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H I G H L I G H T S   

 

• Co-optimization for power system operation and expansion planning is reviewed. 

• The majority of short-term studies have grown up around energy and reserve markets. 

• Co-optimization might lead to less costly solutions than traditional techniques. 

• The need to coordinate the necessary data from multiples actors is a challenge. 

• Integrating supply and demand-side options has been recognized as a current need. 
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A B S T R A C T   
 

This paper contributes to a comprehensive perspective on the application of co-optimization in the energy sector 

– tracking the frontiers and trends in the field and identifying possible research gaps – based on a systematic 

literature review of 211 related studies. The use of co-optimization is addressed from a variety of perspectives by 

splitting the studies into ten key categories. Research has consistently shown that  co-optimization approaches can 

be technically challenging and it is usually a data-intensive procedure. Overall, a set of techniques such as 

relaxation, decomposition and linear approaches have been proposed for reducing the inherent  nonlinear model’s 

complexities. The need to coordinate the necessary data from multiples actors might increase the complexity of 

the problem since security and confidentiality issues would also be put on the table. The evidence from our review 

seems to suggest a pertinent role for addressing real-case systems in future models instead of using theoretical test 

cases as considered by most studies. The identified challenges for future co-optimization models include (i) dealing 

with the treatment of uncertainties and (ii) take into account the trade-offs among modelling fidelity, spatial 

granularity and geographical coverage. Although there is also a growing body of literature that recognizes the 

importance of co-optimization focused on integrating supply and demand-side options, there has been little work 

in the development of co-optimization models for long-term decision-mak- ing, intending to recognize the impact 

of short-term variability of both demand and RES supply and well suited to systems with a high share of RES and 

under different demand flexibility conditions. The research results represent a further step towards the 

importance of developing more comprehensive approaches for integrating short-term constraints in future co-

optimized planning models. The findings provide a solid evidence base for the 

multi-dimensionality of the co-optimization problems and contribute to a better understanding of how future 

operating and planning models might be affected under the use of such co-optimization approaches. 
 

 

 

1. Introduction 

The increasing search for energy pathways towards climate change 

and social wellbeing has led to a shift of strategies and policies, 

favouring Renewable Energy Sources (RES) and Energy Efficiency 

Measures (EEMs) but also underlying the security of electricity supply as 

the main pillars of the energy policies in the energy sector [1,2]. The global 

energy sector has been witnessing rapid changes mainly due to 
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the fast-paced technological advances. Recent technological advances 

coupled with the recent environmental and social challenges have also 

heightened the need to use more holistic and integrated approaches to 

meet these goals simultaneously. The past few years have witnessed, in 

particular, rapid advances in the field of smart grids technologies which 

enable the integrated operation among a set of different resources [3,4]. 

These new conflicting aspects surrounding energy systems increased the 

search for solutions that take into account the trade-offs between climate 

neutrality goals but at the same time envisaging a “just energy transition” 

[5,6]. 

The energy planning process describes a procedure with a high level of 

complexity due to the existence of many conflicting aspects, including 

environmental, technological, social and economic ones that should be 

considered in the renewable energy decision-making process [7–9]. 

Specifically, the electricity planning has become more complex due to a set 

of factors, namely the growing share of RES, specifically those RES with 

variable output [10]; the need for reliability and security of supply; fuel-

increasing prices and fuel supply security; regional job creation; climate 

concerns; among others. Ref. [9] mention that the inclusion of RES in 

energy planning is a complicated task and has to surpass eco- nomic, 

social, technical, environmental, and institutional barriers. Several 

uncertainties are also involved in the long-term energy planning process, 

such as economic growth, government policies, technological 

development, energy efficiency, and demand-side concerns. The role of 

storage in power systems with a high share of renewables should also be 

put on the table in the context of the energy transition [11]. These features 

together might define the pathways in which the energy miX will be 

deployed in the future. Over the past years, we have also wit- nessed a 

significant trend towards exploring not only the supply-side options but a 

strong growth has been placed on exploring the flexi- bility potential 

from the demand-side, which has also been disrupting traditional energy 

planning models. DR has emerged as a valuable resource flexibility option 

for balancing supply and demand and consequently enhancing the overall 

level of power systems’ flexibility. 
There is a large number of published studies (e.g., Refs. [12–14]) sug- 
gesting that investments in DR strategies would avoid investments in the 

supply side. The benefits brought by DR may contribute significantly to the 

power system operation and deferring investments in distribution and 

transmission systems. DR has also been considered a powerful tool to 

contribute to the future challenges of integrating VRE resources into the 

power grid and even partially releasing energy network stress. DR may 

also support supply shortages and load growth control [15], decrease the 

maximum interconnection capacity, and optimize resource allocation [16]. 

Along with the past years, new studies have been published addressing 

the different faces surrounding both operational and plan- ning aspects 

within the energy field by using different modelling ap- proaches. Several 

studies in the energy field have been carried out using optimization 

approaches for modelling both short (e.g. [17,18]) and long-term (e.g. [19–

22]) problems. EXtensive research has been con- ducted, for example, in 

economic dispatch [17] and unit commitment 

both operational and expansion planning problems individually, co- 

optimization may play a central role in the development of integrated 

approaches for operational and planning energy-related strategies. 

Therefore, a growing body of recent literature has focused on the use of 

co-optimization approaches within the energy field. Co-optimization 

models are computer-aided decision-support tools that search, in a set 

of solutions (defined by constraints), the best one in terms of a defined 

objective function, considering operational and planning energy-related 

strategies [31]. The term “co-optimization” has been also commonly 

referred to as “co-planning” [32–40], “joint optimization” [41–43], 

“simultaneous optimization” [41,44], “combined optimization” [29,45] or 

even “co-scheduling” [46]. We also highlight that many research works 

have used the term “optimization” to refer to “co-optimization” problems. 

This means that these terms have been often used interchangeably and 

without high precision in the energy sector. 
Since the definition of co-optimization varies among researchers, it is 

essential to clarify how this concept has been used in the energy field. 

According to a definition provided by Ref. [31], “co-optimization is the 

optimization of two or more different yet related resources within one plan- 

ning framework”. Co-optimization approaches aim to find the best so- 

lution in terms of cost or other objectives while satisfying a set of 

constraints such as economic, technical, and environmental ones [28,31]. 

Ref. [31] also provides a more general definition focused on electric 

systems planning. This broader definition refers to co- optimization as “the 

simultaneous identification of two or more classes of investment decisions 

within one optimization strategy”. The authors point out that “classes of 

investment decisions, in the context of electric systems planning, almost 

always include decisions to build generation and trans- mission. But they 

may include other types of decisions as well, such as demand-side solutions, 

decisions to install storage, or building of natural gas pipelines. “One 

optimization strategy” may consist of a formulation to solve a single 

optimization problem (e.g., minimize cost subject to constraints) or it may 

consist of a formulation to solve an iterative series of optimization problems 

(i.e., sequential yet coordinated generation and transmission planning)”. 
Therefore, the application of co-optimization approaches within the 

energy sector has attracted considerable attention in the past few years, 

mainly because of its potential benefits and synergies that could yield low-

cost solutions and improve resource usage compared to traditional 

decoupled optimization approaches. Although the established practice has 

been to design generation planning first and further to plan trans- mission, 

in a co-optimization model, in general, both (generation and transmission) 

are assessed simultaneously to identify integrated solu- tions. Significant 

analysis and discussion on the use of co-optimization of electricity 

transmission and generation resources for long-term planning purposes 

have been addressed by previous research. Ref. [28], for instance, focused 

on reviewing the concepts and modelling approaches from the use of co-

optimization approaches on electricity transmission and generation 

resources for planning and policy analysis, including supply-side 

resources, demand-side resources, transmission options and natural gas 

pipelines. The review efforts of Ref. [28] are centred on the 

problems [18],  Generation  EXpansion  Planning  (GEP)  [19,23,24], existing and emerging co-optimization models for the joint optimization 

Transmission EXpansion Planning (TEP) [20,25], integrating RES into GEP 

problems [21] and modelling and simulation of energy systems [22], 

which are among the most commonly exploited research topics in the field. 

The need to correlate operational and planning decision- making into 

long-term planning frameworks has also been identified as a current 

trend in the literature (see, for example, Ref. [26] and Ref. [27]). 

The particular use of optimization models has been extensively 

addressed over the literature to address such operational and planning 

problems supporting the decision-making process of electricity supply, 

transmission investments and policy designs [28,29]. The goal for 

traditional optimization models is to find in a set of solutions the best 

one that minimizes or maximizes the value of an objective function [30]. 

Although traditional planning approaches have a tendency to address 

of generation and transmission (focused on the optimizers, data, 

modelling fidelity and computational requirements). A particular state- of-

the-art review of the generation expansion planning problems is 

addressed by [47], highlighting the increasing use of co-optimization 

approaches in this category of problems. In a comprehensive literature 

review of the modelling approaches from the joint planning of power and 

natural gas networks coordination, the authors of [48] highlighted the 

cumulative synergies in the coupling of power and gas systems. 

Therefore, a growing body of literature recognizes the importance and 

critical role played by co-optimization in the energy sector and electricity 

markets. However, previously published studies on the sub- ject have been 

mostly restricted to particular review analyses. The co- optimization might 

also involve other types of decisions such as sup- ply and demand-side 

integration, energy and reserve markets,  water- 
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Fig. 1.  Detailed methodological approach of the research. 
 

energy-nexus, power grid and Natural Gas (NG) networks and multi- 

energy carriers (e.g., electricity, gas, and district heating systems), just 

to name a few. Most of the work carried out on the topic lacks on providing 

a general review analysis covering both operational and expansion 

planning problems in the energy sector and its interrelations, which are 

very appealing to consider in future energy models. The contribution of 

the present study to the literature is multifold and is strengthened by the 

following key accomplishments: (i) a comprehen- sive literature review of 

the most relevant research into the use of co- optimization for power 

system operation and expansion planning problems is addressed. We 

attempt to shed new light on the topic by tracking the frontiers and trends 

in the field by analyzing 211 related studies. Then, the (ii) identification of 

the latest research progress and possible research gaps for both 

operational and planning future co- optimization problems is performed, 

supporting future research pathways. 
The remainder of the paper is organized as follows. This first section 

introduces the topic under study, highlighting the importance of both 

optimization and co-optimization approaches in the energy field and 

clarifying the difference between these concepts. Section 2 discusses the 

specific methods by which the research and analyses were conducted. The 

paper proceeds investigating the most relevant published research in 

Section 3. Section 4 draws together the various strands of this study and 

Section 5 identifies areas for further research. 

2. Methodology 

This research consisted of an extensive and systematic literature 

review of the different types of co-optimization approaches used in the 

energy field. Co-optimization approaches may be classified according to 

different categories. In this paper, we follow two basic approaches 

currently being adopted in research into co-optimization within the 

energy field. The first one is focused on the short-term (i.e., associated 

with power system operation or operation planning problems) and the 

second-largest focus has been on the long-term assessments (i.e., asso- 

ciated with power system planning which is also referred to as invest- 

ment planning problems). Therefore, this investigation used archival 

data and it can be classified as an exploratory study regarding its nature. 

The general methodological approach followed in this research is 

illustrated in Fig. 1. 

The primary literature research data were selected from two central 

databases: Web of Science and Science Direct (Phase 1). An additional step 

has been performed by screening the primary research references (Phase 

1 – secondary search). This process is considered essential since different 

terms have been used to refer to co-optimization and a great deal of 

important previous published research has been found in this screening 

process. Studies over the past two decades have provided important 

information on the use of co-optimization approaches in the energy field, 

and therefore, the chosen timeframe is from 2000 to 2021. The selected 

keywords used to locate peer-revied journals are also illustrated in Phase 

1. The most relevant published research was iden- tified and divided into 

ten key categories (Phase 2) considering the in- teractions among the 

different sectors involved (i.e., electricity, gas, heat, water and/or 

transportation) such as better illustrated in Fig. 2. Two hundred and 

eleven studies were fully reviewed. A holistic inves- tigation of each key 

category is undertaken along with Section 3. Finally, a critical analysis of 

the results is undertaken in Phase 3. 

3. Synthesis of co-optimization approaches in the energy field 

A state-of-the-art review of high-quality research is addressed in this 

section regarding the use of co-optimization approaches in the energy 

field. Section 3.1 will focus on assessing co-optimization studies in the 

short-term, whereas Section 3.2 addresses the most relevant research on 

long-term co-optimization models. AppendiX A will present a table 

summarizing the central studies in each category by splitting it into the 

year of publication, sector, spatial resolution, planning horizon, objec- tive, 

programming/tool and whether or not the term ‘co-optimization’ is 
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Fig. 2.  Categories of co-optimization research studies. 

 
highlighted that “the objective of joint optimization is to minimize the total 

cost of providing sufficient capacity to meet forecast demand for both energy 
and ancillary services”. The authors of Ref. [59] underline that “co-opti- 

3.1. Co-optimization in the short-term (operational decisions) 

3.1.1. Co-optimization between energy and reserve markets 

The role developed by renewable energy as a new actor in partici- 

pating in ancillary services1 (AS) markets has been considerably growing 
in the context of liberalized electricity markets [49]. This 

means that simultaneous co-optimized approaches for energy and 

ancillary services dispatch are supposed to be more efficient than 

traditional approaches (i.e., sequential and simultaneous dispatch-based 

approaches) [49]. Co-optimization of energy and reserve markets has 

been largely addressed by previous research works, as illustrated in 

Table A1 (AppendiX A). “Co-optimization of energy and ancillary services” 

has also been referred in the literature as “co-optimization of energy and 

reserve requirements”. Therefore, “ancillary services” and “reserve re- 

quirements” have been often used interchangeably. The co-optimization of 

energy and reserve markets is also sometimes referred to as “joint 

dispatch”, such as in Ref. [50]. 

Short-term economic dispatch and energy reserve models generally 

use a high temporal resolution [51] with a particular focus on the 

minimization  of  the  costs  [42,51],  such  as  in  [52–58].  Ref.  [42] 

 
 

1 Ancillary services typically include the scheduling, system control and 

dispatch; voltage control; regulation and frequency response; energy imbal- ance; 

operating spinning reserves and operating supplemental reserves [42]. 

mized reserve and energy markets involve the simultaneous determination of 

a price for electricity and a price for each category of reserve”. A set of 

principles for the efficient electricity market design was addressed by [60], 

highlighting the co-optimization of energy and reserve resources (i.e., 

scheduled and dispatched simultaneously) to maximize social welfare as 

one of the siX principles for the efficient electricity market design. 

