5,814 research outputs found

    A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers

    Full text link
    We propose a ridesharing strategy with integrated transit in which a private on-demand mobility service operator may drop off a passenger directly door-to-door, commit to dropping them at a transit station or picking up from a transit station, or to both pickup and drop off at two different stations with different vehicles. We study the effectiveness of online solution algorithms for this proposed strategy. Queueing-theoretic vehicle dispatch and idle vehicle relocation algorithms are customized for the problem. Several experiments are conducted first with a synthetic instance to design and test the effectiveness of this integrated solution method, the influence of different model parameters, and measure the benefit of such cooperation. Results suggest that rideshare vehicle travel time can drop by 40-60% consistently while passenger journey times can be reduced by 50-60% when demand is high. A case study of Long Island commuters to New York City (NYC) suggests having the proposed operating strategy can substantially cut user journey times and operating costs by up to 54% and 60% each for a range of 10-30 taxis initiated per zone. This result shows that there are settings where such service is highly warranted

    Design and operational control of an AGV system

    Get PDF
    In this paper we first deal with the design and operational control of Automated Guided Vehicle (AGV) systems, starting from the literature on these topics. Three main issues emerge: track layout, the number of AGVs required and operational transportation control. An hierarchical queueing network approach to determine the number of AGVs is decribed. Also basic concepts are presented for the transportation control of both a job-shop and a flow-shop. Next we report on the results of a case study, in which track layout and transportation control are the main issues. Finally we suggest some topics for further research

    Minimum cost VRP with time-dependent speed data and congestion charge

    Get PDF
    A heuristic algorithm, called LANCOST, is introduced for vehicle routing and scheduling problems to minimize the total travel cost, where the total travel cost includes fuel cost, driver cost and congestion charge. The fuel cost required is influenced by the speed. The speed for a vehicle to travel along any road in the network varies according to the time of travel. The variation in speed is caused by congestion which is greatest during morning and evening rush hours. If a vehicle enters the congestion charge zone at any time, a fixed charge is applied. A benchmark dataset is designed to test the algorithm. The algorithm is also used to schedule a fleet of delivery vehicles operating in the London area

    Pemecahan Masalah Rute Kendaraan Dengan Trip Majemuk, Jendela Waktu Dan Pengantaran-penjemputan Simultan Menggunakan Algortima Genetika

    Full text link
    Vehicle routing problem (VRP) is one of decision problems having an important role in transportation and distribution activity in the logistic management. The VRP deals with determining vehicle routes that minimizes total distance by satisfying the following constraints: (1) each route starts and ends at the depot, (2) each vehicle serves only one route, (3) each costumer is served by one route, (4) all customers must be served, and (5) total load for each route does not exceed the vehicle capacity. In literature, this definition is the definition for the basic or classical VRP. This paper discusses an extension of the basic VRP including the following characteristics: (1)multiple trips (MT), (2) time windows (TW), and (3) simultaneous pickup-delivery (SPD). A solution method based on genetic algorithm (GA) is proposed to solve the VRP discussed in this papaer. The proposed GA is examined using some hypothetical instances

    Optimization of a city logistics transportation system with mixed passengers and goods

    Get PDF
    International audienceIn this paper, we propose a mathematical model and an adaptive large neighborhood search to solve a two{tiered transportation problem arising in the distribution of goods in congested city cores. In the rst tier, goods are transported in city buses from a consolidation and distribution center to a set of bus stops. The main idea is to use the buses spare capacity to drive the goods in the city core. In the second tier, nal customers are distributed by a eet of near{zero emissions city freighters. This system requires transferring the goods from buses to city freighters at the bus stops. We model the corresponding optimization problem as a variant of the pickup and delivery problem with transfers and solve it with an adaptive large neighborhood search. To evaluate its results, lower bounds are calculated with a column generation approach. The algorithm is assessed on data sets derived from a eld study in the medium-sized city of La Rochelle in France

    Topics in logistics

    Get PDF
    • …
    corecore