
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RTOS for mixed criticality applications deployed on NoC-based COTS MPSoC / Esposito, Stefano; Avramenko, Serhiy;
Violante, Massimo. - ELETTRONICO. - (2018), pp. 1-6. ((Intervento presentato al convegno Test Symposium (LATS),
2018 IEEE 19th Latin-American tenutosi a Sao Paulo, Brasile [10.1109/LATW.2018.8347239].

Original

RTOS for mixed criticality applications deployed on NoC-based COTS MPSoC

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LATW.2018.8347239

Terms of use:
openAccess

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2706772 since: 2018-05-08T16:27:23Z

IEEE



978-1-5386-1472-3/18/$31.00 ©2018 IEEE 

RTOS for Mixed Criticality applications deployed on 

NoC-based COTS MPSoC 
 

Stefano Esposito, Serhiy Avramenko, Massimo Violante 

DAUIN 

Politecnico di Torino 

Torino, Italy 

{stefano.esposito, serhiy.avramenko, massimo.violante}@polito.it 

 
Abstract—Network-on-chip-based multi-processor systems-

on-chip are clearly the trend for next generation embedded 

applications. In order to enable use of such systems in a mixed-

criticality context such as an avionic application, spatial and 

temporal partitioning should be provided between safety-critical 

tasks and non-safety-critical tasks. The contribution of this work 

is to propose a software-only partitioning scheme that exploits the 

routing algorithm used by the network-on-chip. The proposed 

approach implements the partitioning on traffic route level, 

overcoming the concept of strict segregation between critical and 

non-critical domains. As a further contribution this paper 

describes a software module we developed to implement the 

proposed partitioning scheme, thus enabling the use of 

commercial-off-the-shelf components in a safety critical context. 

The proposed module is intended to be added to a real-time 

operating system, to satisfy portability and certification 

requirements. 

Keywords—network-on-chip, mixed criticality, commercial-off-

the-shelf, real-time operating system 

I.  INTRODUCTION 

The new performance requirements of mission and safety 
critical system demand use of new architectures to be fulfilled. 
Even though technologies able to satisfy such performance 
requirements do exist on the market, there are other 
requirements that make their use still not widespread in some 
industries. In particular, the requirement of a high reliability is 
imperative for industries involved in development of safety-
critical applications, like aerospace, automotive, railways and 
signaling, etc. Applications like the European Space Agency’s 
global astrometric interferometer for astrophysics (GAIA) 
mission [1] could have benefitted from the amount of computing 
power available in multi- and many-core architectures. These 
architectures, could allow to integrate functionalities now 
deployed on several computing units into a single computer, 
provided that there are architectures able to withstand the 
harshness of the space environment. 

Electronics systems used on board aircrafts – commonly 
referred to as avionics – are another example of the complexity 
and performance required to modern embedded systems. The 
most used design pattern for avionic systems is the federated 
architecture [2]. In this design pattern, each functionality or 
tightly coupled set of functionalities is deployed on a single on-
board equipment (OBE) – i.e., a computer – isolated from all 

other OBEs, as far as memory and input/output are concerned. 
However, the federated architecture reached its limit with the 
increase in functionalities required of modern avionics system, 
hitting a wall in terms of space, weight, and power (SWaP) 
consumption. The integrated modular avionic (IMA) 
architecture [3] and the ARINC-653 application programming 
interface (API) standard [4] were developed to overcome such 
limitations, allowing sharing of OBEs among different set of 
functionalities in a time-division multiplexing (TDM) fashion. 
Use of multi- or many-core systems could help further increase 
the resource sharing among different applications, thus reducing 
SWaP. The lack of an established certifiable architecture forces 
the deployment of IMA-based systems on single-core 
processors, or forces designers to use multi-core processors as 
single-core processors [5][6]. 