A two-stage stochastic programming model has been developed by Ref. 

[61], aiming to optimize the schedule of energy and reserve mar- kets. 

The co-optimization between energy and reserve markets in sys- tems 

with high shares of wind power is adressed by Ref. [62] through a two-

stage stochastic programming model. A stochastic co-optimization 

approach is also followed by Ref. [63] focused on the maximization of 

the expected profit from energy and reserve markets for systems with 

multiple hydropower plants. Ref. [63] addressed a co-optimization model 

for energy and reserve markets from the perspective of a hydro- power 

system that simultaneously participates in both the day-ahead and the 

secondary regulation reserve market. Similarly, Ref. [64] addressed the 

stochastic short-term hydrothermal scheduling problem by co-optimizing 

energy and reserves. 

An optimal bidding strategy has been considered by Ref. [65] 

through a two-stage stochastic programming approach in day-ahead and 

real-time markets. Co-optimizing energy and ancillary services dispatch in 

day-ahead and real-time markets is also addressed by Ref. [66]. To 
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further examine the role of a prosumer’s aggregator in energy and sec- 

ondary reserve markets, Ref. [67] developed a two-stage stochastic 

optimization bidding strategy. In a follow-up study, a two-stage sto- 

chastic optimization approach was developed by Ref. [68] to participate in 

providing energy and reserve markets under uncertainty in Micro Grids 

(MGs). Along the same lines, Ref. [69] dealt with the provision of energy, 

reserve and reliability services for multi-energy MGs following a co-

optimization approach. To further investigate the optimal scheduling of 

Distributed Energy Resources (DERs) in standalone micro-grid sys- tems, 

Ref. [70] developed a co-optimization model through a risk-based 

stochastic approach for the simultaneous scheduling of energy and 

reserve of DERs. The use of DER has become a valuable solution to respond 

to the several problems brought about by the growth of VRE and thus 

contribute to enhancing the flexibility in grid operations. The world has 

been moving towards renewable-based DER mainly because of two key 

factors (i) the decreasing costs of these technologies and (ii) the increasing 

need for new energy flexibility requirements in power sys- tems [71]. The 

introduction of DER also holds the potential to address the three main 

conflicting variables (i.e., cost, the security of supply, and 

CO₂ emissions reduction) faced by governments, municipalities, in- 
dustries, and communities in general for which a holistic and integrated 

approach is required to meet these goals simultaneously. Regardless of 

all the benefits related to the development of DER (e.g., the grid losses 

reduction and the postponing of conventional investments in infra- 

structure), the growing insertion of these technologies implies more 

uncertainties on power demand projections by also affecting the optimal 

future countries’ energy miX [72]. The authors of Ref. [73] underline that 

“distributed energy resources (DER) are driving the need to change how the 

grid is managed”. Therefore, DER represents a high disruptive po- tential 

and it can add up significant and systemic benefits to the power system but 

at the same time, it may significantly increase the power system’s 

complexity. 

Ref. [74] developed a unit commitment model based on a co- optimized 

approach for energy and reserve markets, particularly well- suited for 

systems with high wind power penetration. The proposed model also 

incorporated both a large-scale energy storage system and an improved 

Demand-Response (DR) program. A new method for evalu- ating the 

optimal scheduling for the joint operation between wind power plants and 

pump storage in the energy and ancillary markets is proposed by [75] 

through a stochastic optimization approach. 

Co-optimization between energy and ancillary services is also 

addressed in [76], focusing on the flexibility provided by Concentrating 

Solar Power (CSP) plants with thermal energy storage. Ref. [77] pre- 

sented a co-optimization model that values energy storage in both 

electricity and ancillary service markets. The investigation of the energy 

storage value for both energy and ancillary markets is studied by [78] 

for multiple markets, including day-ahead, real-time and ancillary 

markets. A DR model in co-optimized day-ahead energy and spinning 

reserve market has been proposed by [79] using a MiXed-Integer Linear 

Programming (MILP) approach. The load flexibility is utilized by price 

responsive bids in the energy market, while spinning reserve bids are used 

in the reserve market in the model proposed by Ref. [79]. The co- 

optimization of energy and spinning reserves has also been tackled in the 

work of [80] under a deterministic security criterion. The particular co- 

optimization of energy and non-spinning reserve has been tackled by 

Ref. [81] through a randomized optimization technique based on an IEEE 

30-bus system. The authors of Ref. [81] also included in their model 

formulation constraints such as ramping limits, N-1 security and 

generation minimum on and off times. 
Co-optimization of   energy   and   reserve   markets   for   integrated 

electricity-gas networks has also caught the attention of recent research. 

The integrated power and gas networks assessment with energy storage 

systems has been undertaken by Ref. [82] based on the co-optimization of 

energy and reserve markets. Ref. [83] proposed an energy-reserve co- 

optimization model for electricity and natural gas systems in the pres- 

ence of multiple reserve resources. 

The simultaneous dispatch between energy and reserve for isolated 

systems has also attracted recent research work. Ref. [84], for instance, 

developed a day-ahead energy and capacity scheduling stochastic co- 

optimization model by combining energy, reserve capacity and pri- mary 

regulation markets and well suited for isolated power systems with large 

shares of electric vehicles. 

Ref. [57] developed a model focused on providing Dispatchable 

Transmission Services (DTSs) in stochastic joint energy and spinning 

reserve markets. The joint scheduling of energy and reserve is further 

proposed by Ref. [85] focused on hybrid AC/DC transmission grids and 

under wind power uncertainty. A co-optimization model for energy and 

reserve market is investigated in [56] by incorporating post-contingency 

transmission switching. The main goal, in this case, is to reduce both the 

operating costs and the power outages when a contingency occurs [56]. 

Ref. [86] developed a co-optimized dispatch model well suited to the 

identification of Compressed Air Energy Storage (CAES) in energy and 

reserve markets in multiple United States regions. The coordination 

between generation and a pumped-hydro storage system is addressed in 

[87] through a co-optimized energy/regulation environment. 

An optimal self-scheduling model for the profit maximization of a 

power company is developed by [88] using a MILP model and taking the 

primary, secondary and tertiary reserve markets into account. The use of 

co-optimization between energy and reserve markets for combined power 

distribution and district heating networks has been addressed by Refs. 

[89,90], for example. In particular, day-ahead co-optimization of energy 

and reserve for combined distribution networks of power and district 

heating was dealt by Ref. [89] for the Barry Island system under a linear 

optimization model, which has been considered to minimize the sum of 

energy and reserve dispatch costs of Combined Heat and Power (CHP) 

units. Co-optimization of integrated electricity and heating sys- tems was 

also investigated by Ref. [90], taking the wind uncertainty into account. 

The model addresses a master problem and a sub-problem solved through 

a MILP model with its Karush-Kuhn-Tucker (KKT) conditions. 
A model for co-optimization of energy and reserve, taking the con- 

tributions from both the supply and demand-side into account, has been 

developed by Ref. [58]. The authors concluded that demand-side 

participation in providing reserve services might significantly decrease 

the overall electricity production costs. In [91], a new algorithm has been 

proposed for energy and spinning reserve scheduling by also taking the 

demand side contribution into account. A co-optimization DR-en- ergy-

spinning reserve market model has also   been   developed   by Ref. [92], 

which assessed the impact of DR on energy and spinning reserve market 

prices. 

3.1.2. Co-optimization between electricity and gas networks 

Other recent studies also provided pathways related to the short- term 

co-optimization of electricity and gas systems (Table A2 – Ap- pendiX A). 

The co-scheduling between electrical energy and natural gas systems, for 

example, is addressed in [46]. A model for the coordination between gas 

and electricity in competitive markets has been tackled by Ref. [93] based 

on the case of a company that participates in both gas spot and electricity 

markets. A stochastic co-optimization model is developed in [94] for 

electricity and natural gas systems focused on systems with high shares of 

both Electric Vehicles (EVs) and Variable Renewable Energy (VRE) 

sources. A day-ahead scheduling solution for district integrated natural 

gas and a power system with high wind power penetration is addressed in 

[95] using a stochastic MILP model (IEEE 33- bus distributed system) and 

taking the demand flexibility and CAES into account. 
The optimization between interconnected power grids and natural 
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gas networks has also been addressed in [45]. However, this previous 

research work neglected the dynamics2 of natural gas systems in their 
modelling approach. Further research attempted to include these dy- 

namic issues into their modelling approaches, such as in [96,97]. A coupled 

dispatch optimal control strategy for the coordination of large- scale 

interconnected electrical and natural gas transmission networks has been 

addressed by [96] for the interconnected Illinois system taking into 

account the dynamics of natural gas systems. The model also allows 

capturing the spatiotemporal interactions between both gas and electric 

transmission systems. Their findings revealed that coordinating the 

dispatch of both systems enabled larger amounts of natural gas to be 

dispatched to the power grid than the uncoordinated operation [96]. The 

co-optimization between gas and electricity network is also addressed by 

Ref. [98], capturing the intra-day variations of gas supply and demand 

through hourly steps temporal resolution. 

A day-ahead coordinated co-optimization scheduling approach for 

interdependent power and gas networks is addressed in [99]. Findings of 

[99] revealed that using Power-to-gas (PtG) technologies facilitates the 

insertion of higher renewable energy shares for the energy system 

evaluated. The integration between electrical and natural-gas systems 

with PtG technology is also addressed by [100] under an integrated 

approach by taking the uncertainties from wind and photovoltaic sys- 

tems into account. The inclusion of the PtG technology and a DR pro- gram 

is further considered by [101], which proposed a novel hybrid framework 

for co-planning between electricity and gas systems. 

3.1.3. Co-optimization in Active distribution networks (ADNs) and micro 

grids (MGs) 

A great deal of previous research into short-term co-optimization 

approaches has focused on Active Distribution Networks (ADNs) and 

Micro Grids (MGs) (see Table A3 – AppendiX A). A co-optimization 

approach is followed in [102] to sizing DG in a hybrid network (elec- 

tricity/gas/heat). Ref. [44] proposed a robust energy procurement 

strategy for MG operators with a particular focus on smart grids with 

hydrogen energy resources. The simultaneous optimization of profits for 

both the MG operator and consumers is aimed at the proposed energy 

procurement strategy proposed by Ref. [44]. Ref. [103] developed a 

coordinated long and short-term MiXed-Integer Nonlinear Programming 

(MINLP) model focused on MG expansion planning. The model mini- mizes 

both long-term investment and operational costs (short-term). A co-

optimization framework is proposed by Ref. [104] focused on a MG 

composed of solar PV, transmission switching and emergency genera- tion. 

Co-optimization of thermal and electrical MG systems is addressed in 

[105], focusing on a large university campus. 
A three-level co-optimization model for reconfiguration, dispatch- 

ing, and reserve for multiple micro energy grids are addressed explicitly 

by Ref. [106] modelling an IEEE 37-bus distributed system with an 8- node 

natural gas system (Shenzhen park in China). The model objec- tives 

included achieving the minimum loss load rate (1st level); the maximum 

comprehensive benefit (2nd level) and the minimum reserve cost (3rd 

level), making use of heuristic algorithms (chaotic ant colony- based 

approaches). The temporal resolution used in the model of [106] includes 

(i) day-ahead – focused on capacity reconfiguration; (ii) intra- day – 

focused on energy dispatching and (iii) real-time – focused on reserve 

balance issues. 

Co-optimization in MGs in the presence of Plug-in Electric Vehicles 

(PEVs) is addressed by Ref. [107]. The co-optimization among DG units, 

Battery Energy Storage Systems (BESS) and Electric Vehicle Charging 

Stations (EVCSs) was addressed by [108] focused on a deterministic 

network topology. An optimal planning framework has been developed by 

[109] through a MiXed-Integer Second-Order-Cone Programming 

 
2 Steady-state modelling approaches have been not considered suitable for 

long-term planning studies of co-optimization of interconnected power grid and 

natural gas networks [96,291]. 

(MISOCP) model for ADNs. This last model co-optimizes Distributed 

Energy Storage Systems (DESS) operation and incorporated a set of 

emerging technologies, including smart inverter-based DGs – which 

provide reactive power capability and short-term network reconfigura- 

tion. The co-optimization among repair, reconfiguration, and DG 

dispatch is addressed in [110] through a two-stage outage management 

model for distributed power systems to minimize the repairing time and 

maximize the picked-up loads. More recently, the use of Distribution 

Locational Marginal Prices (DLMPs) had been considered by [111] to 

schedule DERs in distribution networks optimally. 

3.1.4. Co-optimization in water-energy-nexus 

A large number of published studies deal with water-energy nexus 

(also referred to as power-water nexus) co-optimization problems (see 

Table A4 – AppendiX A). The vast majority of studies on water-energy 

nexus co-optimization have been focused on the short-term (usually day-

ahead strategies), i.e., associated with operational energy-related 

strategies. 

A co-optimization modelling approach to deal with water-energy 

systems at a community scale is proposed in [112]. A conceptual 

framework representing the energy-water nexus interdependencies is 

developed by [113] for the Greek power system. The authors of [114] 

focused on the energy-water nexus design and operation problem by 

developing a decision support framework well suited for urban resource 

planning. 

Short-term power and water co-optimization models have also been 

proposed focused on unit commitment [115] and economic dispatch [116–

118] approaches. A multi-plant real-time economic dispatch of energy-

water nexus is addressed in [116] based on a co-optimization approach. 

The energy-water unit commitment co-optimization prob- lem is dealt 

with in [115] by also including the synergistic benefits of introducing 

renewable energy generation within the modelling approach. A day-

ahead economic dispatch co-optimization model for integrated water-

energy MG systems was recently proposed by [118] through a MILP model 

to minimize the energy consumption from the water-energy MG system. 

