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A B S T R A C T   

With economic development in the world and growing energy demand, the concept of sustainable energy has 
received more attention from energy planners in different energy sectors. To achieve sustainable energy 
development (SED), appropriate utilization of all types of sustainable energy resources is vital. One further 
requirement for this is the integration of various energy systems in the framework of a multi-energy system 
where all energy system elements have the possibility of synergy with others for minimizing losses and maxi-
mizing the utilization of any availabilities. Further requirements for such a highly yet wisely integrated energy 
system (IES) have recently been specified in the context of smart energy systems (SESs). Smart energy hub (SEH) 
is introduced as a novel concept that provides a distinguished framework to model SESs. The main challenge for 
the modeling of SEH is finding the optimal design/sizing and operation strategy of the system components based 
on the uncertainty of renewable sources, demands, energy market spot prices, etc. Uncertainty modeling assists 
in reaching a realistic optimal approach in the decision-making process and thus is a promising line of future 
research in the modeling of SEH. The main aim of this work is to classify and evaluate the existing methods to 
employ uncertainty in the design, operation, and planning of SEH to reach a better understanding of future 
challenges in this way.   

1. Introduction 

1.1. Opening 

In recent years, the integration of different energy systems with 

multiple energy carriers has been introduced as an inevitable approach 
for addressing the current energy and sustainability challenges [1]. IESs 
can enhance the overall performance and improve resiliency and reli-
ability. In addition, it can provide significant opportunities, such as 
increasing the penetration of renewable energy sources (RESs) and 
preparing a suitable basis for the efficiency enhancement of energy 
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supply and storage units [2]. The tendency to integrate the energy 
networks from the conceptual point of view and the development of the 
required equipment for this integration from the practical point of view 
has caused researchers to pursue novel concepts and frameworks to deal 
with optimal energy management of IESs [3]. In this context, SES and 
SEH have been presented as promising paradigms to manage 
multi-energy systems (MES) [4]. Many researchers have used these 
concepts to operate IESs and shown these can lead to better performance 
than the traditional framework. 

On the other hand, energy systems in real-life applications face many 
uncertainties. The number of uncertain parameters has increased by the 
integration of energy systems and interactions between different sectors 
[5]. Nevertheless, this integration basis can facilitate finding better so-
lutions to deal with uncertainty, if an accurate unified stochastic 
scheduling is applied. Therefore, uncertainty analysis is a key point in 
the decision-making process of smart energy management to give a 
confidence level for decision-makers. This paper reviews uncertainty 
analysis and its challenges in the design, operation, and planning of SEH, 
a local energy system that is equipped energy storage system, the energy 
conversion system as well as connected to renewable energy recourses 
and upstream energy networks to supply local demand. 

1.2. Contributions 

The objective of this paper is to attain a precise perception of SES 
modeling based on the SEH concept as well as to evaluate uncertainty 
impacts in this modeling. SES has been introduced as a promising way to 
reach the goal of 100% green energy in the future and it creates a new 
perspective for the unified operation of MESs. Pierluigi [6] compre-
hensively reviewed MESs from concepts and evaluation model points of 
view. In this work, four types of categorization, including spatial as-
pects, multi-service, multi-fuel, and network perspectives, have been 
defined for a precise investigation of MESs. Thereafter, Nazari et al. [7] 
presented an updated review on MESs integrating electricity, gas, and 
water resources focusing on operation model and performance assess-
ment. Lund et al. [8] explicitly defined the SES concept idea to give a 
scientific basis for the distinction between SESs and smart grids. They 
demonstrated how the SES concept could create an approach to design 
and operate IESs for further sustainability. O’Dwyer et al. [9] reviewed 
smart city challenges considering the SES concept and investigating the 
integration of computational intelligence and machine learning tech-
niques to design and operation of a sustainable smart city. A macro-
scopic view of smart energy, a discussion of SES objectives, and the 
elaboration of combined objectives of the affordable sustainable green 
hub were presented in Ref. [10]. Xu et al. [11] reviewed the literature 
from an optimization point of view for the design and operation of SESs. 
Different optimization models, including single- and multi-objective 
optimizations as well as different optimization algorithms applied to 
solve the designing problem of SESs, were discussed in this reference. 

On the other hand, SEH has also been introduced as a unit where 
multiple energy carriers can be converted to a different type of energy or 
stored for future utilization. Therefore, this concept has provided a 
suitable framework for the modeling of SESs. Several pieces of research 
have been done on this concept studying that from different visions, 
among which there are some review papers that collect and present the 
message of these works in each category in a nutshell. Mohammadi et al. 
[12] comprehensively reviewed different energy hub (EH) concepts and 
models in the literature. EH components were separately identified and 
studied for each of its functionality, including input, storage, conver-
sion, and output. In Ref. [13], the optimal management of SEHs was 
reviewed considering separate applications of EHs in different energy 
consumption sectors, including residential, commercial, industrial, and 
agricultural sectors. Sadeghi et al. [14] did an extensive review on 
expansion energy planning for IESs based on EH concepts in the litera-
ture. The operation and planning of IESs were studied by Ref. [15], 
where the literature was systematically reviewed by considering 
multi-vector energy networks. 

Both SES and SEH concepts have been considered in the literature as 
promising layouts of the future IESs to deal with sustainable energy 
concerns, and different review papers have focused on each of them in 
various aspects. Despite the fact that there is a fundamental convergence 
between these two concepts, however, there is no article comprehen-
sively describing the relationship between these two concepts. Exam-
ining the fundamental and conceptual convergence of these two 
concepts can be very beneficial in the sense that it can create a specific 
and distinctive framework for future research work. Therefore, this 
paper firstly investigates the definition and composition of SESs and 
SEHs to get a comprehensive understanding of them by answering the 
below questions:  

1 What features and properties does an SES have?  
2 What is the necessity of designing modern systems in the SES 

concept?  
3 What are the definition and specifications of an SEH? 

By giving a detailed and in-depth review of the authoritative litera-
ture on the EHs and SEHs, the future trends of optimal management for 
SEHs will be elaborated on in this paper. Therefore, this paper presents a 
novel overview of recent literature on the design, operation, and plan-
ning of SEH. In this context, the following questions are rigorously 
answered:  

1 What are the challenges in the modeling of SEH?  
2 Which of the optimization models are considered more in the 

literature?  
3 Which criteria are considered to optimize SEH? 

Finally, since uncertainty analysis of SEHs can assist the 

Nomenclature 

Indices/Sets 
i Index of random variables 
j Index of output variables 
k Index of sampling 
s Index of scenario 
Ωi Set of random variables 
Ωj Set of output variables 
Ωs Set of scenarios of SBA 
NMCS Total number of MCS samples 
NRV Total number of random variables 

Parameters/Variables 
P Input vector of EH 
L Output vector of EH 
C Converter coupling matrix 
xi Random variable 
yj Output variable 
εMCS Relative error of MCS 
pi Concentration points for random variable in PEM 
ωi Specific weight for random variable in PEM 
ξi Standard location associated with random variable in PEM 
πs Probability of sth scenario in SBA 
bl

i Interval of the lth constraint 
Ul Interval of the uncertain vector  
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compensation of renewable generation fluctuations and may smoothen 
the pathway to 100% green energy, as the main objective of this work, a 
comprehensive review of the uncertainty modeling for the design, 
operation, and planning of SEH is presented. Here the following ques-
tions are focused on being answered:  

1 What are the elements of SEH uncertainty and how much has the 
modeling each of them been addressed in the literature?  

2 Which methods have been employed to model the SEH uncertainty?  
3 Which important areas are there for future research regarding the 

uncertainty modeling of SEHs? 

1.3. Research methodology 

The systematic principle, depicted in Fig. 1, was applied to identify 
the relevant literature for this review. Two approaches were taken to 
identify the relevant literature. Elsevier’s Scopus search engine, as one 
of the largest databases for peer-reviewed literature, has been used 
firstly by mixing various search terms and boolean operators. Since the 
SEH concept was first introduced by Ref. [16] in 2015, the literature and 
works with this content have emerged after that year. Therefore, to 
achieve a more precise search, the limitation of the publishing year has 
been considered from 2016 onwards. The terms contained “smart energy 
system*“, “energy hub*” and “smart energy hub*” have been considered 
for searching in the title, abstract, or keywords as following query string:  

• TITLE-ABS-KEY(“smart energy system*“)AND PUBYEAR >2015  
• TITLE-ABS-KEY(“smart” AND “energy hub*“)AND PUBYEAR >2015 

In the second approach, the works of 10 authors, who had published 
more papers than others in an earlier search, were searched through the 

Google Scholar database and the relevant papers were picked up. Ac-
cording to the mentioned search procedure, 943 papers were identified 
in the identification step. Then, the duplicate papers are removed in the 
filtering step. Moreover, we have only considered research articles and 
review papers published in Elsevier and IEEE journals from 2016 or 
later, leaving out other publications, such as conference articles, books 
& book chapters, as well as letters. Finally, 374 papers remained as the 
output of this step. In the last step, title-abstract-keywords analysis, and 
full-textual analysis, as well as backward and forward search have been 
conducted on the remaining papers to reach the final main database for 
reviewing. 

