28,090 research outputs found

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Load carrying capability of regional electricity-heat energy systems:Definitions, characteristics, and optimal value evaluation

    Get PDF
    Evaluating the load carrying capability of regional electricity-heat energy systems is of great significance to its planning and construction. Existing methods evaluate energy supply capability without considering load characteristics between various users. Besides, the impact of integrated demand response is not fully considered. To address these problems, this paper builds a load carrying capability interval model, which uses reliability as a security constraint and considers integrated demand response. An evaluation method for the optimal load carrying capability considering uncertainties of load growth is proposed. First, this paper defines energy supply capability, available capacity, and load carrying capability. Interval models are built to achieve the visualization display of these indices. Their characteristics are studied and the impact factors of interval boundary are analyzed. Secondly, a two-layer optimization model for the evaluation of optimal load carrying capability is constructed, considering the uncertainties of load growth. The upper-layer model aims at optimizing the sum of load carrying capability benefit, integrated demand response cost, and load curtailment penalty. The lower-layer model maximizes energy supply capability. Thereafter, the lower-layer model is linearized based on piecewise linearization and the least square method. The computation efficiency is greatly enhanced. In the case study, a real regional electricity-heat energy system is used to validate the proposed model and method.</p

    Integration of Renewables in Power Systems by Multi-Energy System Interaction

    Get PDF
    This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated

    A review of co-optimization approaches for operational and planning problems in the energy sector

    Get PDF
    This paper contributes to a comprehensive perspective on the application of co-optimization in the energy sector – tracking the frontiers and trends in the field and identifying possible research gaps – based on a systematic literature review of 211 related studies. The use of co-optimization is addressed from a variety of perspectives by splitting the studies into ten key categories. Research has consistently shown that co-optimization approaches can be technically challenging and it is usually a data-intensive procedure. Overall, a set of techniques such as relaxation, decomposition and linear approaches have been proposed for reducing the inherent nonlinear model's complexities. The need to coordinate the necessary data from multiples actors might increase the complexity of the problem since security and confidentiality issues would also be put on the table. The evidence from our review seems to suggest a pertinent role for addressing real-case systems in future models instead of using theoretical test cases as considered by most studies. The identified challenges for future co-optimization models include (i) dealing with the treatment of uncertainties and (ii) take into account the trade-offs among modelling fidelity, spatial granularity and geographical coverage. Although there is also a growing body of literature that recognizes the importance of co-optimization focused on integrating supply and demand-side options, there has been little work in the development of co-optimization models for long-term decision-making, intending to recognize the impact of short-term variability of both demand and RES supply and well suited to systems with a high share of RES and under different demand flexibility conditions. The research results represent a further step towards the importance of developing more comprehensive approaches for integrating short-term constraints in future co-optimized planning models. The findings provide a solid evidence base for the multi-dimensionality of the co-optimization problems and contriThis work is supported by the National Council for Scientific and Technological Development (CNPq), Brazil. This work has been supported by FCT – Fundaça˜o para a Ciˆencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Study of an Optimized Micro-Grid’s Operation with Electrical Vehicle-Based Hybridized Sustainable Algorithm

    Get PDF
    Recently, the expansion of energy communities has been aided by the lowering cost of storage technologies and the appearance of mechanisms for exchanging energy that is driven by economics. An amalgamation of different renewable energy sources, including solar, wind, geothermal, tidal, etc., is necessary to offer sustainable energy for smart cities. Furthermore, considering the induction of large-scale electric vehicles connected to the regional micro-grid, and causes of increase in the randomness and uncertainty of the load in a certain area, a solution that meets the community demands for electricity, heating, cooling, and transportation while using renewable energy is needed. This paper aims to define the impact of large-scale electric vehicles on the operation and management of the microgrid using a hybridized algorithm. First, with the use of the natural attributes of electric vehicles such as flexible loads, a large-scale electric vehicle response dispatch model is constructed. Second, three factors of micro-grid operation, management, and environmental pollution control costs with load fluctuation variance are discussed. Third, a hybrid gravitational search algorithm and random forest regression (GSA-RFR) approach is proposed to confirm the method’s authenticity and reliability. The constructed large-scale electric vehicle response dispatch model significantly improves the load smoothness of the micro-grid after the large-scale electric vehicles are connected and reduces the impact of the entire grid. The proposed hybridized optimization method was solved within 296.7 s, the time taken for electric vehicle users to charge from and discharge to the regional micro-grid, which improves the economy of the micro-grid, and realizes the effective management of the regional load. The weight coefficients λ1 and λ2 were found at 0.589 and 0.421, respectively. This study provides key findings and suggestions that can be useful to scholars and decisionmakers

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    • …
    corecore