3.1.5. Co-optimization in multi-energy carriers 

Recent research has also focused on co-optimization in multi-energy 

carriers (see Table A5 – AppendiX A). The co-optimization of multi- carrier 

energy resources may offer a set of advantages such as perfor- mance 

improvements and cost savings, for example [119]. Co- optimization 

approaches for integrating electricity, gas, and heat net- works have been 

considered in previous research, such as in [45,120–122]. The optimal 

scheduling for a multi-energy electricity- heating-gas island system is 

developed by [120], considering inter- and intra-hour timescales 

simultaneously. The integration among electricity, gas, and heat networks 

is modelled by [121] focused on the unit commitment problem and 

minimizing the total system operation cost. Multiple energy storage 

technologies (power, gas and thermal) were also included in the modelling 

framework of [121], which are found to reduce by near 20% the total 

system’s operation cost primarily because the Energy Storage System 

(ESS) reduced the effect of wind power un- certainty. Future cost-optimal 

pathways for the city of Aarhus (Denmark) are investigated by [123] in 

which the production of elec- tricity and heat is co-optimized with the heat 

storage operation. The particular cases of co-optimization between heat 

and electricity systems are also illustrated in Table A5 (AppendiX A) (see 

[123–125]). 

3.2. Co-optimization in the long-term (expansion planning problems) 

3.2.1. Co-optimization in generation-transmission expansion 

The planning   of   a   power   system   is   considered   a   complex 
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optimization problem [29]. Power system expansion planning problems 

are usually divided into three main categories: Generation EXpansion 

proactive expansion planning over generation expansion decisions 

focused on deregulated electricity markets. The benefits of co- 

Planning   (GEP3),    Transmission    EXpansion    Planning    (TEP)    and optimizing transmission and generation investments under a proactive 

generation-transmission co-expansion [126]. However, for the past three 

decades, studies on expansion planning problems have been mostly 

restricted to the independently planning of generation and transmission. 

However, these conventional planning approaches can lead to sub-

optimal results [47]. 

GEP and TEP planning problems have been extensively addressed over 

the literature considering the modelling of national or regional- scale 

power systems [126]. These studies can be categorized into three main 

modes, i.e., (i) single-stage (or static) [127] or multiple-stage 

[128] problems; (ii) conventional mathematical programming or meta- 

heuristic optimization methods [126]; and (iii) transmission expansion 

only (subject to a static scenario of generation investment); generation 

expansion only (generation investment subject to a static transmission 

system) or even both generation and transmission expansion plan 

[31,126]. Traditionally, GEP and TEP models have been modelled 

separately [19], i.e., these planning models have typically applied single-

stage models to address power system expansion by firstly plan- ning the 

generation and then the transmission planning is designed to meet this 

supply as in [19,20,129–131]. These separately modelling approaches 

have been performed mainly because the investment de- cisions are made 

independently [19], typically from non-vertically electricity markets. 

Although GEP and TEP have been usually characterized by sequen- 
tial optimization [132], the benefits brought about by the simultaneous co-

optimization between generation and transmission resources have been 

highlighted by recent research works [132]. There are a large number of 

recently published studies that deal with generation-trans- 

mission4 co-optimization problems (see Table A6 – AppendiX A). Typi- 

cally, these models aim to find the least-cost power system configuration 
for a given period. In the proactive approach, both systems (i.e., GEP and 

TEP)  are  co-optimized  simultaneously5,  whereas,  in  the  reactive 

approach, the GEP problem is firstly solved, followed by the TEP prob- lem 

[133,134]. The simultaneous co-optimization of generation and 

transmission expansion plans might provide long-term co-optimized 

expansion planning [135–137]. The advantages of co-optimizing gen- 

eration and transmission have been addressed by [132]. The authors of 

[132] compared the sequential versus co-optimized generation and 

transmission expansion planning approaches and concluded that eco- 

nomic benefits might be achieved through the integrated planning be- 

tween generation and transmission systems. Refs. [137,138] also 

highlighted that cost savings would be achieved through generation- 

transmission co-optimized approaches. A broadly similar point has also 

recently been made by [28], which reviewed the co-optimization between 

transmission and generation resources for planning purposes highlighting 

that planning generation and transmission independently might be sub-

optimal. Other studies, however, hold the view that “pro- active 

transmission expansion decisions may lead to suboptimal solutions when the 

generation expansion equilibrium problem have multiple solutions (i.e., leading 

to higher total costs and lower social welfare) [139]”. 

Ref. [139]  proposed  a  methodology  to  address  the  problem  of 

 

 
3 As stated by [292], GEP is a very complex problem mainly in the long-term 

planning and is usually defined as “the problem of determining when, what and where 

the generation plants are required so that the loads are adequately supplied for a 

foreseen future”. 
4  Also  referred  to  as  (i)  Transmission  and  generation  capacity  expansion 

planning (TGEP) [139]; (ii) GEPTEP co-optimization models [138]; (iii) Pro- 

active expansion planning [139] or even (iv) Anticipative transmission 

expansion planning [139]. 
5 Ref.   [139]   highlight   that   “in   centralized   TGEP   problems,   generation   and 

transmission capacity expansions are simultaneously optimized by a single entity that 

maximizes social welfare or minimizes the total investment and operation cost”. 

approach and RES integration into the generation miX are addressed in 

[137] for the United States Eastern interconnection. A further study 

[126] used a MiXed-Integer Programming (MIP) generation and trans- 

mission expansion co-optimization model considering a high wind power 

penetration rate for the United States Eastern system. The future of the 

United States electricity system is also evaluated in [140] for the year 2050 

by splitting the country into 13 regions and using an extended version of 

the Open Source Energy Modelling System (OSeMOSYS) model. The 

impact of RES integration on transmission expansion plan- ning was 

assessed in Ref. [134] through a 10-year co-optimization model based on 

an hourly resolution approach for supply and demand (IEEE 24-bus test 

system). The authors employed the multivariate interpolation method to 

estimate the operational costs to reduce the high computational time 

associated with the hourly resolution model [134]. The authors of [141] 

also proposed a new dynamic model for the simultaneous expansion of 

generation-transmission planning based on two case studies, i.e., a 6-bus 

and the IEEE 30-bus system. Ref. [141] converted the original MINLP 

model into a MILP model through the Benders decomposition technique. 
The co-optimization between generation and transmission planning 

for maximizing large-scale solar PV integration is addressed in [142]. Ref. 

[36] explored the role of Concentrating Solar Thermal for the Australian 

National Electricity Market based on a scenario-based approach. The 

authors of Ref. [36] highlighted that most previous co- planning models 

between generation and transmission expansion plan- ning do not use 

high temporal resolution. Therefore, the hourly tem- poral resolution 

model is considered one of the main advantages of the proposed model in 

[36]. The procedure carried out by [126] is based upon a generation and 

transmission expansion co-optimization problem using a MIP formulation 

considering wind power and load variations on a large-scale power 

system. A co-optimization expansion planning model for 2030 is 

developed for the Chilean power system by assessing the impact of 

electric vehicles penetration in the country [143]. 

The importance of co-optimization between generation and trans- 

mission in China was investigated in [144] through a linear program- ming 

approach. The authors highlighted the need of using such a co- planning 

approach, particularly because the best wind and solar re- sources are 

located far from the load centres in the country. Two linear optimization 

models (a load-matching and a cost-minimizing proced- ure) were 

compared in the work of [29] for power systems with high shares of wind 

and solar power with storage facilities and simulta- neously designing a 

High-Voltage Direct-Current (HVDC) transmission system. The modelling 

of the HVDC transmission system is considered one of the biggest 

challenges of the proposed model. The first model is a load-matching 

optimization, and the second model minimizes the annual overall system 

costs. The benefits and disadvantages of both approaches are discussed, 

and the most efficient method is shown. The authors concluded that the 

cost-minimization optimization technique seems to have the most real-

world application, although the computa- tional effort largely increases. 

Findings of Ref. [29] also revealed that linear optimization techniques are 

well suited to represent an electrical power system from a high-level 

without the complexity brought about by miXed-integer or nonlinear 

programming. 
Several models have been proposed addressing the integration be- 

tween GEP and TEP problems with storage under co-optimization ap- 

proaches (see [29,145–149]). A least-cost co-optimization model has been 

developed by Ref. [148], dealing with the capacity expansion problem 

focused on the European energy system. The hourly model also includes 

transmission and storage constraints. Cost-optimal pathways are also 

evaluated in [279] for the Association of East Asian Nations region, taking 

the generation, transmission and storage technologies into account. The 

main advantage of the proposed model comes from the high temporal and 

spatial resolutions. The results from modelling only 
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generation and transmission with the case in which the ESS devices are 

included in the co-optimization model has been assessed by Ref. [146]. The 

authors compared the results with the traditional sequential in- vestment 

model in which generation and transmission are first made and then the 

ESS decisions are defined. Findings of [146] revealed that co- optimizing 

ESS investments might be a cost-effective option for the power system 

evaluated. The results also revealed lower curtailment and investment 

deferrals when the co-optimization approach is followed. The least-cost 

pathways to decarbonize the Canadian electricity system is addressed by 

[145] through a long-term co-optimization of GEP and TEP with the 

presence of storage. The authors employed a new linear programming-

based model that minimizes the overall annual electricity system costs in 

new generation, transmission and storage facilities [145]. Findings of this 

study demonstrated that new transmission sys- tems and the expansion of 

wind power in high wind locations would allow Canada to reduce the 

overall level of   GHG emissions [145]. Ref. [145] focuses on supply 

options for meeting a fiXed demand and the proposed model does not 

include DR programs assuming a perfectly inelastic electricity demand. 
A review of co-optimization models for GEP (including distributed 

and VREs), TEP, traditional DSM programs (including DR) is addressed in 

[28], which also reviewed the main available co-optimization tools. 

Therefore, the integration between GEP and TEP models together with DR 

strategies to seek optimal expansion plans for the long-term under co-

optimization approaches has also been proposed by recent research 

works. A source-grid-load coordinated optimization planning model is 

proposed by [150] using a MINLP model to seek a general optimal 

expansion solution for minimizing the overall power system costs, 

including the cost of DR employment and social costs for an IEEE 30-bus 

system case study. The regulation constraints are also included in the co- 

optimization model developed by [150]. Outcomes of the proposed model 

revealed that the inclusion of DR measures into the modelling approach 

might provide a low-cost pathway for integrating wind energy resources 

in the power system. Also, the source-grid-load coordinated planning 

model might reduce the overall system costs. The computa- tional effort 

seems to largely increase when simultaneously taking supply and 

demand-side resources into account. A source-grid-load planning model 

has also been proposed by [151] focused on the Chi- nese power sector. 

In addition to the generation and transmission expansion planning, the 

model also considers the resources from the demand-side. The inclusion of 

DSM into the modelling framework has also been proposed by Ref. [152], 

which proposed a model for the in- 
tegrated planning of generation and transmission expansion for the 

interconnected Colombian power system. The authors of [152] also 

concluded that reconfiguring the existing power generating technolo- gies 

would significantly reduce the CO2 emissions in the country. Ref. [153] 

also included DR resources into their modelling framework for the 

generation and transmission expansion planning problem. Findings of 

[153] revealed DR as a valuable resource, which might change the 

location, economics but also the required investments in generation and 

transmission. A bi-level planning model is proposed by [154], addressing 

the simultaneous expansion of generation and trans- mission (GTEP) by 

also incorporating the DR effects. The upper-level model addresses the 

GTEP problem whose output data is used in the lower level, simulating the 

system’s operation during a peak load day in the target year. 

Ref. [155] dealt with the generation-transmission co-optimization 

problem when a pay-as-bid auction was in place. In a further research 

study, Ref. [156] addressed whether or not risk aversion might affect the 

optimal transmission and generation expansion planning,   whereas Ref. 

[35] proposed a generation-transmission expansion planning model for 

mitigating the power’s system vulnerability to deliberate physical attacks. 

3.2.2. Co-optimization between electricity and gas networks 

A comprehensive comparison among previous studies which deal 

with co-optimization between electricity and gas systems (also referred 

to as gas-electric expansion planning or even natural gas grid expansion 

planning – NGGEP) with a particular focus on the long-term is presented 

in Table A7 (AppendiX A). The coordinated expansion planning for 

electricity and natural gas network infrastructures would allow the 

optimal management of RES towards low carbon pathways [48], but it 

might also support the identification of least-cost investment alterna- tives 

[157]. The authors of [48] highlighted the synergies between co- 

optimization between power and natural gas systems, including sus- 

tainability and reliability issues. A review of the modelling approaches 

from the joint planning of power and natural gas networks coordination 

is addressed in [48] focused on long-term planning aspects. 

Ref. [158] included the natural gas infrastructure planning objective 

into the co-optimization model of both power generation and trans- 

mission planning. Along the same lines, Ref. [159] subsequently argued 

that although previous research works have addressed the co- 

optimization of electric power and natural gas infrastructures, the ma- 

jority of previous studies did not incorporate the response to extreme 

events into the modelling frameworks. A broader perspective has been 

adopted by Ref. [159], who developed a tri-level planner-disaster-risk- 

averse-planner framework suitable for resilience-oriented integrated 

planning considering electric power and natural gas networks with a 

particular focus on enhancing the system’s resilience in response to 

extreme events. 

A deterministic   long-term   expansion   model   which   co-optimizes 

electricity and NG infrastructures was addressed by Ref. [157]. This last 

model accounted for planning the expected investments in new generation 

and transmission systems but also the required new pipelines for a 26-

node integrated gas-electric system in the United States. A long- term 

generation and transmission expansion planning model is proposed by 

[160], taking into account the NG system acting under an imperfect 

competitive electricity market environment. The authors of Ref. [160] 

also called attention to the innovative aspects of their proposal since the 

expansion decisions are also based on a social perspective, including social 

welfare and consumer benefits. 

Co-planning between electricity and NG networks has also been 

addressed by Ref. [161], taking into account the short (e.g., renewable 

energy production) and long-term (demand growth and gas price) un- 

certainties. The integration between electricity and NG networks at the 

distribution level has been addressed by [162] through a long-term 

planning model using a MINLP formulation. Co-optimization of power 

and natural gas systems for a hydro-based power system is investigated in 

the work of [163], taking the uncertainties related to water flow 

changes, demand fluctuation and the variability of intermittent renew- 

able generation into account. A long-term investment co-optimization 

model for natural gas and power systems is also proposed by [164], 

considering reliability concerns related to the interdependency between 

the electricity and NG networks. 

