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Abstract: Distributed generation (DG) is one of the key components of the emerging microgrid

concept that enables renewable energy integration in a distribution network. In DG unit operation,

inverters play a vital role in interfacing energy sources with the grid utility. An effective interfacing

can successfully be accomplished by operating inverters with effective control techniques. This paper

reviews and categorises different control methods (voltage and primary) for improving microgrid

power quality, stability and power sharing approaches. In addition, the specific characteristics of

microgrids are summarised to distinguish from distribution network control. Moreover, various

control approaches including inner-loop controls and primary controls are compared according to

their relative advantages and disadvantages. Finally, future research trends for microgrid control

are discussed pointing out the research opportunities. This review paper will be a good basis for

researchers working in microgrids and for industry to implement the ongoing research improvement

in real systems.

Keywords: microgrid; voltage control; primary control; inverter control

1. Introduction

Due to the exhaustion of conventional energy sources and growing electricity demand, electric

power systems are incorporating alternative renewable energy sources (RESs) including photovoltaic

(PV) systems, wind energy systems, fuel cells, and micro-turbines [1–3]. These RESs are connected to

the distribution network in the form of distributed generations (DGs) as shown in Figure 1. As the

frequency of the power generated from RESs is not the same as that of the traditional power system,

power electronic converters (PECs) are employed as interfacing devices to synchronise to the device

with the network. In PECs, voltage source inverters (VSIs) are used as the last step of the conversion

process to produce ac voltage. The VSIs regulate voltage, frequency and power output to the network

while fulfilling the grid requirements [4].

The operation and control strategies of an inverter can vary depending on the types of loads and

the modes of microgrids. Until now, no standard control and operation strategies have been set by

any institution/organisation for inverter-interfaced microgrids, and it may not be possible to do so.

The majority of the published literature reviews on the control and operation of DG units focus on the

primary control strategies due to their power sharing challenges [5–7]. Therefore, this paper is intended

to present a comprehensive review of the different control levels of a hierarchical grid-forming DG

units and show recent progress on the control strategies to enable a better understanding of the inverter

control and operation.
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Figure 1. Modern power system.

The rest of the paper is organised as follows. In Section 2, an overview of DG units is briefly

discussed. Section 3 describes the characteristics of microgrids and modes of microgrid operation,

namely, a grid-connected and an islanded mode. In Section 4, a hierarchical control approach for

grid-forming DG units is depicted. The control strategies in various reference frames are illustrated in

Section 5. Section 6 presents different inner-loop control methods of an inverter and highlights their

relative advantages and disadvantages. In Section 7, communication-less control for power sharing

strategies are demonstrated with the pros and cons of each method. Section 8 discusses possible future

research opportunities on microgrid control.

2. Overview of DG Units

A typical DG unit consisting of an energy source, a conversion system and an output filter is

shown in Figure 2. In the energy source block, power is converted to electric dc form through different

intermediate stages including dc/dc conversion. These sources are divided into two categories, namely

renewable and non-renewable. Renewable sources include wind, solar, geothermal, and biomass;

where non-renewable sources are coal, diesel, furnace oil, natural gas, and fuel cells.

In between the energy source and the inverter, a capacitor bank is often connected to realise a dc

interface. The main functions of the capacitor bank are to reduce voltage ripple, stabilise the dc-link

voltage and supply/absorb energy for a short period during disturbances, such as load changing

events. In addition, the capacitor assists slightly in balancing power difference between the energy

source and inverter input [8,9]. The placement of the capacitor at the dc busbar plays a vital role in

controlling the inverter.

Power semiconductor components are fundamental elements of inverters [10]. Inverters are

often constructed with insulated-gate bipolar transistors (IGBTs) and diodes connected in the reverse

direction, which allow bidirectional power flow, shown in Figure 2. The preference for using IGBTs

over metal-oxide-semiconductor field-effect transistors (MOSFETs) is that it offers greater power gain

with lower power losses, higher voltage operation, and higher allowable junction temperature. The dc

voltage at the dc busbar is converted into pulsating ac voltage by the inverter. An LC filter following

the inverter is used to attenuate the high frequency harmonics from the output. The pulsating ac is

generated because of the turning on and off sequences of the IGBT gates and change in the direction

of the dc power flow. These sequences are typically calculated by pulse width modulation (PWM)

which is adjusted by the current/voltage controller taking feedbacks from the LC filter current and

voltage. This filter enhances the power quality of an inverter output by eliminating ripple waves,

i.e., harmonics, and consequently, it can assist in coordinating multiple DG units by proper selection
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of the LC parameters. The practical implementation of inverters and their related controls are available

in [11].
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Figure 2. DC-AC voltage conversion by an inverter.

