P. Metsch, and R. de Borst. Isogeometric analysis of the Cahn–

Hilliard equation–a convergence study. Journal of Computational Physics,

305:360–371, 2016.

[70] A. Khoei, S. Gharehbaghi, A. Tabarraie, and A. Riahi. Error estimation, adap-

tivity and data transfer in enriched plasticity continua to analysis of shear band

localization. Applied Mathematical Modelling, 31(6):983–1000, 2007.

[71] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell anal-
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