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Abstract—Software resource usage testing, including execution
time bounds and memory, is a mandatory validation step during
the integration of safety-related real-time systems. However,
the inherent complexity of Autonomous Driving (AD) systems
challenges current practice for resource usage testing. This paper
exposes the difficulties to perform resource usage testing for AD
frameworks by analyzing a complex and critical module of an AD
framework, and provides some guidelines and practical evidence
on how resource usage testing can be effectively performed, thus
enabling end users to validate their safety-related real-time AD
frameworks.

I. INTRODUCTION

Automotive safety-related systems must undergo a develop-
ment process with exhaustive verification and validation steps,
where each item is proven to adhere to its safety requirements
with the degree of rigor dictated by safety standards [11]. In
safety-related real-time systems, timing verification for soft-
ware items has received significant attention during decades
with a plethora of techniques aimed at deriving estimates to
the Worst-Case Execution Time (WCET) of tasks to verify
that specific task schedules meet safety requirements (e.g. the
braking system activates the brake before its deadline) [30],
[1], [14], [13], [26], [7], [17], [15]. Instead, timing validation
has received much less attention. Timing validation focuses
on showing that derived timing budgets are not violated.
The absence of violations serves as evidence for certification
purposes on the timing correctness of the system. Automotive
industry resorts to engineering practices based on creating
stressing tests and collecting measurements, sometimes with
the help of appropriate timing analysis tools that can be
used for both timing verification and validation [21]. These
techniques rely on the ability to collect information on the
execution of the tasks under analysis. This is challenged by
forthcoming Autonomous Driving (AD) systems, increasingly
considered for adoption by automotive industry. This is so
because AD systems build upon overwhelmingly complex
software constructs. On the one hand, paradoxically, part of
the complexity is introduced to ease software development
and maintainability. This includes self-managed thread/process
creation for specific functionalities, subscription of services
through callbacks, and abundant use of objects and pointers
shared across different modules to name a few. This is, for in-
stance, the case for Baidu’s Apollo AD framework, the largest
AD project with more than 120 OEMs, Tier1, Tier2, AI and
tech companies, and car manufacturers [6]. On the other hand,
however, complex software constructs create unobvious and

dynamic cross-process dependencies that available resource
usage assessment tools fail to capture, thus being unable to
measure, for instance, the actual execution time and memory
requirements of AD software modules in general, and for their
functions in particular. Hence, validation teams lack the means
to perform their work for AD frameworks.

This paper addresses this challenge by proposing a set of
guidelines to collect execution time and memory utilization
measurements of AD modules and their components, thus
enabling resource usage testing, as mandated in the automotive
safety regulation ISO 26262 [11]. In particular, our contribu-
tions are the following:

1) An analysis of the difficulties and roadblocks to collect
timing and memory utilization measurements of an AD
software framework, using Apollo framework in general,
and its Perception module in particular, as a representa-
tive software module for guiding the discussion.

2) A set of remedies and guidelines to defeat those road-
blocks, En-Route, to perform the resource usage testing
of AD software in general, and Apollo in particular,
with specific focus on timing and memory utilization
concerns. En-Route guidelines aim at setting the basis
for the development of a full methodology.

3) An assessment of En-Route on Apollo’s Perception
module. In particular, we showcase how execution times
can be collected at fine granularities despite the complex
and dynamic execution constructs of Apollo, and how
memory utilization can also be collected and broken
down across different Perception software components.

Although the work in this paper is applied to Apollo as
an illustrative example, results and conclusions apply to other
AD frameworks as well as autonomous systems in domains
such as robotics, since challenges posed by Apollo relate
to, first, its integration with the Robotics Operating System
(ROS) [20], and second, to the use of abstractions to ease
software maintainability such as Docker containers. Both
such characteristics are common across autonomous system
frameworks in general, and AD frameworks in particular (e.g.
Autoware [10]).

The rest of the paper is organized as follows. Section II pro-
vides background on the safety-related software development
process and on the Apollo AD framework. Section III analyzes
the difficulties and roadblocks to perform resource usage
testing on AD frameworks in general, building on Apollo as an
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Fig. 1: Software development process as described in ISO
26262 (picture taken from ISO 26262 Part 6 [11]).

example. Section IV presents En-Route guidelines for resource
usage testing of AD frameworks. En-Route is then evaluated
in Section V. Finally, Section VI provides some related work,
and Section VII concludes this paper.

II. BACKGROUND

In this section, we provide some background on the devel-
opment process of automotive systems as stipulated in ISO
26262 [11] safety standard, with emphasis on the software
part, as well as on Apollo AD framework [6], [27], [2].