This paper is focused on the current trend in multi-processor 
system-on-chip (MPSoC) architectures, which are relying more 
and more on a network-on-chip (NoC) interconnect to integrate 
increasing numbers of processing cores and peripherals on the 
same chip. The NoC interconnect was born to overcome 
limitations of traditional interconnects, like bus and crossbars 
[7]. Although NoC interconnects have a higher scalability than 
traditional interconnect, they introduce a further level of 
arbitration in the system architecture, thus increasing complexity 
in the analysis of such systems. Industries that must certify their 
products adherence to rigorous standards like those described in 
[8][9][10], have been so far unable to fully exploit the potential 
of NoC-based systems.  

In this paper, we propose a method to consolidate mixed-
criticality applications (MCAs) on commercial-off-the-shelf 
(COTS) NoC-based MPSoCs. This method is purely software 
and relies on the integration of a dedicated module in a real-time 
operating system (RTOS), which should be certified once and 
could be then reused for new products. The module is in charge 
of enforcing a spatial and temporal partitioning scheme that is 
conceptually derived from [11] and [12], although it has been 
adapted to the different underlying architecture. 

This paper is organized as follows. Section II presents a brief 
survey of the literature on mixed-criticality applications on both 
bus-based and NoC-based MPSoCs; Section III describes the 
proposed spatial and temporal partitioning approach, and its 
implementation in a software module to be integrated in a 
RTOS; Section IV presents experimental evaluation of the 



 

proposed module; Section V draws some conclusions and 
outlines future works. 

II. MIXED-CRITICALITY APPLICATIONS ON MPSOCS 

This section offers a brief survey of solutions for MCAs on 
bus-based COTS MPSoCs [13][14] and we identify what is 
likely to be the solutions for the NoC-based COTS MPSoC.  

A. Spatial and temporal partitioning 

An important concept for MCAs is the partitioning, defined 
as “appropriate hardware and software mechanisms to restore 
strong fault containment” [15]; in the literature, there are two 
types of partitioning: 

1. Spatial partitioning is the separation of resources 
among different applications. It can be enforced through 
software [16][17]. 

2. Temporal partitioning must ensure that there is no effect 
on the execution time of a task when other tasks are 
running on the same MPSoC; however, applications 
deployed on MPSoCs must share core resources, like 
the interconnect. A precise analysis of the effect of 
interferences in such a system would require knowing 
details about the microarchitecture of the MPSoCs 
which are often not shared by the manufacturers. 

B. Temporal-partitioning-specific solutions 

Several works have been proposed on the topic of temporal 
partitioning [13]. The first class of solutions, time multiplexing 
solutions, use static scheduling to avoid interference among 
tasks [18][19]. This is implemented by partitioning applications 
in local phases – during which a core runs code using just local 
data – and memory access phases – during which the application 
commits produced data and reads data for the next computation 
phase. Other approaches may add stricter requirements to the 
local phase, like forbidding interrupt service routines (ISRs) 
execution [20]. However, all time multiplexing approaches 
introduce long idle times, lowering the overall utilization.  

The second class of solutions, bounded interference 
solutions, are focused on a more precise worst-case execution 
time (WCET) analysis in the case of a multi-core system. The 
interference sensitive WCET (isWCET) [21][22], considers the 
number of cores that are accessing a shared resource at the same 
time to evaluate the access latency to be considered in the WCET 
estimation. The use of performance counter can also introduce 
fault tolerance based on on-line detection and recovery [23]. 

C. System scheduling, partitioning and other solutions 

Besides partitioning, another key aspect of mixed-criticality 
systems is the system scheduling. The problem was first 
formulated in [24], which also introduced a first solution. The 
solution was proposed for single-core systems and was later 
extended for multi-core systems [25][26][27]. More recently, 
the focus moved from bus-based multi-core systems to NoC-
based many-cores. The scheduling problem, in this context, 
moved from tasks to flows as in [28][29][30][31]. Partitioning 
schemes were also proposed for NoC-based systems, by 
extending network interfaces by adding a dedicated channel for 

high-criticality traffic, to implement a time-triggered scheme of 
communication [32]. This solution grants a bounded latency on 
high-criticality traffic by using a contention-free channel. The 
rest of the traffic is scheduled to happen without interfering with 
the high-criticality traffic. Different solutions are based on the 
concept of quality-of-service (QoS) [33][34], or use hardware-
enforced segregation between a safety-critical domain and a 
non-safety-critical domain [35]. 

