
Systematic analysis of the decoding delay in multiview video
Pablo Carballeira , Julián Cabrera, Fernando Jaureguizar, Narciso García

A B S T R A C T

We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We
show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve
a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview
prediction structure and the parallel decoding of several views requires a systematic analysis of this
decoding delay, which we solve using graph theory and a model of the decoder hardware architecture.
Our framework assumes a decoder implementation in general purpose multi-core processors with
multi-threading capabilities. For this hardware model, we show that frame processing times depend
on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame
processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to
design decoders with the objective of minimizing the communication latency of the MVC system.

1. Introduction

For several years, video technologies have targeted the develop­
ment of systems that provide immersive viewing experiences.
Nowadays, the advances in three-dimensional (3D) display tech­
nologies have made 3D video an emerging and sustainable market
in the near future. 3D Video (3DV) and free viewpoint video (FW)
are new types of visual media that expand the user's experience
beyond what is offered by 2D video [1], providing a 3D depth
impression of the scene, and interactive viewpoint selection. Cur­
rently, these types of visual media systems are beginning to enter
into consumer markets, such as entertainment and mobile applica­
tions [2]. For those systems, a data format that is richer than single
2D video signal is needed. The spectrum of data formats for 3D Vi­
deo goes from purely image-based data formats like multiview vi­
deo (multiple views of the same scene) to data formats related to
computer graphics like 3D meshes and their corresponding tex­
tures [3]. A widely adopted approach is the one that includes mul­
tiview video and depth sequences as additional scene geometry
information, allowing the possibility of generating additional
views on virtual camera positions [4]. Nevertheless, the size of this
multiview video grows linearly with the number of views while
the available bandwidth is generally limited. Thus, an efficient
compression scheme for multiview video is needed.

Multiview video coding (MVC) [5] is an extension of the H.264/
MPEG-4 Advanced Video Coding (AVC) standard [6] that provides
efficient coding of such multiview video. Besides, as depth signals
can be represented as monochromatic video signals, MVC has been

also commonly used to compress them [4]. As an extension of AVC,
MVC makes use of the set of AVC coding tools. The key additional
feature of the MVC design, that increases the coding efficiency spe­
cifically for multiview video, is a new prediction relationship be­
tween frames of different views that exploits the interview
redundancy. This prediction relationship is known as interview
prediction. Fig. 1 shows a sample prediction structure in which
temporal and interview predictions are used.

MVC allows a wide range of applications and scenarios [7].
Here, we address real-time applications such as live broadcasting,
videoconferencing or interactive streaming [8] where constraints
on the end-to-end delay are imposed. The one-way delay between
both ends of the conversation is known as communication latency,
i.e., the delay between the instant when a frame is captured and
the instant when it is displayed at the receiver. In bidirectional
applications, the constraint on communication latency is stricter.
For those, typical recommendations on maximum communication
latency generally state that there is none or little impact below
150 ms, while a serious impact may be observed above 400 ms [9].

Each element (encoder, transmission channel and decoder) con­
tributes to the delay between the instant when a frame is captured
and the instant when it is decoded at the receiver: the system delay.
For each frame, the value of the system delay varies due to differ­
ent factors, such as the required encoding time or the nature of the
transmission channel (variable or constant bitrate, packet losses,
etc.). Since frames have to be displayed at a constant rate, generally
receivers utilize an output buffer for decoded frames, to guarantee
a constant communication latency. In practice, this buffer results in
an additional variable delay for each decoded frame: the display de­
lay. Therefore, the communication latency is the sum of the system
delay and the display delay. In real-time applications, the design of

Fig. 1. Example of a multiview prediction structure for two cameras. Horizontal
arrows correspond to temporal prediction and vertical arrows to interview
prediction.

this output buffer, and the display delay is a challenging issue. On
the one hand, the display delay should be as minimum as possible
since it increases the communication latency. On the other hand, it
has to be high enough to absorb the variability of the system delay
so that frames are displayed at a constant rate. While in non-live
services, such as video on demand, this display delay may be
over-dimensioned with little impact on the service, this require­
ment is stricter in the case of real-time bidirectional services. Thus,
an accurate computation of the system delay is essential to design
a system with a minimum valid display delay.

In [10], we presented a framework for the analysis of the encod­
ing delay for MVC. Now, in this paper, we focus on the analysis of
the contribution of MVC decoders to the system delay: the decod­
ing delay. Our purpose here is to provide tools for an accurate eval­
uation of the decoding delay in order to complete the analysis of
the contribution of the MVC codec processes to the system delay.
The decoding delay in MVC decoders depends on two different
but related factors:

1. The multiview prediction structure: temporal and interview
prediction relationships among frames establish decoding order
dependencies for a frame.

2. The hardware architecture and implementation of the decoder:
specific architectural features of multiview decoders (e.g. num­
ber of processors, use of threads etc.) influence the time needed
to decode a given frame, and therefore, they affect the decoding
delay performance.