Co-optimization expansion planning of natural gas and electricity 
transmission systems is addressed by Ref. [165] by simultaneously taking 

into account N-1 contingency in NG and electricity systems. Ref. [166] 

focused on a multi-vector energy system model for the interconnected 

systems of Ireland and Great Britain. The critical role developed by both 

PtG and gas storage for supporting the lack of gas has been pointed out by 

Ref. [167]. A co-expansion bi-level programming planning model is 

proposed by Ref. [37] for the integrated planning between electricity and 

NG networks (also including PtG technologies). The authors of [33] also 

integrated PtG technologies in a multi-stage contingency-constrained co-

optimization model for electricity-gas sys- tems integrated with gas-fired 

units. While most studies have focused on the co-optimization between 

electricity and natural   gas   networks, Ref. [168] focused on the co-

planning between shale gas technology and the electricity network. The 

model proposed by [168] focused on providing helpful information 

regarding the trade-offs between system reliability and costs. 
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Fig. 3. Number of selected papers in each category (short and long-term). 
 

3.2.3. Co-optimization in active distribution networks (ADNs) and micro 

grids (MGs) 

The use of co-optimization approaches in Active Distribution Net- 

works (ADNs) and Micro Grids (MGs) with a particular focus on the long- 

term has also been centre of previous research, such as illustrated in Table 

A8 (AppendiX A). A co-optimization model for distributed energy resource 

planning focused on the optimal sizing of DERs in a MG envi- ronment has 

been addressed by [169] to minimize the annualized sys- tem costs and 

maximizing fuel savings. Further, a micro-grid-based co- optimization 

planning problem was investigated in [170] to minimize the total 

investment and operation costs of local MGs. The work of [170] proposed 

a micro-grid-based planning model as an alternative to the co- 

optimization of generation and transmission. A coordinated planning 

model for multiple MGs and distribution networks with flexible in- 

terconnections is addressed in the work of [171]. 

A two-stage co-optimization expansion planning model for active 

distribution systems is proposed by [172], considering multiple active 

network managements and evaluating the optimal load shedding di- 

rection. Later, the coupling between the distribution network’s expan- 

sion planning with EVCSs was addressed by [173,174]. These last two 

papers, however, did not consider both BESS and the insertion of 

renewable-based DG. A further research work [175] improved these 

concerns by developing a multi-objective joint planning model for ADNs. 

The model proposed by [175] aimed to co-optimize the sizing and siting of 

multiple resources, including RES-based DG from wind and solar power, 

BESSs, distribution network expansion and EVCSs for the minimization of 

reliability and investments costs and at the same time maximizing the 

electric vehicle charging service capability. 

3.2.4. Co-optimization between transmission and storage expansion 

Previous research has also dealt with co-optimization between 

transmission network expansion planning and storage systems (see Table 

A9 – AppendiX A). Overall, these research works highlight the economic 

benefits achieved by the storage expansion co-planning. A tri- level co-

optimization model for transmission expansion planning coupled with 

storage siting and sizing is addressed in [176]. A long-term expansion 

planning model has been developed by Ref. [177], which simultaneously 

takes into account the network expansion and the BESS placement under 

a market-driven approach. The authors of [177] concluded that the 

expansion of transmission networks with batteries might be cost-effective, 

especially for market-driven electricity systems. Ref. [32] focused on a 

long-term stochastic multistage co-planning 

transmission expansion model and energy storage. The model con- siders 

possible delays in expanding the transmission network and the storage 

degradation along with the planning period. The optimal sizing and siting 

of ESS are performed in the work of [178] through a co- optimization 

model for transmission expansion planning and ESS. A novel two-stage 

stochastic programming model for the co-optimization of transmission 

switching operations and storage investments (including siting and 

sizing ESS decisions) was further proposed by [179]. This last model also 

takes into account the maximum allowed limits for both load shedding 

and renewable curtailment. 

3.2.5. Co-optimization between energy and transportation systems 

Our literature review also found some particular research works 

focused on the co-planning between energy and transportation systems 

(Table A10 – AppendiX A). A long-term investment planning model has 

been developed by [180] using the National Long-term Energy and 

Transportation Planning (NETPLAN) software focused on a 40-year 

planning period for both the United States energy and freight trans- 

portation systems. This research focused on identifying the possible 

benefits of building a national transmission overlay in the country. A 

further work [181] also employed NETPLAN to develop a long-term 

investment planning model that considers the co-optimization of en- ergy, 

freight and passenger transportation systems. The authors evalu- ated 

hydrogen integration into the NETPLAN model, which is used as an 

alternative for light-duty vehicle transportation in the United States. The 

NETPLAN software was also employed by [182] to co-optimize infra- 

structure investments and operations for the transportation and energy 

sectors in the United States. Findings of [182] revealed that both the costs 

and CO2 emissions are likely to decrease for significant high-speed rail 

diffusion scenarios. The NETPLAN software has also been employed to 

integrate biomass pathways across the energy and transportation sectors 

in the United States based on a 40-year multi-period co-optimi- zation 

model [183]. 

 
3.3. Summary of the findings 

This section provides a summary and discussion regarding the main 

findings achieved from the systematic literature review. Overall, the use of 

co-optimization approaches to support short and long-term decision- 

making in the energy sector has been widely applied and discussed, 

addressing different facets of the problem, such as illustrated along with 

this review paper. The number of reviewed papers in each category is 
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summarized in Fig. 3. 

Short-term electricity planning is usually associated with day-ahead, 

intra-day and real-time markets and these models are well suited to deal 

with variability issues in power systems [184]. Co-optimization of en- 

ergy and reserves in the day-ahead market has become a reality for many 

countries worldwide. The authors of [185] pointed out that the co- 

optimization of energy and reserve market “produces lower bid-cost so- 

lutions than sequential procurement”. Thus, the practice of co-optimization 

for ancillary services purposes is an emerging field of research and might 

bring ancillary savings costs from 30 to 50%, according to the results 

from Ref. [186]. The Frequency Control Ancillary Services (FCAS) in the 

Australian electricity market, for instance, have been procured in 

conjunction with the energy market [187]. The co-optimization of en- 

ergy and reserve resources is already implemented in most of the United 

States markets [60,188] but also in the Greek electricity market [189]. 

Ref. [188] highlights the considerable potential of using co-optimized 

approaches for energy and reserve markets within Europe, but the au- 

thors pointed out that implementing such approaches is not expected to 

occur in the short-term for the European territory. 
Two widely used co-optimization approaches for energy and reserve 

markets include robust and stochastic co-optimization [85]. Robust 

optimization was used by [89,90,190], for example. Stochastic co- 

optimization approaches in the context of energy and reserve markets, 

however,     have     been     more     widely     employed     such     as     in 

of advantages such as performance improvements and cost savings, for 

example [119], and it has been the focus of much research in the past 

few years, such as in [45,93,198]. However, these models usually pre- sent 

higher complexity associated with high computational times, which would 

depend on the extent to which the operational details are included or not 

in the modelling approach [34]. Reducing the model temporal accuracy 

and relaxing the operational constraints has also been employed to 

reduce the complexity of such co-optimization ap- proaches [34]. 

Previous research works have widely addressed long-term optimi- 

zation models considering several solutions and modelling approaches, 

objective functions, geographical scope, temporal resolution, and 

considering centralized and decentralized approaches. The authors of 

[199] underlined the importance of considering the short-term opera- tion 

constraints and requirements for long-term planning models. One of the 

more significant findings to emerge from this study [199] is that the 

availability of storage resources might lower the total system costs. Ref. 

[200] further support the importance of representing short-term 

operation for long-term decisions, especially for storage technologies that 

might be used in both short (e.g., batteries) and long-term (e.g., hydro) 

planning. A framework was developed in [201], which accounts for the 

inclusion of both short and long-term storage constraints for a two-level 

proactive transmission expansion model. How increasing operating 

reserve requirements impact generation capacity investments 

[61,63,65,67,68,75,84,91,191,192].  MiXed-Integer   Linear   Program- has been addressed by [202] for a power system with high RES inte- 

ming (MILP) models seem to be the most widely programming tool 

employed to model the co-optimization in energy and reserve markets, 

although many recent research works have also employed nonlinear 

programming approaches. DC-Optimal Power Flow (DC-OPF) and AC- 

Optimal Power Flow (AC-OPF) models are also among the most commonly 

used methods for co-optimization in energy and reserve markets. Overall, 

there seems to be some evidence to indicate that the 

software General Algebraic Modelling System (GAMS) is the most used 

tool in this category, followed by MATLAB and PLEXOS6. Numerical 

examples have been employed mostly based on IEEE bus test systems, but 

it can also be seen an increasing focus on real-case systems – particularly 

for United States regions and to a lesser extent for the Central European 

countries. Overall, the reviewed studies seem to sup- port the fundamental 

role developed by storage options in providing ancillary services for power 

systems. The research findings also consis- tently point towards the 

importance of integrating power distribution and district heating 

networks. 

The focus of recent research in water-energy nexus co-optimization 

has also been driven by climate change issues that might condition the 

availability of water resources and, therefore, constraining the operation 

of the power system [113]. The majority of water-energy nexus co- 

optimization models have been developed using nonlinear program- ming 

approaches and MATLAB seems to be the most used tool in this category. 

The evolution of ADNs is intrinsically related to the development of the 

flexibility services provided by DERs, which also support the Active 

Network Management (ANM), whose importance has been considerably 

increasing in the past few years due to the high-penetration of inter- 

mittent renewable energy [193,194]. Recent works have addressed the 

energy   management   problem   of   ADNs   for    multiple    MGs    (see Ref. 

[195–197], for instance). The integration of MGs into ADNs has been 

increasing along with the past years, mainly because of the rapid 

development of DG systems [195]. However, new challenges have 

appeared, including the problem of how to manage the operations of 

multiple MGs with different self-interests effectively. 

The co-optimization of multi-carrier energy resources may offer a set 

 
 

6 PLEXOS software allows the co-optimization of energy and reserves pro- 

visions [293] and it has been widely employed in the co-optimization of unit 

commitment (UC) and economic dispatch (EC) problems [294]. 

gration. Findings of [202] revealed that operating reserve requirements 

might represent considerable additional costs for integrating high shares 

of renewable generation. The complexity of optimization problems with 

the inclusion of VRE resources has been highlighted in the work of [29]. 

Although a considerable amount of literature has also been published 

on optimization and co-optimization models for planning purposes (i.e., 

focused on the long-term), such studies remain narrow in focus dealing 

purely with optimization approaches. These studies have been generally 

linked to GEP and TEP problems, although co-optimization approaches 

in this field have been at the centre of much attention in recent years. A 
state-of-the-art review is addressed by Ref. [138], which explored, in 

particular, how equilibrium7 co-planning generation and transmission 
expansion models have been developed under a market-based environ- 

ment. Although the terms “co-optimization” and “co-planning” have been 

used interchangeably by previous research to refer to the joint optimi- 

zation of generation and transmission, Ref. [138] argues that the term “co-

planning” might be more accurate for the co-planning problem in market-

based environments. In contrast, the term “co-optimization” is best suited 

for centralized environments (i.e., vertically-integrated electricity 

markets) in which a single entity makes the investment de- cisions. Ref. 

[28] also called the attention especially for unbundled market structures 

in which different entities perform the expansion planning of transmission 

and generation. For this case, the “simultaneous 

optimization” between these two classes of investments will become a 
different co-optimization paradigm called “anticipatory transmission 

planning8” which requires an iterative approach until achieving coordi- 
nation between generation and transmission planning. 

As a rule, over the past decades, generation and transmission plan- 

ning models had been addressed as independent problems mainly due to 

computational limitations. The majority of studies in generation- 

transmission co-optimization have been based on least costly ap- proaches. 

However, Ref. [203] highlighted the weaknesses of such least 

 
 

7 Ref. [146] called the attention to the new  category  of  planning  tools referred 

as equilibrium models. It is important to highlight that for perfectly- competitive 

markets the solution found by optimization models should be equivalent to the 

ones obtained from equilibrium models [146]. 
8 “A  proactive  or  anticipative  transmission  planner  makes  transmission  in- 

vestments taking into account the effect of these upgrades on generation investments 
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and, ultimately, on total system cost or social welfare [146]”. 
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cost approaches and proposed a benefit maximization methodology that 

allows planners to allocate the available resources optimally. The 

incorporation of stakeholders’ equality preferences into the generation- 

transmission planning model has also been proposed in the methodology 

of Ref. [203]. The authors also highlight the advantages of their pro- posed 

modelling approach, particularly for assessing the possibility of rebuilding 

a power system to maximize social welfare once their pro- posal is highly 

commendable for rebuilding power systems after natural disasters. 

Most co-optimizations models for planning purposes have been 

considered by governments and regulatory bodies at national levels. Over 

the past two decades, significant advances have been made to address co-

optimization problems in the energy sector, taking into ac- count some 

essential operational details [28]. A typical example is the increasing use 

of bi-level optimization approaches for generation and transmission 

planning [154]. The majority of previous studies on generation-

transmission co-optimization have applied MILP models. However, 

although MILP models have also been widely employed for gas-electric 

expansion planning, MINLP is becoming more widespread. Therefore, 

many challenges are associated with expansion planning problems 

because of their long-term, large-scale, and nonlinear nature. Ref. [204] 

addressed a review of GEP optimization problems with renewable energy 

integration with a particular focus on identifying the impact of smart grid 

technologies, the treatment of uncertainties and the increasing need for 

operational flexibility on GEP problems. In a comprehensive literature 

review of optimization models, Ref. [205] also identified four significant 

short-term operation issues that recent liter- ature has included into 

planning models: (i) integration of VRE; (ii) demand-response; (iii) 

interregional transmission, and (iv) energy storage. 
The majority of previous planning studies focused on generation and 

transmission expansion models have been conducted to minimize the total 

system costs (i.e., based on least cost-based approaches) once a vertically 

integrated approach is usually assumed to be responsible for the planning. 

However, a large and growing body of literature has also pointed out the 

need for future models to minimize not only financial costs but also 

environmental and social ones, for example. Ref. [206] points out that the 

use of co-optimization approaches for generation- transmission planning 

purposes might be more suited for vertically- integrated utilities, i.e., the 

same entity is responsible for both genera- tion and transmission 

resources planning. Notwithstanding, Ref. [31] highlights that generation-

transmission co-optimization approaches may also be useful for 

unbundled environments since they can identify possible grid 

reinforcements that would support more optimal genera- tion investment 

decisions and consequently decrease the overall system costs. The studies 

that couple supply and demand-side planning issues are an emerging field 

of research in recent years. The potential benefits of using co-

optimization in generation and transmission planning models are also 

considered very important in the context of high inte- gration of 

renewables [28]. 
Lower curtailment and investment deferrals have been reported 

when co-optimization approaches are followed in generation- 

transmission expansion studies. Findings of the study proposed by 

[31] support the idea that the potential benefits from co-optimization 

planning approaches usually include lower overall power system costs. 

