92 research outputs found

    Frequency adaptive repetitive control of grid-connected inverters

    Get PDF
    Grid-connected inverters (GCI) are widely used to feed power from renewable energy distributed generators into smarter grids. Repetitive control (RC) enables such inverters to inject high quality fundamental-frequency sinusoidal currents into the grid. However, digital RC which can get approximately zero tracking error of any periodic signal with known integer period in steady-state, cannot exactly track or reject periodic signal of frequency variations. Thus digital RC would lead to a significant power quality degradation of GCIs when grid frequency varies and causes periodic signal with non-integer periods. In this research paper a frequency adaptive repetitive control scheme (FARC) at a predefined sampling rate is proposed to deal with all types of periodic signal of variable frequency. A fractional delay filter which is based on Lagrange interpolation is used to estimate the fractional period terms in RC. This proposed FARC controller offers the fast, during process modification of fractional delay and fast revise of filter parameters, and then provides GCIs with a simple but very accurate real-time frequency adaptive control solution to the injection of high quality sinusoidal current under grid frequency variations. A case study a three-phase GCI is conducted to testify the validity of the proposed strategy

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF

    Adaptive Predictive Deadbeat Current Control of Single-Phase Multi-tuned Shunt Hybrid Active Power Filters

    Get PDF
    This paper suggests an adaptive predictive deadbeat current control method for single-phase multi-tuned shunt hybrid active power filters (HAPFs) to improve the power quality of single-phase and three-phase four-wire utility grids. The HAPF structure eliminates the resonance between the passive power filter and the grid impedance. Furthermore, it can be integrated into passive filters to enhance their filtering performance. In this paper, a digital algorithm is proposed for managing the performance of each converter leg accurately. To do so, an exact model of the high-order system is developed, and the transfer function of the plant is calculated in continuous and discrete time domains. Then, a predictive deadbeat technique for HAPF current control is presented, which benefits from high accuracy, fast dynamics, and low sensitivity to system parameter mismatches. Extensive simulation and experimental tests are conducted and the results match well to confirm the success and appropriate performance of the overall system. Also, performance comparison with conventional solutions demonstrates the superiority of the suggested filtering technique

    Uncertainty and disturbance estimator design to shape and reduce the output impedance of inverter

    Get PDF
    Power inverters are becoming more and more common in the modern grid. Due to their switching nature, a passive filter is installed at the inverter output. This generates high output impedance which limits the inverter ability to maintain high power quality at the inverter output. This thesis deals with an impedance shaping approach to the design of power inverter control. The Uncertainty and Disturbance Estimator (UDE) is proposed as a candidate for direct formation of the inverter output impedance. The selection of UDE is motivated by the desire for the disturbance rejection control and the tracking controller to be decoupled. It is demonstrated in the thesis that due to this fact the UDE filter design directly influences the inverter output impedance and the reference model determines the inverter internal electromotive force. It was recently shown in the literature and further emphasized in this thesis that the classic low pass frequency design of the UDE cannot estimate periodical disturbances under the constraint of finite control bandwidth. Since for a power inverter both the reference signal and the disturbance signal are of periodical nature, the classic UDE lowpass filter design does not give optimal results. A new design approach is therefore needed. The thesis develops four novel designs of the UDE filter to significantly reduce the inverter output impedance and maintain low Total Harmonic Distortion (THD) of the inverter output voltage. The first design is the based on a frequency selective filter. This filter design shows superiority in both observing and rejecting periodical disturbances over the classic low pass filter design. The second design uses a multi-band stop design to reject periodical disturbances with some uncertainty in the frequency. The third solution uses a classic low pass filter design combined with a time delay to match zero phase estimation of the disturbance at the relevant spectrum. Furthermore, this solution is combined with a resonant tracking controller to reduce the tracking steady-state error in the output voltage. The fourth solution utilizes a low-pass filter combined with multiple delays to increase the frequency robustness. This method shows superior performance over the multi-band-stop and the time delayed filter in steady-state. All the proposed methods are validated through extensive simulation and experimental results

    Review of Harmonic Mitigation Methods in Microgrid: From a Hierarchical Control Perspective

    Get PDF

    Overview of AC microgrid controls with inverter-interfaced generations

    Get PDF
    Distributed generation (DG) is one of the key components of the emerging microgrid concept that enables renewable energy integration in a distribution network. In DG unit operation, inverters play a vital role in interfacing energy sources with the grid utility. An effective interfacing can successfully be accomplished by operating inverters with effective control techniques. This paper reviews and categorises different control methods (voltage and primary) for improving microgrid power quality, stability and power sharing approaches. In addition, the specific characteristics of microgrids are summarised to distinguish from distribution network control. Moreover, various control approaches including inner-loop controls and primary controls are compared according to their relative advantages and disadvantages. Finally, future research trends for microgrid control are discussed pointing out the research opportunities. This review paper will be a good basis for researchers working in microgrids and for industry to implement the ongoing research improvement in real systems
    corecore