Two principal operations of inverters are determined in a microgrid operation: grid-following

and grid-forming. The grid-following operating mode, sometimes denoted as grid feeding and PQ

control [12,13], is achieved by current source inverters (CSIs). In the grid-forming operation, voltage

source inverters (VSIs) are usually employed to control the voltage and frequency of a network.

Both the grid-forming and grid-following units utilise VSIs. It just adopts different control algorithms

based on the mode changes.

3. Microgrid Characteristics and Operation

3.1. Characteristics of Microgrids

The high penetration of DG units in a distribution network causes several technical and

operational issues, including power quality, network stability, low inertia, and network voltage

and fault level change. To overcome the above issues, a microgrid concept has evolved [14–16].

However, the notion of microgrids is often confused with distribution network control. The key

differences with a microgrid are that it has a central control unit with a specific region and a point of

common coupling (PCC) to connect and disconnect the microgrid with the grid utility. The features of

a typical microgrid [12,17,18] are summarised as follows.

• It supervises the electrical components, such as powers, voltages and frequencies by means

of monitors.

• It has a PCC in a distribution network for connecting and disconnecting the grid utility.

• It is a subset of LV or medium-voltage (MV) distribution networks.

• It consists of generation units, a hierarchical control approach, power consumption places and

energy storage systems.

• It facilitates an uninterrupted power supply to, at least, the highest priority loads during a grid

failure or power quality degradation.

• It has two operating modes: (1) grid-connected; and (2) islanded or standalone (autonomous).

• It acts as a single controllable entity from the grid perspective.

• It generates the required reference voltage and frequency in an islanded operation.

• It is constructed in a defined location which can be in a distribution network or remote area.

• It has the necessary protection schemes.

• It controls the power supply during both grid-connected and islanding operations.

• It accumulates DG units, the ratings of which are less than 100 MW.

• It displays ‘plug and play’ features and ‘peer to peer’ functionality.

• It adjusts to abnormal situations (unintentional islanding or faults).
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• It uses local information to control the power flow of DG units.

• It can possess ac and/or dc distribution networks.

• It may provide electrical energy and thermal energy (heat and/or cool) simultaneously.

Considering the above characteristics, a microgrid can be defined as follows: A microgrid

(consisting of small-scale emerging generators, loads, energy storage elements, and control units) is

a controlled small-scale power system that can be operated in an islanded and/or grid-connected

mode, serving within a defined area to facilitate power supplementation and/or improved power

quality to the consumer’s premises.

3.2. Grid-Connected Operation

The aim of the grid-connected inverter is to export controllable power with the established voltage.

The generated power is controlled by the in-phase current component which is proportional to the

network power demand. The supervisory controller (SC), receiving power demand information from

short-term/long-term prediction values, operates DG units either in a constant power output or in

a load-following manner [19]. In Figure 3, the power set-points generate a current reference for the

current regulator. The closed-loop controller ensures that the output current tracks the reference value

with a zero steady-state error.
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Figure 3. A current control loop for exporting power in the grid-connected operation.

Figure 3 shows a block diagram of a grid-connected inverter control strategy, where the

closed-loop current controller enables output power delivery by calculating an error signal from

measured and commanded signals. The reference current is determined from the set values of the

controller. Each inverter is responsible for controlling its output current and power according to

a power demand set by the supervisory controller. The inverter power quality can be influenced by

the background network harmonics. However, the quality can be improved by properly designing the

controller and filter [20,21].

Some of the desired features of the inner-loop current control are as follows: (1) accurate current

control; (2) high bandwidth; (3) fast dynamic response, 4–6 times faster than that of the outer voltage

controller; (4) low current distortion, and filter resonance damping. These characteristics are achieved

with the different control techniques for various microgrid models [22,23].

3.3. Islanded Operation

The lack of the grid utility supply to a microgrid operation necessitates establishing the reference

voltage and frequency. Therefore, DG units operated in an islanded microgrid are responsible for

ensuring the reference voltage and frequency, which are the main functions of the inverters [4,24].

The simple diagram of a VSI control, without considering current control loop illustrated in dashed

lines, is shown in Figure 4, although some of its shortcomings are reported in [10] as follows.
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• The absence of a current control can lead to a large transient current that may damage

semiconductor components during faults.

• The voltage measurement across the capacitor may not provide accurate information regarding

the network.
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Figure 4. A voltage and current control loop for regulating grid voltage.

Considering the drawback of a simple VSI control, an alternative cascaded control strategy (both

the voltage and current controls) can be applied shown in Figure 4. The response time of the current

control loop, forming round the inductor, is comparatively lower than the voltage control loop, which

facilitates faster current control response. The advantage of this strategy is that excessive current can

be limited in the voltage control loop. The reference current provided from the voltage control loop can

be also used in other parallel modules as a reference current for power sharing purposes. In this case,

the plants should be in close proximity; otherwise, communication lines with a bandwidth 100 kb/s

are required to retain a controller performance [19].