Specifically, the savings might occur due to better retirement decisions, 

savings of generation investment and operating costs and efficient 

integration of other resources such as storage technologies, DR measures 

and DERs. Ref. [31] found that the generation dispatch and investment 

might be affected with the inclusion of DSM strategies or storage tech- 

nologies into the co-optimization model. Therefore, co-optimization might 

result in significantly different patterns of investment than traditional 

planning strategies would suggest. 

Co-optimization planning models for electricity planning and gas 

infrastructures have also been widely addressed by previous research. The 

joint planning between electricity and gas networks has been 

addressed by employing both single and multi-investment decision- 

making strategies. Many recent studies (such as Refs. [33,37,167]) have 

also shown the advantages of using PtG technologies in co-expansion 

planning models between gas and electricity systems. Possible barriers to 

the co-optimization between natural gas infrastructure and power system 

expansion still exist, particularly for markets where these sys- tems are 

planned independently and by different organizations [157]. 

Recent developments in the field of ADNs and MGs have led to a 

renewed interest in the use of co-optimization in these particular fields. 

Previous works have also addressed the co-optimization of multiple micro 

energy grids. Recent research has also focused on the co- optimization in 

multi-energy carriers, which might offer advantages such as performance 

improvements and cost savings. Recent research works have also 

addressed relevant applications focused on co- optimized solutions for 

island systems, usually to find the least-cost solutions. There has been 

substantial research dealing with the use of storage under co-optimization 

approaches, which includes BESS, PHES and CAES, for example. The 

optimal sizing and siting of energy storage systems in transmission 

systems has also been at center of recent research. Particular previous 

studies have also addressed the use of co- optimization focused on 

integrated energy systems (i.e., multi-energy carriers). Other recent 

studies also provided pathways related to the co-optimization of EVs 

applications, power and desalination plants, energy and comfort issues in 

buildings, just to name a few. 

4. Conclusions 

This study makes a significant contribution to research and fills a gap 

in the literature by demonstrating the role of co-optimization ap- proaches 

in both short and long-term resource operation and planning problems 

within the energy sector. This review found evidence that the use of co-

optimization strategies has increased markedly over the last few years in 

both operational and planning models, although many terms have been 

used interchangeably to refer to co-optimized models. In the period 

investigated, short-term co-optimization of energy and reserve markets 

and long-term co-optimization of generation- transmission expansion 

planning have attracted the most attention from researchers. The study 

of power grid and gas networks applications has also increased 

significantly in the last years. 

The main conclusions from this research can be then summarized as 

follows. 

(1) The research findings reported here seem to be consistent with 

other research (see Ref. [207]), which indicates that co- 

optimization might provide the capability of lower investment 

and operating system costs. Overall, such approaches are likely to 

lead to less costly solutions than traditional optimization tech- 

niques. Our literature review revealed that different objective 

functions had been considered for the co-optimization, but, in 

general, the minimization of the total system costs is the most 

employed among the reviewed papers. 

(2) Research has consistently shown that the use of co-optimization 

approaches can be technically challenging. Overall, a set of 

techniques such as relaxation, decomposition and linear ap- 

proaches have been proposed for reducing the inherent nonlinear 

model’s complexities. Heuristic optimization strategies have also 

been employed to support the complex nature inherent to co- 

optimization approaches. 

(3) It is shown evidence that the vast majority of studies on short- term 

co-optimization approaches have grown up around energy and 

reserve markets and the IEEE Reliability Test System (RTS) seems 

to be the most employed case-study among the reviewed studies. 

Co-optimizing day-ahead and balancing markets have been a 

particular identified trend among the reviewed research within 

short-term applications. The majority of studies on short- 
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term co-optimization focus on day-ahead scheduling and a lesser 

extent on real-time markets. 

(4) Overall, long-term planning models significantly differ in terms 

of temporal resolution, geographical scope, technologies consid- 

ered and regional disaggregation but also on the programming 

strategy and tool used to solve such co-optimization problems. In 

general, the great majority of previous co-optimization models 

between generation and transmission expansion planning do not 

use high temporal resolution due to computational limitations. 

Short-term operational constraints in long-term power planning 

models have also been addressed by recent research, which im- 

pacts investment decisions. Overall, the reviewed studies on 

GEPTEP expansion clearly indicate the importance of including 

short-term operation requirements and storage technologies 

within long-term planning models. A growing body of recent 

research addresses the problem of generation and transmission 

expansion planning considering the high integration of RES in 

multi-region power systems. 
(5) The long-term co-optimization between generation and trans- 

mission is usually best suited for centralized vertically-integrated 

electricity markets [28,138]. However, the recent liberalization of 

electricity markets raised the question regarding the usefulness of 

such approaches since new dynamics have been introduced by this 

novel market model, which can lead to conflicting interests among 

stakeholders and decision-makers. 

(6) Although most studies that tackle the integration between GEP and 

TEP models under co-optimization approaches have focused on 

generation and transmission integration only, a considerable 

amount of literature has been published on the joint planning of 

GEPTEP models with the presence of DERs. This finding corrob- 

orates with Ref. [72], which pointed out that the large-scale 

diffusion of DER “requires a stronger integration of transmission and 

generation planning with the distribution networks, demanding several 

advances in the existing tools and methodologies”. 

(7) Several ways have been used to relax MINLP formulation. MINLP 

models have been transformed to MILP in some cases, usually for 

problems of larger size that are computationally intensive. 

However, it can result in loss of model fidelity. The big question that 

arises is how to preserve a high level of fidelity when applied to 

real/practical systems, which usually comes with increased 

computational challenges in solving the co-optimization prob- lem. 

Therefore, there are a set of associated challenges between 

modelling fidelity, spatial granularity and geographical coverage 

and it remains a challenging research issue. The modelling of 

multiple sectors, for instance, might increase the computational 

efforts considerably. To address such problems, spatial aggrega- 

tion and reduced temporal granularity have been employed [28]. In 

some cases, to increase the model’s fidelity, integer variables 

and/or nonlinear variables are included in the optimization 

problem transforming the problem into a MILP, MINLP or NLP. 
(8) Finally, we have identified that several models have also been 

proposed tackling the integration between the power grid and 

natural gas systems under co-optimized approaches. The inte- 

grated planning between electricity and gas networks is useful for 

both operational and long-term planning purposes. Therefore, the 

joint (or combined) planning of power systems and NG systems has 

been widely considered in the past years. The short-term co- 

planning between electricity and gas networks is particularly 

important since the peak demand for electricity and NG might be at 

different times. The advantages of co-planning between elec- tricity 

and gas networks come partially from the offered flexi- bility from 

natural gas to meet short-term supply and demands requirements 

once apart from power grids; gas might be stored in the pipelines. 

Previous studies on co-optimization between elec- trical and 

natural-gas systems with the power to gas technology 

(PtG) have also been widely acknowledged in the literature and it 

has been identified as a trend for future planning models. 

The findings reported here should make an essential contribution to 

the energy field. The use of co-optimization was found to be very useful to 

address critical concerns in both short and long-term planning issues, but 

also evidence is presented showing that such approaches might be more 

effective in capturing the trade-offs between two or more sectors. The 

findings of this study have a number of practical implications since they 

provide essential contributions to international scientific knowl- edge and 

are expected to be a powerful tool to guide and support poli- cymakers and 

stakeholders in the sector, providing both integrated optimal investment 

strategies and possible revisions in policy design plans. The findings might 

suggest several courses of action for govern- ments and/or regulatory 

bodies to develop national and regional policy analysis. The governments 

might have a deeper understanding regarding the risks, benefits and 

costs of the available resource options, but they can also improve the 

decision-making process through inte- grated planning alternatives 

offered by co-optimization approaches. Although far from being 

exhaustive, our comprehensive literature re- view aimed to illustrate the 

diversity of approaches and models used by different research works and 

demonstrate their application potential to different operational and 

planning problems within the energy field. 

5. Research gaps and prospects 

This study provides a comprehensive review of existing research on 

the use of co-optimization in the energy sector. We attempted to identify 

recent progress in the field but also the challenges arising from the 

employment of such approaches. However, regardless of all the benefits 

associated with the use of co-optimization approaches, our literature 

review also revealed that due to the increasing complexities and trade- offs 

of the energy sector, a set of challenges for future co-optimization models 

include (i) dealing with the treatment of uncertainties and (ii) take into 

account the trade-offs among modelling fidelity, spatial gran- ularity and 

geographical coverage, which remains a challenging research issue. 

These findings are also in agreement with Ref. [208], which addressed the 

twenty-first-century energy challenges for energy systems models, and 

pointed out the need for future energy models to integrate human and 

social risks/opportunities. As such, co- optimization is revealed to be also 

a data-intensive procedure. The need to coordinate the necessary data 

from multiples actors might in- crease the problem’s complexity since 

security and confidentiality issues would also be put on the table. 
Considering the significant challenges faced by the energy sector 

coupled with the trade-offs between climate neutrality goals, there is 

abundant room for further progress in developing innovative mecha- 

nisms and market development schemes through the use of co- 

optimization approaches. This could significantly facilitate the integra- 

tion of renewable energies and, under certain circumstances, consider- 

ably reduce the need for grid expansion. Future studies on the current 

topic are therefore recommended and include: 

1. Although the importance of co-optimization approaches, little work 

has also been identified in the co-optimization of systems with a high 

share of RES and responsive loads. The development of co- 

optimization models for long-term decision-making to recognize the 

impact of short-term variability of both demand and RES supply and 

well-suited systems with a high share of RES and under different 

demand flexibility conditions is imperative. This is particularly 

important given the need to address climate change concerns but at the 

same time envisaging a “just energy transition”. 

2. The need for future models to address real-case systems since most 

studies have been applied to non-real networks, i.e., using theoretical 

test cases. 
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3. The inclusion of energy efficiency resources under co-optimization 

modelling approaches in both short and long-term models. 

4. Co-optimization might also be employed to determine the optimal 

market share among electric, biofuels and flexible-fuel vehicles. The 

integration of EVs as flexible loads has also been at the centre of much 

attention [209,210]. The co-optimization of battery size and energy 

management focused on plug-in hybrid electric vehicles is addressed 

by Ref. [211]. A co-optimization model for fuel cell hybrid vehicles is 

investigated in [212], accounting for the interactions between design 

and control strategy. The EVs charging process has been used to 

provide frequency regulation in the model proposed by 

[213] using a case study based on the Central-Ohio region that co- 

optimized DER, including photovoltaic solar panels and battery en- 

ergy storage. 

This study also identified current research gaps in the field. There- fore, 

there are still many unanswered questions to be addressed in future 

studies, including: (i) To which extent may the use of co-optimization 

lower curtailment and promote investment deferrals? (long-term); (ii) 

How can we get advantages from the use of co-optimization in the era of 

unbundled market structures? (short- and long-term); (iii) How demand- 

side management strategies would affect the savings of generation and 

transmission capacity at the planning stage under the use of co- 

optimization? (long-term) and (iv) How to effectively manage the op- 

erations of multiple MGs with different self-interests? (short- and me- 

dium-term). 
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Table A1 

A literature review on short-term co-optimization between energy and reserve markets. 

Ref. Year Sector(s) Spatial Resolution Planning Horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[50] 2002 Power system 6-unit test system and 17-unit test 

system 

Short-term (day-ahead) Minimization of the total 

system cost 

Linear Programming No 

(LP) and Sequential 

Quadratic 

Programming (SQP) 

[214] 2004 Power system 3-bus DC network Short-term (day-ahead) Minimization of the total 

system cost 

AC Optimal Power No 

Flow (AC-OPF) 

[54] 2005 Power system Modified IEEE 30-bus system Short-term (real-time 

market) 

Minimization of the total 

expected cost 

Augmented Optimal 

Power Flow (AOPF) 

Yes 

[58] 2006 Power system Power system with 26 generating 

units 

Short-term (day-ahead 

for single period 

scheduling and 8-hours 

for multi-period 

scheduling) 

Minimization of the total 

production cost 

MiXed-Integer 

Programming (MIP) 

Yes 

[215] 2007 Power system Western System Coordinating 

Council (WSCC) – 9-bus test 

system 

Short-term (day-ahead) Minimization of the total 

expected cost 

n/a Yes 

[216] 2007 Power system Power system with 6 generating 

units, 20 buses and 24 

transmission lines 

Short-term (day-ahead) Minimization of the 

payments of energy and 

reserve offers 

Dynamic Optimal 

Power Flow (DOPF) 

Yes 

[217] 2009 Power system IEEE 24-bus system Short-term  (day-ahead) Minimization of energy 

and reserves offer cost 

[218] 2009 Power system Roy Billinton Test System Short-term  (day-ahead) Minimization of the total 

operating cost 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

No 

Yes 

[86] 2011 Power system Historical market data from 

several U.S. electricity markets 

Short-term (day-ahead) Maximization of the net 

revenue 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[91] 2011 Power system IEEE 24-bus system Short-term (day-ahead) Minimization of the total 

cost of energy and reserve 

production 

[190] 2011 Power system 10-unit system Short-term (day-ahead) Minimization of the 

expected total cost 

MiXed-Integer Linear No 

Programming (MILP) 

MiXed-Integer Linear No 

Programming (MILP) 

[57] 2012 Power system Two case studies (IEEE 6-bus and 24-bus s
y

s
t
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[88] 2012 Power system Medium-scale real test system 

from Greece 

Short-term (day-ahead) Minimization of the 

operating cost 

 

Short-term (day-ahead) Maximization of the 

power company profit 

Two-Stage Stochastic 

MiX-Integer Non- 

Linear Programming 

(TSSMINLP) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

 

 
Yes 

[191] 2012 Power system IEEE RTS Short-term (day-ahead) Minimization of the total 

expected cost 

[75] 2013 Power system IEEE 118-bus test system Short-term (day-ahead) Maximization of the 

expected profit 

MiXed-Integer Linear 

Programming (MILP) 

MiXed Integer 

Programming (MIP) 

Yes 

Yes 

(continued on next page) 
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Table A1 (continued ) 

Ref. Year Sector(s) Spatial Resolution Planning Horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[55] 2013 Power system IEEE 30-bus system and IEEE 118- 

bus system 

 

[56] 2014 Power system Two case studies (4-bus and IEEE 

30-bus systems) 

Short-term (day-ahead) Minimization of the 

expected cost 

 

Short-term (day-ahead) Minimization of the total 

system cost. 