A. Safety-Related Software Development Process

ISO 26262, the main functional safety standard for road
vehicles, provides guidance on how to develop automotive
safety-related electric and electronic systems. Following the
hazard and risk analysis, safety goals are identified as well
as safety requirements for the different software items. This
process is followed by decomposition of each software item
into atomic software and hardware units that need to be
implemented without further decomposition. This process also
propagates safety requirements to each item following spec-
ified decomposition rules. As a result, each item is attached
an Automotive Safety Integrity Level (ASIL), ranging from A
to D, where D is the most stringent safety level and A the
least. Alternatively, some components are not allocated any
safety requirement, thus being tagged as Quality Managed
(QM), meaning that safety regulations do not impose any
requirement on them. All safety-related items (those with some
ASIL) undergo a design, verification and validation process, as
dictated by ISO 26262, to obtain enough evidence that those
items meet their safety requirements to a sufficient extent.

In the case of software, the development process in ISO
26262, see Figure 1, consists of the requirements specification
(6-6), software architectural design (6-7), and unit design
and implementation (6-8) to reach the actual product. Then,
the verification and validation phase starts with software unit
testing (6-9), software integration testing (6-10), and software
safety requirements verification (6-11). As part of this process,

Fig. 2: System development process as described in ISO 26262
(picture elaborated from ISO 26262 Part 4 [11]).

and, in particular, during unit and integration testing, resource
usage testing may be performed to assess whether specific
software items at different granularities (software units and
integrated software) adhere to their requirements. However,
those tests may still be limited due to the low level of integra-
tion at that stage, and resource usage testing must generally be
repeated during the system verification and validation phase1.

System-wise, see Figure 2, after the specification and system
design, hardware and software product development occurs,
where software development is as shown in Figure 1. Software
and hardware items are then integrated to form a subsystem
and, as indicated before, some testing is performed. At this
stage, since the platform is closer to its final state, further
testing processes with higher confidence can be performed,
for instance, using hardware-in-the-loop environments where
a Simulink model feeds the subsystem and its outputs are
obtained with a host that validates them either real-time or
simply logs them for some offline processing.

The aim of the resource usage test process during integration
phases includes the following objectives:

1) Measuring minimum and maximum execution time,
where the latter is of particular relevance for real-time
systems.

2) Measuring memory requirements, in any type of storage
(e.g. Flash memories, DRAM, SRAM, ROM) for code,
(static) data, stack and heap.

3) Assess whether the task scheduling allows preserving
all safety timing constraints (i.e. all tasks finish by their
deadlines).

This information allows the integrator detecting unacceptable
resource usage, as well as identifying the particular software
component(s) causing excessive usage. For instance, the type
of output obtained from these tests may be summarized in

1ISO 26262 Part 6, devoted to product development at the software level,
already states that “some aspects of the resource usage test can only be
evaluated properly when the software integration tests are executed on the
target hardware or if the emulator for the target processor supports resource
usage tests”.
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Fig. 3: Example of output of resource usage tests. Memory occupancy is given in KBs.

tables such as that in Figure 3. In particular, for different
software items of a hypothetical combustion engine, Figure 3
shows the measured and budgeted (planned) CPU and memory
usage (DFLASH, PFLASH, and, RAM) in an Infineon AURIX
CPU.

B. Apollo AD Framework

Apollo [6] is an open software autonomous driving plat-
form released by Baidu. It offers its partners the opportunity
to develop their own AD systems through on-vehicle and
hardware platforms. Regarding its software implementation,
Apollo, similarly to most state-of-the-art AD systems, consists
of a set of modules [3], [19] (see Figure 4). Each of the
modules implements a crucial functionality of autonomous
vehicles. The main modules of Apollo are:

• Perception: identifies the area surrounding the au-
tonomous vehicle by detecting objects, obstacles, and,
traffic signs and it is considered as the most critical and
complex module of an AD system. Perception module
fuses the output of several types of sensors such as
LiDAR, radar, and camera to improve its accuracy.

• Localization: estimates where the autonomous vehicle is
located, using various information sources such as GPS,
LiDAR and IMU. State-of-the-art localization algorithms,
including the one in Apollo, are capable of localizing the
position of the vehicle at centimeter-level accuracy.

• Prediction: anticipates the future motion trajectories of
the perceived obstacles.

• Routing: tells the autonomous vehicle how to reach its
destination via a series of lanes or roads.

• Planning: plans the spatiotemporal trajectory for the
autonomous vehicle to take.

• Control: executes the planned spatiotemporal trajectory
by generating control commands such as accelerate,
brake, and steering.

