1,175 research outputs found

    Geographic Information Systems and Science

    Get PDF
    Geographic information science (GISc) has established itself as a collaborative information-processing scheme that is increasing in popularity. Yet, this interdisciplinary and/or transdisciplinary system is still somewhat misunderstood. This book talks about some of the GISc domains encompassing students, researchers, and common users. Chapters focus on important aspects of GISc, keeping in mind the processing capability of GIS along with the mathematics and formulae involved in getting each solution. The book has one introductory and eight main chapters divided into five sections. The first section is more general and focuses on what GISc is and its relation to GIS and Geography, the second is about location analytics and modeling, the third on remote sensing data analysis, the fourth on big data and augmented reality, and, finally, the fifth looks over volunteered geographic information.info:eu-repo/semantics/publishedVersio

    Incident Traffic Management Respone

    Get PDF
    The North Carolina State Highway Patrol (NCSHP) and the North Carolina Department of Transportation (NCDOT) are often called upon to assist in traffic incidents. Yet little systematic research has examined the extent to which these two agencies collaborate. This gap in understanding is problematic, as a lack of collaboration may result in significant delays in the clearing of traffic incidents. The purpose of this correlational study was to investigate circumstances when the two agencies collaborated in clearing major traffic incidents, and the efficiency of the clearance of the incidents, through the measurement of normal traffic flow. The theory of the convergence of resources from divergent organizations framed the study. The research questions addressed the extent of collaboration between the NCSHP and the NCDOT, the conditions under which this collaboration took place, and the efficiency of the clearance of these incidents. Data were obtained from the NCSHP and the NCDOT on characteristics of 1,580 traffic incidents that occurred on the North Carolina portion of Interstate 95 during the year 2014. The data were analyzed using chi-square tests, analyses of variance, and Z-tests for proportions. Collaboration between the two agencies occurred in 7.2% of all of the incidents and in 21.6% of incidents of major severity (p \u3c .001), which indicated a low level of interagency collaboration. The mean clearance time for incidents in which collaboration took place was 115.92 minutes compared to a national goal of 90 minutes. It is hoped that these results can contribute to policy dialogue relevant to the state\u27s Strategic Plan, leading to safer highways and less financial loss due to congestion caused by traffic incidents

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    A comparison among deep learning techniques in an autonomous driving context

    Get PDF
    Al giorno d’oggi, l’intelligenza artificiale è uno dei campi di ricerca che sta ricevendo sempre più attenzioni. Il miglioramento della potenza computazionale a disposizione dei ricercatori e sviluppatori sta rinvigorendo tutto il potenziale che era stato espresso a livello teorico agli albori dell’Intelligenza Artificiale. Tra tutti i campi dell’Intelligenza Artificiale, quella che sta attualmente suscitando maggiore interesse è la guida autonoma. Tantissime case automobilistiche e i più illustri college americani stanno investendo sempre più risorse su questa tecnologia. La ricerca e la descrizione dell’ampio spettro delle tecnologie disponibili per la guida autonoma è parte del confronto svolto in questo elaborato. Il caso di studio si incentra su un’azienda che partendo da zero, vorrebbe elaborare un sistema di guida autonoma senza dati, in breve tempo ed utilizzando solo sensori fatti da loro. Partendo da reti neurali e algoritmi classici, si è arrivati ad utilizzare algoritmi come A3C per descrivere tutte l’ampio spettro di possibilità. Le tecnologie selezionate verranno confrontate in due esperimenti. Il primo è un esperimento di pura visione artificiale usando DeepTesla. In questo esperimento verranno confrontate tecnologie quali le tradizionali tecniche di visione artificiale, CNN e CNN combinate con LSTM. Obiettivo è identificare quale algoritmo ha performance migliori elaborando solo immagini. Il secondo è un esperimento su CARLA, un simulatore basato su Unreal Engine. In questo esperimento, i risultati ottenuti in ambiente simulato con CNN combinate con LSTM, verranno confrontati con i risultati ottenuti con A3C. Obiettivo sarà capire se queste tecniche sono in grado di muoversi in autonomia utilizzando i dati forniti dal simulatore. Il confronto mira ad identificare le criticità e i possibili miglioramenti futuri di ciascuno degli algoritmi proposti in modo da poter trovare una soluzione fattibile che porta ottimi risultati in tempi brevi

    Development of a decision support system through modelling of critical infrastructure interdependencies : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Critical Infrastructure (CI) networks provide functional services to support the wellbeing of a community. Although it is possible to obtain detailed information about individual CI and their components, the interdependencies between different CI networks are often implicit, hidden or not well understood by experts. In the event of a hazard, failures of one or more CI networks and their components can disrupt the functionality and consequently affect the supply of services. Understanding the extent of disruption and quantification of the resulting consequences is important to assist various stakeholders' decision-making processes to complete their tasks successfully. A comprehensive review of the literature shows that a Decision Support System (DSS) integrated with appropriate modelling and simulation techniques is a useful tool for CI network providers and relevant emergency management personnel to understand the network recovery process of a region following a hazard event. However, the majority of existing DSSs focus on risk assessment or stakeholders' involvement without addressing the overall CI interdependency modelling process. Furthermore, these DSSs are primarily developed for data visualization or CI representation but not specifically to help decision-makers by providing them with a variety of customizable decision options that are practically viable. To address these limitations, a Knowledge-centred Decision Support System (KCDSS) has been developed in this study with the following aims: 1) To develop a computer-based DSS using efficient CI network recovery modelling algorithms, 2) To create a knowledge-base of various recovery options relevant to specific CI damage scenarios so that the decision-makers can test and verify several ‘what-if’ scenarios using a variety of control variables, and 3) To bridge the gap between hazard and socio-economic modelling tools through a multidisciplinary and integrated natural hazard impact assessment. Driven by the design science research strategy, this study proposes an integrated impact assessment framework using an iterative design process as its first research outcome. This framework has been developed as a conceptual artefact using a topology network-based approach by adopting the shortest path tree method. The second research outcome, a computer-based KCDSS, provides a convenient and efficient platform for enhanced decision making through a knowledge-base consisting of real-life recovery strategies. These strategies have been identified from the respective decision-makers of the CI network providers through the Critical Decision Method (CDM), a Cognitive Task Analysis (CTA) method for requirement elicitation. The capabilities of the KCDSS are demonstrated through electricity, potable water, and road networks in the Wellington region of Aotearoa New Zealand. The network performance has been analysed independently and with interdependencies to generate outage of services spatially and temporally. The outcomes of this study provide a range of theoretical and practical contributions. Firstly, the topology network-based analysis of CI interdependencies will allow a group of users to build different models, make and test assumptions, and try out different damage scenarios for CI network components. Secondly, the step-by-step process of knowledge elicitation, knowledge representation and knowledge modelling of CI network recovery tasks will provide a guideline for improved interactions between researchers and decision-makers in this field. Thirdly, the KCDSS can be used to test the variations in outage and restoration time estimates of CI networks due to the potential uncertainty related to the damage modelling of CI network components. The outcomes of this study also have significant practical implications by utilizing the KCDSS as an interface to integrate and add additional capabilities to the hazard and socio-economic modelling tools. Finally, the variety of ‘what-if’ scenarios embedded in the KCDSS would allow the CI network providers to identify vulnerabilities in their networks and to examine various post-disaster recovery options for CI reinstatement projects

    Maine Comprehensive Energy Plan

    Get PDF
    Prepare a comprehensive energy resources plan to be revised and updated at least annually and more often as the Director of the Office of Energy Resources or the State Legislature deem necessary
    • …
    corecore