74 research outputs found

    Visual servoing for low-cost SCARA robots using an RGB-D camera as the only sensor

    Get PDF
    Visual servoing with a simple, two-step handā€“eye calibration for robot arms in Selective Compliance Assembly Robot Arm configuration, along with the method for simple vision-based grasp planning, is proposed. The proposed approach is designed for low-cost, vision-guided robots, where tool positioning is achieved by visual servoing using marker tracking and depth information provided by an RGB-D camera, without encoders or any other sensors. The calibration is based on identification of the dominant horizontal plane in the camera field of view, and an assumption that all robot axes are perpendicular to the identified plane. Along with the plane parameters, one rotational movement of the shoulder joint provides sufficient information for visual servoing. The grasp planning is based on bounding boxes of simple objects detected in the RGB-D image, which provide sufficient information for robot tool positioning, gripper orientation and opening width. The developed methods are experimentally tested using a real robot arm. The accuracy of the proposed approach is analysed by measuring the positioning accuracy as well as by performing grasping experiments

    A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

    Get PDF
    In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstraā€™s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations

    A Series-Elastic Robot for Back-Pain Rehabilitation

    Get PDF
    Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the new market and to assist humans in meeting their daily social needs (i.e., agriculture, construction, cleaning.). The future integration of robots into other types of production processes, added new requirements that require more safety, flexibility, and intelligence in robots. Areas of robotics has evolved into various fields. This dissertation addresses robotics research in four different areas: rehabilitation robots, biologically inspired robots, optimization techniques, and neural network implementation. Although these four areas may seem different from each other, they share some research topics and applications

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Research and technology

    Get PDF
    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery

    Get PDF
    Recently, there has been a significant movement in otolaryngology-head and neck surgery (OHNS) toward minimally invasive techniques, particularly those utilizing natural orifices. However, while these techniques can reduce the risk of complications encountered with classic open approaches such as scarring, infection, and damage to healthy tissue in order to access the surgical site, there remain significant challenges in both visualization and manipulation, including poor sensory feedback, reduced visibility, limited working area, and decreased precision due to long instruments. This work presents two robotic assistance systems which help to overcome different aspects of these challenges. The first is the Robotic Endo-Laryngeal Flexible (Robo-ELF) Scope, which assists surgeons in manipulating flexible endoscopes. Flexible endoscopes can provide superior visualization compared to microscopes or rigid endoscopes by allowing views not constrained by line-of-sight. However, they are seldom used in the operating room due to the difficulty in precisely manually manipulating and stabilizing them for long periods of time. The Robo-ELF Scope enables stable, precise robotic manipulation for flexible scopes and frees the surgeonā€™s hands to operate bimanually. The Robo-ELF Scope has been demonstrated and evaluated in human cadavers and is moving toward a human subjects study. The second is the Robotic Ear Nose and Throat Microsurgery System (REMS), which assists surgeons in manipulating rigid instruments and endoscopes. There are two main types of challenges involved in manipulating rigid instruments: reduced precision from hand tremor amplified by long instruments, and difficulty navigating through complex anatomy surrounded by sensitive structures. The REMS enables precise manipulation by allowing the surgeon to hold the surgical instrument while filtering unwanted movement such as hand tremor. The REMS also enables augmented navigation by calculating the position of the instrument with high accuracy, and combining this information with registered preoperative imaging data to enforce virtual safety barriers around sensitive anatomy. The REMS has been demonstrated and evaluated in user studies with synthetic phantoms and human cadavers
    • ā€¦
    corecore