Whereas in single view decoders, the computation of the decoding
delay can be easily approximated as the decoding time of one
frame, in the case of MVC, the complexity of multiview prediction
structures, and the presence of several views that need to be de­
coded simultaneously, increase the complexity of the decoding de­
lay analysis. Thus, we present here a framework for the systematic
analysis of the decoding delay in MVC decoders. This framework
evaluates the decoding delay taking into account: (i) the multiview
prediction structure and (ii) the hardware implementation of the
decoder. Nowadays, actual decoders support several parallel
streams and different codecs, and the general tendency is to incor­
porate general purpose processors, in which the decoders are soft­

ware-implemented, instead of traditional dedicated hardware
processors. This tendency is particularly interesting to handle
MVC streams due to its inherent parallelization characteristics
[11,12]. Therefore, our framework assumes a hardware platform
for the decoder based on a multi-core processor with multi-thread­
ing capabilities. We define a decoding process as the set of opera­
tions that are needed to decode a frame. Our model assumes that
any decoding process can run on an exclusively dedicated core (pro­
cessor from now on) or one of the threads that share the processing
power of one of the processors. The required time to run that pro­
cess will be higher if several processes share the same processor.

Analogously to the encoding latency analysis [10], we rely on
graph theory to compute the decoding delay for this hardware
model. A graph is constructed from the multiview prediction
structure in which the frames can be seen as the nodes and the pre­
diction dependencies as the edges. Each edge has an associated
cost that represents the contribution of the prediction dependency
to the decoding delay. We show that frame processing times de­
pend on the computational load of the decoder and we provide
an iterative algorithm to compute jointly frame processing times
and the decoding delay by an iterative analysis of the graph.

In our results, we use the decoding delay analysis to character­
ize the communication latency of a complete MVC system. We
show that this analysis can be used to determine hardware
requirements of MVC decoders, such as number of processors or
processor throughput (number of frames that one processor is able
to decode per second), with the objective of achieving a target
communication latency. For example, we show that for a given
processor throughput, the decoding delay can be reduced by
increasing the number of processors in the decoder, until certain
limit that we can identify. Increasing the number of processors
above that limit does not further decrease the decoding delay.

This paper is organized as follows: in Section 2, we discuss the
communication latency of an MVC system and the role of the
decoding delay on it. In Section 3, we present our framework
for the decoding delay analysis in a multi-thread decoder archi­
tecture. In Section 4 we present the iterative algorithm for the
computation of processing times and decoding delay. In Section 5
we show the experimental results and in Section 6 we present the
conclusions.

2. Discussion on communication latency of MVC systems

As aforementioned, the communication latency indicates the
time elapsed between the instant when a frame is captured, and
the instant when that frame is displayed. A block diagram of an
MVC system and the elements that add to the communication de­
lay between its both ends, are depicted in Fig. 2. For frame xj (frame
j of view ¡), tcapt, is the instant when xj is captured, tcod, is the time
instant when xj is completely coded, t^, is the instant when the

capt cod RX dec
'
/"

V

MVC Encoder

i

x

'

Transmission

•>

'

c

<.

MVC Decoder

J

'

—*>
— * •

Display

.

cod TX dec disp

sys
Lat

Fig. 2. Block diagram of the MVC system with encoding delay, transmission delay, decoding delay, system delay, display delay and communication latency.

coded version of xj is received at the decoder and tdec, is the instant

when xj is completely decoded. With this, the encoder delay (5cod, is:

cod!. cod!.

the transmission delay áTX, is:

"TX! — '•RX! ''cod!'

and the decoding delay Sd • is:

"dec! ~~ ''dec! ^RX¡-

0)

(2)

(3)

We define the system delay ásys¡ as the time elapsed between the
capture time of xj and the instaJnt when it is completely decoded
in the receiver. Formally, it can be expressed as:

¿sys' = ¿cod' (4)

This system delay is variable for each frame, due to the variability of
the encoding and decoding delays introduced by the characteristics
of the encoding process, such as different types of frame, the
prediction structure, etc., and the variable nature of the delay on
transmission channels. In order to maintain a constant display
frame rate, the communication latency must have a constant value
for all the frames. Therefore, to absorb the variability of the delay
added by previous blocks, the receiver uses a buffer for decoded
frames, that adds a display delay, Sdi ¡, which is variable for each
frame. Thus, in practice, the communication latency can be ex­
pressed as:

3. Analysis of decoding delay in MVC

In this section, we present the elements and the algorithms for
the systematic analysis of the decoding delay. Firstly, we discuss
the general time relationships in the decoder that allow us to eval­
uate the decoding delay. Secondly, we present the main elements
to compute the decoding delay for any multiview prediction struc­
ture in a multi-processor decoder: (i) the parallel multi-processor
decoder model and (ii) the direct acyclic graph model. In the next
section we present the iterative algorithm to compute jointly the
frame processing times and the decoding delay in that decoder
architecture.

In order to develop a systematic analysis of the decoding delay
on multiview decoders, we make the following assumptions:

1. All views have to be decoded, as all of them will be dis­
played or the receiver will be able to choose any view
for displaying among those received at any time.

2. A frame is the basic decoding unit and is decoded sequen­
tially, i.e., different decoding operations for a given frame
cannot be performed in parallel at the same time in sev­
eral processors.