1.4. Publication analysis 

To analyze the publications gathered by the search methodology, 
two analysis techniques have been carried out in this paper. The first one 
is the citation analysis, in which historic development and recent trends 
would be investigated, and the second method is keyword analysis 
applied to validate the main keywords associated with the eligibility 
step. We used the VOSviewer software, a text mining software to create 
bibliometric maps of scientific fields, in both analysis methods. Fig. 2 
illustrates the number of publications on a year-on-year basis as a bar 
chart over the years, from 2010 to 2021. Moreover, the number of cu-
mulative publications and cumulative citations of these publications are 
also pictured in this figure. As can be seen, the total number of publi-
cations has continuously increased in the last decade and this increment 
has been remarkable in the last 5 years, as the papers published after 
2015 constitute 83%, of all the publications. 

For the selection of the main keywords applied in the eligibility step, 
all the words were extracted from the title and abstract of the publica-
tions based on co-occurrence analyses, and then filtered considering a 
minimum limit of 10 occurrences by a built-in text mining function of 
VOSviewer. Finally, the co-occurrence map for the list of resulted key-
words was generated to better realize their connection. Fig. 3 illustrates 
the network visualization of the co-occurrence map. Moreover, the 
keywords clustering has been demonstrated in this figure. As can be 
seen, three main clusters have been extracted and the keywords such as 
renewable energy, energy storage, demand response, optimization, and 
uncertainty have more overlap with different clusters. Therefore, they 
can be suitable keywords associated with the eligibility step. 

2. Fundamentals 

Each country’s economic growth and development are reflected in its 
per capita energy consumption and consumption patterns [17]. Ac-
cording to the U.S. Energy Information Administration’s report, world 
energy consumption is anticipated to increase by 44% from 2006 to 

Fig. 1. The systematic principle for literature search and review applied in 
this paper. 

Fig. 2. The number of publications, cumulative publications, and cumulative 
citations on a year-on-year basis. 
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2030. On the other hand, Based on the World Energy Outlook 2021 
report [18], the analysis of Net Zero Emissions by 2050 Scenario, which 
is in line with the Paris Agreement objective, i.e., “pursuing efforts to 
limit the temperature increase to 1.5 ◦C′′, shows that global CO2 emis-
sions intensity, respectively, need to drop 56% and 91% below 2020 
levels by 2030, and 2040, to reach net-zero emissions in 2050. To deal 
with these two challenges, the increment of RESs penetration is 
mandatory. Fig. 4 demonstrates the share of different primary energy in 
the historical and predicted power generation in the world. While wind 
and solar have only 9% of the global share today, they are expected to 
supply 56% of the world’s electricity generation by 2050 [19]. However, 
this growth of generation share would be led to increasing power sys-
tems uncertainty and consequently getting harder conventional power 
plant operation, which can negatively affect system security [20]. The 
energy consumption growth and RESs penetration enhancement need 
the development of the energy sector from different points of view based 
on the SED principles [21]. SED causes improving energy system resil-
iency and reliability, increasing energy efficiency, as well as reducing 
CO2 emissions [22]. In this regard, the SES concept has been introduced 

as the most comprehensive definition for the optimal design of future 
IESs based on 100% green energy which can provide a suitable basis for 
achieving SED in the future energy system. 

On the other hand, SEH has been introduced in the literature as an 
upgraded concept from EH, in which intelligent devices are considered 
for creating a bidirectional energy flow between upstream energy net-
works and local energy systems [23]. Regarding the advantages of the 
EH model in multi-energy system modeling, SEH gives a suitable 
framework for the modeling and analysis of SES [24]. Fig. 5 illustrates a 
schematic representation of SES, in which SEH is defined as a subset of 
SES in an overall view. 

On the other hand, SEH needs changes in the energy management 
system to comply with the realities from a policy implication and 
implementation point of view. In this regard, some recommendations, 
such as creating active and adaptive energy networks, providing a 
platform for big data acquisition and processing, and further supporting 
green energy by putting on emission costs, could be considered. By 
providing smart facilities and a competitive environment of the energy 
market, each SEH can be considered as a prosumer through bilateral 

Fig. 3. The network visualization of the co-occurrence map for the list of resulting keywords.  

Fig. 4. Global electricity generation, 1970–2050, Source: Bloomberg New Energy Finance, New Energy Outlook [19].  
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energy exchange. Consideration of the prosumer role for an SEH is more 
achievable when it is defined for a local energy system versus an indi-
vidual energy customer such as a single smart home. Because the inte-
gration of different energy carriers by HECS can provide more energy 
efficiency of the system and its more effective participation in an energy 
market. 

2.1. Smart energy systems (SES) 

Due to the uncertainties and fluctuations of RESs, their penetration 
in global energy systems is still challenging [25]. The SES concept, 
which is centered around a 100% share of RES in IESs, is a strong so-
lution for addressing this challenge. This concept is the outcome of the 
research projects “Coherent Energy and Environmental System Analysis” 
and “Strategic Research Centre for 4th Generation District Heating Tech-
nologies and Systems” [26]. Energy storage systems (ESSs) are one of the 
important parts of SES to give flexibility on the operation of IES to 

increase RES penetration. Moreover, the energy conversion systems 
(ECSs), as another important part of SES, can also improve system 
flexibility by creating a suitable platform to support energy networks to 
each other. Lund et al. [8] deeply investigated how SESs can reflect a 
fundamental change in the future energy systems management’s 
perception to design feasible and affordable solutions. In the literature, 
the SES concept has been applied at different levels from size and spatial 
perspectives [27]. These levels have been defined from buildings [28] to 
commercial or industrial areas [29], and even larger regions such as a 
city or a state [9]. The contribution of the top 10 countries expanding 
this concept in the literature is depicted in Fig. 6. 

2.2. Smart energy hubs (SEH) 

EH is a novel concept for optimal operation and energy management 
of IESs with the aim of sustainable MESs. For the first time, the EH 
concept was introduced by Ref. [30] to investigate combined economic 
dispatch and optimal power flow problems related to multi-energy de-
livery. An EH is a multi-component center with several distributed en-
ergy production, storage, and management units that makes an effective 
interface between stakeholders (including end-users and suppliers) and 
different energy carriers [31]. Many industrial facilities such as indus-
trial parks, big buildings, bounded geographical areas, and islanded 
power systems can be modeled according to the EH foundations [32]. 
The relationship between input and output power in the EH is shown in 
(1) and (2). Where C is the converter coupling matrix, P and L are input 
and output vectors, respectively. 
⎡

⎢
⎢
⎣

Lα
Lβ
⋮
Lω

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

cα,α cβ,α … cω,α
cα,β cβ,β … cω,β
⋮ ⋮ ⋱ ⋮
cα,ω cβ,ω … cω,ω

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Pα
Pβ
⋮
Pω

⎤

⎥
⎥
⎦ (1)  

L=C.P (2) 

Investigation of RESs and smart energy grid technologies such as 
demand response programs (DRP) with the EH has created a new 
concept named SEH. This concept has been presented by Ref. [16] for 

Fig. 5. A general view and schematic representation of SES, considering SEH as its subset.  

Fig. 6. The contribution of the top 10 countries most developing SES in 
the literature. 
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the first time. Moreover, Sheikhi et al. [33] investigated integrated DRP 
on united electricity and gas networks by proposing an ordinal potential 
game with a strictly concave function. Rakipour et al. [34] presented a 
probabilistic optimal operation of an SEH, with the participation of DRP 
in the electrical power and cooling sector. A new model for integrated 
urban energy systems based on the SEH basis was presented by Ref. [35], 
considering decentralized and local energy technologies. Fig. 7 dem-
onstrates the contribution of the top 10 countries expanding the SEH 
concept in the literature. 

A general scheme of an SEH is demonstrated in Fig. 8. As shown in 
this figure, this can be divided into three main parts, including hybrid 
renewable energy source (HRES), hybrid energy conversion system 
(HECS), and hybrid energy storage system (HESS), which are discussed 
in the following sub-sections. 

2.2.1. HRESs 
HRESs can be connected to upstream energy networks or stand-alone 

micro-grids with the aim of decreasing the dependence on fossil fuels. 
They can contain different RESs to generate electricity for local energy 

demand [36]. Depending on nature and geographical conditions, 
different combinations of these sources can be suggested as an ideal 
hybrid system for a specific case. Nevertheless, wind turbines and solar 
energy are particularly popular in most HRES. Furthermore, today, with 
investment in hydrogen production technology and governments’ effort 
to attain an economically feasible solution for employing this energy 
carrier, fuel cells are also getting special importance in HRESs due to 
their high energy conversion efficiency and low environmental impacts 
[37]. 