If the voltage controller alone is used in the inner-loop control, some of the desired characteristics

are expected [25] as follows: (1) high loop gain at dc for regulating the voltage magnitude with

a minimum error; (2) high bandwidth to eliminate harmonics; (3) high loop gain at the fundamental

frequency to restrain imbalance; (4) robust performance in the presence of plant model uncertainty;

(5) fast response with the lowest overshoot; (6) negligible coupling between the active and reactive

powers and (7) highly stable to any non-linear network attitude.

It is worth mentioning that, in voltage source inverters, the inner-loop current control is not

required, generally, to control the voltage. However, the implementation of the current control in

a voltage control loop improves the inverter performance and confirms current limitations.

3.4. Miscellaneous DG Operation

If both inverter-based DG units and conventional synchronous generators deliver power in

a microgrid, two possible solutions of connecting DG units can be implemented. If a high penetration

of inverter-based DG units exists, synchronous generators can be operated as current/power sources

synchronising with the inverters which dominate the bus voltage and frequency control. In contrast,

if a number of synchronous machines are higher than inverter-based DG units, the control approaches

of inverter-connected DG units will be employed as a grid-connected operation [26].

4. Hierarchical Control of DG Units

Sustainable control approaches are essential to operating microgrids in a stable and economically

viable way [12,14,27]. The main activities in a microgrid are the voltage and frequency regulations,

load sharing and DG coordination, power flow control, cost optimisation, and power generation and

demand prediction. These requirements necessitate a hierarchical control structure for a microgrid
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operation [28]. The hierarchical control structure for grid-forming DG units in an islanded microgrid

is divided into three levels, namely, voltage control, primary control, and secondary/tertiary control

shown in Figure 5. The reason for categorising three levels is that islanded microgrids are situated

in a small region unlike the conventional power system, although, in some studies, this hierarchical

structure is divided into four levels. The extra control layer increases initial investment and operating

cost which may not be economically viable for an islanded microgrid.
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Figure 5. A hierarchical grid-forming distributed generation (DG) control.

The voltage control is responsible for the instantaneous reference grid voltage tracking and power

quality issues [7]. The voltage control loop includes either an inner-loop voltage control or both the

voltage and current control loops—often known as a cascaded control [24]. These loops may contain

feedback, feed forward, virtual impedance, and linear and non-linear control loops to regulate the

inductor current and/or capacitor voltage properly. Moreover, this level contains higher bandwidth

compared to the others to guarantee the microgrid stability with a fast response under any disturbance.

For instance, the current control can be constructed as 20 kHz bandwidth and the voltage control as

5 kHz, which is much higher than a bandwidth of the primary control. The reference value of the

voltage control is determined by the mid-level primary control.

The primary control in microgrids has several roles, including: enhancing system performance and

stability, maintaining the voltage and frequency stability, offering plug and play features of DG units,

ensuring accurate power sharing in the presence of linear and non-linear loads, and eliminating

circular current [28–31]. This control loop can be designed based on either communication or

communication-less; however, the latter one, which is based on local measurements, is preferable to

improve microgrid reliability. The bandwidth of this control is typically tens of Hz depending on the

control design, for example, it can be 30 Hz which is much lower than the inner-loop control.

The reference values of the primary control can be changed by the secondary/tertiary control.

This control level measures the voltage and frequency at the PCC or at a large reference generator,
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and compares the values with ω∗
s and V∗

s to generate error signals for restoring the commanded

values [32–34]. The controller decouples the control parameters and creates a management system for

frequency and voltage restoration, reactive power compensation, mode transfer, power settings, voltage

regulation, and power sharing. In addition, secondary/tertiary control predicts the power generation

and demand to determine the optimum operation points for DG units. The controller also takes care of

the microgrid synchronisation with the grid utility. The secondary/tertiary controller—sometimes

referred to a supervisory controller or microgrid central control (MGCC)—is designed based on

optimisation algorithms and economical issues. This control level generally uses low-bandwidth

(such as 3 Hz) communication lines for communication purposes.

5. Control Strategies in Different Reference Frames

In standalone microgrids, generally, a VSI is used in a voltage controlled operation to regulate

the injected voltage and frequency into the network [35,36]. This topology allows inverters to be

operated with a precise instantaneous voltage control, an overload rejection, a peak current protection,

and adequate dynamics [37]. As the voltage control loop regulates the output inverter voltage and

frequency, voltage quality can be improved by a proper design of the voltage controller. The different

control approaches can be applied to various reference frames [38].

A transformation of the controlled parameters is, sometimes, essential to improving a controller

performance. Therefore, the voltage controller as an inner-loop control of a VSI uses different reference

frames, such as a synchronous reference frame (dq), stationary reference frame (αβ) and natural

reference frame (abc). Typically, the features of the proposed microgrids determine the required

transformation frame. The relationship among different reference frames are depicted in Figure 6.
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Figure 6. Relationship among synchronous rotating, stationary, and natural transformation frame.

