23 research outputs found

    Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement

    Get PDF
    The performance and power efficiency of multi-core processors are attractive features for safety-critical applications, as in avionics. But increased integration and average-case performance optimizations pose challenges when deploying them for such domains. In this paper we propose a novel approach to compute a interference-sensitive Worst-Case Execution Time (isWCET) considering variable accesses delays due to the concurrent use of shared resources in multi-core processors. Thereby we tackle the problem of temporal partitioning as it is required by safety-critical applications. In particular, we introduce additional phases to state-of-the-art timing analysis techniques to analyse an applications resource usage and compute an interference delay. We further complement the offline analysis with a runtime monitoring concept to enforce resource usage guarantees. The concepts are evaluated on Freescale's P4080 multi-core processor in combination with SYSGO's commercial real-time operating system PikeOS and AbsInt's timing analysis framework aiT. We abstract real applications' behavior using a representative task set of the EEMBC Autobench benchmark suite. Our results show a reduction of up to 75% of the multi-core Worst-Case Execution Time (WCET), while implementing full transparency to the temporal and functional behavior of applications, enabling the seamless integration of legacy applications

    High-Integrity Performance Monitoring Units in Automotive Chips for Reliable Timing V&V

    Get PDF
    As software continues to control more system-critical functions in cars, its timing is becoming an integral element in functional safety. Timing validation and verification (V&V) assesses softwares end-to-end timing measurements against given budgets. The advent of multicore processors with massive resource sharing reduces the significance of end-to-end execution times for timing V&V and requires reasoning on (worst-case) access delays on contention-prone hardware resources. While Performance Monitoring Units (PMU) support this finer-grained reasoning, their design has never been a prime consideration in high-performance processors - where automotive-chips PMU implementations descend from - since PMU does not directly affect performance or reliability. To meet PMUs instrumental importance for timing V&V, we advocate for PMUs in automotive chips that explicitly track activities related to worst-case (rather than average) softwares behavior, are recognized as an ISO-26262 mandatory high-integrity hardware service, and are accompanied with detailed documentation that enables their effective use to derive reliable timing estimatesThis work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzet has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-IncorporaciĂłn postdoctoral fellowship number IJCI-2016- 27396.Peer ReviewedPostprint (author's final draft

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Modelling bus contention during system early design stages

    Get PDF
    Reliably upperbounding contention in multicore shared resources is of prominent importance in the early design phases of critical real-time systems to properly allocate time budgets to applications. However, during early stages applications are not yet consolidated and IP constraints may prevent sharing them across providers, challenging the estimation of contention bounds. In this paper, we propose a model to estimate the increase in applications' execution time due to on-chip bus sharing when they simultaneously execute in a multicore. The model works with information derived from the execution of each application in isolation, hence, without the need to actually run applications simultaneously. The model improves inaccuracy with respect to the existing model, and tends to over-estimate. The latter, is very important to prevent that, during late design stages, applications miss their deadline when consolidated into the same multicore, causing costly system redesign.This work has been supported by the Spanish Ministry of Science and Innovation grant TIN2015-65316-P. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Maximum-Contention Control Unit (MCCU): Resource Access Count and Contention Time Enforcement

    Get PDF
    In real-time systems, the techniques to derive bounds to the contention tasks can suffer in multicore build on resource quota monitoring and enforcement. Existing techniques track and bound the number of requests to hardware shared resources that each core (task) is allowed to perform. In this paper we show that current software-only solutions work well when there is a single resource and type of request to track and bound, but do not scale to the more general case of several shared resources that accept different request types, each with a different associated latency. To handle this (more general) case, we propose low-overhead hardware support called Maximum-Contention Control Unit (MCCU). The MCCU performs fine-grain tracking of different types of requests, preventing a core to cause more interference on its contenders than budgeted. In this process, the MCCU also helps verifying that individual requests duration does not exceed their theoretical bounds, hence dealing with scenarios in which requests can have an arbitrarily large duration.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773) and the HiPEAC Network of Excellence. Carles Hernández is jointly funded by the MINECO and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding

    Get PDF
    In critical domains, reliable software execution is increasingly involving aspects related to the timing dimension. This is due to the advent of high-performance (complex) hardware, used to provide the rising levels of guaranteed performance needed in those domains. Caches and multicores are two of the hardware features that have the potential to significantly reduce WCET estimates, yet they pose new challenges on current-practice measurement-based timing analysis (MBTA) approaches. In this paper we propose MC2, a technique for multilevel-cache multicores that combines deterministic and probabilistic jitter-bounding approaches to reliably handle both the variability in execution time generated by caches and the contention in accessing shared hardware resources. We evaluate MC2 on a COTS quad-core LEON-based board and our initial results show how it effectively captures cache and multicore contention in pWCET estimates with respect to actual observed values.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the MINECO and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    En-route: on enabling resource usage testing for autonomous driving frameworks

    Get PDF
    Software resource usage testing, including execution time bounds and memory, is a mandatory validation step during the integration of safety-related real-time systems. However, the inherent complexity of Autonomous Driving (AD) systems challenges current practice for resource usage testing. This paper exposes the difficulties to perform resource usage testing for AD frameworks by analyzing a complex and critical module of an AD framework, and provides some guidelines and practical evidence on how resource usage testing can be effectively performed, thus enabling end users to validate their safety-related real-time AD frameworks.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the UP2DATE European Union’s Horizon 2020 (H2020) research and innovation programme under grant agreement No 871465, and the HiPEAC Network of Excellence. MINECO partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717) and Leonidas Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095)Peer ReviewedPostprint (author's final draft

    Analysis of Dynamic Memory Bandwidth Regulation in Multi-core Real-Time Systems

    Full text link
    One of the primary sources of unpredictability in modern multi-core embedded systems is contention over shared memory resources, such as caches, interconnects, and DRAM. Despite significant achievements in the design and analysis of multi-core systems, there is a need for a theoretical framework that can be used to reason on the worst-case behavior of real-time workload when both processors and memory resources are subject to scheduling decisions. In this paper, we focus our attention on dynamic allocation of main memory bandwidth. In particular, we study how to determine the worst-case response time of tasks spanning through a sequence of time intervals, each with a different bandwidth-to-core assignment. We show that the response time computation can be reduced to a maximization problem over assignment of memory requests to different time intervals, and we provide an efficient way to solve such problem. As a case study, we then demonstrate how our proposed analysis can be used to improve the schedulability of Integrated Modular Avionics systems in the presence of memory-intensive workload.Comment: Accepted for publication in the IEEE Real-Time Systems Symposium (RTSS) 2018 conferenc
    corecore