506 research outputs found

    Physical Fault Injection and Side-Channel Attacks on Mobile Devices:A Comprehensive Analysis

    Get PDF
    Today's mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research

    Developing wireless ECG device using Bluetooth protocol for interfacing with Android based applications

    Get PDF
    The current project involves the development of a wireless ECG recorder and an android application that can be integrated smoothly for use by health-conscious people or cardiac patients and clinicians as well for self-monitoring and feedback respectively. Briefly, the hardware as well as software for a wireless ECG device were designed and developed that was integrated with Android based application to display and records the user's ECG signal. The hardware incorporated microcontroller, MSP-430 that detected the cardiac signal and performed analog to digital conversion (ADC), digital filtering, QRS complex extraction and heart rate calculation using specific algorithms. During validation, the prototype successfully recorded the cardiac electric signals originated by subject’s heart with distinct QRS complex and T peaks. However, a distinct P wave was lacking. Further, the signal was rectified and the background noise was amplified followed by amplifying the signal to a tractable level. Next, the signal was communicated to an android device using Bluetooth protocol by HC-05 Bluetooth module. The signal was successfully displayed graphically, and the data was stored after being digitalized for future referencing and processing using advanced algorithms. The developed prototype is a robust, accurate and low-cost ECG recorder with wireless signal transmission to android device. The hardware incorporates distinct filter and amplification system to eliminate artifact from active movement. The use of adaptive filter is proposed for possible future improvement, with the main goal being to build the amplification and filter system which communicates with an Android smartphone application

    Didactic Tool: RC Servo Controller for Educational Robotics

    Get PDF
    We designed hardware and software for simple multichannel RC Servo Controller for smartphones and tablets running Android OS. The design is based on audio subsystem of a smartphone, pulse position modulation, and hardware decoding of the modulated audio signal. It also leverages the touch screen as GUI. The cost of the decoding hardware is in the range of few Euros and can be simply made using basic electronics tools

    Didactic Tool: RC Servo Controller for Educational Robotics

    Get PDF
    We designed hardware and software for simple multichannel RC Servo Controller for smartphones and tablets running Android OS. The design is based on audio subsystem of a smartphone, pulse position modulation, and hardware decoding of the modulated audio signal. It also leverages the touch screen as GUI. The cost of the decoding hardware is in the range of few Euros and can be simply made using basic electronics tools

    Smartphone based ubiquitous sensing platform leveraging audio jack for power and communication

    Get PDF
    With the popularization of smartphones, various smartphone centric ubiquitous sensing applications, which use a smartphone in conjunction with external sensors for data acquisition, processing, display, communication, and storage, have emerged. Because smartphones do not have a universal data interfaces, many ubiquitous sensing applications use the earphone and the microphone channels of the 3.5mm audio interface for data communications so that they can work with various types of smartphones. The earphone channels of the 3.5mm audio interface can only send AC signal out of a smartphone, hence DC power needs to be harvested from the earphone channels. In this research, based on frequency shift keying (FSK) modulation scheme, we have proposed a joint power harvesting and communication technology that can simultaneously harvest power and transfer data using the same earphone channels. The joint power harvesting and communication technology is demonstrated with a prototype system, which can power an external microcontroller and sensors through the 3.5mm audio interface of a smartphone, display sensor measurement results on a smartphone, and control the outputs of the microcontroller from a smartphone. The newly proposed smartphone sensing platform is expected to harvest double or more power from both earphone channels in comparison to single channel harvesting designs and hence has the potential to support more smartphone powered sensing applications. Furthermore, the sensing platform is expected to support a reliable communication with much higher data rate from a smartphone to external sensors than existing designs

    Neurostimulator with Waveforms Inspired by Nature for Wearable Electro-Acupuncture

    Get PDF
    The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications. The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies. The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit design components are discussed. The circuit is also analyzed with a capacitive load using a simplified Randles model to represent the electrode-electrolyte interface, and the output is measured in phosphate-buffered saline (PBS) solution as the load with acupuncture needles as electrodes. The circuit is designed to be used in different types of neurostimulators depending on the needs of the application, and to study the effects of varying neurostimulation waveforms. The circuit is used to develop a remote-controlled wearable veterinary electro-acupuncture machine. The device has a small form-factor and 3D printed enclosure, and has a weight of 75 g with leads attached. The device is powered by a 500 mAh lithium polymer battery, and was tested to last 6 hours. The device is tested in an electro-acupuncture animal study on cats performed at the Louisiana State University School of Veterinary Medicine, where it showed expected electro-acupuncture effects. Then, a 2-channel implementation of the device is presented, and tested to show independent output amplitude, frequency, and stimulation duration per channel. Finally, the software and hardware requirements for control of the wearable veterinary electro-acupuncture machine are detailed. The number of output channels is limited to the number of hardware PWM timers available for use. The Arduino software implements PWM control for the output amplitude and frequency. The stimulation duration control is provided using software timers. The communications protocol between the microcontroller board and Android App are described, and communications are performed via Bluetooth

    Sign Language Glove

    Get PDF
    Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way

    A smart voltage and current monitoring system for three phase inverters using an android smartphone application

    Get PDF
    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software
    corecore