D. Future of mixed criticality on NoC-based COTS MPSoCs 

Although there are many solutions proposed, most rely on a 
special hardware or NoC architecture to be implemented. 
However, it is likely that, as it was for bus-based COTS 
MPSoCs, also NoC-based COTS MPSoCs will be optimized for 
the average, generic workload use-case which is far from the 
requirements of safety-critical applications. In bus-based 
MPSoC, a set of solutions to work around the non-determinism 
of their behavior had to be developed; predicting that the same 
kind of solutions will be in the end needed for NoC-based COTS 
MPSoCs, this paper proposes a first step towards a complete 
solution. 

III. PROPOSED SOLUTION 

The proposed solution solves the temporal and spatial 
partitioning, as described in Section II, resorting to software 
means only – without any dedicated hardware support needed. 
This section will describe the proposed partitioning approach 
and the underlying NoC model characteristics required for the 
application of such approach. The software module we 
developed to implement the proposed approach is then described 
in detail. 

A. Proposed partitioning scheme 

In order to explain the proposed approach and its 
implementation, we consider a simple NoC, featuring a single 
physical network. Nodes are addressed through a dedicated 
memory map. Each node has its own memory map, including 
both local and remote resources. Local resources are accessed as 
usual through the local bus, whereas remote resources are 
forwarded on the NoC through the local network interface (NI). 
The NI is a peripheral on the local bus. It receives requests from 
the local processing element (PE) according to the protocol 
defined on the local bus. The PE can then wait for a response 
(bus-transaction (BT) model) or it can continue its 
computations, pending an interrupt that signals that requested 
data is available at a predefined location on a local memory 
(direct memory access (DMA) model). The NI performs the 
following tasks: 

1. Receives requests from the local PE to remote 
resources, transforms them in NoC packets, and injects 
packets inside the NoC. 

2. Receives responses from remote resources and sends 
them to the local PE according to the BT model or to the 
DMA model. 

3. Receives requests from remote nodes and forwards 
them on the local bus to the local PE. The local PE 



 

should respond to such requests according to the BT 
model or to the DMA model. 

The NI has a look-up table to translate each global resource’s 
address from the local memory map to a set of coordinates that 
identify the position of that resource on the NoC.  

The PE in this NoC model is either a passive slave or a 
processor running software which includes the module that 
implements the proposed approach. The proposed module acts 
as a driver for the NoC interconnect, supervising and eventually 
filtering software requests for the NI.  

The partitioning scheme we propose consists in segregating 
the non-critical traffic outside the critical traffic paths. This 
approach overcomes the classic strict domain segregation 
scheme as it allows a node to be simultaneously traversed by 
both critical and non-critical traffic. The proposed scheme relies 
on the system design to be done  so that non-critical traffic paths 
are constrained to never overlap any critical traffic path. To 
enforce the segregation of the non-critical traffic, the proposed 
approach consists in locally filtering all the non-critical traffic 
that would violate the no-overlap constraint – due to a software 
fault (bug) active in one or more non-critical applications. The 
critical traffic is not filtered because the design of critical 
applications is supposed to grant absence of bugs [10]. In detail, 
the idea behind the proposed approach is to exploit the 
knowledge of a deterministic routing algorithm used by the 
NoC; since deterministic routing algorithms assure that the path 
of a packet is completely specified by coordinates of source and 
target node pairs. Considering a NoC consisting of a single 
physical network (which is the simplest architecture possible), 
the following requirements must be satisfied: 

1. the NoC should use a deterministic routing algorithm; 

2. the routing algorithm should be known; 

3. the topology of the NoC should be known. 