3. The decoding of a new frame does not start until its refer­
ence frames have been completely decoded.

The decoding delay, ádec¡, as defined in (3), is the difference between
the instant when x\ arrives at the decoder, tovi, and the instant when
xj is already decoded, ídec¡. From (l)-(3), t^ can be computed as:

capt! cod! (9)

Lat- ' ¿sys; + ¿dispj dec!. dispj' (5)

In real-time applications, the optimal communication latency
should be the minimum delay that allows the receiver to maintain
a constant display rate. This latter condition means that the com­
munication latency value cannot be lower than the system delay
of any frame, since this would lead to assign a frame a negative dis­
play delay. That is, for a given MVC system, valid communication la­
tency values have to fulfill the following condition:

''disp! Lat - S ¡ > 0, Vi,j. (6)

Therefore, to achieve the minimum valid communication latency
value, the following condition must hold:

where the capture time tcapti is known, ácod¡ can be estimated using
[10], and áTX¡ can be estimated with a transmission channel model
[13].

Regarding the computation of tde¿, we define tst

when the decoding process of xj starts. Then:

Siec! start' At, proc!!

as the instant

(10)

where At ¡ is the processing time devoted to decoding the coded
version of xj. We also need to define another relevant time instant,
tread ,;, as the instant when xj is ready for being decoded, i.e., all its
reference frames have been completely decoded. tread , is computed
as follows:

Latn
i = 0,

max
,N-
,M-

0, (7)

1

where N is the number of views and M is the number of frames per
view. If the condition in (7) holds, the decoder does not add any dis­
play delay to the frame with the highest system delay. Formally:

Latn max
¡ = 0,...,JV 1
j = 0 , . . . , M - l

max
i = Q,...,N-
j = 0 , . . . , M - l

(á c o d ! + < 5 W + < 5 d e c ! .

(8)

ready] = max t^,:,max(tdec/)
•i 1-EL('S)

(11)

where L(i,j) is the set of reference frames for xj.
While (3), (10) and (11) only depend on the coding order rela­

tionships imposed by the prediction structure, and therefore they
are valid for all hardware decoder architectures, the relationship
between tstart¡ and tread ¡ depends on the specific hardware decoder
architecture being used (e.g., number of processors, sequential or
parallel processing, etc.). Nevertheless, for any hardware decoder
architecture, if we assume that a given frame cannot be decoded
before its reference frames have been decoded, then:

Therefore, identifying the frame with highest system delay and its
accurate value is an essential factor to obtain the minimum com­
munication latency for well-designed real-time applications. In
the next section, we present the framework for the characterization
of one of the elements that contribute to that system delay, the

"-startf - ' Veadyj' (12)

The decoding process of xj cannot start until all frames in L(i,j) have
been decoded, but the start of the decoding of xj may be delayed if

decoding delay ádec„ in order to complete the contribution of MVC there are not processing resources available at tready¡. Thus, the anal-
codecs to the communication latency. ysis has to be individualized for a given decoder hardware platform.

3.1. Parallel multi-processor decoder model

Due to the inherent parallel characteristics of MVC, paralleliza-
tion is an essential factor for an efficient implementation of MVC
decoders. This may be done by the utilization of multi-core proces­
sors and/or parallelization techniques such as multi-threading.

As the use of software decoders implemented in general pur­
pose multi-core processors has grown in recent years, we propose
a decoder model that simulates the characteristics of those decod­
ers. We name it parallel multi-processor decoder (Parallel MPD)
model. It considers a set of K processors with multi-task decoding
(one processor can decode several frames at a time, by means of
parallelization techniques).

The characteristics of the Parallel MPD model are the following:

1. The decoding operations for any frame from any of the N views
can be performed in any of the K processors.

2. The processors can decode their assigned frames in a parallel
way, i.e., if at a given time all the processors are busy and a
new frame is ready to be decoded, its decoding process starts
immediately in one of the processors in parallel with the cur­
rent ongoing processes.

3. The decoder manages the assignment of each of the decoding
processes to each of the available processors.

3.2. Directed acyclic graph model

In decoder architectures with multitask processors, such as the
Parallel MPD model, the decoder assigns the decoding of new re­
ceived frames to one of the processors without having to wait for
the availability of idle processors. Thus, decoding of xj starts at
treadyj- Formally:

"-start] "-ready]'

With this condition and (11):

W : = max(tRx<, maided) J

(13)

and using (10):

t d e c ! = m a x (t i ^ . I S ^ ^ ') -At, proc!• (15)

Under the condition in (13), (15) can be solved using a similar ap­
proach to that one in [10] that relies on graph theory. In the follow­
ing we describe it.

For any feasible MVC prediction structure, we can extract a di­
rected acyclic graph (DAG) [14], in which the frames are the nodes
of the DAG and the prediction dependencies are its edges. Due to
the directed nature of the dependencies (one frame is predicted
from the reference frame but not vice versa), the graph is directed.
Each directed edge links a reference node (parent) to the node that
is predicted from it (child). A path is a sequence of nodes linked by

Fig. 3. Example of multiview prediction structure and its associated DAG. Nodes of
the DAG represent frames while edges represent dependency relationships in the
prediction structure, cujf is the cost of each edge.

RX, RX/ time
Ai

procj

3
CO

i,k
• «<

Ai *
proc /

Fig. 4. Graphic significance of the cost value of the edges in the graph.

directed edges. Fig. 3 shows an example prediction structure and
its associated DAG.