5.1. Synchronous Rotating Reference Frame

In a synchronous rotating reference frame, also known as a dq transformation or Park

transformation, electrical quantities are transferred to dc components by rotating electrical quantities

synchronously with the network frequency. Since the outcomes of the frame transformation are dc,

controlling and/or filtering of these values are easier by employing a simple PI controller. The real

and reactive power can be regulated by accurate calculation of I∗d and I∗q .

5.2. Stationary Reference Frame

In this control method, the electrical quantities are transformed into a αβ transformation frame,

which is also known as a Clarke transformation. The transformed quantities are sinusoidal. For this

reason, the harmonic rejection and fundamental frequency control through correct gain selections of

a simple PI controller are difficult [39]. Therefore, a proportional-resonant (PR) controller is preferred
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with this transformation. The active and reactive power controls depend on reference currents, I∗α and

I∗β . This method can only be applied in a three-phase system that is similar to the dq reference frame.

5.3. Natural Transformation Frame

In a natural frame control, each phase of the three-phase system is controlled by an individual

controller. The control strategy of the natural frame (abc) is divided into linear and non-linear

controls [39]. Linear controllers (such as PI and PR) and non-linear controllers (such as hysteresis

and deadbeat, both of which have good dynamic behaviour) can be employed in the abc frame [40].

This approach allows for control of both the three-phase and single-phase system without any control

parameter transformation.

6. Control Methods for Inner-Loop Control

Numerous control methods, as shown in Figure 7, are developed to improve the power quality,

disturbance rejection and voltage/current tracking of the inverter output. The different developed

control strategies are used according to the characteristics of microgrids. The control strategies

are developed from simple approaches to complex analytical methods. The control methods are

described below.

Control strategies for DG units

Inner-loop control

Grid following

Power control 

Voltage control

With
Communication 
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v Central control 
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Current control
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(PR) control
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v LQR control
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Grid forming

Figure 7. Control techniques for inner-loop control and primary control.
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6.1. Proportional-Integral Controller

In a synchronous reference frame transformation, a proportional-integral (PI) controller is often

used by implementing its transfer function [41] as follows:

CPI(s) = Kp +
Ki

s
(1)

where Kp and Ki are the proportional and integral gain, respectively.

The effectiveness of the PI controller can be enhanced by using a feed-forward voltage and/or

cross-coupling term. The controller dynamics during voltage fluctuation can be enhanced by the

feed-forward voltage [42]. The principal benefit of using the PI controller in the dq frame is that it

achieves a zero steady-state error. Therefore, it assists in achieving accurate real and reactive power

flows in a network by directly controlling the real and reactive current components.

The PI controller in the dq reference frame is an effective approach for controlling electrical

quantities; however, this approach is not suitable in the presence of distorted electrical quantities [43].

Moreover, its implementation in the dq transformation is relatively complex compared to the PR

controller in the αβ frame, because knowledge of the synchronous frequency and phase are essential.

6.2. Proportional-Resonant Controller

A PR controller can be applied in both the abc and αβ reference frames [44–46]. The steady-state

error of electrical quantities can be easily eliminated by this controller since it has high gain near the

resonant frequency [39]. A PR controller can be implemented by:

CPR(s) = Kp + Ki
s

s2 + ω2
(2)

where ω is the resonant frequency. The resonant frequency determines the controller performance by

maintaining a similar network frequency (i.e., network frequency = resonant frequency), which can be

adjusted according to grid frequency variations. The two main drawbacks of this method are accurate

tuning needed and sensitivity of the frequency variations.

6.3. Deadbeat Controller

The effective dynamic performance of the deadbeat (DB) predictive controller facilitates the

current control of an inverter. The instantaneous current tracking of the DB becomes attractive due to

its high bandwidth [47–49]. The derivative of control parameters assists predicting its future control

action. This control is well known due to its error compensation. The main difficulty of the controller

is its sensitivity to the network parameters [50].

6.4. Model Predictive Control

The aim of the developing model predictive control is to minimise the forecast error for accurate

current tracking. Managing general constraints and non-linearities of a system with multiple input

and output in a flexible control scheme are attractive features of the model predictive control [51].

This strategy uses control actions of the present states to predict the future action of the controlled

variables. According to the cost function employed as a criterion, the controller selects the optimal

switching states. The mathematical based strategy of the method reveals its sensitivity to parameter

variations [52].

6.5. Hysteresis Controller

The hysteresis control approach, being very simple and fast response, produces each leg switching

signal for an inverter. The hysteresis controller produces a signal if the error between the reference

signal and measured signal exceeds certain limits [53,54]. The advantages of the controller are very
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simple, easy implementation in practice, and high dynamic responses. It also has an inherent current

protection. The challenge of the control approach is to control ripple in the output current hence

reducing total harmonic distortion (THD), which may not be acceptable. Moreover, the switching

frequency of an inverter varies according to ac voltage and load changes. The design of the output

filter is quite difficult owing to randomness of the output.