4. the topology of the NoC should grant existence of at 
least one non-critical traffic route which does not 
overlap any critical traffic route; i.e., it has to exist a 
traffic route for the non-critical traffic which does not 
“physically overlap” any critical traffic route. 

It is worth to notice that the proposed approach is not limited 
neither to XY routing, nor to mesh topology, nor to 2D topology. 
Instead it can be applied to any deterministic routing algorithm 
and any topology, as far as requirements listed above are 
satisfied.   

B. Proposed Software Module 

The proposed partitioning scheme has been implemented as 
a software module to be added to a real-time operating system 
(RTOS) running on a NoC-based MPSoC. Knowing both the 
routing algorithm and the topology of the network, the designer 
can configure the proposed software module to implement the 
proposed filtering approach. The proposed module oversees and 
manages communications that a given non-critical node intends 
to inject in the NoC. In particular, its main goal is to filter all the 
traffic flows starting from a non-critical node which would 
overlap with any path used by critical traffic. The former 
condition is detected by only considering the destination of a 

packet. The module is not present on the critical nodes thus it 
does not deteriorate their responsiveness. As the proposed 
module runs locally and it does not need any synchronization 
with other modules on the NoC, therefore it does not add any 
communication overhead. The critical region is the union of the 
paths traversed by the traffic generated by critical nodes, and it 
is routing algorithm dependent. In Fig. 1 there is an example of 
definition of a critical region in a 2D 4x4 mesh topology using 
an XY routing. As already described in the previous subsection, 
the proposed approach does not restricts a non-critical node 
located inside the critical region to produce non-critical traffic, 
thus overcoming the strict partitioning between critical and non-
critical regions. The proposed module should be integrated in a 
certified RTOS, to be reusable in several applications without 
submitting it to a new certification process in each new 
application. To be certifiable, it should be developed according 
to recommendations contained in [10]. The level of assurance 
should be selected according to the nature of the application, 
however, to be as general as possible, the module should be 
certified at the maximum level (DAL-A). Considering the effort 
for certification of a DAL-A module and the need for a low 
performance overhead, the implemented algorithm should be as 
simple as possible.  

 

Fig. 1. 4x4 mesh topology with two critical nodes and the critical 

traffic paths (gray shade) defined by the XY routing path. 

Algorithm 1 describes the core behavior of the proposed 
module. It implements the main functionality of traffic filtering 
according to a configured destinations map. The destination map 
is computed off-line according to the routing algorithm, the 
topology and the position of critical nodes. The rules to be 
considered when defining the destination map are: 

1. Any traffic initiated by a critical node is critical traffic.  

2. Any node which is destination of critical traffic is a 
critical node. 

3. Nodes in a critical region can forward non-critical traffic 
if and only if it does not interfere with critical traffic, i.e. 
it does not use the same resources as critical traffic. 

4. Non-critical nodes within the critical region can only 
communicate with nodes that are reachable through a 



 

path that does not interfere with the critical traffic, as 
described in rule 3. 

Algorithm 1. Traffic filter 

Input: dst_addr, payload; 
Data: dst_map 
 
if dst_map[dst_addr] == OK_TRANS then 
 forward packet to NI 
else 
 drop packet and return error code 
end if; 

Applying these rules to the node 1 of the NoC configuration 
in Fig. 1, yields the destination map in TABLE I. It can be 
observed that the node 1 can only communicate with three other 
nodes, due to limitations imposed by its position within the 
critical region and the XY routing. This problem can be solved 
by adding a redirection functionality besides the traffic filter 
described in Algorithm 1. This redirection functionality should 
act after the traffic filter, and should use a second field in the 
destination map, as showed in reported destination maps. Such 
field is used as described in Algorithm 2 which extends 
Algorithm 1. 