Each edge of the DAG has an associated cost value that indicates
the single contribution of its parent node to the decoding delay of
its child node. The cost value co'{ of the edge that links xj withxf is:

co'* = max(0, (t^. Atn, (16)

In (16) we assume thatxj starts its decoding process at t^ (the start
of the decoding process of xj is not delayed by the decoding pro­
cesses of its parent frames) to capture the isolated contribution of
xj to the decoding delay of x\. As only positive delay values have a
realistic meaning, octf is restricted to positive values. Fig. 4 illus­
trates the computation of octf with a time chronogram in which
the decoding process of the parent frame xj delays the decoding
start of child frame xj1. Note that x\ is received at t^, but its encod­
ing process cannot start until xj is not completely decoded.

The cost of a path is the sum of the costs of the edges that link
the nodes in the path. The cost of the path that ends on a given
frame sums up the contributions of all parents frames on that path
to the decoding delay of that frame. Among the set of paths ending
on the same node xj, we name delay path to xj, to the one with the
highest cost value. Its associated cost, pdel, is the following:

(14) pdelf =max{pj(u)},
uclj útil J

(17)

where U is the set of paths ending in node xj and pUu) is the cost of
the uth path. pdel, indicates the elapsed time between tK

Formally:
^RX; a n d t r e a d y .

ready] ^del!'

Given that, and the condition in (13), (10) becomes:

Ldec! ~~ LRX! ~i~ ¿"del! " Atn,

and therefore the decoding delay is:

ádec¡ = Pdel' + Aíprocí-

OS)

(19)

(20)

Therefore, provided that the values of Atproc, are known, ádec, and the
decoding chronogram can be computed systematically foV all the
frames using the DAG.

Table 1
Estimation of frame processing times (At'lml, At'ml and At"ml) and the parameters aP

and aB for different video sequences. Spatial resolutions: ballroom [15] 640 x 480,
Newspaper [16] and Balloons [17] 1024 x 768.

Sequence

Ballroom
Newspaper
Balloons

Miml

14.04
32.58
31.05

(ms) A C (ms)

8.75
18.24
21.81

AtL, (ms)

10.38
24.74
27.84

CXp

0.62
0.56
0.70

aB

0.74
0.76
0.89

Table 2
Estimation of frame processing times for different numbers of frames decoded simultaneously in a processor (Ar̂ m.
processing.

) and ratios of processing time increase for parallel

Frame type ¿ t i , <mS) A & 2 < m s) ^L (») ^ L Cm») AtiL/Aí S¡m2/a tsim1

1.97
1.95
1.99

2.85
2.83
2.93

AfM /At ' ' '

32.13
20.81
26.45

63.16
40.59
52.69

91.65
58.93
77.40

123.82
77.75
99.76

3.85
3.74
3.77

3.3. Frame processing time model

In our previous work [10,18], we used a frame processing time
model for an MVC encoder in which the time devoted to encoding a
given frame depends on the number of reference frames. However,
in the case of the decoder we assume that the time devoted of the
decoding process of a frame depends on the frame type, i.e., I, P or
B.

We define the computational load of the decoding process of a
frame as the processing time devoted to decoding that frame in an
exclusively dedicated processor (A£¿'ml, where (•) can be I, P or B).
We take as a reference the computational load of the decoding pro­
cess of an I-frame (Atj.iml) as non extra motion compensation
operations are involved in the decoding process. Then, in our mod­
el, we consider that the computational load of the decoding pro­
cess of a P-frame, Atjiml, and a B-frame, Atjiml, are proportional
to Atj.iml and computed as follows:

decoding will occur when the number of frames simultaneously
decoded at a given time, nsim, is higher than K. Atproc, also depends
on the how the decoder manages the assignment of" frames to the
available processors. For instance, in a decoder with K = 2 and
"sim = 3, Atproc, would differ if: (a) the three frames are decoded
in different threads of only one processor or (b) two frames are de­
coded in two threads in one of the processors and the other frame
is decoded in the other processor.

In our model we assume the following assumption: if nsim

frames are decoded simultaneously in one processor, the required
processing time to decode those frames is nsim times the
computational load of those frames. Formally, their frame process­
ing time At ¿ is:

At„, At; (22)

At; = «pAt in

Atsiml = « B A 4
(21)

where aP and aB are scalar values.
To estimate the parameters in our frame processing time model

(At! siml ' AC. Atjimi' aP a n d ote), we have performed a series of
experiments using a JMVC 8.5 decoder [19] running in a general
purpose PC: four-core processor working at 2.40 GHz, with
3.25 GB of RAM memory. Using this reference software decoder
we have estimated the average decoding time for each type of
frame when each frame is decoded in an exclusively dedicated
core. From those results we have computed the values of aP and
aB. The results for several tested sequences are shown in Table 1.
It can be seen that the value of aP and aB depends on the video se­
quence, ocp varies from 0.56 to 0.70 and aB varies from 0.74 to 0.89.

