628 research outputs found

    Learning models of plant behavior for anomaly detection and condition monitoring

    Get PDF
    Providing engineers and asset managers with a too] which can diagnose faults within transformers can greatly assist decision making on such issues as maintenance, performance and safety. However, the onus has always been on personnel to accurately decide how serious a problem is and how urgently maintenance is required. In dealing with the large volumes of data involved, it is possible that faults may not be noticed until serious damage has occurred. This paper proposes the integration of a newly developed anomaly detection technique with an existing diagnosis system. By learning a Hidden Markov Model of healthy transformer behavior, unexpected operation, such as when a fault develops, can be flagged for attention. Faults can then be diagnosed using the existing system and maintenance scheduled as required, all at a much earlier stage than would previously have been possible

    Exploiting multi-agent system technology within an autonomous regional active network management system

    Get PDF
    This paper describes the proposed application of multi-agent system (MAS) technology within AuRA-NMS, an autonomous regional network management system currently being developed in the UK through a partnership between several UK universities, distribution network operators (DNO) and a major equipment manufacturer. The paper begins by describing the challenges facing utilities and why those challenges have led the utilities, a major manufacturer and the UK government to invest in the development of a flexible and extensible active network management system. The requirements the utilities have for a network automation system they wish to deploy on their distribution networks are discussed in detail. With those requirements in mind the rationale behind the use of multi-agent systems (MAS) within AuRA-NMS is presented and the inherent research and design challenges highlighted including: the issues associated with robustness of distributed MAS platforms; the arbitration of different control functions; and the relationship between the ontological requirements of Foundation for Intelligent Physical Agent (FIPA) compliant multi-agent systems, legacy protocols and standards such as IEC 61850 and the common information model (CIM)

    Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace

    Get PDF
    For over a century, induction furnaces have been used in the core of foundries for metal melting and heating. They provide high melting/heating rates with optimal efficiency. The occurrence of faults not only imposes safety risks but also reduces productivity due to unscheduled shutdowns. The problem of diagnosing faults in induction furnaces has not yet been studied, and this work is the first to propose a data-driven framework for diagnosing faults in this application. This paper presents a deep neural network framework for diagnosing electrical faults by measuring real-time electrical parameters at the supply side. Experimental and sensory measurements are collected from multiple energy analyzer devices installed in the foundry. Next, a semi-supervised learning approach, known as the local outlier factor, has been used to discriminate normal and faulty samples from each other and label the data samples. Then, a deep neural network is trained with the collected labeled samples. The performance of the developed model is compared with several state-of-the-art techniques in terms of various performance metrics. The results demonstrate the superior performance of the selected deep neural network model over other classifiers, with an average F-measure of 0.9187. Due to the black box nature of the constructed neural network, the model predictions are interpreted by Shapley additive explanations and local interpretable model-agnostic explanations. The interpretability analysis reveals that classified faults are closely linked to variations in odd voltage/current harmonics of order 3, 11, 13, and 17, highlighting the critical impact of these parameters on the model’s prediction

    Cognitive artificial-intelligence for doernenburg dissolved gas analysis interpretation

    Get PDF
    This paper proposes Cognitive Artificial Intelligence (CAI) method for Dissolved Gas Analysis (DGA) interpretation adopting Doernenburg Ratio method. CAI works based on Knowledge Growing System (KGS) principle and is capable of growing its own knowledge. Data are collected from sensors, but they are not the information itself, and thus, data needs to be processed to extract information. Multiple information are then fused in order to obtain new information with Degree of Certainty (DoC). The new information is used to identify faults occurred at a single observation. The proposed method is tested using the previously published dataset and compared with Fuzzy Inference System (FIS) and Artificial Neural Network (ANN). Experiment shows CAI implementation on Doernenburg Ratio performs 115 out of 117 accurate identification, followed by Fuzzy Inference System 94.02% and ANN 78.6%. CAI works well even with small amount of data and does not require trainings

    Automation of Cellular Network Faults

    Get PDF

    Distributed decision-making in electric power system transmission maintenance scheduling using Multi-Agent Systems (MAS)

    Get PDF
    In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment\u27s instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today\u27s deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and Opportunities

    Full text link
    With recent advances in artificial intelligence (AI) and robotics, unmanned vehicle swarms have received great attention from both academia and industry due to their potential to provide services that are difficult and dangerous to perform by humans. However, learning and coordinating movements and actions for a large number of unmanned vehicles in complex and dynamic environments introduce significant challenges to conventional AI methods. Generative AI (GAI), with its capabilities in complex data feature extraction, transformation, and enhancement, offers great potential in solving these challenges of unmanned vehicle swarms. For that, this paper aims to provide a comprehensive survey on applications, challenges, and opportunities of GAI in unmanned vehicle swarms. Specifically, we first present an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues. Then, an in-depth background of various GAI techniques together with their capabilities in enhancing unmanned vehicle swarms are provided. After that, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions. Finally, we highlight open issues of GAI in unmanned vehicle swarms and discuss potential research directions.Comment: 23 page
    corecore