• CanBus: is the interface that passes control commands to
the vehicle hardware. It also passes chassis information
to the software system.

• HD-Map: is similar to a library. Instead of publishing and
subscribing messages, it works as a query engine support,
which provides ad-hoc structured information regarding
the roads.

• HMI (Human Machine Interface, or DreamView in
Apollo): is a module for viewing the status of the vehicle,
testing other modules and controlling the functioning of
the vehicle in real-time.

• Monitor: is the surveillance system of all the modules
in the vehicle, including hardware.

• Guardian: is a safety module that performs the function
of an Action Center and intervenes should Monitor detect
a failure.

For the sake of facilitating the installation and dependencies
between numerous libraries, Apollo is provided inside several
Docker container images. A container is a standard software
unit that packages up code and all its dependencies so the
entire application can run in a quick and reliable way from one
computing environment to another. A Docker container image
is a lightweight, standalone, executable package of software
that includes everything needed to run an application: code,
runtime, system tools, system libraries and settings.

All modules in Apollo are implemented as ApolloApps,
whose execution follows the code in figure 5. As it can be
seen, Apollo uses three libraries for different purposes:
• The Google Logging Library (glog) [24], which im-

plements an application-level logging, and provides
logging APIs based on C++-style streams and vari-
ous helper macros. This library contains the function
google::InitGoogleLogging, which initializes it.

• The Google Commandline Flags (gflags) [23],
which implements a C++ command-line flag
processing. This library contains the function
google::ParseCommandLineFlags, which
looks for flags in argv and parses them.

• The Robot Operating System (ROS) [20] is a set of
software libraries and tools that help building robot
applications. Function ros::init is from ROS and it
is needed before calling any other roscpp (C++ imple-
mentation of ROS) functions in a node. Each ApolloApp
is a ROS node.

To sum up, one module starts with the initialization of
glog and ROS, and also loads the parameters from the argv
and parses them using gflags. These parameters are given to
the application through configuration files or as flags in the
command line. After that, the module calls the Spin function
before finishing its execution. This function initializes one or
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Fig. 4: Interaction between Apollo’s modules.

1 # d e f i n e APOLLO MAIN(APP)
2 i n t main ( i n t argc , char ∗∗ a rgv ) {
3 go og l e : : I n i t G o o g l e L o g g i n g ( a rgv [ 0 ] ) ;
4 go og l e : : ParseCommandLineFlags (& argc , &argv , t rue

) ;
5 s i g n a l ( SIGINT , a p o l l o : : common : :

a p o l l o a p p s i g i n t h a n d l e r ) ;
6 APP a p o l l o a p p ;
7 r o s : : i n i t ( a rgc , argv , a p o l l o a p p . Name ( ) ) ;
8 a p o l l o a p p . Sp in ( ) ;
9 re turn 0 ;

10 }

Fig. 5: Main function of an ApolloApp
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Fig. 7: DAG of the camera configuration.

more ROS spinners. Then, they call their spin functions,
which execute all the callback functions that are triggered
during the runtime, until the client shuts down the module.
A callback function is connected to a specific event, and it is
triggered when this event occurs. In terms of ROS, a function
can subscribe to an event (topic) and publish an event as well.

Perception module. The Perception module [5] is in charge
of the detection of the obstacles that surround the car. Its main
functionality is to transform data from sensors (images, point

clouds, etc.) into obstacles, thus knowing relevant information
about them, like their position, size, orientation, etc.

The global configuration of input sensors for the Perception
module can be represented as a direct acyclic graph (DAG).
With this, Apollo offers the possibility of building customized
configurations, according to the requirements and the available
hardware. These DAGs, along with other parameters of the
input sensors, are defined in a configuration file . Apollo
has implemented some of these configurations, which are
available in the source files. In this work, we consider the
DAG configurations shown in Figures 6 and 7, as they are the
ones that we could execute with the data (ROS bag2 files) that
Apollo provides.

In these DAGs, nodes correspond to different processes and
each of them is responsible for completing a specific task.
Arrows indicate data dependencies between nodes of each
DAG. For instance, in Figure 7, Fusion requires the output data
of Lane post-processing, Camera process, and Radar process.