Algorithm 2. Traffic filter with redirection 

Input: dst_addr, payload; 
Data: dst_map 
 
if dst_map[dst_addr].OK_TRANS then 
 forward packet to NI 
else 
 if dst_map[dst_addr].RDR > -1 then 
  generate redirection packet 
  forward packet to NI 
 end if; 
end if; 

The redirection packet is a special packet to be forwarded to 
the node indicated in the destination map. The information on 
the original destination is contained in the payload of the 
redirection packet. When a node receives a packet, the software 
running on the node should check if the received packet is a 
redirection packet and forward it to the actual destination as 
described in Algorithm 3. Redirection is an optional feature 
which is only useful to improve reachability in a NoC. Using 
redirection has no impact on critical traffic, but greatly increases 
performance of non-critical nodes, allowing integration of 
additional applications. 

IV. EXPERIMENTAL EVALUATION 

Experimental evaluation has been performed using a 
simulation environment considering NoC model using logic-
based distributed routing (LBDR) [36] architecture. The 
considered NoC model is derived from the baseline NoC 
presented in [37] and has 2D mesh topology, based on one 
physical network (no virtual network is present). This is a good 
model for the purpose at hand, although real-life NoCs in COTS 
systems are more complex and uses different routing 
approaches. The LDBR router is configured to implement an XY 
routing algorithm, which is a fairly common, deadlock-free 
routing algorithm.  

TABLE I.  DESTINATION MAP FOR NODE 1 

DESTINATION OK TO TRANSMIT REDIRECTION 

0 FALSE -1 

2 FALSE 5 

3 FALSE -1 

4 FALSE 5 

5 TRUE - 

6 FALSE 5 

7 FALSE 5 

8 FALSE 9 

9 TRUE - 

10 FALSE 5 

11 FALSE 9 

12 FALSE -1 

13 TRUE - 

14 FALSE 5 

15 FALSE -1 

Algorithm 3. Redirection packet check 

Input: packet 
 
if packet.redirection then 
 traffic_filter(packet.actual_dst, 
packet.actual_payload) 
else 
 forward to application software 
end if 

The experiments have been done considering the scenario 
described in Fig. 1. For simplicity sake, two critical nodes are 
considered. There are no shared resources between the critical 
and non-critical nodes, i.e. a critical node cannot be destination 
of non-critical traffic. Destinations of non-critical traffic were 
been selected at random. Experiments were performed 
considering several packet injection rates (PIRs), defined as the 
number of packets injected in the NoC at each clock cycle by 
any given node. For each considered PIR, 10,000 packets were 
injected by each node in the NoC. 

The baseline scenario was first considered, i.e., the scenario 
described in Fig. 1 was simulated without the proposed 
partitioned scheme. In this scenario we also programmed the 
non-critical nodes to generate traffic overlapping critical traffic, 
simulating non-critical nodes affected by a bug. The 
experimental results, presented in TABLE II. exhibits the 
uncertainty in the communication latency among the two critical 
nodes (0 and 15), as the non-critical traffic introduces congestion 
on the critical traffic path.  

Once implemented, the proposed software creates a reserved 
channel as shown in Fig. 1. This reserved channel has the effect 
to cancel any variance in the communication between the critical 
nodes, as shown by an additional experimental campaign, so the 
latency is always 305 ns. Besides cancelling the latency 
variance, thus allowing an easy and provable WCET estimation 
for the critical applications, the proposed approach, without the 
redirection module, has the side effect of significantly reduce the 
overall reachability. Here the reachability of a node 𝑖 is defined 
as the number of nodes to which the 𝑖 node is able to send a 
packet. This metric must not be confused with the connectivity, 
which is usually defined as number of nodes to which a given 
node is physically connected. In the reachability computation, 
critical nodes are not considered: by design they should only 
communicate with each other, since – by definition – any traffic 



 

initiated by a critical node is critical, thus this communication 
would require definition of a new critical region. 