The translation of the computational load to time devoted to
decoding a frame, Atproci, clearly depends on the hardware charac­
teristics of the MVC decoder. For multi-task processors such as the
ones in the Parallel MPD model, Atproc, depends on the computa­
tional load conditions of the set of processors. Thus, if a processor
has to decode a single frame, its processing time is: Atproc, = At^ml.
Otherwise, if the processor has to deal with several frames in par­
allel, the processing time of each frame will increase, i.e.,

Atni >At«L- For a given decoder with K processors, parallel

To assess this assumption, we have performed the following exper­
iment: we have decoded different number of frames simultaneously
in a single processor and evaluated the frame processing times in
each case for the different type of frames. We have used JMVC 8.5
decoders [19] running in one of the cores of a general purpose PC.
The results are shown in Table 2 shows the estimated frame pro­
cessing times from nsim = 1 to nsim = 4, i.e., Atj.^ to At^m4. The re­
sults show that our assumption is sufficiently good as the time
devoted to decoding nsim frames simultaneously is close to
nsim x At^'ml. In any case, we have assessed that the computational
overhead that may occur when processing nsim frames in nsim

threads of one processor do not incur in a processing time higher
thannsim x At<:>ml.

To sum up, the estimation of Atproci, requires: (i) the computa­
tion of the number of frames that are simultaneously decoded at
any time, (ii) the determination of the time intervals when parallel
decoding of several frames occurs, and (iii) the policy on the
assignment of simultaneously decoded frames to the available pro­
cessors. In the next section we depict the iterative algorithm that
we have employed to compute jointly Atproc, and the decoding
chronogram.

Ai '

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 1 Frame 4

n* x»,+ n' x nf-

Frame 5 Frame 3 Frame 2 Frame 0

n.+

Processor 0

Frame 1

Frame 5

Processor 1

Frame 4

Frame 3

Processor 2

Frame 2

Processor 3

Frame 0 \\nf-

• -

(a) (c)

Fig. 5. Example on the assignment of frames to processors in the MPD model (nslm = 6 and K = 4). The size of the frame bars represent Atproc, for each frame, at a given
iteration. As a result of the assignment policy, frames 0 and 2 (frames with highest Atproc,) are assigned to processors with lower computational load.

4. Iterative computation of the decoding delay in the Parallel
MPD model

We have shown that in our decoder model, Sdec¡ can be com­
puted with (20) and the DAG model. However, Jthe values of
Atproc, are not known a priori, as their values depend on the com­
putational load conditions of the decoder that vary with time. To
solve that, we use an iterative computation of the DAG. On each
iteration, Sde¿ and thus the decoding chronogram are computed
using the DAG with the values of Atproc, obtained from the previous
iteration. Then, the values of Atproc, are updated depending on the
computational load conditions observed in the current decoding
chronogram.

In this iterative algorithm, we make the following assumption:
as the necessary sequential operations to decode a frame can be
computed in different processors, we assume that at any time,
the remaining operations of a decoding process can be assigned
to any of the processors. For example, consider a decoder with
two processors (P0 and Pi) that are decoding three frames (x0 in
P0 and X] and x2 in Pi). If at a given time the decoding of x0 ends,
we can assign Xi to P0 and maintain x2 in Pi.

4.1. Policy on the assignment of frames to processors

With the aim of developing a decoder model that has a fairly
balanced processor usage, we implement an assignment policy
on the MPD model that assigns frames with higher processing
times to less loaded processors. This assignment policy is the fol­
lowing: consider that at given time and algorithm iteration, nsim

frames are being decoded simultaneously. If nsim sg K, each frame
is assigned to one of the K processors and there is no simultaneous
decoding within any processor. If nsim > K, frames are assigned to
the available processors by the following rules:

• The nsim frames are distributed in K groups, in such a way that
there will be groups with nj = \^\ frames and groups with
nt = [ism] frames, i.e., the maximum difference in number of
frames among groups is one frame.
The number of groups with nt frames, n*, is:

n* = nsimmodK,

while the number of groups with nj frames, n', is:

n' =K — n*.

(23)

(24)

• Frames are distributed into the groups so that frames with
higher Atproc, are assigned to groups with nj frames. Thus,
frames with higher Atproc, will be decoded in processors with
lower computational load, limiting the extra decoding delay
caused by parallel processing.

• Then, each of the K groups of frames is assigned to each one of
the K processors.

An example of this assignment policy for nsim = 6 and K = 4 is
shown in Fig. 5. Fig. 5(a) shows, for a given time instant, a group
of frames (frames 0 to 5) ready to be decoded with different values
of Atproci. Fig. 5(b) shows those frames sorted by increasing process­
ing time. It can be seen in Fig. 5(c) that the first nt x n* are assigned
in an alternate order to the first n* processors and the last nj x n'
frames to the last n' processors.

4.2. Details of the iterative algorithm

This algorithm computes frame processing times and the decod­
ing chronogram iteratively. On the initialization we assume that
each frame is decoded in an exclusively dedicated processor. Then,

f Start J

{ At '. =A/W
prac; siml

tts¡m (í) | 0 = 1

»L(í) |„=i

Update Aíproc;.

for the frames decoded

during [í0,íj

Compute 8d '. (DAG model)

and nsiJf)\k

Assignment of

frames to processors

Yes

f End J

Fig. 6. Flow diagram of the iterative algorithm for the computation of decoding
delay with the parallel MPD model.

on each iteration, the decoding chronogram is computed and we
identify the time intervals in which the number of frames decoded
simultaneously is higher than the number of processors. For those
frames, we modify the frame processing times accordingly with
the processor occupancy conditions. To update the frame processing
times in the cases of simultaneous processing in one processor we
follow the frame processing time model in Section 3.3. The flow dia­
gram of this iterative algorithm is shown in Fig. 6.