Beyond Apollo. In this paper we study Apollo as a rep-
resentative and well-known AD framework. There are other
well-known AD systems such as Autoware [10] with similar
software architecture design, using ROS and Docker contain-
ers, thus facing similar challenges to the ones explored in
this paper. ROS is a popular operating system for autonomous
frameworks, and it is extensively used in Robotics and other
domains, due to the interfaces offered to integrate modules
either time-triggered or event-triggered, making code main-
tainability a key feature of ROS. However, such advantage
comes at the cost of using abundant pointers, indirections and
abstraction layers that lead to significant testing difficulties,
as discussed in the rest of the paper. In this paper, we focus
on Apollo without lack of generality, and our contributions
and findings can be naturally extended to other domains and
frameworks.

2A bag is a file format in ROS for storing ROS message data. They are
typically created by a tool like rosbag, which subscribe to one or more ROS
topics, and store the serialized message data in a file as it is received. These
bag files can also be played back in ROS to the same topics they were recorded
from, or even remapped to new topics.
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III. ROADBLOCKS FOR RESOURCE USAGE TESTING ON
AD SOFTWARE

Due to the stringent performance requirements of AD
platforms, high-performance hardware is deployed to execute
specific functionalities fast enough. For instance, input data
sensed through a camera, LiDAR or radar, need to be pro-
cessed at specific rates (e.g. 25 frames per second for camera-
based input data). Since heavy parallel computations need to
be performed at such high rates, hardware accelerators such
as GPUs are needed [16]. This is the case for Apollo in
general, and its Perception module in particular [5], whose
most heavy computations are offloaded onto a GPU. The use
of GPUs is the most common solution for massive computation
requirements of such workloads. Therefore, Apollo’s code
is executed across CPUs and GPUs. Next, we review the
difficulties experienced to perform resource usage tests in both
computing components for the Perception module of Apollo
as an illustrative example.

A. GPU Resource Usage Tests

We first identified two of the most suitable tools for profiling
Perception’s GPU code. Since it is intended to run on NVIDIA
GPUs, we use nvprof [18] and NVIDIA Visual Profiler which
uses nvprof for visualizing the profiled information.

When attempting to use nvprof to profile Perception, we
experienced three issues, as detailed next. Issue 1: no execu-
tion progress. The first and most challenging problem we have
faced with nvprof, which occurred not only for the Perception
module but for any Apollo module regardless of whether it
uses the GPU or not, is that execution of the module seemed
not to make progress at all, waiting in an infinite loop. Initially,
we suspected that Perception was running slowly with the
profiling tool rather than not making any progress, so we let
the Perception module run for 24 hours. However, we observed
no progress so we concluded that execution got simply stalled
and the problem was not causing, instead, slow progress.

We attempted to find where and why execution got stalled,
so we introduced printed messages in different parts of the
module, but none of them was printed. Not even the message
placed at the earliest possible execution point was printed. At
this point, although we lack the means to double-check this
hypothesis, we suspect that the problem relates to libraries
loaded along with Apollo whose source code is not available
and hence, cannot be inspected as we do for Apollo’s open-
source code.

As part of the debug process, we came out with some
conjectures on whether the source of the stall with nvprof was
the fact that CUDA calls occurred through multiple threads or
because those threads were launched by a Robotics Operating
System (ROS) [20] embedded in Apollo. For that purpose, we
developed two programs with those features and profiled them
with nvprof. The first program creates several threads so that
each of them launches and runs a CUDA kernel. The program
is run and tested inside the Docker container to verify that, by
using the container it does not affect the profiling process.

The second program, uses ROS with two nodes, a subscriber
and a publisher. The publisher publishes ROS messages and
whenever the subscriber receives a message, it creates several
threads to launch and execute CUDA kernels. This program is
designed to verify that the profiler is able to capture CUDA
kernels that are launched through threads within ROS nodes.
In both cases, profiling worked properly with no stall at all,

so we concluded that those code constructs are not per se the
source of Perception’s stall when profiled with nvprof.

Finally, we changed a number of profile options such
as profile-child-processes or profile-all-
processes without success. Only when we disabled the
option to profile the application from start (profile-from-
start off) execution progressed as expected. However, this
feature, as indicated by its name, disables profiling, so that,
in order to profile Perception, we have to identify the parts of
the code that we want to profile. This is, in general, unwanted,
since this increases the burden on the user side to identify what
parts of the code need being profiled instead of letting the
profile tool simply profile the whole module under analysis.

Issue 2: CUDA kernel identification. Related with the
previous issue, and given that we want to test the resource
usage performed by the GPU code, we need to identify those
code sections where CUDA kernels are launched. However,
this is a cumbersome task since Apollo builds upon a modified
version of Caffe [12], a framework intended to manage Artifi-
cial Neural Networks, which are the most computing intensive
element of Perception. Such framework makes extensive use
of the GPU. However, CUDA calls are performed through a
number of function calls that increase the difficulties to trace
what particular calls are used and where in the code.