Hybrid configurations can reduce the uncertainty effect of RESs on 
the power system, while the correlation between these sources is a major 
challenge in their operation. Researchers have done various quite a lot of 
work for optimizing and designing such hybrid systems. Optimal 
scheduling of an HRES based on wind, solar, and biogas has been done 
by Ref. [38] to deal with renewable generation fluctuation, considering 
thermodynamic modeling of a digester to produce the biogas from 
biomass. Table 1 presents a list of HRESs proposed/studied in the 
literature, with a different combination of renewable resources tech-
nologies. As shown in this table, wind turbines and photovoltaic (PV) are 
the most popular renewable energy technologies as well as fuel cells are 
perused more others after them, in the literature. Moreover, in most of 
the references, both environmental and economic assessments have 
been done to reach a sustainable solution. 

2.2.2. HECSs 
Energy conversion technologies are the most important facilities 

used in SEH to integrate different energy networks. For instance, the 
utilization of power-to-gas (P2G) facilities enables natural gas systems to 
consume the redundant electricity energy produced by RESs. Energy and 
exergy analysis is a reliable method for evaluating ECSs, defining the 
“value” of energy from “quantity” and “quality” aspects [52]. Although 
the term HECSs is less commonly used in the literature, it can be defined 
as the part of an SEH in which different energy carriers are converted to 
each other’s forms. The main energy conversion technologies of SEHs 
may be divided into eight general categories of gas to power (G2P), gas 
to heat (G2H), P2G, power to heat (P2H), power to cold (P2C), and heat 
to cold (H2C). Different configurations of HECSs presented in the liter-
ature have been given in Table 2. 

2.2.3. HESSs 
SESs are expected to be highly penetrated by several energy storage 

Fig. 7. The contribution of the top 10 countries developing the literature 
of SEH. 

Fig. 8. General scheme for an SEH with considering a comprehensive structure that presents different SEH’s parts and various energy carriers’ transaction.  
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units in different sectors based on different technologies with the aim of 
increasing higher renewable energy penetration. These storage units 
pave the way for future SESs to be operated in a flexible and cost- 
effective manner [64]. In general, ESSs can be divided into three main 
categories from the perspective of energy exchanges. 1) electrical energy 
storage (EES); 2) gas energy storage (GES); 3) thermal energy storage 
(TES). EES systems are employed to store electricity and have the largest 
share in the world’s energy systems. They can be divided into three main 
categories based on the technologies being used. GES and TES systems 
are employed to store energy carriers in the form of gas and thermal 
energy for later use, respectively. Moreover, these storage systems can 
be used to store excess electrical power generated by renewable sources 
by considering P2G and P2H conversion systems. Fig. 9 demonstrates 
different types of ESSs based on the mentioned categorization. 

HESSs usually consist of two or more energy storage devices used 
together to improve system performance and energy demand and supply 
balance. Cao et al. [65] presented a multi-objective optimal operation of 
SEH, including EES and TES systems, to achieve both environmental and 
economic purposes. A holistic proposal for SEH containing different 
ESSs types for each energy carrier has been given in Ref. [66] for 
resource scheduling problems of real-world cases. A list of HESS pre-
sented in the literature, with different configurations, is provided in 
Table 3. As it is seen, EES and TES have been considered more than GES 
by researchers in the literature. 

3. Optimization challenges 

The optimization problem is a specific and widely used framework 
for the modeling of SEHs. Knowing which kind of optimization model is 
applied is so important to choose the best method for solving the 
problem from a technical point of view. To find an optimal model of 
SEH, there are many challenges, which can be examined from three 

different perspectives, including the type of the proposed optimization 
problem, criteria & objectives, and application. This section describes 
the challenges of SEH modeling in detail, and then reviews the literature 
based on these perspectives. 

3.1. Optimization problem model 

In general, optimization problems are divided into two main types, 
namely convex and non-convex optimization problems. Although most 
problems in the real world are defined as non-convex optimization, re-
searchers are trying to present a definition of the existing problems in a 
convex form. Because, unlike non-convex optimization, we always reach 
a global solution in a convex optimization framework. Moreover, many 
attempts have been made to solve convex optimization with a high de-
gree of hardness, and different novel methods have been presented by 
researchers to deal with this problem. Therefore, this type of optimiza-
tion problem can be so beneficial to reach a convenient result for high 
dimension problems. 

3.1.1. Convex optimization 
Convex optimization problem refers to a kind of mathematical 

optimization problem, in which both the objective functions and the 
solution space are in convex form. Defining or formulating a real 
problem as a convex optimization form can have many benefits. The 
most basic benefit is that the problem can be solved very reliably and 
effectively with high computational efficiency [75]. Moreover, there are 
also theoretical or conceptual benefits such as the dual problem, which 
often has an interesting interpretation in terms of the original problem 
as well as sometimes leads to an efficient or distributed method for 
solving it. The standard form of a convex optimization problem is 
generally defined as follows: 

Table 1 
HRESs with a different combination of renewable resources technologies.  

Ref # 
HRESs 

Application 
Wind Solar Hydro Fuel cell Biogas Tidal 

[39] ✓ ✓     Optimal sizing by techno-enviro-economic assessment for large-scale reverse osmosis desalination application 
[40] ✓ ✓     Stochastic optimal design of an SEH in the generation section 
[41] ✓ ✓ ✓    Optimal operation considering DRP and ESS 
[42]  ✓  ✓   Optimal heat recovery by techno-enviro-economic assessment 
[43] ✓ ✓  ✓   Risk-based optimal operation considering DRP and electric vehicles (EVs) 
[44]  ✓  ✓   Stochastic operation considering load uncertainty 
[45] ✓ ✓  ✓  ✓ Optimal design for HRESs belong different regions of an energy system with remote application 
[46] ✓ ✓  ✓  ✓ Stochastic operation considering ESS 
[47] ✓ ✓    ✓ Optimal operation by enviro-economic assessment for isolated hybrid microgrids 
[48] ✓ ✓  ✓   Optimal design for residential load considering EVs 
[49] ✓ ✓  ✓ ✓  Techno-enviro-economic assessment to reach cost-effective hydrogen production approach for rural application 
[50] ✓ ✓   ✓  Optimal sizing by techno-enviro-economic assessment for supplying rural application 
[51]  ✓   ✓  Optimal design for residential SEH based on building clusters  

Table 2 
HECSs configuration with different energy conversion technologies in the literature.  

Ref # 
HECS 

Application 
G2P G2H P2G P2H P2C H2C 

[53] ✓ ✓  ✓   Reliability assessment of IES considering SEH modeling 
[54] ✓ ✓ ✓ ✓ ✓ ✓ Optimal design and planning of EHs considering DRP 
[55] ✓ ✓ ✓    Stochastic operation of SEH considering the coordinated P2G technology with DRP 
[56] ✓ ✓   ✓ ✓ Stochastic operation of SEH considering wind uncertainty and DRP 
[57] ✓ ✓   ✓  Optimal design and planning of SEH by techno-enviro-economic assessment 
[58] ✓ ✓  ✓ ✓ ✓ Optimal operation of SEH considering DRP and different ESS technologies 
[59] ✓ ✓   ✓ ✓ Stochastic optimal design and operation of SEH considering DRP 
[60] ✓ ✓ ✓  ✓  Energy management of a port energy system through EH modeling considering integrated DRP 
[61]    ✓ ✓ ✓ Optimal operation of regional IES considering DRP 
[62] ✓ ✓  ✓ ✓ ✓ Cooperative energy management of SEH considering electrical and thermal DRP and different ESSs for power, heat, and 

cooling 
[63] ✓ ✓ ✓    Stochastic operation of SEH considering DRP and EVs  
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Min F(X)

Subject to: 

Gk(X) ≤ 0, Hj(X) = 0
X = [x1, x2,…, xn]

(3) 

In which, X is variable vector and xi ∈ Rn is a decision variable. Here, 
the objective function of the optimization problem F : D⫅ Rn→ R should 
be convex. Moreover, the inequality constraints Gk : Rn→R and the 
equality constraints Hj : Rn→R should be convex and affine, respec-
tively. Linear programming (LP), quadratic programming (QP), second- 
order cone programming (SOCP), semi-definite programming (SDP), 
and cone programming (CP) are different types of convex optimization 
problems. In general, each LP problem could be considered as a special 
case of QP problem, which is also a subset of SOCP problem. Moreover, 
SDP problem is a superset of SOCP problem and a subset of CP problem. 
Hence, these problems’ hierarchy could be demonstrated by Fig. 10. 
This figure illustrates a hierarchy of convex programming based on 

comprehensiveness. 
In general, a non-convex problem can be converted into convex 

problems by considering relaxation. But the important thing is that 
simplification does not cause the loss of problem information and does 
not take us away from the definition of the original problem. A novel 
day-ahead optimal scheduling for SEH based on SOCP has been pre-
sented by Ref. [76]. The original problem has been formulated as a 
non-convex optimization problem, and then it has been converted to a 
convex one by applying relaxation. Moreover, the cutting planes tech-
nique has been carried out to improve the accuracy of the relaxation. 
Optimal energy management for operation EVs parking lot (EVs-PL) 
connected to combined heating and power (CHP) unit has been inves-
tigated by Ref. [77]. At first, the original problem is introduced as a 
nonlinear programming (NLP), which minimizes the total energy con-
sumption cost considering flow constraints, CHP unit, and EVs model. 
Then, an equivalent LP model is extracted by using the conventional 
piecewise linearization method to reach the global optimal point. 

