24,374 research outputs found

    Orcc's Compa-Backend demonstration

    Get PDF
    International audienceThis paper presents the implementation of a video decoding application starting from its dataflow and CAL representations. Our objective is to demonstrate the ability of the Open RVC-CAL Compiler (Orcc) to generate code for embedded systems. For the demonstration, the video application will be an MPEG-4 Part2 decoder. The targeted architecture is a multi-core heterogeneous system deployed onto the Zynq platform from Xilinx

    Systematic analysis of the decoding delay in multiview video

    Get PDF
    We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview prediction structure and the parallel decoding of several views requires a systematic analysis of this decoding delay, which we solve using graph theory and a model of the decoder hardware architecture. Our framework assumes a decoder implementation in general purpose multi-core processors with multi-threading capabilities. For this hardware model, we show that frame processing times depend on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to design decoders with the objective of minimizing the communication latency of the MVC system

    A Computationally Efficient Neural Video Compression Accelerator Based on a Sparse CNN-Transformer Hybrid Network

    Full text link
    Video compression is widely used in digital television, surveillance systems, and virtual reality. Real-time video decoding is crucial in practical scenarios. Recently, neural video compression (NVC) combines traditional coding with deep learning, achieving impressive compression efficiency. Nevertheless, the NVC models involve high computational costs and complex memory access patterns, challenging real-time hardware implementations. To relieve this burden, we propose an algorithm and hardware co-design framework named NVCA for video decoding on resource-limited devices. Firstly, a CNN-Transformer hybrid network is developed to improve compression performance by capturing multi-scale non-local features. In addition, we propose a fast algorithm-based sparse strategy that leverages the dual advantages of pruning and fast algorithms, sufficiently reducing computational complexity while maintaining video compression efficiency. Secondly, a reconfigurable sparse computing core is designed to flexibly support sparse convolutions and deconvolutions based on the fast algorithm-based sparse strategy. Furthermore, a novel heterogeneous layer chaining dataflow is incorporated to reduce off-chip memory traffic stemming from extensive inter-frame motion and residual information. Thirdly, the overall architecture of NVCA is designed and synthesized in TSMC 28nm CMOS technology. Extensive experiments demonstrate that our design provides superior coding quality and up to 22.7x decoding speed improvements over other video compression designs. Meanwhile, our design achieves up to 2.2x improvements in energy efficiency compared to prior accelerators.Comment: Accepted by DATE 202

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    DyPS: Dynamic Processor Switching for Energy-Aware Video Decoding on Multi-core SoCs

    Full text link
    In addition to General Purpose Processors (GPP), Multicore SoCs equipping modern mobile devices contain specialized Digital Signal Processor designed with the aim to provide better performance and low energy consumption properties. However, the experimental measurements we have achieved revealed that system overhead, in case of DSP video decoding, causes drastic performances drop and energy efficiency as compared to the GPP decoding. This paper describes DyPS, a new approach for energy-aware processor switching (GPP or DSP) according to the video quality . We show the pertinence of our solution in the context of adaptive video decoding and describe an implementation on an embedded Linux operating system with the help of the GStreamer framework. A simple case study showed that DyPS achieves 30% energy saving while sustaining the decoding performanc

    Invited Abstract: A Simulation Package for Energy Consumption of Content Delivery Networks (CDNs)

    Full text link
    Content Delivery Networks (CDNs) are becoming an integral part of the future generation Internet. Traditionally, these networks have been designed with the goals of traffic offload and the improvement of users' quality of experience (QoE), but the energy consumption is also becoming an indispensable design factor for CDNs to be a sustainable solution. To study and improve the CDN architectures using this new design metric, we are planning to develop a generic and flexible simulation package in OMNet++. This package is aimed to render a holistic view about the CDN energy consumption behaviour by incorporating the state-of-the-art energy consumption models proposed for the individual elements of CDNs (e.g. servers, routers, wired and wireless links, wireless devices, etc.) and for the various Internet contents (web pages, files, streaming video, etc.).Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 2015, arXiv:1509.03284, 201

    Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding

    Full text link
    The next generation of multimedia applications will require the telecommunication networks to support a higher bitrate than today, in order to deliver virtual reality and ultra-high quality video content to the users. Most of the video content will be accessed from mobile devices, prompting the provision of very high data rates by next generation (5G) cellular networks. A possible enabler in this regard is communication at mmWave frequencies, given the vast amount of available spectrum that can be allocated to mobile users; however, the harsh propagation environment at such high frequencies makes it hard to provide a reliable service. This paper presents a reliable video streaming architecture for mmWave networks, based on multi connectivity and network coding, and evaluates its performance using a novel combination of the ns-3 mmWave module, real video traces and the network coding library Kodo. The results show that it is indeed possible to reliably stream video over cellular mmWave links, while the combination of multi connectivity and network coding can support high video quality with low latency.Comment: To be presented at the 2018 IEEE International Conference on Computing, Networking and Communications (ICNC), March 2018, Maui, Hawaii, USA (invited paper). 6 pages, 4 figure

    Moving Multimedia Simulations into the Cloud: a Cost-Effective Solution

    Get PDF
    Researchers often demand bursts of computing power to quickly obtain the results of certain simulation activities. Multimedia communication simulations usually belong to such category. They may require several days on a generic PC to test a comprehensive set of conditions depending on the complexity of the scenario. This paper proposes to use a cloud computing framework to accelerate these simulations and, consequently, research activities, while at the same time reducing the overall costs. A practical simulation example is shown, representative of a typical simulation of H.264/AVC video communications over a wireless channel. This work shows that, by means of a commercial cloud computing provider, the gains of the proposed technique compared to more traditional solutions using dedicated computers can be significant in terms of speed and cost reductio
    • 

    corecore