6.6. H-Infinity Controller

The H∞ method achieves a robust performance in both parameter value changes and worse-case

disturbances. Reducing a disturbance effect on output is the prime responsibility of the H∞ controller.

In this method, first, the problems are expressed in an optimisation process, then a controller is applied

to solve the problems [55]. The specifications of design (robustness and/or tracking performance) are

formulated as constraints on singular values of different loop transfer functions. The proper selection of

weighting functions allows shaping these loops [56]. The method has numerous advantages, including:

robust behaviour in the presence of unbalanced loads, less THD, reduced tracking error and easy

implementation in practice. The requirement of perfect mathematical understanding and relatively

slow dynamics are the disadvantages of this controller.

6.7. Repetitive Controller

The repetitive control (RC) algorithm (a simple learning control) eliminates error in a dynamic

system by using an internal model principle [57,58]. The internal model on an error term gives a series

of pole-pairs at multiples of a selected frequency. The parallel combinations of an integral controller,

resonant controllers, and a proportional control are considered as a mathematical equivalent of the

RC. A low pass filter is employed within the RC to attenuate high-frequency resonant peaks of the

controller gains. Therefore, the RC offers a very low harmonic distortion in the output voltage/current,

even in the presence of large non-linear loads [59].

6.8. Neural Network

The neural network (NN) allows information to be processed in a systematic way that

mimics the function of a biological nerve system with incorporating a time delay. The NN is

an architecture—consisting of input layers, hidden layers, and output layers—that is interconnected

and operated in parallel mode to transmit signals to one another for achieving a certain processing

task [60]. The self-learning feature of the NN algorithm gives feasibility and easy design for different

operating conditions and grid disturbances, and augmenting a robust control performance [61].

6.9. Fuzzy Controller

Fuzzy logic is a form of numerous logic values and deals with reality. It deals with linguistic

values rather than crisp values, where it ranges 1 for completely true and 0 for completely false [62,63].

In fuzzy control, the concept of fuzzy set membership is used in fuzzy set theory, and the concept

of subjective probability is used in probability theory. To minimise overshoot and enhance tracking

performance, a fuzzy logic controller is proposed in [64,65].

6.10. Sliding Mode Control

A sliding mode controller (SMC) facilitates a robust performance in the variation of system

parameters over wide ranges of the operating points [66]. If a plant deviates from its normal operating

points, the controller responds with a strong control action [67]. The controller suffers from chattering

problems. Therefore, the SMC parameters are optimised based on output ripple waves to overcome

this issue; and an extra integral term of the grid current is added to the sliding surface to eliminate

tracking errors. The disturbance rejection, easy implementation, and low sensitivity to the parameter

value changes are the key advantages of the SMC method [68].
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6.11. Linear Quadratic Regulator

The state feedback of pole placement has advantages: a high degree of freedom and simplicity

in implementation. The linear quadratic regulator (LQR) algorithm shows effective performance in

both the steady-state and transient conditions [69–71]. The method is inherently stable and can be

employed independently of the system order [72]. The disadvantage of this method is its tracking

accuracy during load changes.

6.12. Linear Quadratic Integrator

The linear quadratic integrator (LQI), minimizing the cost function of the system, is presented

in [4] to satisfy the fast dynamic response and nullify the steady-state voltage error between grid voltage

and reference grid voltage during load changes. The integral term of controller minimises an error,

produced from outside disturbances, in instantaneous reference voltage tracking. This approach is

simple to find the optimal gains that provide an acceptable tracking with zero steady-state error.

In summary, the application of the inner-loop control techniques depends on the characteristics

of microgrids. For example, if microgrid parameters are sensitive and have high uncertainty, robust

controllers are preferable to achieve effective performance. The relative advantages and disadvantages

are summarised in Table 1. From the table, it can be concluded that only one controller can not solve

all the drawbacks. However, further investigation can improve the design and implementation of

these controllers for microgrid application.

7. Control Methods for Power Sharing

7.1. Communication-Based Control

The communication-based power control achieves good power sharing and voltage regulation.

However, expensive communication lines between modules decrease microgrid reliability and limit

the DG expansion and flexibility.