3.1.2. Non-convex optimization 
If one of the convex optimization problem conditions is not satisfied, 

the optimization problem is defined in the non-convex form. Due to the 
complexity of IES, most of the proposed models for the design, opera-
tion, and planning of SEH in the literature have been presented as non- 
convex and non-linear optimization. However, solving non-convex 
problems is more difficult than the convex optimization problem, and 
also, there is no guaranty for the global optimality of a non-convex 
problem. Meta-heuristic methods, which may provide a sufficiently 
suitable solution, are employed to solve a non-convex optimization 
problem. A multi-period optimization based on decomposed hybrid 
particle swarm optimization (PSO) and interior-point approach has been 
introduced by Ref. [78] to improve the operation of interconnected EHs. 
The optimal configuration planning and operation strategies for urban 
SEH have been presented by using a two-layered optimization method in 

Fig. 9. The categorizations of different types of ESSs from energy exchanges point of view.  

Table 3 
HESS configuration in the literature. (SO: Stochastic Optimization)  

Ref 
# 

HESS 
SO Application 

EES TES GES 

[25] ✓ ✓ ✓  Optimal operation by the techno-enviro- 
economic assessment 

[38] ✓  ✓  Optimal operation considering digester’s 
thermodynamic modeling 

[43]  ✓ ✓ ✓ Risk-based optimal operation considering 
DRP and EV 

[55] ✓ ✓  ✓ Optimal operation considering the 
coordinated P2G technology with DRPs 

[63] ✓ ✓  ✓ Optimal operation considering DRPs and EVs 
[67] ✓ ✓   Enviro-economic assessment for fuel cell/PV/ 

battery hybrid energy system 
[68] ✓ ✓   Optimal operation by the techno-enviro- 

economic assessment 
[69] ✓ ✓ ✓ ✓ Optimal operation of SEH considering 

integrated DRP and HESS 
[70] ✓ ✓  ✓ Techno-enviro-economic assessment of the 

coordinated operation of regional SES 
[71] ✓ ✓  ✓ Optimal operation of virtual EH system 

considering thermal energy market 
[72] ✓ ✓  ✓ Coordinated operation and power trading for 

CCHP microgrid with the energy market 
[73] ✓ ✓  ✓ Optimal planning considering wind 

uncertainty and DRP 
[74] ✓ ✓  ✓ Optimal planning considering wind 

uncertainty  

Fig. 10. Hierarchy of convex optimization problems based on 
comprehensiveness. 
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Ref. [79]. Considering valve-point effect and prohibited zones for power 
plants, a general non-convex and non-smooth model to reach the eco-
nomic dispatch of EH has been developed by Ref. [80]. Then, a modified 
gravitational search algorithm (GSA) has been presented based on the 
time-varying acceleration coefficient, and its performance has been 
evaluated by implementing it on five benchmark functions as well. 

3.2. Criteria & objectives 

The current literature provides different criteria that can be adapted 
and combined regarding the specific application of a study. Overall, the 
objectives of SEH’s energy management can be divided into three cat-
egories, including technical aspects, economic criteria, and environ-
mental criteria, which are discussed in this section as follows: 

3.2.1. Technical aspects 
Energy analysis: Energy analysis demonstrates how energy is 

employed in different chemical or physical processes, including energy 
transfer or conversion. In the light of this analysis, the energy efficiency 
is extracted for each component of the system as a significant parameter 
for calculating the total energy efficiency of the system. Moreover, in 
order to reach intelligent management for improving the energy effi-
ciency of an SEH, not only the utilization of high-efficiency equipment 
but also coordination of different parts of SEH are required [81]. 

Exergy analysis: Concerning the results of research on energy 
properties, it has been concluded that conventional energy analysis 
assumed from the first law of thermodynamics cannot be so impressive 
for analyzing the energy behavior of an SEH due to the quantity and 
quality attributes of energy [82]. Hence, a new concept, i.e., exergy 
analysis, based on the second law of thermodynamics has been given 
and developed to show the portion of energy that can potentially be 
transformed into some other kind of energy. A novel integrated opti-
mization model has been proposed by Ref. [83] to optimize the SEH 
components capacity and the hourly off-design output by considering 
exergy loss reduction. A new multi-generation IES has also been pre-
sented by Ref. [84] to find the optimal configuration of HRES. The 
evaluation of the proposed system indicates that exergy and energy ef-
ficiencies are 20.16% and 5.46% more than the conventional system, 
respectively. 

Voltage regulation: SEHs can create a suitable basis for improving 
the voltage of the upstream grid network by providing a bilateral energy 
exchange. Zhao et al. [85] presented a two-stage optimization problem 
to reach the optimal operation of IES considering techno-economic 
assessment and voltage regulation. Moreover, a novel model has been 
given by Ref. [86] to find the optimal dispatch of a multi-energy system 
considering the EH concept and data privacy preservation. In the pro-
posed problem, the cost of energy bought from the upstream energy 
network, load shedding cost, energy storage degradation, and voltage 
regulation have been considered as objectives of the proposed problem. 

Congestion management: SEHs can also prevent congestion in an 
upstream power network, by producing electricity through local sour-
ces. A coordinated electrical and thermal DRP has been given by 
Ref. [87] considering congestion management in the distribution power 
network. The proposed smart energy management scheduling reduced 
10% and 14% the operation cost of the EHs and distribution grid, 
respectively. Mohamed et al. [88] proposed optimal scheduling of SEH 
with water, heat, and electricity demand to maximize its profit in a 
day-ahead electricity market and reduce dispatch cost for the power grid 
while taking into account the consequences of line congestions. 

3.2.2. Economic issues 
A novel generalized model for optimal management of SEH has been 

presented by Ref. [89]. System net cost, including energy buying cost 
(EnBC) from the natural gas system and district heating network, as well 
as energy selling income (EnSI) to a power system, has been considered 
as the objective function of the proposed problem. To minimize the 

EnBC for residential areas load, a novel optimization model has been 
introduced by Ref. [90] considering different EH structures. Mog-
haddam et al. [91] introduced a mixed-integer nonlinear programming 
(MINLP) optimization model to maximize the profit of SEH for building 
demands. Economic and environmental analyzes have also been per-
formed by employing HOMER software in Ref. [92] on an SEH that uses 
a diesel and hydrogen backup system. 

When the design or planning of an SEH with a long-term study 
perspective is desired, other economic indexes, such as initial invest-
ment cost (IIC), net present value (NPV), total operation cost (TOC), and 
internal rate of return (IRR), should be applied on the model. Zhu et al. 
[93] presented a novel optimization model to find the optimal design of 
a local SEH for a building application. The proposed problem has been 
given as an MINLP model and it has been solved by GAMS software. 
Considering main and auxiliary EHs for a distributed energy network 
containing electricity, gas, water, and cooling energy carriers, a 
cost-based planning model has been given by Ref. [94] to find the 
optimal energy generation dispatch. 

3.2.3. Environmental issues 
Jinga et al. [95] gave an MINLP model to reach the optimal design of 

an SEH to improve its environmental performance. Considering both 
environmental and economic aspects, scenario-based stochastic 
multi-objective optimization has been given by Ref. [96]. In the pro-
posed model, the uncertainty of system demand, solar generation, and 
energy price has been considered and the Monte Carlo method with 
roulette wheel mechanism has been applied to generate different sce-
narios. Moreover, the correlation between the uncertain parameter of 
the system has been modeled by applying the rank correlation method. 
To reduce carbon emissions, a residential SEH energy model has been 
introduced in Ref. [97] by focusing on integration between thermal and 
electrical sections and considering water heater and heat pump. Optimal 
scheduling for the operation of an SEH has been proposed by Ref. [98] 
with the aim of minimizing purchase energy cost and emission tax cost 
considering EVs and ESSs. 