AC power flow 

formulation with 

static and dynamic 

security constraints 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

 

 
Yes 

[66] 2014 Power system Several regions and storage 

technologies in the U.S. 

Short-term (day-ahead 

and real-time markets) 

Maximization of net 

revenue 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[79] 2014 Power system IEEE RTS Short-term (day-ahead) Minimization of the 

expected net cost 

[219] 2015 Power system IEEE 14-bus and 57-bus systems Short-term (day-ahead) Minimization of the 

operating cost 

MiXed-Integer Linear 

Programming (MILP) 

Stochastic MiX- 

Integer Nonlinear 

Programming 

(SMINLP) 

Yes 

Yes 

[220] 2015 Power system Central Western European (CWE) 

market 

Short-term (day-ahead) Minimization of the total 

generation costs 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[221] 2015 Power system IEEE RTS Short-term (day-ahead) Minimization of the 

expected cost 

 
[81] 2015 Power system Modified IEEE 30-bus system Short-term (day-ahead) Minimization of the 

expected total cost 

 
[77] 2015 Power system IEEE 24-bus test system Short-term (day-ahead) Minimization of the total 

production cost 

Linear two-stage 

miXed-integer 

stochastic 

optimization model 

Chance constrained 

optimization using 

YALMIP – MATLAB 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

 

 
No 

 

Yes 

[222] 2015 Power system A test case that approXimates the 

Texas electricity market 

Short-term (one year – 

hourly) 

Minimization of the total 

system cost 

MiXed-Integer 

Programming (MIP) 

Yes 

[80] 2015 Power system 3-bus system and IEEE 24-bus RTS Single period Minimization of the total 

system cost 

[74] 2015 Power system IEEE 24-bus RTS Short-term (day-ahead) Minimization of the total 

operating cost 

[76] 2016 Power system CSP power plant – 110 MWe Short-term (day-ahead) Maximization of the profit 

MiXed-Integer Linear 

Programming (MILP) 

Robust optimization 

model 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

Yes 

No 

[78] 2016 Power system New York Independent System 

Operator (NYISO) market 

Short-term (day-ahead) Maximization of the profit Linear programming Yes 

[223] 2016 Power system IEEE 118-bus test system Short-term (day-ahead, 

4-hour-ahead and real- 

time markets) 

Minimization of the total 

production cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[63] 2016 Power system Hydropower company from the 

Spanish electricity market 

Short-term (day-ahead) Maximization of the 

expected profit of a 

hydropower producer 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[224] 2016 Power system 20-kV MG Short-term (day-ahead) Minimization of the 

operating cost and 

emissions 

AC Optimal Power 

Flow (AC-OPF) 

Yes 

[64] 2016 Power system Two case studies 

(hydrothermal scheduling) 
Short-term (day-ahead — 
4 h step) 

Minimization of the 

expected total cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[225] 2016 Power system Two illustrative case studies. Short-term (day-ahead) Maximization of the 

expected social welfare 

 
[226] 2017 Power system Modified IEEE 118-bus system Short-term (day-ahead) Minimization of the total 

system cost 

 
[227] 2017 Power system IEEE-30 bus test system Short-term (day-ahead) Maximization of the 

social welfare 

[228] 2017 Power system Real MG with various DERs Short-term (day-ahead) Maximation of the total 

revenue from the energy, 

spinning reserve and 

flexible ramping products 

markets 

Direct Current 

Optimal Power Flow 

(DC-OPF) 

MiXed-Integer 

Quadratic 

Programming (MIQP) 

Optimal Power Flow 

(OPF) 

Robust MiXed-Integer 

Linear Programming 

(RMILP) 

Yes 

 

Yes 

 

Yes 

Yes 



G.G. Dranka et al. Applied Energy 304 (2021) 117703 

16 

 

 

[229] 2017 Power system Numerical examples (based on 

China 2050 RES scenarios) 

 

 
[230] 2017 Power system IEEE 30-bus system with two 

wind-farms 

[87] 2017 Power system Test system: 1 Wind power plant; 5 

thermal units and 1 pumped- 

hydro storage system 

[52] 2018 Power system Five power systems (which can be 

interconnected) 

Single-level problem Maximation of the 

participant’s profits 

 

 
Short-term (day-ahead) Minimization of the total 

operating cost 

Short-term (day-ahead) Maximization of the total 

expected profits from the 

producer 

Short-term (day-ahead) Minimization of the total 

daily cost 

MiXed-Integer 

Quadratically 

Constrained 

Programming 

(MIQCP) 

Optimal power flow 

(OPF) 

MiXed-Integer Linear 

Programming  (MILP) 

MiXed-Integer Linear 

Programming  (MILP) 

Yes 

 
 
 

Yes 

Yes 

Yes 

[231] 2018 Power system 8-zone new England test system Short-term (day-ahead) Maximization of the 

expected lifetime profit of 

the energy storage units 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

(continued on next page) 
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Table A1 (continued ) 

Ref. Year Sector(s) Spatial Resolution Planning Horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[69] 2018 Power system Two MGs Short-term (half-hourly 

simulations for 

representative days for 

different seasons) 

Minimization of the 

expected total cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

Minimisation of total 

electricity generation 

costs 

Linear programming Yes 

 
 
 
 
 
 

Lanzarote-Fuerteventura 

Maximization of the 

social welfare 

Minimization of the total 

daily cost 

Minimization of the 

expected total cost 

Minimization of the cost 

of the aggregator 

Minimization of the total 

operating cost 

MiXed-Integer 

Programming (MIP) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

A two-stage stochastic 

optimization model 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

Yes 

Yes 

Yes 

Yes 

[65] 2019 Power system MG with 3 feeders Short-term (day-ahead) Maximization of the profit 

from the MG 

 

[62] 2019 Power system IEEE RTS Short-term (day-ahead) Minimization of the 

energy dispatch cost 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

MiXed-Integer Linear 

Programming (MILP) 

No 

 

 
Yes 

[82] 2019 Power and gas 

networks 

IEEE 24-bus RTS and a 10-node 

gas network 

 
 
 
 
 
 

systems 

Short-term (day-ahead 

and real-time markets) 

Minimization of the cost 

of power system 

operation 

Minimization of the 

expected total cost 

Minimization of the total 

daily cost 

Maximization of the 

expected profit 

Minimization of the 

expected total cost 

MiXed-Integer Non- 

Linear Programming 

(MINLP) 

Stochastic 

programming 

DC-Optimal Power 

Flow (DCOPF) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

 

Yes 

Yes 

No 

No 

[235] 2020 Power system 6-bus and a modified IEEE 118-bus 

systems 

Short-term (day-ahead) Minimization of the 

weighted sum of costs of 

all scenarios 

Stochastic 

programming 

Yes 

[236] 2020 Power system Modified IEEE 14-bus system Short-term (day-ahead) Minimization of the 

energy generation costs 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

Yes 

[68] 2020 Power system 15-bus test system and 40-bus real 

network (MGs) 

Short-term (day-ahead) Minimization of the 

expected total cost 

A two-stage stochastic No 

optimization 

approach 

[89] 2020 Power and 

district heating 

(distribution 

networks) 

Barry Island system (9-bus power 

grid and a 32-node district heating 

network) 

Short-term (day-ahead) Minimization of the sum 

of energy and reserve 

dispatch costs of CHP 

units 

Robust optimization 

-Linearized DistFlow 

branch model 

Yes 

[90] 2020 Power and 

district heating 

Distributed system (6-bus power 

grid system and 4-node district 

heating network) 

Short-term (day-ahead 

and real-time markets) 

Minimization of the total 

system cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[85] 2020 Power system Large-scale hybrid AC/DC 

transmission grid 

Short-term (day-ahead) Minimization of the total 

generation cost 

MiXed-Integer Linear No 

Programming (MILP) 

[83] 2020 Power and gas 

networks 

IEEE RTS and 6-node natural gas 

system 

Short-term (day-ahead) Minimization of the total 

operation cost 

Improved Alternating 

Direction Method of 

Multipliers (ADMM) 

Yes 

[237] 2020 Power system PJM interconnection (largest 

system operator in North America) 

Short-term (day-ahead) Maximization of the 

social welfare 

Minimization of the total 

operating cost 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

Yes 

[188] 2018 Power system Central Europe Short-term (day-ahead) 

 
[92] 

 
2018 

 
Power system 

 
IEEE RTS – Four case studies 

 
Short-term (day-ahead) 

[53] 2018 Power system Case-study of the Greek power Short-term (day-ahead – 

system 8 days) 

[70] 2019 Power system MG with 12 dispatchable DGs Short-term (day-ahead) 

[67] 2019 Power system A case study with 1000 prosumers Short-term (day-ahead) 

[84] 2019 Power system An isolated power system of Short-term (day-ahead) 

 

[238] 2020 Power system Romanian power system Short-term (day-ahead) 

[239] 2020 Power and Test system with three integrated Short-term (day-ahead) 

 

[232] 2019 Power system IEEE 24-bus test system Short-term (day-ahead) 

[233] 2020 Power system Modified IEEE Reliability Test Short-term (day-ahead) 

[61] 2020 Power system 
System (RTS) — 24-bus system 
6-bus system Short-term (day-ahead) 

[234] 2020 Power system 6-bus and IEEE 118-bus test Short-term (day-ahead) 
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district heating 

electricity and heating systems Minimization of the total 

operating cost 

Robust optimization Yes 

[240] 2020 Power system An industrial consumer in New 

Zealand 

Short-term (monthly – 

half-hour periods) 

Minimization of the 

expected total cost 

MiXed-Integer 

Program (MIP) 

Yes 

[241] 2020       Power system Two case studies Short-term (day-ahead) Maximization of the 

expected profit and 

minimization of the 

expected emissions 

[242] 2020       Power system Central Western European system       Short-term (day-ahead) Minimization of the total 

operating cost 

MiXed-Integer 

Program (MIP) 

 
MiXed-Integer Linear 

Programming (MILP) 

Yes 

 

 
Yes 

[243] 2020 Power system 3-bus system and IEEE 30-bus Short-term (day-ahead) Minimization of the total Optimal Power Flow Yes 

   system  operating cost (OPF)  

 



G.G. Dranka et al. Applied Energy 304 (2021) 117703 

19 

 

 

 
 
 
 
 
 
 

Table A2 

A literature review on short-term co-optimization between electricity and gas networks. 

 
 
 
 
 

generation, and load shedding) 

 
 
 

[93] 2015 Power and 

gas networks 

[96] 2016 Power and 

gas networks 

 
 

Generation company Multiple time 

horizons 

Regional (Illinois system) Short-term 

(day-ahead) 

 
 

Minimization of the total costs 

 
Minimization of the negative social 

welfare (power grid) and 

minimization of the total 

compression cost (natural gas side) 

 
(MINLP) 

MiXed-integer 

Programming (MIP) 

Non-linear 

programming 

 
 

Yes 

Yes 

[244] 2017 Power and 

gas networks 

 

[99] 2018 Power and 

gas networks 

 

[46] 2019 Power and 

gas networks 

[245] 2019 Power and 

gas networks 

 
[246] 2019 Power and 

gas networks 

[95] 2020 Power and 

gas networks 

 
[101] 2020 Power and 

gas networks 

 

[247] 2020 Power and 

gas networks 

[248] 2020 Power and 

gas networks 

[100] 2020 Power and 

gas networks 

[94] 2020 Power and 

gas networks 

Two case studies (6-bus power 

system with a 7-node gas system and 

a modified IEEE 118-bus system with 

a 14-node gas system) 

Two case studies (6-bus power 

system with a 7-node NG system and 

a modified IEEE 118-bus power 

system with a 12-node NG system) 

Modified IEEE 24-bus power system 

with a 10-node NG system 

Modified 24-bus IEEE RTS with a 12- 

NG system 

IEEE-30 bus power system with a 15- 

node natural gas network 

District integrated natural gas and 

power system (IEEE 33-bus 

distributed system) 

6-bus power system with a 6-node 

gas system 

 
IEEE 24-bus power system with a 12- 

node gas network 

IEEE 24-bus RTS system with a 12- 

node NG system 

A system with an ESS, P2G device 

and a gas-fired generator 

IEEE 24-bus RTS system with a 10- 

node natural gas system 

Short-term 

(day-ahead) 

 
Short-term 

(day-ahead) 

 
Short-term 

(day-ahead) 

Short-term 

(day-ahead 

and real-time) 

Short-term 

(day-ahead) 

Short-term 

(day-ahead) 

Short-term 

(day-ahead) 

 
Short-term 

(day-ahead) 

Short-term 

(day-ahead) 

Short-term 

(day-ahead) 

Short-term 

(day-ahead) 

Minimization of the total costs 

 

 
Minimization of the total costs 

 

 
Minimization of the expected 

operation cost 

Minimization of the total expected 

cost 

Minimization of the expected 

operation costs 

Minimize the total costs 

 

Minimization of the total operating 

costs 

 
Minimization of the total costs 

 
Minimization of the total expected 

system cost 

Minimization of the total costs 

 
Minimization of the expected 

operation costs 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

MiXed-Integer Linear 

Programming (MILP) 

 
MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

Nonlinear co- 

optimization 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

Yes 

 

 
Yes 

 

 
Yes 

Yes 

Yes 

Yes 

Yes 

 

 
Yes 

Yes 

No 

Yes 

[249] 2020 Power and 

gas networks 

IEEE 24-bus reliability test system 

with a 12-node gas network 

Short-term 

(day-ahead) 

Minimization of the total costs Second-order  cone 

program 

Yes 

[250] 2020 Power and 

gas networks 

Two case studies (6-bus power 

system with a 7-node NG network 

and IEEE RTS 24-bus system with the 

Belgian NG network). 

Short-term 

(day-ahead) 

Minimization of the total costs MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

Yes 

 

Ref. Year Sector(s) Spatial Resolution Planning 

Horizon 

Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[98] 2008 Power and Great Britain (GB) gas and electricity Short-term (31 Minimization of the combined Non-linear No 
  natural gas network days -daily operational costs (gas supplies, programming  

 

[97] 

 

2011 

networks 

 
Power and 

 

Modified IEEE 118-bus power system 

time step) 

 
Short-term 

storage operation, power 

 
Minimization of the total operating 

 

MiXed-Integer 

 

No 
  gas networks and interstate natural gas pipelines (day-ahead) costs Nonlinear  

      Programming  
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Table A3 

A literature review on short-term co-optimization of Active Distribution Networks (ADNs) and Micro Grids (MGs) between energy and reserve markets. 