The instantaneous reference grid voltage (v∗g) of a voltage controller shown in Figure 5 is

determined by primary controls/power sharing controls, including: centralised control, master-slave

control, average load sharing control, peak value based current sharing, circular chain control,

distributed control, angle droop control, and consensus-based droop control. A centralised control

distributes overall load current evenly among sources through equal current set points for all DG

units [73]. In the master-slave control, the master converter works as a VSI by producing controlled

voltage, while slave inverters act as CSIs by obeying the current pattern ordered from the master

inverter [74,75]. The average load sharing control continuously updates the current reference for each

inverter as a weighted average current [76,77]. To achieve proper power sharing and smooth mode

transfer, peak-value based current sharing control is applied, where the reference current magnitude

of a VSI is determined by the current magnitude of the VSI through peak value calculation [78,79]. In a

circular chain control, inverters are assumed to be connected as chain links, and reference currents of

inverters are determined by the previous inverter [80]. The distributed control, implemented separately

between the low-bandwidth central controller and high-bandwidth local controllers, emphasises the

reduction of communication lines to enhance reliability and easy implementation [81]. In angle droop

control, a similar method of the P/f droop control as discussed in Section 7.2.1, phase angle is used

to control the active power; however, a communication line is required to determine the phase angle

reference [82,83]. To reduce dependence on output line impedance and avoid inappropriate reactive

power sharing under distributed line impedances, the consensus-based droop control with sparse

communication network is presented in [84].
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Table 1. Benefits and drawbacks of inner-loop controllers.

Control Methods Advantages Disadvantages

Classical control PI
Simple control structures and easy implementation Performance degradation during disturbances
A zero steady-state error in dq frame Steady-state error in an unbalance system

Proportional Resonant (PR)
Improved performance with a robust inner current controller Sensitive to frequency variation
Almost zero steady-state error Difficulty in controlling harmonics
Low computational burden and implementation complexity Require accurate tuning

Dead-beat controller (DB)
Suitable for harmonics control Require accurate filter model
Fast transient response with low THD and sampling frequency Sensitive to network parameters

Predictive control
Suitable for use in non-linear system Require accurate filter model
Require less switching frequency Require extensive calculations
Accurate current control with lower THD and harmonic noise Sensitive to parameter variations

Hysteresis current control
Easy and simple implementation Resonance problems
Fast transient response Limited to lower power levels
Inherent current protection Error in current tracking and harmonic issues

H∞ controller
A very low THD and improved performance Require deep mathematical understanding
Robust performance in linear and non-linear/unbalance loads Relatively slow dynamics
Reduced tracking error

Repetitive Controller (RC)
Robust performance during periodic disturbances Stabilising problem
A zero steady-state error at all harmonic frequencies Slow response during load fluctuations

Neural networks
Good performance in current control A slow dynamic response

Apply in static mode

Fuzzy control methods
Not influence by parameter variations and operational points Slow control method
Suitable for a large-scale non-linear system with easy design

Sliding Mode Control (SMC)
Reliable performance during transients Chattering Phenomenon in discrete implementation
Control over THD based on design Difficulty in designing procedure
Good disturbance rejection

LQR controller
Fast dynamic response Phase shift in voltage tracking during normal operation
Easy design procedure Voltage tracking error during disturbances
Good tracking performance Difficulty in extracting model

LQI controller
Fast dynamic response Phase shift in voltage tracking during normal operation
Simple design procedure Difficulty in extracting model
Good tracking performance even after disturbances
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7.2. Communication-Less Control

In the primary control level, the control approaches of DG units are expected without

communication to maintain high reliability, reduce costs, avoid communication complexity, and

apply plug and play features of each unit. The communication-based operations are unsuitable,

especially, if DG units are placed in remote areas because of high bandwidth communication and

infrastructure, which is very costly. In this case, droop based control approaches can be applied, and are

able to handle different ratings of DG units with great flexibility and reliability. However, this has

some drawbacks, such as power (P-Q) control coupling, voltage and frequency deviation, dependence

on network impedance, and issues with non-linear loads and accuracy [85–88]. To overcome these

problems, different control approaches are proposed in the literature with their relative advantages

and disadvantages [6,7,89].

7.2.1. Power/Frequency Droop Control

In the conventional power system, the power/frequency (P/f ) droop control strategy is generally

employed to achieve plug and play features. In a large synchronous machine, if power demand

increases suddenly, rotation speed of generator drops in order to supply extra power leading to

lower frequency of its terminal voltage. As frequency is a global variable and has direct attachment

to the rotating speed, each generator of the network increases its mechanical input power to share

accurate power.

The application of the P/f droop control in DG units is introduced as a standalone microgrid

control [90–92]. The P/f droop control of a large synchronous machine is operated based

on the synchronous speed which has inertia, but converter-based microgrids lack this inertia.

Therefore, the P/f droop control is applied according to the characteristics of power transmission lines.

The power flows through the transmission lines can be determined based on the following algorithms.

The current flowing through the impedance, shown in Figure 8, is:

I 6 θ1 =
E 6 δ − V 6 0

Z 6 θ
(3)

where E is the supply voltage, V is the terminal voltage, and δ is the power angle or phase difference

between the supply voltage and terminal voltage.

�∠� 
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Figure 8. Single line diagram for power flow study.