Issue 3: Lack of support for memory usage testing.
The third issue relates to the lack of support to measure the
memory usage performed by the code executed in the GPU. In
particular, resource usage testing needs to determine not only
end-to-end resource requirements, but also the requirements
at finer granularities to help debugging and optimization
during the development process. Unfortunately, we have been
unable to identify any suitable tool that allows collecting this
information for GPU code in an easy manner.

B. CPU Resource Usage Tests

We must first identify the tools to use to test the CPU
parts of the Perception module (or any other part of any
AD framework). In general, AD frameworks use arbitrarily
complex programming constructs not suited for regular per-
formance tools for safety-related systems, which are suited
for highly-static program constructs, inline with the software
development requirements imposed by ISO 26262. However,
programming practices for Apollo differ noticeably from those
indicated by ISO 26262 and, instead, target different objectives
such as performance efficiency, modularity and maintainabil-
ity, which leads to the use of multiple threads, callbacks,
asynchronous processing and the like.

To test such a complex CPU code, we considered initially
the use of profiling tools such as Valgrind [29], Google Perfor-
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mance Tools (GPT) [25] or Perf (part of Linux), inherited from
the general-purpose computing domain where programming
constructs considered are less restrictive. In particular, our
inspection of Apollo software revealed that Apollo developers
have used GPT since, all the configuration hints needed for
using it to profile Apollo are already embedded in Apollo’s
source files. In fact, Apollo documentation already includes
detailed instructions to use GPT for profiling purposes [4].

We have profiled the execution of the Perception module of
Apollo with GPT and results turned out to be disappointing.
The Perception module runs several different nodes, depending
on the input sensors available. For instance, for one of the
input data sets provided along with Apollo, LiDAR and radar
sensors are used to feed Apollo, and so 5 different nodes
are used by Apollo (LiDAR, Radar, Fusion, Traffic Light
preprocess, and Traffic Light process shown in Figure 6),
which are managed by 5 different threads spawned automat-
ically by the Perception module itself. Those nodes are in
charge of performing the callback functions for each of those
functionalities of Perception.

When using GPT to profile Perception, we obtained the call
tree depicted in Figure 8, where the fraction of execution
time devoted to each of the functions is indicated along
with each function. The first observation is that, despite
all 5 Perception nodes are executed, the call tree obtained
only reflects functions corresponding to the Fusion node and,
despite all the other modules are also executed, GPT fails
to provide any profiling information. In fact, we verified that
the output of the execution was correct, matching the output
of the non-profiled execution, and the 5 nodes were correctly
spawned and executed as revealed by monitoring the execution
of the framework. Thus, the first conclusion reached is that
the complexity of Perception’s structure already exceeds the
capabilities of GPT. Moreover, even the call tree obtained does
not reflect all functions executed as part of the Fusion node.
In particular, as shown in the call tree, GPT reports that 95%
of the execution time is spent running the sleep function.
However, some functions processing large amounts of data
that must be executed, are not reported by GPT, thus meaning
that GPT even fails to profile properly a single Perception
node. Note that, in order to validate our conclusions, that were
primarily based on code inspection, we added print messages
in the code in functions not shown in the call tree, both inside
Fusion as well as in other nodes. The execution printed those
messages, thus confirming the conclusions reached by code
inspection on the fact that those functions were executed.
Therefore, GPT simply failed to provide correct information
in the call tree despite being the profiling tool recommended
by Apollo developers.

Overall, the presented problems challenge resource usage
testing in complex AD frameworks such as Apollo. In the
next section, we provide appropriate solutions to tackle these
problems.

IV. EN-ROUTE

We introduce En-Route, our set of guidelines to enable
resource usage tests for AD frameworks. Next, we introduce
En-Route guidelines for GPUs and then for CPUs.

A. En-Route for GPUs

En-Route addresses the issues identified in previous section,
namely execution progress, CUDA kernel identification, and
memory usage testing.

4.1.1 Execution progress
As explained before, we observed execution progress only

when we disabled the profile-from-start option of
nvprof (with value off). This, however, disables by default
any profiling, so we need to introduce calls to cudaPro-
filerStart and cudaProfilerStop (CUDA Profiler
API) in appropriate code locations to profile relevant code
sections (i.e. those using the GPU). We have used these calls
and assessed that they allow profiling specific sections of the
Perception module, obtaining execution time information for
all the CUDA kernels and API functions that the module calls
within the code region profiled. Figures 9 and 10 show an
example of how to use them.