• Iteration 0 (Initialization of variables assuming that each frame is
decoded in an exclusively dedicated processor.)

1. The initial value of the frame processing time of each frame is
set to At„ = At; ,Vi j .

2. The initial value of the number of frames that are decoded
simultaneously over time is nsim(t)|. 1.

3. The initial value of the number of frames that are decoded
simultaneously over time in processor p is np

sim(t)\0 = l,Vp.

Iteration k

Computation of <5deci,V¡,j using the DAG model with Atproc,
and computation oJf nsim(t)|k from the decoding chronogram
results.

Define t0 as the first Comparison of nsim(t)|k with nsim(t)
instant for which nsim(t0)|k ^ nsim(t0)|fe_i and
instant after t0 for which nsim(ti)|fc ¥= nsim(t0)|k

ti as the first
If these values

do not exist finish the algorithm. If nsim(t0)|k = 0, continue with
5. Otherwise, continue with 3.

3. Each frame which is being decoded during At=[t0 , t i] , is
assigned to one of the K processors by the assignment policy
in Section 4.1, and np

sim(t)\k is updated Vt e At.
4. The processing time that is devoted to the decoding process of

each frame in processor p during At according to the data from
iteration fc — 1, Cp(At), is:

At
CP(At)=-

aWL
(25)

while the processing time that is effectively devoted to the decod­
ing process of each frame Cp(At) is:

Cf(At) = i f T f (26)

The updated frame processing times of those frames are:

^ p r o c ' . ^ p r o c ' . At' (27)

ivX/) K.X; JvX-)

y 0

(a) Example prediction structure.

t

(b) Decoding chronogram. Iteration 1 (after initialization).

t

(c) Decoding chronogram. Iteration 2, after step 2.

tfl

<fi

c
(d) Decoding chronogram. Iteration 2, after step 4.

c
(e) Decoding chronogram Iteration 3.

c
(f) Decoding chronogram. Iteration 4 (Final iteration).

Fig. 7. Decoding chronograms in parallel MPD model. X-axis represents time and
the different positions on the y-axis correspond to each of the frames of the
prediction structure, tux; are the reception times of the frames in the decoder. The
horizontal bars represent the decoding time of each of the three frames. Different
colors indicate the assignment of the frames to different processors, gradient: frame
assigned to P0, dots: frame assigned to Pt.

Table 3
Time parameter values for the MVC encoder [10].

Time parameter Attosic Capture period

Value (ms) 20 10 4 0 (25 fps)

SO

60

40

20

00

80

60

40

m

i
ii

ii
i

i

3
3

3
3

IMVM GOP 3views 2framei

• f ' ^

••/ /
Jt/yT

-'"*'

1 2 3 4 5 6 7 8 9 10

Number of decoder processors (K)

Fig. 8. Communication latency results. JMVM 3 views GOP2. Saturation on the
value of At',ml. The value of At',ml cannot be increased beyond certain limit despite
the number of decoder processors.

where Atproc is:

At' Cp(At)-Cp(At). (28)

For t > ti,nsim(t)|k and nfim(t)|k are reset to the initialization
value for next iteration as follows: (variables are reset to 1 for
non-evaluated time periods.)

nsim(t)|k = < im(t)|k = l.

Go back to 1.

(29)

In order to illustrate the iterative algorithm, we show the example
in Fig. 7. For simplicity reasons in this example, Fig. 7(a) shows a
very simple GOP structure for one view with no prediction relation­
ships. Fig. 7(b)-(e) show the decoding chronograms on several iter­
ations of the algorithm for a decoder with K = 2 (processors P0 and
Pi). Fig. 7(b) shows the decoding chronogram as obtained in itera­
tion 1 (after iteration 0) with nsim(t)|0 = 1 (initially, all the frames
are assigned to P0). By evaluation of the decoding chronogram, we
find the interval At], in which n^Ati)!-, = 2. This means that dur­
ing At] two frames are decoded simultaneously. As K = 2, the sec­
ond frame is assigned to Pi and processing times are not
modified. After the second step of iteration 2 (Fig. 7(c)), the interval
At2 is found, for which nsim(At2)|2 = 3. Thus, for frames x[],x? and x%
the frame processing times need to be updated, xjj is assigned to P0

and x?,*" a r e assigned to Pi and Atproco and Atproco are updated add­
ing Atproc = At2/2, as shown in Fig. 7 (d) and fort > ti, nsim(t)|2 = 1.
On iteration 3 (Fig. 7 (e)), the interval At3 is found, for which
nsim(At3)|3 = 2. Thus, the remaining decoding operations for x̂ are
assigned to Pi and frame processing times are not further modified.
On iteration 4 (Fig. 7 (f)) there are no differences between nsim(t)|3

and nsim(t)|4 and the algorithm ends.

5. Experimental results

We have evaluated the communication latency of an MVC sys­
tem, such as the one depicted in Fig. 2, for different multiview

Lat = 300ms
Lat = 400ms
Lat = 500ms
Lat = 600ms

rMVM GOP 3views 2frames

,.•';'

*' : „. -

> . «* J > * * , * , , , ' ^

v ' / ^ y ^ -

^ ^
Number of decoder processors (K)

(a) GOP 3 views 2 frames

JMVM GOP 5views 2frames

Lat = 300ms
. Lat = 400ms

Lat = 500ms
Lat = 600ms

."..,.<.•....̂ .v**..;.. .