The real and reactive power can be written as:

P = (
EV

Z
cos δ −

V2

Z
) cos θ +

EV

Z
sin δsinθ (4)

Q = (
EV

Z
cos δ −

V2

Z
) sin θ −

EV

Z
sin δ cos θ. (5)
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For an inductive transmission line, θ = 90◦, Equations (4) and (5) can be written as:

P =
EV

Z
sin δ; Q =

EV

Z
cos δ −

V2

Z
. (6)

If δ is small

P ≈
EV

Z
δ; Q ≈

V

Z
(E − V). (7)

From Equation (7), it is concluded that, in an inductive transmission line, the active power has

linkage with the phase angle, and the reactive power is associated with the terminal voltage. In the

control application, frequency is chosen to regulate the active power instead of phase angle; because

DG units do not know the initial phase values of other DG units, and the power angle dynamically

depends on the frequency.

In the P/f droop control, the frequency measurement of a converter-based microgrid is not

straightforward while the active power measurement is easier [93]. Consequently, a droop in the

frequency as a function of the active power is proposed in [94] as:

ωi = ω∗ − K f (Pi − P∗
i ), i = 1, 2, 3.. (8)

where ω is the angular velocity (ω = 2π f ), P∗
i and Pi are the ith reference and measured active power,

respectively, and K f is the frequency droop coefficient. This droop coefficient is synthesised according

to its capacity to supply proportional power.

The droop gain, K f , can be calculated as follows:

K f =
ω∗ − ωmin

P∗
i − Pi,max

> 0 (9)

where ωmin and Pi,max are the minimum allowable angular frequency and maximum active

power, respectively.

Similarly, the voltage amplitude can be measured in accordance with the reactive power

measurement as:

Vi = V∗ − Kv(Qi − Q∗
i ) (10)

where Vi is the terminal voltage, Q∗
i and Qi are ith the reference and measured reactive power,

respectively, and Kv is the voltage droop gain. The selection of Kv and K f have an influence on system

stability [95,96].

The droop gain, Kv, can be calculated as follows:

Kv =
V∗ − Vmin

Q∗
i − Qi,max

> 0 (11)

where Vmin and Qi,max are the minimum allowable voltage and maximum reactive power, respectively.

In the conventional droop control, the voltage control performance and transient responses of

this method are lower, and harmonic current cannot be shared appropriately. It has another inherent

drawback between the voltage regulation and power sharing [28,97]. In determining the droop

coefficient, there is also a trade-off between system stability and droop magnitude. For example, a low

droop coefficient slows down the control action, whereas a large coefficient speeds up the load sharing

but can lead to instability.

To enhance the system dynamics and avoid a large start up transient, a derivative term is added

with an adaptive gain [61] as follows:

ωi = ω∗ − K f Pi − K̂ f d
dPi

dt
(12)
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Vi = V∗ − KvQi − K̂vd
dQi

dt
(13)

where K̂ f d and K̂vd are the adaptive transient droop gains. These gains assist in incorporating damping,

avoiding large transient and circulating currents.

When the resistive and inductive line impedances of a distribution network are almost similar,

i.e., R/X ratio is near unity, a strong bond exists in between active and reactive power called power

coupling which leads difficulty in their individual controls. Therefore, to reduce the impact of this

coupling, in [98], the droop control method is modified as follows:

ωi = ω∗ − K f (Pi − Qi) (14)

Vi = V∗ − Kv(Pi + Qi). (15)

Moreover, the coupling issue of the droop control strategy can be minimised by adding a virtual

inductor in the output of the droop control method [99–101]. The reference voltage of the voltage

control loop becomes [102]:

v∗ = v∗fm droop − Lvir
dig

dt
. (16)

The derivative term in Equation (16) may introduce high-frequency noise, especially during

transient conditions which may lead to instability in voltage control [102]. Therefore, to avoid

high-frequency noise, a high pass filter can be used instead of pure derivative [103] as follows:

v∗ = v∗fm droop −
s

s + ωc
Lvirig. (17)

Incorporating a virtual impedance in a control loop can successfully impede P-Q coupling,

although reactive power sharing error increases. A frame transformation is proposed to prevent P-Q

coupling in [104,105].

To share reactive power properly, in [106], additional two terms of which one is used for

compensating voltage droop across the transmission lines and another is responsible for improving

reactive power sharing with system stability are added to conventional (Q/V) droop control method

as follows:

Vi = V∗
i − (Kvi + KqiQ

2
i + KpiP

2
i )Qi + Kri

riPi

V∗
i

+ Kxi
xiQi

V∗
i

(18)

where Kvi, Kqi and Kpi are droop coefficients, ri and xi are resistive and inductive line parameters,

respectively, Kri and Kxi are coefficient ranging in span [0 1]. The parameters (Kqi, Kpi, Kri and Kxi)

are determined by solving an optimisation problem. Although this method improves reactive power

sharing, small error from power line parameters may lead to system instability.