TABLE II.  CRITICAL TRAFFIC LATENCY (NS):  BASELINE SETUP 

 

Reachability figures, without redirection module being 
implemented, are reported in TABLE III. The redirection 
extension is implemented with the purpose of incrementing the 
reachability for non-critical nodes, in order to have a more 
usable system while keeping warranties on the ability of the 
network of sustaining a critical traffic with deterministic latency. 
Implementation of the redirection feature, allows to obtain an 
almost perfect reachability, rising the average reachability to 
10.3. It is worth to notice that with the redirection almost all non-
critical nodes can reach all other non-critical nodes, while the 
reachability remains 0 for all the nodes that are only connected 
to nodes within the critical region. Such nodes cannot 
communicate with no other node and represent the cost of the 
proposed partitioning scheme. Considering the configuration of 
Fig. 1, such nodes are node 3 and node 12. The cost of this 
reachability improvement is some additional communication 
latency for non-critical nodes, due to the intervention of the 
software module during transmission. 

A further use case is presented in Fig. 2. This configuration, 
features two separated non-critical regions. However, the 
proposed approach allows the two regions to communicate with 
each other (even without redirection) as it does not imply strict 
critical and non-critical domain partitioning. Without the 
redirection module, the average reachability in this 
configuration would be of 6.4, which is higher with respect to 
the scenario of Fig. 1, since the critical region is smaller and only 
the node 12 is unreachable. Using the redirection module, the 
reachability increase up to 12.1. 

As it can be observed from the two considered scenarios, the 
position of the critical nodes has a huge impact on the non-
critical nodes’ metrics in term of reachability, and in particular 
the number of those nodes that are not able to communicate 
through the NoC. This suggests that a practical limitation of the 
proposed solution is the size critical region: a large critical 
region entails a large number of non-critical nodes unable to use 
the NoC. In practice this means either that the number of critical 
nodes must be much lower with respect to the number of non-
critical nodes, or that the critical nodes should be mapped to 
reduce the size of the critical region. 

V. CONCLUSIONS 

This paper describes the use of software means to obtain a 
NoC configuration able to sustain an MCA. The main 
requirement in such applications is to provide temporal and 
special partitioning. As the critical applications have to fulfill the 
RT requirements, reducing or cancelling the uncertainty in 
communication latency for traffic belonging to a critical 
application is also a requirement for MCAs. In the scope of this 

paper we considered the case of an avionic application, with the 
relevant standard being the RTCA DO-178C [10] and 
recommendations contained in [5][6] and similar documents. 

TABLE III.  REACHABILITY FOR NON-CRITICAL NODES: NO REDIRECTION 

NODE ID REACHABLE NODES REACHABILITY 

1 5, 9, 13 3 

2 6, 10, 14 3 

3 - 0 

4 1, 2, 5, 6, 7, 9, 10, 13, 14 9 

5 1, 2, 4, 6, 7, 9, 10, 13, 14 9 

6 1, 2, 4, 5, 7, 9, 10, 13, 14 9 

7 1, 2, 4, 5, 6, 9, 10, 13, 14 9 

8 1, 2, 5, 6, 9, 10, 11, 13, 14 9 

9 1, 2, 5, 6, 8, 10, 11, 13, 14 9 

10 1, 2, 5, 6, 8, 9, 11, 13, 14 9 

11 1, 2, 5, 6, 8, 9, 10, 13, 14 9 

12 - 0 

13 1, 5, 9 3 

14 2, 6, 10 3 

AVERAGE N/A 6 

 

Fig. 2. 4x4 mesh NoC topology with critical nodes in 0 and 14. 

The proposed partitioning scheme, based on deterministic 
routing, has been implemented as software module. The 
proposed module is considered to be part of an RTOS in order 
to optimize the certification effort. Being a module of an RTOS 
means that the module should be certified only once together 
with the containing RTOS and it could then be used in certifiable 
applications without any additional certification effort. The 
proposed module implements two functionalities: 

1. traffic filter, to enforce an isolated critical route in 
which only traffic belonging to critical applications can 
flow; 

2. redirection, to allow a non-critical node to reach more 
nodes, solving the limitations introduced by the traffic 
filter functionality. This can be considered as an 
optional functionality, providing a higher usability of 
the NoC. 

PIR MAX MEAN STD.DEV. 