Once profiling has been enabled, another issue appeared:
how to stop execution to collect profiling information. Apollo,
as any other AD framework, is intended to run continuously.
Its execution can be terminated correctly sending a SIGINT
signal. This signal triggers a function that stops all processes
correctly and finishes their execution. However, when running
Apollo profiled with nvprof, the SIGINT signal may be
received by nvprof instead of Apollo, thus terminating the
profiling process in a way that profiling information is not
collected rather than terminating Apollo itself. In order to solve
this problem, we came out with a solution that consists of the
following steps:
• Set the timeout option of nvprof. Note that AD frame-

works perform all their activities in a loop with specific
deadlines. Hence, this information can be used to set the
timeout to profile the appropriate number of iterations
of each functionality.

• Let Apollo run longer than the scheduled timeout be-
fore sending a SIGINT signal, which will therefore arrive
when nvprof has already finished. At this point, profiling
information collected by nvprof has been recorded cor-
rectly, thus providing information on execution time of
GPU-related code.

4.1.2. CUDA kernel identification
Identifying the code sections where profiling is needed,

and so where the CUDA Profiler API needs to be used, is
easy in simple programs. However, the Apollo framework
has a complex structure, thus challenging the identification
of the location of CUDA calls. Apollo builds upon Caffe
for its Artificial Neural Networks, and it turns out not to
be trivial identifying what particular functions of Caffe need
being profiled, which would require inspecting all functions
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Fig. 8: Call tree of the execution of the Perception module.

1 n v p r o f − t t i m e o u t −−p r o f i l e−from−s t a r t o f f . / foo
a r g s

Fig. 9: Bash command to perform the profiling in selected
sections.

1 # i n c l u d e <c u d a p r o f i l e r a p i . h>
2 . . .
3 void foo ( . . . ) {
4 . . .
5 c u d a P r o f i l e r S t a r t ( ) ;
6

7 / / S e c t i o n you want t o p r o f i l e
8

9 c u d a P r o f i l e r S t o p ( ) ;
10 . . .
11 }

Fig. 10: Example of C++ code that selects the section of code
to be profiled.

of all nodes of Perception (or Apollo if we aim at analyzing
the whole framework) to identify the Caffe functions to be
profiled.

To simplify this process, En-Route imposes the profiling of
all functions, thus relieving end users from having to track
what functions are used in practice. Since this task would be
tedious if applied manually, we have developed a Python script
that automates the insertion of the profiling calls, thus easing
the work of end users.

4.1.3. Memory Usage Testing
The last issue to solve for GPU code relates to the

difficulties to obtain information about the memory usage

of the CUDA calls. As explained before, no specific tool
provides this feature on its own. Thus, to obtain memory
usage information, En-Route builds upon the combination of
two tools: the GNU Project Debugger [8] (GDB) and the
NVIDIA System Management Interface [9] (nvidia-smi). In
particular, our solution requires user intervention to determine
the granularity at which memory usage must be assessed,
and introduce breakpoints with GDB at the corresponding
locations. Then, when running Perception and a breakpoint
is reached, we use nvidia-smi to query how much memory is
being used in the GPU, thus allowing to measure the amount
of memory required at each point of the execution, as well
as the amount of memory allocated between two consecutive
breakpoints.

B. En-Route for CPUs
Besides GPT, we have evaluated to what extent Callgrind

(a profiling tool from Valgrind) and Perf allow performing re-
source usage testing for the CPU code of Perception. Callgrind
simply did not work with Perception, so we discarded it. Perf,
although provided better results than GPT, failed to profile
Perception completely providing accurate measurements for
all functions. Overall, we found no tool providing appropriate
support yet. Thus, there is a business opportunity for software
vendors to develop appropriate tools for resource usage testing
of complex CPU code.

As part of En-Route, we had to rely on engineering work
together with the limited support of tools such as Perf to
build the call tree of Perception. Once this information was
obtained, it was obvious where to place timers systemati-
cally to collect execution times at any desired granularity.
Analogously, memory usage could be obtained using Massif
tool (part of Valgrind) [28]. In any case, CPU code has low
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Fig. 11: Execution time breakdown for both camera and
LiDAR configurations. TL stands for Traffic Light.

memory requirements since heavy processing and thus, large
sets of data collected from sensors, occur in the GPU in AD
frameworks.

Overall, En-Route provides guidelines to address all road-
blocks that impede otherwise performing resource usage test-
ing in AD frameworks. However, as discussed before, a
number of processes require some degree of user intervention
due to the lack of appropriate tools. Yet, those processes
which are not automated, are systematic in nature and tools
can be developed to perform them. Thus, while being a
disadvantage in the current state, the lack of automation of
those processes is an opportunity for software vendors to
develop and commercialize appropriate tools.