3.2.4. Reliability aspects 
Other indices which can play a key role in the operation of SEH 

belong to the reliability aspects. There are different indices, such as loss 
of energy expectation (LOEE), loss of load expectation (LOLE), loss of 
power supply probability (LPSP), and equivalent loss factor (ELF), to 
assess the level of system reliability. The optimal configuration of HRES 
has been studied by Ref. [99], considering reliability analysis. To obtain 
preventive maintenance scheduling under different load conditions, a 
two-stage stochastic optimization model has been introduced by 
Ref. [100], considering the random failure risk of each EH equipment. 
Moreover, Ghaffarpour et al. [101] developed a resilient perspective for 
SEH with the water utility. Energy management and water supply pro-
cedure have been studied in both system operation and planning. Reli-
ability assessment of IES under various loads situations has been 
investigated in Ref. [102] by employing the loss of load expectation, the 
loss of load probability, and the expected energy not supplied indexes. 
Moreover, a generalized analytical approach has been given by 
Ref. [103] for the reliability assessment of SEH. Different criteria and 
objectives applied in the literature are listed in Table 4. 

3.3. Optimization problem types for energy management of SEH 

In general, three main categories can be considered for SEH energy 
management optimization. These categories include designing, opera-
tion, and planning. The problems regarding finding optimal sizing and 
configuration of SEHs can be considered in the designing category. 
Moreover, the short-term scheduling and long-term scheduling of SEHs 
are assumed in the operation and planning categories, respectively. It is 
worth noting that SEH’s designing problem is also defined based on a 
long-term perspective. So, it has been considered as a part of planning 
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problems in most research. Therefore, we also consider these two cate-
gories together in this paper. 

3.3.1. SEH designing and planning 
The optimal design of PV and solar thermal collector connected to a 

local IES has been presented by Ref. [109] to supply three building 
types, including hospital, office, and hotel, in seven different climate 
conditions. To reach the optimal sizing, the PSO algorithm has been 
carried out, and the average optimal performance value for each 
building obtained 28.95%, 22.69%, and 28.20%, respectively. Consid-
ering exergy analysis, Boyaghchi et al. [105] presented a new optimi-
zation model to obtain the best design of an SEH connected by HRES, 
including a concentrated PV thermal-geothermal energy system. A novel 
adaptive robust programming model for planning of SEH has been 
presented by Ref. [110] in a non-convex optimization framework and 
the multiple uncertainties of PV, electric loads, and also the effect of 
district heating/cooling network have been investigated in the proposed 
model. Moreover, an optimal planning model of SEH has been given by 
Ref. [111], considering different battery operation strategies. In 
Ref. [112], a novel solution methodology based on the variable-sized 
unimodal searching (VUS) approach was developed to get a global 
optimal point for SEH planning. The problem has been proposed as a 
bi-level optimization model and the uncertainty of load and price have 
been considered on the proposed model. Xiang et al. [113] also pre-
sented a new optimal planning model for an SEH considering 
enviro-economic assessment and price-based DRP. 

3.3.2. SEH operation 
A general model has been proposed by Ref. [114] to optimize the 

operation of an IES for the industrial production process based on the 
SEH concept. Cui et al. [115] investigated the impact of different types 
of modeling for demonstrating the internal equipment of a multi-energy 
grid considering the partial load ratio and constant efficiency model. Li 
et al. [116] presented a Lyapunov optimization-based energy manage-
ment model for real-time operating of SEH by modeling energy storage 
and flexible electric loads as stochastic processes. An innovative meth-
odology to design optimal incentives for paying to residential SEH has 
been given in Ref. [117] with the aim of improving their energy con-
sumption. W. Hou et al. [118] developed a real-time rolling horizon 
chance-constrained optimization model for SEH operation. 

To improve energy management in modern energy networks, DRP is 
used as a suitable tool for system operation. The optimal scheduling of 
an SEH is investigated by applying the time of use (ToU) pricing scheme 
for electrical energy in Ref. [89]. Moreover, An optimal dispatch model 

has been presented by Ref. [119] to operate a regional multi-energy 
system, in which the EH has been modeled as a prosumer. Based on 
simulation results, it has been demonstrated how prosumer modeling 
can assist in improving DRP and shave system peak load. An integrated 
DRP model has been developed in Ref. [120] by proposing a quantitative 
model for the energy-shifting curve of SEHs based on aggregated utility 
curves. 

4. Uncertainty analysis 

Uncertainty analysis has attracted a lot of interest in the contempo-
rary study of decision-making processes in different fields of science. 
Traditionally, most optimization problems have been defined and solved 
in the context of deterministic form based on the predicted value of 
system parameters. The farther the estimated values are from the actual 
values, the farther the answer provided by the deterministic model can 
be from the actual answer. This wrong solution can increase operating 
costs and compromise system security. Therefore, uncertainty analysis 
in complex systems with high uncertainty, such as SES, can be so vital 
for the operators of these systems. 

4.1. Uncertainty analysis from the energy sectors point of view 

In the real world, each energy system faces many various random 
parameters. Generally, the uncertainty sources in the energy system can 
be divided into three main categories. The first category arises from the 
generation section. The generation of RESs is one of the main uncertain 
variables in the generation sector of an energy system. The second one 
belongs to the demand section. Demands are always considered as 
random variables in each energy system. IES faces demand uncertainty 
more than traditional energy systems due to the various existing de-
mands of different energy carriers. The last category can be considered 
for energy prices determined by the energy market sector. 

4.1.1. Generation sector 
A novel operational scheduling approach, based on Mixed-Integer 

Linear Programming (MILP), has been investigated by Ref. [121] for 
SEH’s energy management in the presence of the hydrocarbon natural 
gas system, aiming to mitigate the renewable generation uncertainties. 
Wang et al. [122] gave a novel scenario-based stochastic optimization to 
reach the optimal dispatching of an electricity-hydrogen-gas-heat IES. 
To deal with RES’s uncertainty, a two-stage P2G technology has been 
considered in the proposed model as a technical solution to facilitate the 
integration between the power and gas network. Shahrabi et al. [123] 

Table 4 
Different criteria & objectives applied in the literature (EnA: Energy analysis; ExA: Exergy analysis; VoR: Voltage Regulation; EnBC: Energy Buying Cost; EnSI: Energy 
Selling Income; InC: Investment Cost; O&MC: Operation & Maintenance Cost; EnCr: Environmental Criteria; ReCr: Reliability Criteria).  

Ref # 
Technical Aspects Economic Criteria 

EnCr ReCr 
EnA ExA VoR EnBC EnSI InC O&MC 

[82]  ✓  ✓  ✓ ✓ ✓  
[83]  ✓  ✓    ✓  
[104]  ✓      ✓  
[105] ✓ ✓  ✓ ✓  ✓ ✓  
[85]   ✓ ✓    ✓  
[90]    ✓    ✓  
[91]    ✓ ✓     
[93]    ✓ ✓ ✓ ✓ ✓  
[95]    ✓ ✓  ✓ ✓  
[96]    ✓    ✓  
[99]    ✓   ✓  ✓ 
[106]    ✓ ✓    ✓ 
[100]    ✓   ✓  ✓ 
[101]    ✓   ✓  ✓ 
[107]    ✓ ✓    ✓ 
[108]    ✓ ✓   ✓   

M.A. Lasemi et al.                                                                                                                                                                                                                              



Renewable and Sustainable Energy Reviews 160 (2022) 112320

11

presented an optimal strategy determination approach for hybrid 
solar-wind systems. The proposed problem gives optimal planning and 
scheduling for an EH considering wind and PV uncertainty. However, 
the energy price uncertainty is neglected in the proposed problem. A 
scenario-based stochastic single-objective optimization has been given 
by Ref. [124], considering both renewable energy and energy price 
uncertainties. The scenario generation is done using the Monte Carlo 
method based on the historical data of random parameters, and then the 
k-means algorithm is employed to reduce the scenarios. Senemar et al. 
[125] proposed a dynamic structural sizing planning of residential SEH 
considering PV system uncertainty. 

4.1.2. Demand sector 
Electricity, gas, and heat have been considered as main energy car-

riers for the EH definition, and some other carriers, such as water, have 
been neglected in the literature. Nevertheless, The management of water 
consumption, besides other energy carriers, has been investigated by 
Refs. [126,127]. The proposed model in Ref. [127] has been given a 
stochastic enviro-economic multi-objective energy management to 
evaluate the role of energy storage on the EH operation. Moreover, Yan 
et al. [128] and Wang et al. [56] considered cooling load uncertainty for 
optimizing the energy management of an EH. Hydrogen is another en-
ergy carrier that is being cited as one of the most promising energy 
carriers in future energy systems due to its outstanding features in 
storage. Mansour et al. [129] introduced a hydrogen-based SEH, in 
which the hub operator employs integrated DRP for electricity, gas, 
heat, and hydrogen demand. Tri-objective optimal energy management 
for SEH has been investigated by Ref. [130] with the aim of DRP 
implementation. Integrated DRP for SEH with electric, heat, and cooling 
load has been presented by Ref. [131] considering operational risk and 
system economy using Markowitz mean-variance theory. The proposed 
problem is introduced as a stochastic multi-objective optimization 
problem and the lithium battery aging model is considered as problem 
constrained as well. Yuan et al. [132] studied the performance of P2G 
technologies with gas storage capability on increasing renewable gen-
eration penetration in SEH. They have also proposed stochastic sched-
uling of SEH considering integrated DRP for electric, heat, and gas load. 