0.02 815  334.8 55.6 

0.01 665  315.1 30.4 

0.007 655  311.6 24.4 



 

It is conceivable that COTS systems would not be optimized 
for the MCA use-case, similarly to the case of bus-based COTS 
multi-core systems. Use of the proposed software module 
enables use of such systems in the MCA scenario. Experimental 
results show that the latency determinism is granted thanks to 
the traffic filter module, and that the redirection module does not 
introduce any overhead for the critical application, while 
granting a better usability of the NoC-based system. 

The technical limitations of the proposed approach are 
described in detail in Section III (e.g., the routing algorithm used 
by the NoC to be both deterministic and known). The practical 
limitation to be specifically addressed in future work, is the high 
number of non-critical nodes to be arbitrarily mapped, as briefly 
addressed in Section IV. 

REFERENCES 

[1] S. Provost, M. Le Roy, B. Mamdy, G. Flandin, and T. Paulsen, “GAIA 
video processing embedded algorithms: Prototyping and validation 
activities,” Eur. Sp. Agency, (Special Publ. ESA SP, no. SP-638, 2007. 

[2] C. B. Watkins and R. Walter, “Transitioning from federated avionics 
architectures to Integrated Modular Avionics,” AIAA/IEEE Digit. Avion. 
Syst. Conf. - Proc., pp. 1–10 

[3] P. J. Prisaznuk, “Integrated modular avionics,” Aerosp. Electron. Conf. 
1992. NAECON 1992., Proc. IEEE 1992 Natl., pp. 39–45 vol.1, 1992. 

[4] P. J. Prisaznuk, “Arinc 653 role in Integrated Modular avionics (IMA),” 
in AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 2008. 

[5] X. Jean, M. Gatti, G. Berthon, and M. Fumey, “MULCORS - Use of 
Multicore Processors in airborne systems,” 2012. 

[6] Position Paper CAST-32, Multi-core Processors, 2014. 

[7] W. J. Dally and B. Towles, “Route packets, not wires: on-chip 
interconnection networks,” in Proceedings of the 38th Design Automation 
Conference, 2001, pp. 684–689 

[8] Functional safety of electrical/electronic/programmable electronic safety-
related systems, IEC-61508 Edition 2.0, 
http://www.iec.ch/functionalsafety/standards/page2.htm 

[9] RTCA Inc., “DO-254 Design Assurance Guidance for Airborne 
Electronic Hardware”, Issue date 4/19/2000. 

[10] RTCA Inc., “DO-178c Software Considerations in Airborne Systems and 
Equipment Certification”, Issue date 12/13/2011. 

[11] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. 
Binello, and M. Terrone, “An Hybrid Architecture for Consolidating 
Mixed Criticality Applications on Multicore Systems,” in 2015 IEEE 21st 
International On-Line Testing Symposium, 2015, pp. 26–29 

[12] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone, “A 
novel method for online detection of faults affecting execution-time in 
multicore-based systems,” ACM Trans. Embed. Comput. Syst., vol. 16, 
no. 4, pp. 1–19 

[13] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and J. 
Nowotsch, “Mixed-criticality embedded systems-A balance ensuring 
partitioning and performance,” Proc. - 18th Euromicro Conf. Digit. Syst. 
Des. DSD 2015, pp. 453–461 

[14] A. Burns and R. I. Davis, Mixed Criticality Systems - A Review, 7th 
edition. Univerisy of York, 2016. 