;...-"'-

, - ' ' ' • ' : _ , - - ' ' ' ;

Number of decoder processors (K)

(d) GOP 5 views 2 frames

110

100

90

30

70

J 50

30

20

HMVM GOP 3views 4frames

Lat = 400ms
Lat = 500ms
Lat = 600ms

Lat = 700ms

; . , . • • . ' . . , * »

y-^~ ^

~ 0 ^

;,.''""
;;;••'' --->•*--

-;y' y* ___"

;'

Number of decoder processors (K)

(b) GOP 3 views 4 frames

100

a ~
J

3 60

MVM GOP 5views 4frames

Lat = 500ms
Lat = 600ms
Lat = 700ms
Lat = 800ms

„.•"*' : — "* ""

• ^ • - ^ • • • • • ¿ r - ~ *

. . . . „ , , , ^ . - > * - ^ ^ - :

?.^.1**...^0?r0^..

Number of decoder processors (K)

(e) GOP 5 views 4 frames

Lat = 600ms
L a t - 7 0 0 m s

Lat = 900ms

MVM GOP 3views 8frames

*•'**

: '̂ *» *
.••...*. .>V.

...;.!>.*.-.< '^^~-~——T-"""..:

•**'<<• *^>S^

'^
Number of decoder processors (K)

(c) GOP 3 views 8 frames

JMVM GOP 5views 8frames

Lat = 700ms
Lat = 800ms
Lat = 900ms
Lat = 1000ms

\ ^+*.?*....

. . • * ' * ! ^ ' : .» "* **

Number of decoder processors (K)

(f) GOP 5 views 8 frames

Fig. 9.
in Fig

Combinations of number of processors and processor throughput Ar'lml for a target communication latency value in a complete MVC system such as the one depicted
2. Results for different JMVM prediction structures with hierarchical temporal prediction structure and IBP interview prediction [20].

prediction structures and MVC decoders with different processing
capacities. We focus our analysis in the decoding delay, and the
parameters of the MVC decoder within the Parallel MPD model
that have an influence on it: the number of processors and proces­
sor throughput. Our approach on the tests is the following: given a
prediction structure and a target value of the communication
latency, we find possible combinations of those parameters that
achieve the target latency value. To characterize the processor
throughput, we use the processing time of a frame in an exclu­
sively dedicated processor (Atj.¡'ml) as the parameter under analysis.
Note that At^ml and the processor throughput (number of frames
decoded per time unit) are inversely proportional.

We have performed this evaluation for different multiview GOP
structures of the Joint Multiview Video Model (JMVM) with IBP
prediction scheme for the interview prediction [20]. We have eval­
uated prediction structures with three and five views, and GOP
sizes of two, four and eight frames. For all experiments, and as
we are not focusing on the encoder delay, an MVC encoder with
an unlimited processing capacity was assumed [10]. The frame
processing time parameters for the encoder have been estimated
in a general purpose PC: four-core processor working at
2.40 GHz, with 3.25 GB of RAM memory. Also, for simplicity in
our simulations the values of the transmission delay ó^, are not
considered. The encoder time parameter values are shown in Ta­
ble 3. For the frame processing time model in the decoder, we have
used the following parameters: aP = 0.6, aB = 0.8.

Fig. 8 shows, for a GOP of three views and size of two frames,
the evolution of the maximum value of Atj.iml that guarantees a
communication latency below a target value, with different num­
bers of processors. Results are shown for several target communi­
cation latency values. For example, considering the graph of
Lat = 500 ms and a decoder with two processors, Atj.iml must be

under 60 ms to obtain a communication latency below 500 ms.
Alternatively, if Atj.iml =100 ms, the decoder needs at least four
processors to obtain a communication latency below 500 ms. It
can be seen that each of the graphs reaches a saturation value of
Atj.iml, Atj.lml max. This result indicates that there exists a limit to
the frame processing time to guarantee the target latency value de­
spite the number of processors. This value is obtained when the
number of processors is equal to the maximum number of frames
that have to be decoded in parallel at any time.

Fig. 9 shows the same type of results for different JMVM predic­
tion structures. With these results, we prove that the proposed
framework allows us to solve design problems on MVC decoders
such as: given a target communication latency, a prediction struc­
ture and a certain processor throughput, we can find the minimum
number of processors to achieve a communication latency under
that target value. Alternatively, given a number of processors we
can compute the maximum value of frame processing time that
guarantees the target communication latency.

6. Conclusions

We have presented a framework for the systematic analysis of
the decoding delay of multiview decoders. We have shown that in
real-time applications, an accurate estimation of the decoding delay
is an essential factor to achieve a minimum communication latency.

Thus, the proposed framework completes the analysis of the
contribution of the MVC codec to that communication latency.
The delay on the decoder depends on: (i) the multiview prediction
structure and (ii) the hardware architecture of the decoder. We
have considered a multi-processor platform with multi-threading
capabilities, whose main characteristics are captured in the Parallel

MPD model. We have shown that the contribution of the multiview
prediction structure to the decoding delay can be computed using
graph theory, given that the frame processing times are known. As
in the Parallel MPD model the frame processing times depend on
the computational load of the processors in the decoder, we have
provided an iterative algorithm to compute jointly frame process­
ing times and the decoding delay in such a decoder platform.