V. EVALUATION

This section applies En-Route guidelines to the Perception
module of Apollo. We provide execution time tests at node
granularity for the CPU. Then, we provide execution time
for GPU kernels. Finally, we provide results of the memory
requirements tests.

Measurements have been obtained on top of an NVIDIA
Jetson Xavier board intended for automotive systems [22].
It includes an 8-core CPU based on Carmel ARM V8 64-
bit architecture, and an NVIDIA GPU with 512 CUDA cores
based on the Volta architecture.

A. CPU Execution Time Usage Tests

We have collected execution times for the different nodes
in Figures 6 and 7. Note that node execution time in the CPU
also includes GPU execution times for those nodes using the
GPU. The relative execution time for each node is shown in
Figure 11, where each of the two input data setups (LiDAR and
camera configurations) is normalized w.r.t. its total execution
time. As shown, En-Route allows testing how much each
function or node contributes to the total execution time of
the module analyzed. In particular, we observe that Fusion
has a large contribution to the overall execution time for both
input data sets, whereas Radar has a low contribution instead.
We also note that there are three nodes in each case that take

8 8.2 8.4 8.6 8.8 9
Timeline (s)

Fusion

Radar

LiDAR

Traffic Light
Preprocessor

Traffic Light
Process

Fig. 12: Excerpt timeline of the execution of Perception with
the LiDAR and radar input data. The x-axis is shown in
seconds.

8 8.2 8.4 8.6 8.8 9
Timeline (s)

Fusion

Motion
Service

Radar

Camera

Lane Post-
processing

Fig. 13: Excerpt timeline of the execution of Perception with
camera and radar input data. The x-axis is shown in seconds.

almost 1
3 of the total execution time each: Fusion, Lane post-

processing and Camera for the camera input set, and Fusion,
Traffic Light process and LiDAR for the LiDAR input set.

In order to dig more into this behavior, we analyze the time-
lines for both input sets. Excerpts of those timelines, obtained
with the En-Route guidelines, are shown in Figures 12 and 13
for the 8-9 seconds time frame. Different color depth is used
to indicate different jobs of the same task (node).

As shown, the different nodes run concurrently on the CPU
and GPU of the NVIDIA Jetson Xavier platform. In particular,
the three nodes dominating the execution time for each input
set (see Figure 11) run almost continuously starting a new job
almost immediately after finishing the previous one. Instead,
two other nodes (Radar is one such node in both input sets) do
not run most of the time, having some significant time elapsed
between the end of one job and the start of the following
one. This information can be retrieved since En-Route allows
collecting start and end times for each node and function, thus
allowing to build both the timelines and the execution time
breakdowns.
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Time (%) Time Calls Avg Min Max Name
27.08 151.14ms 368 410.72µs 32.257µs 1.5219ms sgemm 32x32x32 NN vec
19.17 107.01ms 437 244.87µs 8.4160µs 1.1276ms void caffe::im2col gpu kernel
13.16 73.466ms 653 112.51µs 864ns 1.9801ms [CUDA memcpy HtoD]
9.99 55.766ms 115 484.92µs 242.70µs 1.2116ms [CUDA memcpy DtoH]
9.26 51.662ms 115 449.23µs 41.730µs 895.69µs void caffe::col2im gpu kernel
5.84 32.582ms 575 56.663µs 2.8160µs 245.80µs void gemmk1 kernel
4.63 25.854ms 552 46.836µs 2.0800µs 217.77µs void caffe::ReLUForward
4.14 23.112ms 115 200.97µs 63.395µs 354.90µs sgemm 128x128x8 TN vec
3.47 19.385ms 92 210.71µs 125.13µs 346.09µs maxwell sgemm 128x64 raggedMn nn splitK
1.56 8.7246ms 184 47.416µs 6.4320µs 124.04µs void caffe::Concat
0.95 5.2876ms 184 28.736µs 12.320µs 78.563µs void caffe::Slice
0.68 3.8039ms 69 55.129µs 24.929µs 114.66µs void caffe::SigmoidForward
0.05 299.37µs 23 13.016µs 12.640µs 13.985µs void caffe::mul kernel
0.02 103.38µs 157 658ns 370ns 1.3520µs [CUDA memset]

TABLE I: CUDA kernels executed by LiDAR process Sub-node.