4.1.3. Energy market sector 
The synergy created by SEHs through the integration of different 

energy networks can assist to reduce the uncertainty effects and stable 
the market energy price. A cooperative trading framework for IES has 
been given by Ref. [133] as an MINLP model using cooperative game 
theory. In the proposed model, uncertainties in energy price and con-
sumer demand, as well as cooperative trading framework risk, were 
investigated. In Ref. [134], a bi-level stochastic programming problem 
model has been defined for operating EHs. Uncertainty was given in 
electricity demands, pool prices, and the electricity prices offered by the 
rival managers. Besides, the proposed bi-level nonlinear stochastic 
program was transformed into an equivalent linear single-level one, 
using the KKT optimality conditions and the strong duality condition. A 
multi-leader and multi-follower game model has been represented by 
Ref. [135] to investigate the interaction between energy retailers and 
consumers in a multicarrier energy system. Najafi et al. [136] gave a 
robust optimal operation for SEH considering market price uncertainty. 
Moreover, an innovated bi-level mathematical model has been proposed 
by Ref. [137] to analyze integrated energy system management from the 
viewpoint of a deregulated market. 

4.2. Uncertainty analysis methods 

The traditional and deterministic approaches to energy system 
optimization cannot satisfy uncertainties associated with these systems 
in a realistic manner. Therefore, diverse uncertainty modeling tech-
niques to optimize SEH with random variables have been employed by 
researchers so far. In the rest of this part, these techniques have been 

comprehensively described by giving their advantages and disadvan-
tages, and literature has been reviewed based on them. 

4.2.1. Probabilistic procedure 
Probabilistic procedures are one of the most widely used approaches 

for modeling the uncertainty of IES. These procedures are carried out by 
using the probability distributions of the system’s random variables. 
There are three main methods consist of Monte Carlo simulation (MCS), 
point estimate method (PEM), and scenario-based approach (SBA). 

Monte Carlo simulation: Considering the repeated random sam-
pling for random variables, the MCS approach estimates a range of 
possible system outcomes which may happen. In this method, a sample 
for each random variable would be generated based on its probability 
density function (PDF). Then, the output variable yj should be calculated 
by (4), in which fj(.) represents the system model and xk

i is random 
parameter i for sample k. This process should be repeated until reaching 
stopping criteria. Then, the outcomes obtained in different iterations for 
system outputs are analyzed by applying a histogram graph and statis-
tical criteria such as mean and variance presented by (5) and (6) [138]. 

yj(k) = fj
(
xk1, x

k
2,…, xki ,…, xkn

)
; ∀j ∈ Ωj (4)  

E
(
yj(n)

)
=

1
n
∑n

k=1
yj(k) (5)  
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(
yj(n)

)
=

1
n
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(
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)2
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(
E
(
yj(n)
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Many repetitions should be done to reach a suitable answer. The 
relative error of this method is calculated by (7), in which NMCS and NRV 

are the total number of MCS samples and the total number of system 
random variables, respectively [138]. 
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1
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)

E
(
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⃒
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⃒
⃒
× 100[%] (7) 

Point estimate method: This method works based on the concept of 
moments of the random variable. Unlike the MCS, this approach is a 
computationally efficient method with a predetermined lower number 
of samples. Considering k concentration points (pi,k) and a specific 
weight (ωi,k) for each uncertain parameter, the information about the 
uncertainty of system outputs can be extracted. This information only 
includes mean and standard deviation, and the PDF shape of system 
outputs cannot be provided by this method. For each concentration 
point, one evaluation is carried out, in which other random parameters 
should be considered by their mean value. Here, similar to MCS, the 
deterministic manner is used to evaluate system outcomes for each 
evaluation. The two-point estimate method is presented by considering 
k = 2. The concentration points associated with the random parameters 
are calculated as follows [139]: 

pi,k = μi + ξi,kσi; k = 1, 2 ∀i ∈ Ωi (8) 

In which, μi and σi are the mean and standard deviation of the 
random parameter xi, respectively. Moreover, ξi,k is a standard location 
associated with xi, which can be calculated by (9) through the PDF 
skewness λi,3 of random parameter xi. The specific weight for pi,k can be 
calculated by (10) [139]. 

ξi,k =
λi,3
2

− (− 1)k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m+

(
λi,3
2

)2
√

; k= 1, 2 ∀i ∈ Ωi (9)  

ωi,k =(− 1)k
1
m

ξi,2
ξi,1 − ξi,2

; k= 1, 2 ∀i ∈ Ωi (10) 

After determining pi,k and ωi,k, evaluation section is done for each 
random variable set as follows: 
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yj(k) = fj
(
μ1, μ2,…, pi,k,…, μn

)
; k= 1, 2 ∀j ∈ Ωj (11) 

Finally, the mean and variance of system outputs can be computed as 
follows: 
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Scenario-based approach: This method is so popular in the energy 
management of SEH. In this approach, a limited set of scenarios with 
more probability are selected for uncertainty analysis. If this set is not 
available, it could be created by using the PDF of each random variable. 
To this end, many scenarios would be generated in the first step, and 
then the number of scenarios would be decreased by using the scenario 
reduction techniques. The expected value of the system outcome is 
computed by (14). In which, πs is the probability of sth scenario of 
selected set Xs. 

y=
∑

sεΩs

πs × f (Xs) (14)  

∑

sεΩs

πs = 1 (15) 

The number of works in the literature, which have applied the 
probabilistic approach from 2016 to 2021, is pictured in Fig. 11. 
Moreover, detailed information about these works is presented in 
Table 5. 

4.2.2. Possibilistic approach 
The possibility approach is considered for the quantification of un-

certainties with imprecise probabilities. It is derived from fuzzy sets 
theory, and it has a simpler implementation than the probabilistic 
approach. In this approach, for each random variable, a possibility 
distribution is used to model the epistemic uncertainty. The possibility 
distribution determines that how much each element x of the universe of 
discourse U belongs to X [171]. Depending on the application, various 
membership functions may be used to formulate the degree of mem-
bership of a particular uncertainty parameter [172]. In this context, 
Mohammadi et al. [173] proposed a fuzzy-based scheduling model to 
deal with multiple uncertainties in the optimal operation of the 
wind-integrated IES. The EH concept is carried out to model the pro-
posed IES, and different reliability criteria, including the loss factor and 
the loss of energy expected, are attended to guarantee a reliable system 
operation. 

4.2.3. Robust optimization (RO) 
RO is a novel method for SEH planning and operation in the face of 

uncertainty. Unlike SP, no unique probability distributions for the 
random variables are needed. This can be seen as a benefit since prob-
ability distributions are often uncertain or difficult to obtain. When new 
uncertainty occurs, there isn’t always enough prior data to model 
probability distributions. Making a mistake when calculating probabil-
ity distributions can have disastrous consequences. In such cases, RO is 
the most preferred method to model system uncertainty. However, RO 

has the disadvantage of being too conservative in its results. In this 
method, the future uncertainty of the random parameter is presented as 
a lower and upper bound interval and the problem is often given as a 
two-stage min-max optimization problem with outer-inner structure as 
follows [174]: 

Min F(X)

Subject to: 

Hj(X) = max
c∈C

c
C1 ≤ C ≤ C2

(16) 

In which, X is the decision variable vector and c is the random var-
iables of the RO model. C1 and C2 are also lower and upper bound of 
uncertainty, respectively. In this form, the two-stage min-max optimi-
zation problem could be transferred to a one-stage optimization problem 
through the dual approach by converting the inner maximization 
problem to the dual problem [174]. To describe the multi-energy carrier 
system uncertainties, an adaptive robust integrated bidding strategy has 
been presented in Ref. [175] for the EH participating in day-ahead en-
ergy markets. The proposed model has been designed as a min-max-min 
problem in the sense of adaptive RO, and it was solved using a new 
approach that included a post-event evaluation, primal cutting planes, 
duality theory, as well as bi-level decomposition. Distributionally RO 
(DRO) has been recently established as an arbitrator method to diminish 
the gap between stochastic programming’s precision and traditional RO 
by unifying accessible distribution data, such as expected value, vari-
ance, and covariance, into the ambiguity set of random parameters. 
Thus, the result is robust to all possible states in the ambiguity set of 
problems based on probability distributions of the random parameter. In 
this context, Zhou et al. [176] gave a co-optimization of energy and 
reserve scheduling for IES in the presence of RES as well as ambient 
temperature uncertainty by applying the DRO approach. This study 
showed how employing more statistical data can be affected on the 
optimal robust solution. The robust procedures applied in the literature 
for modeling different uncertainties are listed in Table 6. 