Finally, we have shown that this framework can be applied to
design decoders with the aim of minimizing the communication
latency. It provides a tool for an efficient design of characteristics
of the decoder that have an influence on the decoding delay perfor­
mance, such as the number of processors or the processor through­
put. We have shown that given a prediction structure and a given
processor throughput we are able to find the minimum number of
decoder processors to achieve a target communication latency va­
lue. Alternatively, given the number of processors we find the min­
imum processor throughput to achieve that target value.

Acknowledgements

This work has been partially supported by the Ministerio de
Economía y Competitividad of the Spanish Government under pro­
ject TEC2010-20412 (Enhanced 3DTV). Also, P. Carballeira wishes
to thank the Comunidad de Madrid for a personal research grant.

References

[1] A Smolic, K. Müller, P. Merkle, C. Fehn, P. Kauff, P. Eisert, T. Wiegand, 3D video
and free viewpoint video - technologies, applications and MPEG standards, in:
Proceedings of IEEE International Conference on Multimedia and Expo, 2006,
pp. 2161-2164.

[2] Y. Morvan, D. Farin, P. De With, System architecture for free-viewpoint video
and 3D-TV, IEEE Transactions on Consumer Electronics 54 (2008) 925-932.

[3] S.B. Kang, R. Szeliski, P. Anandan, The geometry-image representation tradeoff
for rendering, in: Proceedings of IEEE International Conference on Image
Processing, vol. 2, 2000, pp. 13-16.

[4] P. Merkle, A. Smolic, K. Müller, T. Wiegand, Multi-view video plus depth
representation and coding, in: Proceedings of IEEE International Conference on
Image Processing, 2007, pp. 201-204.

[5] A. Vetro, P. Pandit, H. Kimata, A. Smolic, Y. Wang, Joint Draft 8.0 on Multiview
Video Coding, Doc. JVT-AB204 Hannover, Germany, July, 2008.

[6] ITU-T Rec. H.264 & ISO/IEC 14496-10, AVC Advanced Video Coding for Generic
Audiovisual Services, 2005.

[7] A. Vetro, T. Wiegand, G. Sullivan, Overview of the stereo and multiview video
coding extensions of the H.264/MPEG-4 AVC standard, Proceedings of the IEEE
99(2011)626-642.

[8] Y. Liu, Q, Huang, S. Ma, D. Zhao, W. Gao, RD-optimized interactive streaming of
multiview video with multiple encodings, Journal of Visual Communication
and Image Representation 21 (2010) 523-532.

[9] G. Karlsson, Asynchronous transfer of video, IEEE Communications Magazine
34(1996)118-126.

[10] P. Carballeira, J. Cabrera, A. Ortega, F. Jaureguizar, N. Garcia, A framework for
the analysis and optimization of encoding latency for multiview video, IEEE
Journal of Selected Topics in Signal Processing 6 (2012) 583-596.

[11] Y. Yang, G. Jiang, M. Yu, D. Zhu, Parallel process of hyper-space-based
multiview video compression, in: Proceedings of IEEE International
Conference on Image Processing, 2006, pp. 521-524.

[12] Y. Pang, L. Sun, J. Wen, F. Zhang, W. Hu, W. Feng, S. Yang, A framework for
heuristic scheduling for parallel processing on multicore architecture: a case
study with multiview video coding, IEEE Transactions on Circuits and Systems
for Video Technology 19 (2009) 1658-1666.

[13] ITU-T Rec. G.1050, Network model for evaluating multimedia transmission
performance over internet protocol, 2007.

[14] K. Thulasiraman, M.N.S. Swamy, Graphs: Theory and Algorithms., Wiley, 1992.
[15] A. Vetro, M. McGuire, W. Matusik, A. Behrens, J. Lee, H. Pfister, Multiview Video

Test Sequences from MERL, MPEG Contribution M12077, Busan, Korea, 2005.
[16] Y. Ho, E. Lee, C. Lee, Multiview Video Test Sequence and Camera Parameters,

MPEG contribution M15419, Archamps, France, 2008.
[17] M. Tanimoto, T. Fujii, M.P. Tehrani, M. Wildeboer, N. Fukushima, H. Furihata,

Moving Multiview Camera Test Sequences for MPEG-FTV, MPEG contribution
M16922, Xi'an, China, 2009.

[18] P. Carballeira, J. Cabrera, A. Ortega, F. Jaureguizar, N. Garcia, Comparative
latency analysis for arbitrary multiview video coding prediction structures, in:
Proceedings of IS&T/SPIE Visual Communications and Image Processing, 2009,
vol. 7257, pp. 72570L-1-12.

[19] Joint Video Team, JMVC Reference Software 8.5, <www.garcon.ient.
rwthaachen.de>, 2011.

[20] A. Vetro, P. Pandit, H. Kimata, A. Smolic, Y. Wang, Joint multiview video model
(JMVM) 8.0, output doc. N9762, Archamps, France, April 2008.

http://www.garcon.ient