Ref. Year Sector(s) Spatial Resolution Planning Horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[104] 2015 Power system Two systems (main grid Short-term (day-ahead) Minimization of the operating MiXed-Integer Linear Yes 

(MGs) 

[105] 2016 Power system 

(electrical and 

thermal 

resources) (MGs) 

and MG) 

Large university campus 

(California) 

costs for the main and the MG 

Short-term (1-hour resolution) Minimization of the total 

operating costs 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

 
Yes 

[251] 2017 Power system, 

cooling/heating 

and hydrogen 

(MGs) 

[252] 2017 Power system 

(MGs) 

Stand-alone MG Short-term (1 year, 1-h 

resolution) 

 
Stand-alone MG Short-term (1 year, 1-h 

resolution) 

Minimization of the total costs 

 

 
Minimization of the total costs 

MiXed-Integer Linear 

Programming  (MILP) 

 
MiXed-Integer Linear 

Programming  (MILP) 

Yes 

 

 
Yes 

[253] 2017 Power system 

(MGs) 

MG with different 

generation and 

consumer units 

Short-term (day-ahead) Minimization of the total 

system cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[103] 2017 Power system 

(MGs) 

MG with three 

generating units and 

one ESS 

Short (24 h) and long-term (6- 

year) 

Minimization of the planning 

cost (long-term) and 

operational costs (short-term) 

MiXed-Integer No 

Nonlinear 

Programming 

(MINLP) 

[254] 2018 Power system 

(MGs) 

 
[109] 2018 Power system 

(ADNs) 

EXisting off-grid mining 

operation (Québec, 

Canada) 

Modified IEEE 33-node 

distribution network 

Short-term (hourly) Minimization of the annualized 

investment cost in DERs 

Short-term (hourly – 1 year) Minimization of the ADN 

operation cost and Distributed 

Energy Storage System (DESS) 

investment cost 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer 

Second-Order-Cone 

Programming 

(MISOCP) 

Yes 

 

Yes 

[108] 2018 Power system 

(ADNs) 

Distribution system Short-term (two typical days) Minimization of the total losses 

or maximization of the total DG, 

EV charging station and ESS 

penetration or a multi-objective 

problem 

Second-Order-Cone 

Programming 

Yes 

[110] 2018 Power system 

(ADNs) 

 
[102] 2018 Hybrid gas/ 

electricity/heat 

network (MGs) 

 
[107] 2019 Power system 

(MGs) 

Modified IEEE 34 and 

123-bus distribution 

test systems 

Modified 13-bus and 

IEEE 30-bus power 

system, 20-node gas 

system and 14-node 

heating network 

Modified 18-bus and 

IEEE 33-bus test system 

Short-term (30 min time-step) Minimization of the repairing 

time and maximization of the 

picked-up loads 

Short-term (24 h) Minimization of load shedding 

and minimization of the total 

investment costs 

 
Short-term (24 h) Minimization of the total costs 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

and Genetic 

Algorithm 

MiXed-Integer 

Nonlinear 

Programming 

(MINLP) 

Yes 

 

Yes 

 
 
 

Yes 

[106] 2020 Power system 

and natural gas 

(MGs) 

IEEE 37-bus distributed 

system and 8-node 

natural gas system 

(Shenzhen  park  – 

China) 

Short-term (day-ahead 

(capacity reconfiguration); 

Intra-day (energy dispatching) 

and real-time (reserve 

balance) 

Minimum loss load rate (1st 

level); Maximum 

comprehensive benefit (2nd 

level) and Minimum reserve 

cost (3rd level) 

Heuristic algorithms 

(chaotic ant colony 

algorithm) 

Yes 

[44] 2020 Power system 

(MGs) 

MG with four thermal 

units and one hydrogen 

energy storage system 

Short-term (day-ahead) Maximization of the profits of 

consumers and MG operator 

Robust optimization Yes 

[111] 2020 Power system 

(ADNs) 

33-bus and a 136-bus 

system 

Short-term (24 h) Maximization of social welfare Quadratic 

Programming (QP) 

Yes 

[255] 2020 Power system 

(ADNs) 

Real distribution 

network (Zhejiang 

Province, China) 

Short-term (24 h – 4 seasons in 

a year) 

Three-level co-optimization YALMIP toolboX Yes 
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A literature review on short-term co-optimization in water-energy-nexus. 

Ref. Year Sector(s) Spatial Resolution Planning 

Horizon 

 
Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[116] 2014 Water- 

energy- 

nexus 

Four power plants, three co- 

production desalination 

facilities and one reverse 

osmosis water plant 

Short-term (day- 

ahead) 

Minimization of the production costs Nonlinear optimization model Yes 

[117] 2014 Water- 

energy- 

nexus 

Three case studies Short-term (real- 

time economic 

dispatch) 

Minimization of the production cost Nonlinear optimization model Yes 

[113] 2017 Water- 

energy- 

nexus 

Greek power system Short-term (one 

year with hourly 

time steps) 

Minimization of the total operating 

cost 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[115] 2017 Water- 

energy- 

nexus 

Multi-stage flash (MSF) 

desalination plants 

Short-term (day- 

ahead) 

Minimization of the produced 

quantities of power and water 

MiXed-integer quadratic 

constrained program 

Yes 

[256] 2018 Water- 

energy- 

nexus 

Isolated freshwater and 

electricity production system 

Short-term (one 

year with a time- 

step of 1/6 h) 

Minimization of the embodied 

energy, Loss of electric Power Supply 

Probability and Loss of hydraulic 

Power Supply Probability 

Genetic algorithm (NSGA-II) Yes 

[257] 2018 Water- 

energy- 

nexus 

Topical case-study system Short-term (day- 

ahead) 

Maximization of the electric energy 

output 

A meta-heuristic evolutionary 

optimization algorithm 

Yes 

[114] 2019 Water- 

energy- 

nexus 

Scenario-based case studies 

(Greater Accra Metropolitan 

Area in Ghana 

Short-term (day- 

ahead) 

Minimization of multi-objective 

(CAPEX, OPEX and GHG emissions) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[258] 2020 Water- 

energy- 

nexus 

[118] 2020 Water- 

energy- 

nexus 

[112] 2020 Water- 

energy- 

nexus 

Water-energy MG Short-term (day- 

ahead) 

Water-energy MG Short-term (day- 

ahead) 

 
Micro water-energy system Short-term (day- 

ahead) 

Minimization of the operating cost of 

the water-energy MG 

Minimization of the daily cost of 

energy in the water-energy MG 

 
Maximization of the overall cost of 

the micro water-energy system 

MiXed-Integer Nonlinear 

Programming (MINLP) 

MiXed-Integer Linear 

Programming (MILP) and 

MiXed-Integer Nonlinear 

Programming (MINLP) 

MiXed-Integer Nonlinear 

Programming (MINLP) 

No 

 

Yes 

 

 
Yes 

 

 
Table A5 

A literature review on short-term co-optimization in multi-energy carriers. 

 
 
 
 

problem 

 

thermal units 

 

 
 

[124] 2018 Integrated heat and 

electricity system 

system) 

Representative heat-electricity system Day-ahead Minimization of the 

total energy cost 

 
MiXed-Integer Conic 

Programming (MICP) 

 
Yes 

[123] 2019 Integrated heat and 

electricity system with 

heat storage 

Model of the city of Aarhus (Denmark) 1-year Minimization of the 

total annual 

investment and 

operational cost 

Linear programming Yes 

 

and 8-node natural gas system) 

 

 
(MINLP) 

Ref. Year Sector(s) Spatial Resolution Planning 

horizon 

Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[45] 2007 Electricity, gas, and Hybrid energy hub n/a Minimization of the Non-linear Yes 

 

[125] 

 

2015 

district heating systems 

 
Integrated heat and 

 

Four case studies 

 

Day-ahead 

total energy costs 

 
Minimizing cost and 

optimization 

 
Deterministic Non- 

 

Yes 

 

[122] 

 

2017 

electricity system 

 
Electricity-heating-gas 

 

Two case studies (System 1: 6-bus power 

 

Day-ahead 

the emissions from 

 
Three objective 

Linear  programming 

 
MiXed-Integer  Linear 

 

Yes 
  system system, 7-node gas system and 4-node heat  functions Programming (MILP)  

   system and System 2: 39-bus power system,     

   20-node gas system and 8-node heat     

 

[120] 2019 Electricity-heating-gas Islanded integrated energy system (8-bus Day-ahead Minimization of the Heuristic particle Yes 

 

[198] 

 

2020 

system 

 
Gas, power, heating, and 

electricity system, 9-node heating system 

 
6-bus power system with a 6-node gas 

 

Day-ahead 

operation costs 

 
Minimization of the 

swarm optimization 

 
MiXed-Integer 

 

Yes 
  water energy sources with network, and water and heat nodes  operational costs Nonlinear  

 

[121] 

 

2020 

different energy storage 

technologies 

Electricity-heating-gas 

 

Integrated energy system (modified 6-bus 

 

Day-ahead 

 

Minimization of the 

Programming 

 
MiXed-Integer 

 

No 
  system electricity system, 30-node heating system  operation costs Nonlinear  

 

[259] 

 

2020 

 

Electricity-heating-gas 

and 6-node natural gas system) 

 
IEEE 24-bus reliability test system, 12-node 

 

Day-ahead 

 

Minimization of the 

Programming 

 
MiXed-Integer 

 

Yes 
  system gas network and a 3-node district heating  operational costs Second-Order Cone  
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Table A6 

A literature review on long-term co-optimization of generation-transmission expansion. 

Ref. Year Sector 

(s) 

Spatial Resolution Planning horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[143] 2010 Power 

sector 

Chilean power system Planning for 2030 Minimization of the total system 

costs 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[260] 2010 Power 

sector 

Portuguese power system 10-year  planning 

horizon 

n/a Optimal Power Flow (OPF) Yes 

[261] 2012 Power 

sector 

[262] 2013 Power 

sector 

Multi-area power system 20-year planning 

horizon 

Chilean power system A single period 

(one-year horizon) 

Minimization of the total system 

costs 

Minimization of the total system 

costs 

MiXed-Integer Programming No 

(MIP) 

MiXed-Integer Linear No 

Programming (MILP) 

[127] 2014 Power 

sector 

Modified 6-bus test system 

and IEEE 24-bus RTS 

Static (single 

period) 

Minimization of the total system 

costs 

MiXed-Integer Linear No 

Programming (MILP) 

[29] 2015 Power 

sector 

[263] 2015 Power 

sector 

Power system with solar PV, 

onshore wind and natural 

gas 

Garver’s siX-bus system and 

IEEE 30-bus system 

Half-year planning 

period 

10-year planning 

horizon 

Load-matching procedure and cost- 

minimizing techniques 

Minimization of the total system 

costs 

Linear programming No 

 

Bender’s Decomposition No 

[141] 2015 Power 

sector 

 

[264] 2015 Power 

sector 

6-bus test system and IEEE 

30-bus system 

 
4-bus and 7-bus test system, 

and a modified IEEE 30-bus 

and 118-bus test system 

20-year planning 

horizon 

 
Static (single 

period) 

Minimization of the total system 

costs 

 
Minimization of the total system 

costs 

MiXed-Integer Nonlinear 

Programming (MINLP) and 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

No 

 

 
Yes 

[265] 2015 Power 

sector 

240-bus network 50-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[147] 2015 Power 

sector 

Association of East Asian 

Nations region 

Planning for 2050 Minimization of the total system 

costs 

Linear programming Yes 

[153] 2016 Power 

sector 

European electricity market 

(33 countries) 

Static and multi- 

year representation 

Maximization of total market 

surplus 

Successive linear 

programming 

Yes 

[154] 2016 Power 

sector 

IEEE 30-bus system 10-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Nonlinear No 

Programming (MINLP) 

[146] 2016 Power 

sector 

IEEE 24-bus RTS system n/a Minimization of the total system 

costs 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[152] 2016 Power 

sector 

Colombian power system 15-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Linear No 

Programming (MILP) 

[126] 2016 Power 

sector 

U.S. Eastern Interconnection 

system 

16-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Programming 

(MIP) 

Yes 

[150] 2016 Power 

sector 

[151] 2017 Power 

sector 

IEEE 30-bus system 5-year planning 

horizon 

Chinese power system 15-year planning 

horizon 

Minimization of the total system 

costs 

Minimization of the total system 

costs 

MiXed-Integer Nonlinear No 

Programming (MINLP) 

MiXed-Integer Nonlinear No 

Programming (MINLP) 

[139] 2017 Power 

sector 

[266] 2017 Power 

sector 

 
[267] 2017 Power 

sector 

 
[137] 2017 Power 

sector 

3-node system and modified 

IEEE 24-bus RTS system 

5-bus test system, IEEE 118- 

bus test system and Chilean 

power system 

3-bus and 6-bus test systems 

and modified IEEE 96-bus 

and 118-bus test systems 

Case study of the U.S. 