B. GPU Execution Time Usage Tests

In order to illustrate the results of En-Route to test execution
times on the GPU, we report in Table I the execution time of
each CUDA kernel for the LiDAR process node. En-Route
provides kernel execution times for each individual CUDA
kernel of the node. This allows summarizing the data in the
way shown in the table, where we report for each CUDA
kernel the fraction of time devoted to that kernel w.r.t. the
total time devoted to all kernels, the absolute accumulated
execution time, the number of kernel calls, as well as the
average, minimum and maximum execution time for each
kernel. For instance, in the second row we find the results for
function sgemm_32x32x32_NN_vec, intended to perform
matrix multiplications. We see that this function takes 27.08%
of the overall execution time spent by the CUDA kernels on
the GPU, with a total of 368 calls, taking 411µs on average,
for a total of 151ms.

C. Memory Usage Tests

Finally, we show the type of results that En-Route provides
in terms of memory usage. We obtain memory usage per node
or per function, and also the memory requirements over time,
as depicted in Figure 14 (a) and (b) for the CPU for input data
with configurations using LiDAR and camera respectively. As
Figure 14 (a) shows, CPU memory usage grows up to 1.3 GB
in around 100 ms. Such memory usage remains quite constant
over time for the remaining 200 ms of execution, but also
after that point until the end of the execution. Similarly, as
Figure 14 (b) shows, CPU memory usage grows up to 300
MB in around 20 ms and remains constant for the rest of the
execution.

The main reason that the memory usages for the two
configurations are different is related to the design of the AD
software. For instance, both LiDAR and camera configurations
use neural networks with different architectures and, therefore,
have different memory usages.

In both cases, En-Route allows assessing how much memory
is used by each different node, thus facilitating the validation
process. For instance, we observe that CUDA support requires
around 100MB for both configurations (note the different scale
of the plots).

D. Summary

Overall, as shown, En-Route allows collecting detailed
information in terms of resource usage for complex AD
frameworks. We have shown that results allow assessing both,
total resource usage as well as resource usage over time, thus
enabling a wide variety of assessments for the verification and
validation of AD frameworks.

VI. RELATED WORK

Resource usage tests have been often regarded as an en-
gineering problem, being the main challenge how to create
stressful tests. Moreover, since those tests are neither needed
for the design of the system itself, nor for the validation
of the safety requirements, no explicit safety requirements
need to be fulfilled by those tests. Still, tool qualification
may be required in accordance with ISO 26262 part 8 [11],
since those tools are part of the development of safety-
related elements. However, the advent of AD frameworks with
software constructs far more complex than those used so far in
automotive systems, challenge current resource usage testing
practice, thus calling for new solutions. This paper tackles this
challenge by presenting En-Route, a set of guidelines able to
handle the complexity of AD frameworks to perform a wide
variety of resource usage tests.

Existing tools for AD frameworks, such as the NVIDIA
Visual Profiler and nvprof [18], pose a number of limitations
related to the dynamic behavior of AD frameworks and the
fact that they are intended to run continuously, thus never
ending the profiling process. Thus, appropriate utilization of
these tools is needed, as performed by En-Route.

Tools for CPU profiling, such as Valgrind, Google Perfor-
mance Tools (GPT) or Perf, pose also a number of limitations
to resource usage testing since they also clash with the
dynamic behavior of AD frameworks. Thus, new solutions are
needed matching the needs of AD frameworks.

The set of guidelines proposed in this paper, En-Route,
overcomes these limitations. While we identified that some
additional tool support for an enhanced automation of the
process would be convenient, the solutions provided in this
paper already enable resource usage testing for complex AD
frameworks, subject to the qualification of these tools (or
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Fig. 14: Memory usage over time for the provided bag files.

equivalent ones) to fully adhere to the requirements of a safety-
related development.

VII. CONCLUSIONS

Resource usage tests are a requirement for safety-related
automotive systems, as indicated in ISO 26262. The advent of
AD frameworks challenges current practice to perform those
tests due to the complexity of those software frameworks and
the hardware platforms that need to be used, which include
CPUs and GPUs.

In this paper, we present En-Route, a set of remedies and
guidelines to enable resource usage testing on complex AD
frameworks. We assess En-Route with the Apollo AD frame-
work, a popular commercial AD framework, illustrating the
main difficulties to use existing tools and how those difficulties
can be defeated, leading to a wide variety of results for execu-
tion time and memory requirements. In particular, those results
allow breaking down resource usage across functions and
assessing usage over time, thus facilitating the duties of system
integrators to validate that resource usage is within expected
bounds. While En-Route is applied on Apollo, findings of this
applied research work can be naturally extended to other AD
frameworks (e.g. Autoware) or analogous frameworks in other
domains (e.g. in the robotics domain).
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