4.2.4. Information gap decision theory (IGDT) 
IGDT is proposed as a clear, non-probabilistic, and exact risk-hedging 

decision-making portfolio to reliably preserve system robust output in 
the face of associated extreme uncertainty margins while the necessary 
data is missing or not informative. The ability to accurately model the 
difference between what is known and what is supposed to be known is 
at the heart of the IGDT uncertainty handling paradigm [192]. The 
major difference between IGDT and RO is their inputs, which distin-
guishes them significantly in various applications. The desired value of 
the cost function (the value that should be ensured) is the input of the 
IGDT-based system, while the boundaries of the confidence interval (the 
interval within which the actual pool price intends to fall) are the input 
of the RO. In this regard, RO belongs to the performance-enhancing 
category, while IGDT relates to the performance satisfying category 
[193]. Generally, in RO, the guaranteed profit can be determined by the 
user by determining the boundaries of the uncertain parameters; how-
ever, in the IGDT-based approach, the user should set the guaranteed 
profit (the desired profit) and the maximum length of the confidence 
interval is computed. Therefore, IGDT can be more understandable and 

Fig. 11. The number of literature which has applied the probabilistic approach from 2016 to 2021.  
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user-friendly than RO, since from a financial viewpoint, working with a 
consumer’s benefit as input is more perceptible than the financial 
boundary of price uncertainty. Furthermore, IGDT can be expanded to 
opportunistic optimization, which is infeasible with RO optimization. 

4.2.5. Interval analysis 
Interval analysis is one of the useful alternatives for coping with 

uncertainties. In this approach, the lower and upper bounds are the only 
data accessible for random parameters. Wang et al. [194] applied in-
terval analysis to interval mathematical programming. Without the need 
for precise probability distribution details, interval mathematics-based 
optimization can tackle uncertainties through interval numbers. It im-
proves output bounds taking into account input intervals with a 
reasonable computational time [195]. It has already been used to 
calculate power flow boundary estimation with parameter uncertainties. 
A nonlinear optimization based on interval analysis can be mathemati-
cally expressed by (17) and (18); in which, U is the uncertain vector 
represented by interval numbers, as well as, bl

i and Ul are the interval of 
the constraints and uncertain vector, respectively [195]. 

min
X
f (X,U) (17)  

s.t. gi(X,U)≥ bli =
[
b−i , b

+
i

]
, U ∈Ul = [U− ,U+] (18)  

4.2.6. Hybrid approach 
A hybrid robust scenario-based model (HRSM) has been given by 

Ref. [196] for achieving optimal scheduling of SEH to participate in a 
multi-energy market. The proposed problem presents both environ-
mental and economical solutions by considering EVs-PL, P2G technol-
ogy, thermal and electrical energy storage, and DR programing. The 

obtained results have shown the emission and total energy costs are 
decreased by up to 2.36% and 3.51%, respectively. Moreover, Nosra-
tabadi et al. [197] investigated the effect of CHP modeling on the 
planning of SEH. The convexity principle with triple operational zones 
for the CHP nonlinear model was presented in the proposed EH model. 
Finally, the SEH planning model has been given as a hybrid robust/-
stochastic optimization problem in the frame of HRSM. Jamalzadeh 
et al. [198] also presented a new model for the operation of SEH 
considering integrated DRP and using a hybrid stochastic/interval 
optimization approach. 

4.2.7. Comparison of different uncertainty modeling methods 
As discussed in this section, there are different uncertainty modeling 

methodologies. Nevertheless, an appropriate technique should be cho-
sen based on the type of problem under consideration, the type of 
random variables, and information as well as historical data availability. 
In this regard, the recommendations in the literature identify indicators 
such as accuracy, execution time, and complexity of the method to select 
the best methodology for uncertainty representation. Thus, each method 
could be evaluated through these indicators considering its attributes 
and limits. For instance, the MCS needs a significant number of scenarios 
to reach the accurate uncertainties representation and this issue leads to 
computational intractability in long-term planning problems of SEH. On 
the other hand, PEM also suffers from the computing burden for the 
problem with high random variables, but it is the easiest method for 
correlation modeling. In the meantime, although the SBA is an accept-
able option for the high-dimensional problem, its accuracy is highly 
dependent on the availability of precise historical data of random vari-
ables as well as the type of scenario generation. A summary of the 
characteristics of the uncertainty techniques, as well as their merits and 

Table 5 
The probabilistic procedure applied in the literature.  

Ref # Meth. 
Random variables 

Problem under consideration 
Wind PV Load EV Price 

[140] MCS  ✓ ✓ ✓  Optimal operation of a residential EH 
[141] MCS ✓ ✓ ✓  ✓ Optimal operation considering decentralized heat pumps 
[142] MCS  ✓ ✓   Optimal operation of a residential EH considering DRP 
[143] MCS ✓  ✓   Multi-objective operation problem by techno-enviro-economic assessment through peak load management 
[144] MCS ✓ ✓    Strategic behavior of IES players in energy markets by proposing bi-level optimization model 
[145] MCS ✓  ✓  ✓ Optimal planning by techno-enviro-economic assessment considering DR 
[146] PEM   ✓   Probabilistic energy flow for IES considering EH concept 
[147] PEM   ✓  ✓ MINLP model for optimal operation considering IDR 
[148] PEM ✓ ✓  ✓  Energy management of an island by proposing a smart water-EH model 
[149] SBA ✓ ✓ ✓  ✓ Optimal energy management by considering different energy markets 
[150] SBA ✓ ✓   ✓ Optimal operation considering ice ESS 
[151] SBA  ✓ ✓   Optimal planning considering DRP 
[152] SBA ✓    ✓ Stochastic day-ahead scheduling in the presence of gas ESS 
[153] SBA ✓  ✓  ✓ Risk-based stochastic scheduling considering heat market and thermal DR 
[154] SBA ✓ ✓ ✓   Probabilistic energy flow for IES considering EH concept 
[155] SBA ✓  ✓   Risk-based stochastic scheduling considering DR and compressed air ESS 
[156] SBA ✓ ✓ ✓ ✓ ✓ Optimal scheduling of IES considering multiple downward EHs 
[157] SBA ✓ ✓ ✓ ✓ ✓ Coordinated energy management of IES in the presence of EVs 
[158] SBA ✓ ✓    Stochastic operation considering different configurations for EHs and N-1 contingency model 
[159] SBA ✓ ✓ ✓   A two-stage stochastic optimization model considering power system and gas network security constraints and DR for heat 

and electric energy carrier 
[160] SBA   ✓   Proposing a MILP model to calculate the market equilibrium for IES with SEH 
[161] SBA ✓ ✓    Optimal operation of neighboring multi-carrier smart buildings by techno-enviro-economic assessment considering DR 

program 
[162] SBA ✓  ✓   MILP model for the cost and risk-constrained scheduling of SEH 
[163] SBA  ✓ ✓  ✓ Optimal designing of EH by techno-enviro-economic assessment considering DR 
[164] SBA   ✓  ✓ Stochastic scheduling of SEH operation using CVaR 
[165] SBA ✓ ✓ ✓  ✓ Optimal scheduling of IES considering multiple downward EHs 
[166] SBA ✓ ✓ ✓ ✓ ✓ Optimal operation using the risk-averse approach 
[167] SBA ✓ ✓ ✓  ✓ Optimal operation by techno-enviro-economic assessment considering IDR 
[168] SBA  ✓ ✓   Optimal operation using the branch-and-bound approach 
[169] SBA ✓  ✓   Optimal operation considering DR using a Benders decomposition approach 
[170] SBA ✓    ✓ Optimal bidding strategy for SEH in the competitive energy market  
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demerits, is listed in Table 7. As can be seen, there is no single best way 
to deal with SEH uncertainty, and each can be useful for some specific 
cases. 

5. Discussion for future trends and limits 

As discussed, the necessity of energy system integration based on the 
principles dictated by the SEH concept has been highlighted by many 
researchers. A lot of studies have been conducted on the modeling of 
SEHs to increase the energy efficiency of existing IES based on the SES 
concept in recent years. However, the literature for the modeling of SEH 
is still in its early stage and quite immature. Many problems and chal-
lenges still exist in this context. For a better understanding of how 
different elements for SEH modeling are taken care of, a Sankey diagram 
of elements participation from the perspective of the optimization 
problem is depicted in Fig. 12. Moreover, a word cloud chart of 
important keywords employed in literature for SEH modeling is illus-
trated in Fig. 13. 