[15] J. Rushby, “Partitioning in Avionics Architectures: Requirements, 
Mechanisms, and Assurance,” NASA Langley Research Center, NASA 
CR-1999-209347 

[16] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. 
Binello, and M. Terrone, “An Hybrid Architecture for Consolidating 
Mixed Criticality Applications on Multicore Systems,” in 2015 IEEE 21st 
International On-Line Testing Symposium, 2015, pp. 26–29 

[17] S. Esposito and M. Violante, “On the Consolidation of Mixed Criticalities 
Applications on Multicore Architectures,” J. Electron. Test. Theory Appl., 
2017, vol. 33, no. 65, pp. 65–76 

[18] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing predictability on 
multi-processor systems with shared resources,” Embed. Syst. Week-
Workshop Reconciling Perform. with Predict., 2009, p. 89 

[19] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execution 
model on COTS hardware,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7179 LNCS, pp. 
98–110 

[20] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. 
Kegley, “A predictable execution model for COTS-based embedded 
systems,” Real-Time Technol. Appl. - Proc., pp. 269–279 

[21] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and M. 
Schmidt, “Multi-core interference-sensitive WCET analysis leveraging 
runtime resource capacity enforcement,” Proc. - Euromicro Conf. Real-
Time Syst., pp. 109–118 

[22] J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht, 
“Monitoring and WCET analysis in COTS multi-core-SoC-based mixed-
criticality systems,” Des. Autom. Test Eur. Conf. Exhib. (DATE), 2014, 
pp. 1–5 

[23] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone, “A 
novel method for online detection of faults affecting execution-time in 
multicore-based systems,” ACM Trans. Embed. Comput. Syst., 2017, vol. 
16, no. 4, pp. 1–19 

[24] S. Vestal, “Preemptive scheduling of multi-criticality systems with 
varying degrees of execution time assurance,” Proc. - Real-Time Syst. 
Symp., pp. 239–243 

[25] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-
system support for mixed criticality,” in Workshop on Mixed Criticality: 
Roadmap to Evolving UAV Certification, 2009. 

[26] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of 
mixed-criticality applications on resource-sharing multicore systems,” 
2013 Proc. Int. Conf. Embed. Software, EMSOFT 2013 

[27] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Mapping 
mixed-criticality applications on multi-core architectures,” Des. Autom. 
Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–6 

[28] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending Real-Time Analysis for 
Wormhole NoCs,” IEEE Trans. Comput., vol. 66, no. 9, pp. 1532–1546 

[29] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC protocol for 
mixed criticality systems,” in 2014 IEEE Real-Time Systems Symposium, 
2014, pp. 184–195 

[30] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and Worst-Case 
Latency Improvements in Mixed-Criticality Wormhole Networks-on-
Chip,” in Euromicro Conference on Real-Time Systems, 2015, pp. 47–56 

[31] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de 
Dinechin, “Mixed-criticality scheduling on cluster-based manycores with 
shared communication and storage resources,” Real-Time Syst., vol. 52, 
no. 4, pp. 399–449 

[32] H. Ahmadian and R. Obermaisser, “Time-triggered extension layer for 
on-chip network interfaces in mixed-criticality systems,” Proc. - 18th 
Euromicro Conf. Digit. Syst. Des. DSD 2015, pp. 693–699 

[33] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal Network on 
Chip:Concepts, Architectures, and Implementations,” IEEE Des. Test 
Comput., vol. 22, no. 5, pp. 414–421. 

[34] T. Marescaux and H. Corporaal, “Introducing the SuperGT network-on-
chip,” in Design Automation Conference, 2007, pp. 116–121. 

[35] T. Hollstein, S. P. Azad, T. Kogge, and B. Niazmand, “Mixed-criticality 
NoC partitioning based on the NoCDepend dependability technique,” in 
10th International Symposium on Reconfigurable and Communication-
centric Systems-on-Chip, ReCoSoC 2015. 

[36] J. Flich and J. Duarte, “Logic-Based Distributed Routing for NoCs,” IEEE 
Comput. Archit. Lett., vol. 7, no. 1, pp. 13–16. 

[37] S. P. Azad, B. Niazmand, K. Janson, N. George, and A. S. Oyeniran, 
“From Online Fault Detection to Fault Management in Network-on-
Chips : A Ground-Up Approach,” in Design and Diagnostics of 
Electronic Circuits & Systems (DDECS), 2017 IEEE 20th International 
Symposium on 

 

 

http://www.iec.ch/functionalsafety/standards/page2.htm