Eastern interconnection 

Single-level 

problem 

Static (single 

period) 

Static (single 

period) 

20-year planning 

horizon 

Minimization of the total system 

costs 

Minimization of the total system 

costs 

Minimization of the total social 

costs 

Minimization of the total system 

costs 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming (MILP) 

MiXed-integer bilevel linear 

program (MIBLP) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

Yes 

No 

 

Yes 

[156] 2017 Power 

sector 

WECC 240-bus system Static (single 

period) 

Minimization of the weighted 

average of expected transmission 

and generation costs and their 

conditional value at risk (CVaR) 

Stochastic programming Yes 
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[35] 2018 Power 

sector 

[268] 2018 Power 

sector 

IEEE 24-bus RTS Static model 

(monthly) 

IEEE 118-bus test system Static (single 

period) 

Minimization of the total system 

costs 

Minimization of the total system 

costs 

MiXed-Integer Linear No 

Programming (MILP) 

MiXed-Integer Nonlinear No 

Programming (MINLP) 

[36] 2018 Power 

sector 

Australian National 

Electricity Market 

12-year planning 

horizon (hourly 

resolution) 

Minimization of the total system 

costs 

Genetic algorithm (GA) Yes 

[269] 2018 Power 

sector 

[270] 2018 Power 

sector 

Case of Queensland 

(Australia) 

Two cases (Garver IEEE 

system and IEEE 118-bus 

system) 

14-year planning 

horizon 

25-year planning 

horizon 

Minimization of the expected cost 

 
Three-level problem (i.e. with 3 

objectives) 

MiXed-Integer  Linear 

Programming (MILP) 

MiXed-Integer Linear 

Programming  (MILP) 

Yes 

 
No 

[155] 2018 Power 

sector 

[145] 2018 Power 

sector 

IEEE 24-bus test case 20-year planning 

horizon 

Canadian power sector Static (single 

period) 

Minimization of the total social 

costs 

Minimization of the total system 

costs 

Non-linear model Yes 

 
Linear programming Yes 

[271] 2019 Power IEEE 24-bus RTS and IEEE 15-year planning Minimization of the total system MiXed-Integer Linear No 

  sector 118-bus test systems horizon costs Programming (MILP)  
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Table A6 (continued ) 

 
 
 
 

Western interconnection 

 

 
[134] 2019 Power 

sector 

[144] 2019 Power 

sector 

[148] 2019 Power 

sector 

model (U.S.) 

IEEE 24-bus test system 10-year planning 

horizon 

Chinese power system 38-year planning 

horizon 

German power system Planning for 2030 

and 2050 

 
Minimization of the total system 

costs 

Minimization of the total system 

costs 

Minimization of the total system 

costs 

 
DC-optimal power flow Yes 

 
Linear programming Yes 

 
Linear programming Yes 

[149] 2019 Power 

sector 

28 countries of the European 

Union 

Planning for 2050 Minimization of the total system 

costs 

Linear programming Yes 

[203] 2020 Power 

sector 

Case study of Liberia (sub- 

Saharan Africa) 

n/a Benefit maximization approach 

(maximize the stakeholder’s utility) 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[140] 2020 Power 

sector 

13 U.S. regions 34-year planning 

horizon 

Minimization of the total system 

costs 

Linear optimization No 

[142] 2020 Power 

sector 

6-bus test and IEEE 118-bus 

system 

10-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Linear 

Programming (MILP) 

Yes 

[136] 2020 Power 

sector 

169-bus system 

(representing the North 

American power grid 

20-year planning 

horizon 

Minimization of the total system 

costs 

Linear programming Yes 

[273] 2020 Power 

sector 

CAISO 17-bus data set 10-year planning 

horizon 

Minimization of the total system 

costs 

MiXed-Integer Nonlinear 

Programming (MINLP) 

Yes 

 
 
 

 
Table A7 

A literature review on long-term co-optimization between electricity and gas networks. 

 
 
 
 

costs 

 

costs 

 

costs 

 

horizon 

 

 
infrastructures 

 

horizon 

 

horizon 

 

social welfare 

 

costs 

 

Ref. Year Sector 

(s) 

Spatial Resolution Planning horizon Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[132] 2019 Power 312-bus network 50-year planning Minimization of the total system MiXed-Integer Programming Yes 

 

[272] 

 

2019 

sector 

 
Power 

representing the U.S. 

 
Regional Energy 

horizon 

 
Planning for 2050 

costs 

 
Minimization of the total system 

(MIP) 

 
Linear programming 

 

Yes 

  sector Deployment System (ReEDS)  costs   

 

[274] 2021 Power European power system 1-year planning Minimization of the total annual Linear programming Yes 

  sector  horizon system costs   

 

Ref. Year Sector(s) Spatial Resolution Planning 

Horizon 

Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[275] 2010 Power and natural Simplified Brazilian integrated gas 11-year Minimization of the MiXed-Integer Linear No 

 

[276] 

 

2013 

gas networks 

 
Power and natural 

and electricity system 

 
14-bus electricity system and 20-node 

planning 

horizon 

10-year 

investment and operational 

 
Minimization of the 

Programming (MILP) 

 
MiXed-Integer Nonlinear 

 

No 

 

[277] 

 

2014 

gas networks (at 

distribution level) 

Power and natural 

gas network 

 
Great Britain 

planning 

horizon 

25-year 

investment and operational 

 
Minimization of both 

Programming (MINLP) 

 
MiXed-Integer Linear 

 

No 

 

[278] 

 

2015 

gas networks 

 
Power and natural 

 

Iranian power and NG system 

planning 

horizon 

3 and 6 years 

investment and operational 

 
Minimization of the total 

Programming (MILP) 

 
MiXed-Integer Nonlinear 

 

No 

 

[158] 

 

2015 

gas networks 

 
Power and natural 

 

Modified IEEE 118-bus system with a 

planning 

 
20-year 

costs 

 
Minimization of the 

Programming (MINLP) 

 
MiXed-Integer Linear 

 

Yes 
  gas networks 14-node natural gas system planning interdependent electricity Programming (MILP)  

 

[168] 

 

2015 

 

Power and shale 

 

IEEE 24-bus RTS and a 12-node gas 

horizon 

 
1-year 

and natural gas 

 
Minimization of the 

 

MiXed-Integer Nonlinear 

 

Yes 

 

[40] 

 

2015 

gas networks 

 
Power and natural 

system 

 
Simplified Victorian gas and 

planning 

 
1-year 

investment costs 

 
Maximization of the cost/ 

Programming (MINLP) 

 
MiXed-Integer Nonlinear 

 

Yes 

 

[279] 

 

2015 

gas networks 

 
Power and natural 

electricity networks (Australia) 

 
IEEE 14-bus and a test gas system 

planning 

 
12-year 

benefit ratio 

 
Maximization of the net 

Programming (MINLP) 

 
MiXed-Integer Nonlinear 

 

Yes 

 

[280] 

 

2016 

gas networks 

 
Power and shale 

 

IEEE 24-bus electricity and 15-node 

planning 

horizon 

1-year 

present value (NPV) of the 

 
Minimization of both 

Programming (MINLP) 

 
MiXed-Integer Linear 

 

No 

 

[281] 

 

2016 

gas networks 

 
Power and natural 

NG system (China) 

 
Two systems (6-bus power system 

planning 

horizon 

10-year 

investment and production 

 
Minimization of the 

Programming  (MILP) 

 
Linear  programming 

 

Yes 
  gas networks with a 7-node gas system and a planning investment and operational   

 

[282] 

 

2017 

 

Power and natural 

modified IEEE 118-bus system with a 

 
Modified IEEE-RTS 1979 system and 

horizon 

 
6-year 

costs 

 
Minimization of the 

 

MiXed-Integer Linear 

 

No 

  gas networks a 17-node gas system planning 
horizon 

investment and operational Programming (MILP)  

[163] 2017 Power and natural Argentinian energy system Minimization of the MiXed-Integer Linear No 

  gas networks  operational costs Programming (MILP)  
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14-node gas system) 

 

costs 
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Table A7 (continued ) 

Ref. Year Sector(s) Spatial Resolution Planning 

Horizon 

 
1–3-years 

planning 

horizon 

 
 

Objective Programming/tool Co-optimization 

explicitly 

mentioned? 

[37] 2017 Power and natural 

gas networks 

Western Danish energy and gas 

systems 

9-year 

planning 

horizon 

Minimization of the 

investment and operation 

costs 

MiXed-Integer Nonlinear No 

Programming (MINLP) 

[162] 2017 Power and natural 

gas networks (at 

distribution level) 

IEEE 30-bus and 9-node NG system 10-year 

planning 

horizon 

Minimization of the fiXed 

and operating costs of both 

electricity and NG systems 

Chance Constrained MiXed- No 

Integer Nonlinear 

Programming (MINLP) 

[283] 2017 Power and natural 

gas networks 

10-hub electricity system and 10-hub 

gas network system 

1-year 

planning 

horizon 

Minimization of the 

investment costs 

Integer programming Yes 

[166] 2017 Power and natural 

gas networks 

Great Britain (GB) and Ireland 1-year 

planning 

horizon 

Minimization of the 

operational costs 

Fico’s Xpress Optimisation 

Suite 

Yes 

[164] 2018 Power and natural 

gas networks 

IEEE 30-bus electricity system and 

Belgium gas network 

20-year 

planning 

horizon 

Minimization of the capital 

and operational cost 

Chance constrained MiXed- 

Integer Linear 

Programming (MILP) 

Yes 

[161] 2018 Power and natural 

gas networks 

State of Queensland (Australia) 15-year 

planning 

horizon 

Minimization of the total 

system costs 

MiXed-Integer Linear No 

Programming (MILP) 

[284] 2018 Power and natural 

gas networks 

 

[38] 2018 Power and natural 

gas networks 

 
[285] 2018 Power and natural 

gas networks 

IEEE 30-bus system and Belgian gas 

network 

 
Three case studies (modified 6-bus, 

IEEE 24-bus and IEEE 118-bus 

system) with a 11-node gas network 

Two case studies (modified IEEE 24- 

bus RTS with a 12-node gas system 

and a modified IEEE 118-bus power 

system with the Belgian 20-node NG 

system) 

20-year 

planning 

horizon 

3-year 

planning 

horizon 

10-year 

planning 

horizon 

Minimization of the 

investment and operational 

costs 

Minimization of the 

investment and operational 

costs 

Minimization of the 

investment and operational 

costs 

Chance constrained MiXed- 

Integer Nonlinear 

Programming (MINLP) – 

GAMS 

MiXed-Integer Linear 

Programming  (MILP) 

MiXed-Integer Linear 

Programming  (MILP) 

No 

 

 
No 

 

Yes 

[286] 2018 Power and natural 

gas networks 

 
[165] 2018 Power and natural 

gas networks 

Modified IEEE 118-bus power system 

and a 14-node gas network 

Two case studies (Garver’s siX-bus 

electricity system with a 5-node NG 

network and IEEE 24-bus RTS system 

with the Belgium NG network) 

n/a Minimization of the 

investment and operational 

costs 

n/a Minimization of the 

investment costs 

MiXed-Integer Linear 

Programming  (MILP) 

MiXed-Integer Linear 

Programming  (MILP) 

No 

 

Yes 

 

 
bus system with a 14-node gas system 

 

costs 

 

costs 

 

 
Programming (MILP) 

 

and unsupplied costs 

 
 
 

system – China real case) 

[33] 2019 Power and natural Two case studies (modified Garver 20-year Minimization of the total MiXed-Integer Linear Yes 
  gas networks siX-bus power system with a 7-node planning co-planning cost Programming (MILP)  

 

[39] 

 

2019 

 

Power and natural 

gas system and a modified IEEE 118- 

 
18-node multicarrier system 

horizon 

 
4-year 

 

Minimization of the 

 

MiXed-Integer Linear 

 

No 

 

[287] 

 

2019 

gas networks (at 

distribution level) 

Power and natural 

 

Khorasan province (Iran) 

planning 

horizon 

15-year 

investment and operational 

 
Minimization of the 

Programming (MILP) 

 
MiXed-Integer Nonlinear 

 

No 

 

[157] 

 

2019 

gas networks 

 
Power and natural 

 

26 node integrated gas-electric 

planning 

horizon 

20-year 

investment and operational 

 
Minimization of the 

Programming (MINLP) 

 
MiXed-Integer Nonlinear 

 

Yes 
  gas networks system (Eastern region of the U.S.) planning investment costs, Programming (MINLP) and  

 

[288] 

 

2019 

 

Power and natural 

 

IEEE 24-bus system and Belgium NG 

horizon 

 
1-year 

operational costs, penalties 

and salvage values 

Minimization of the 

MiXed-Integer  Linear 

 
MiXed-Integer  Linear 

 

No 

 

[167] 

 

2020 

gas networks 

 
Power and natural 

test system 

 
Two case studies (modified IEEE 39- 

planning 

horizon 

5-year 

investment, operational 

 
Minimization of the 

Programming  (MILP) 

 
MiXed-Integer  Linear 

 

Yes 
  gas networks bus system with the Belgium 20-node planning investment costs Programming (MILP)  

   gas system and a modified 62-bus horizon    

 

[159] 

 

2020 

 

Power and natural 

system with a 25-node natural gas 

 
Two case studies (Garver 6-bus 

 

5-year 

 

Maximization of the value 

 

MiXed-Integer Nonlinear 

 

No 
  gas networks system with a 8-node natural gas planning of unserved demand in Programming (MINLP)  

  under extreme network and IEEE 24-bus system and horizon both the power grid and NG   

  events 12-node natural gas network)  networks   
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Table A8 

A literature review on long-term co-optimization in Active Distribution Networks (ADNs) and Micro Grids (MGs). 

 
 
 

 
(ADNs) 

 

(MONAA) 

 

(ADNs) 

[290] 2018 Power 

system 

(ADNs) 

 
18-node distribution network 15-year planning 

horizon (3 stages of 

5 years each) 

 
Minimization of the total investment 

and operation cost 

 
YALMIP – Matlab Yes 

[170] 2013 Power 

system 

(MGs) 

[171] 2018 Power 

system 

(MGs) 

MG model 20-year planning 

horizon 

Multiple-MG operation 20-year planning 

horizon 

Minimization of the total planning 

cost 

Minimization of the total costs 

MiXed-Integer 

Programming (MIP) 

MiXed-Integer Nonlinear 

Programming (MINLP) 

Yes 

 

No 

[169] 2017 Power 

system 

(MGs) 

Community MG (State of 

Ohio) 

20-year planning 

horizon 

Minimization of the total annualized 

cost 

GAMS and MATLAB Yes 

 

 
 

Table A9 

A literature review on long-term co-optimization between transmission and storage expansion. 

 
 
 

 
expansion planning 

 

horizon 

 

cost of energy storage. 

 
 
 
 
 
 

 
Table A10 

A literature review on long-term co-optimization between energy and transportation systems. 

Ref. Year Sector(s) Spatial 

Resolution 

Planning horizon Objective Programming/ 

tool 

Co-optimization explicitly 

mentioned? 

[180] 2013 Energy and transportation United States 40-year planning Minimization of the total Linear Yes 

systems 

[181] 2014 Energy and transportation 

systems 

[182] 2015 Energy and transportation 

systems 

horizon 

United States 40-year planning 

horizon 

United States 40-year planning 

horizon 

system costs 

Minimization of the total 

system costs 

Minimization of the total 

system costs 

programming 

Linear 

programming 

Linear 

programming 

 
Yes 

Yes 
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