These two figures give us further information and a clearer picture of 
the challenges in the modeling problems of SEHs. Considering this in-
formation, the potential future research and trends in this framework 
can be summarized as follows:  

• Correlation Analysis: Considering the quick development of the 
SEH studies, more attention to uncertainty analysis in the modeling 
of SEH would happen in the future. There are many uncertain vari-
ables in SEHs, where the correlation between these random variables 
can affect the system’s operation. Temporal and spatial correlations 
of wind-PV, wind-load, and PV-load, as well as wind-PVload, can be 
considered as correlated uncertain parameters of SEHs. Although the 
uncertainty model of each of these parameters has been taken into 
account separately, correlation modeling of them is still novel.  

• Convex Optimization: More applications of convex optimization in 
the design, operation, and planning of SEHs are expected to be 
identified in the future. Recognizing or proposing a problem in the 
frame of a convex optimization model has major advantages. It offers 
a reliable solution with high efficiency and fast response, which can 
be very effective for long-term studies. Not only does non-convex 
optimization not always provides a reliable solution, but it may 
not converge to any feasible solutions in problems with high di-
mensions and complexity. As seen in Fig. 12, the operation problem 
for a short-term schedule is more addressed than designing and 
planning problems with a long-term schedule. Therefore, the convex 
model can be so convenient for designing and long-term planning of 
SEHs. 

Table 6 
The robust procedure applied in the literature.  

Ref # Meth. 
Random Variables 

Problem under consideration 
Wind PV Load EV Price 

[174] RO  ✓ ✓  ✓ Optimal operation of multi-energy microgrids 
[177] RO  ✓ ✓   Optimal operation considering by enviro-economic assessment 
[178] RO  ✓ ✓   Stochastic energy scheduling of EH considering different time resolutions 
[179] RO ✓ ✓ ✓   Optimal operation considering P2G technology and DRPs 
[180] RO   ✓  ✓ Optimal operation considering flexible ramping products 
[181] RO    ✓ ✓ Optimal operation of community EH 
[182] RO ✓ ✓   ✓ Optimal scheduling for coordinated operation of IES considering DRP 
[183] RO ✓  ✓   Optimal operation considering by techno-enviro-economic assessment 
[184] RO ✓ ✓ ✓   Optimal operation considering integrated demand response 
[185] RO ✓ ✓ ✓ ✓  Energy management of SEH considering EVs, DRP, and compressed air energy storage system 
[186] RO ✓  ✓   Capacity planning of IES considering DRP and user’s thermal comfort 
[187] RO  ✓ ✓   Optimal operation of IES considering by techno-enviro-economic assessment 
[188] RO  ✓    Optimal operation and planning of EH considering precise energy storage economic model 
[189] DRO     ✓ Optimal operation of IES 
[190] DRO  ✓    Two-stage DRO for SEH operation 
[176] DRO ✓ ✓    Energy and reserve management for IES 
[191] DRO ✓ ✓    Unit commitment in IES considering by multiple EHs  

Table 7 
A summary of the characteristics of the uncertainty techniques, and their merits and demerits.  

Techniques Analysis principle Advantages Shortcomings 

MCS Simulation-based approach High accuracy by simulation of real state; the 
correlation between the random variables can be 

modeled 

Time-consuming; requires exact information about PDF of random 
variables 

PEM Analytical approach through 
PDF approximation 

Fast; good accuracy; the correlation between the 
random variables can be modeled 

Does not present output variable PDF; execution time depends on the 
number of random variables; requires exact information about PDF of 

random variables 
SBA Scenario-based approach Fast; good accuracy; the correlation between the 

random variables can be modeled. 
Does not present output variable PDF; execution time depends on the 

number of scenarios 
Possibilistic Applying fuzzy membership 

function 
Useful when the historical data is not perfect; it can 

extract numerical values from the defective 
information 

Time-consuming; the correlation between the random variables cannot 
be considered 

RO Uncertainty representation by 
using uncertainty sets 

Useful when there is no information about the PDF of 
random variables and just uncertainty set exists 

Correlation between the random variables cannot be considered; difficult 
to use in nonlinear problems 

IGDT Uncertainty representation by 
using forecasted values 

Useful for overcoming the SEH uncertainty with 
severe random variables 

High complexity 

Interval Uncertainty representation by 
using interval bounds 

Useful when just an interval bound of the random 
variable exists 

Correlation between the random variables cannot be considered; Difficult 
to use in nonlinear problems 

Hybrid Applying both probabilistic 
and possibilistic approach 

Can model the real-world conditions when we have 
not perfect historical data for some of the random 

variables 

Time-consuming; High complexity  
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Integrated Demand Response: Integrated demand response can be 
one of the important advantages of SEHs. Compared to traditional 
DRP, which is applied to each energy system separately, integrated 
demand response gives more opportunities to cost reduction and 
energy saving [16]. In this context, not only the load shifting is 
carried out on the temporal dimension, but it can also be examined in 
terms of energy dimension, which means that energy demands can be 
converted into other forms considering the energy converters 
equipment located in the SEHs. Although this has been recently 
considered by researchers, more studies are expected to be done on it 
in the future. 
Comprehensive Energy Market: In contrast to regulated markets, 
energy trade monopolies and the formation of unified ownership of 
the energy network are prevented in deregulated markets. The en-
ergy market is often referred to as the electricity market but can also 
be considered for other energy carriers. Considering a comprehen-
sive energy market consisting of different energy sectors in the 
context of an IES can create new and premier opportunities to 

achieve sustainable energy goals. Although many studies have been 
conducted to develop the electricity market and overcome the 
challenges in this market, considering the role of SEH in a compre-
hensive energy market is still missing. Considering the correlation of 
different energy prices with each other and their effects on the SEH 
operation and planning, as well as the role of the SEH as a prosumer 
in the energy market, can be some of the interesting trends for future 
work. 
Hydrogen: Hydrogen is a clean and abundant natural source, which 
is considered an emerging energy carrier. It can be used as a 
renewable fuel for future energy systems and plays a key role in 
energy management. As can be seen from Fig. 13, this energy carrier 
has been less studied in the literature than other energy carriers, such 
as electricity, gas, heat, etc. The high cost of hydrogen production 
from renewable sources has remained the most difficult aspect of 
supplying this energy carrier. However, as mentioned, it is consid-
ered one of the most important energy sources in future energy 
networks, especially in the transportation sector. There is a massive 
amount of funding, especially in Europe, coming on the relevant 
research topics of hydrogen, i.e., Power-to-X technologies, including 
hydrogen generation, hydrogen storage, hydrogen processing for 
sub-products and fuels, etc. Therefore, further studies on the inte-
gration of this energy carrier in the IES must be and will be accom-
plished very soon. 
Data-driven: SEH Modeling and anticipating system uncertainties 
would benefit from data-driven science, which is an interdisciplinary 
field of scientific approaches for extracting knowledge from data. 
Therefore, data-driven-based methods and machine learning appli-
cations would be considered as other floors for future research. 

6. Conclusion 

In this paper, we have examined the SEH and SES concepts and the 
various challenges in the modeling of SEH have been reviewed. The 
systematic principle has been taken to find the relevant literature for this 
review and then a thorough technical review was accomplished on the 
selected literature. Moreover, the current research trends on the appli-
cation of the SEH concept for modeling IES in the literature have been 
investigated by keyword and citation analysis through VOSviewer 
software. A comprehensive definition for SEH has been then rendered 

Fig. 12. The Sankey diagram of SES modeling structure based on the SEH framework in literature from optimization problem elements point of view.  

Fig. 13. Wordcloud chart of important keywords employed in literature for 
modeling SES. 
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and the different configurations presented by researchers in the litera-
ture were reviewed. Moreover, the optimization challenges of SEH 
modeling have been discussed in detail and the important findings of 
recent literature on the modeling of SEH from design, operation, and 
planning points of view have been summarized. Different uncertainty 
methods have been described by giving their merits and demerits and 
aspects of uncertainty modeling based on existing methods were 
critiqued. It was found that modeling of uncertainty based on RO and 
scenario-based stochastic optimization are the most popular ones for 
SEH modeling in the most recent research pieces of the literature. The 
robust approach would give the more suitable solution for a risk-averse 
decision-maker due to worst-case scenario consideration, while a 
probabilistic approach could present the more suitable solution for a 
risk-neutral decision-maker, considering all scenarios with equal prob-
abilities. The data-driven based analysis has been performed on the 
collected literature and the results showed some gaps in recent studies. 
Based on this assessment, some recommendations for future research 
have been presented, which can provide beneficial visions for the 
research community by facilitating the path to reach more realistic SES 
modeling, considering future energy industry trends. 
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