Furthermore, a slow integration term is added in [107] to the conventional Q/V droop control to

minimise reactive power sharing errors in which the error is determined by injecting a real-reactive

power transient coupling term that is triggered from the central controller using low-bandwidth

synchronisation signals. The modified control is shown as follows:

ωi = ω∗ − K f Pi − KvQi (19)

Vi = V∗ − KvQi +
Kc

s
(Pi − Pavg) (20)

where Kc is an integral term that is kept similar value for all DG units and Pavg the steady-state averaged

real power. Although the term KvQ in (19) used as offset indicates the power coupling, the integral

term used in (20) can bring the accurate real power sharing during any reactive power errors. However,

the involvement of central controller for synchronising signal can spoil the whole stability.
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7.2.2. Power/Voltage Droop Control

The P/f droop control is well-suited for high-voltage (HV) transmission lines.

However, low-voltage (LV) distribution networks have different characteristics from HV networks.

LV networks are mainly resistive in nature, leading the active power is linked to the voltage and the

reactive power is linked to the frequency [108]. Typical line characteristics are depicted in Table 2 [109].

The principal benefit of the power/voltage (P/V) droop control is that it perfectly matches with the

network characteristics. Moreover, the problem of reactive power sharing is solved in this method as

frequency is a global parameter, which is used in controlling reactive power. This strategy is especially

true if DG units are connected to a microgrid without inductors or transformers, where the output

inductance is negligible compared to the resistive impedance values.

Table 2. Typical line parameters.

Type R (Ω/km) X (Ω/km) IN (A) R/X

LV 0.642 0.083 142 7.73
MV 0.161 0.190 396 0.85
HV 0.060 0.191 580 0.31

For a resistive impedance, θ = 0◦, Equations (4) and (5) can be written as follows:

P =
V

Z
(E cos δ − V); Q = −

EV

Z
sin δ. (21)

If δ is small

P ≈
V

Z
(E − V); Q ≈ −

EV

Z
δ. (22)

From Equation (22), the active power depends on voltage difference and its own voltage, while

the reactive power relies on the phase angle. The relationship indicates effectiveness of the P/V and

Q/f droop control strategies [15,93,110]. From the measured active and reactive powers, rms voltage

and frequency can be computed as follows:

Vi = V∗ − Kv(Pi − P∗
i ) (23)

ωi = ω∗ + K f (Qi − Q∗
i ) (24)

where Kv and K f are droop gains.

A comparative study regarding the P/V and P/f droop control in an LV network is investigated

in [111], and it is concluded that the P/V shows better-damped response compared to the P/f

droop control.

A derivative term is added to the P/V droop control to enhance system dynamics as follows [99]:

Vi = V∗ − KvPi − Kp,d
dPi

dt
(25)

ωi = ω∗ + K f Qi + Kq,d
dQi

dt
. (26)

A resistive virtual impedance is included for the P-Q decoupling and improving dynamics and

stability in [99,112] as follows:

v∗ = v∗fm droop − igRv (27)

where Rv is the virtual resistance, and ig is the grid current.

Inverters equipping droop control strategy can be operated with different power set-points

during islanded or grid-connected modes of a microgrid due to a difference in power generation

capacity and power consumption. Network contingencies (faults on a heavy load side or unintentional
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islanding) in this situation may lead to inter-unit circulating power caused by a large mismatch in

power consumption and power generation, and may change the dc-link voltage beyond its limit.

As a result, the protection systems may shut down the inverter because of voltage violation, which

may reduce the overall reliability of a microgrid [15,31].

7.2.3. Signal-Injection Based Method

Numerous current sharing strategies depending on frequency coding of the current information

are discussed in [113,114]. For power sharing, power lines are utilised as a communication line. In this

method, spare control interconnections are not necessary. Frequency signal is calculated by the reactive

power droop as:

fq = fqo + KqQ (28)

where fqo is the reference frequency of the injected ac signal, and Kq is a boost coefficient. The output

voltage, V, can be calculated from the real power droop as follows:

V = V∗ − Kp pq. (29)

Harmonic distraction, D, produces by non-linear loads can be shared in the same way. The power

of the control signal adjusts the voltage loop bandwidth as follows:

fd = fdo − mD (30)

D =
√

S2 − P2 − Q2 (31)

BW = BWo − Kbd pd (32)

where BWo and Kbd are the reference voltage loop bandwidth and the droop coefficient, respectively.

This method accurately regulates the reactive power sharing and is not affected by the line

impedance variation [113]. However, it cannot properly guarantee the voltage control. Complexity,

high-frequency generation and measurements are the disadvantages of this method. It can reduce

power quality. Furthermore, an injected signal can lead to resonance and harmonics. Therefore,

harmonic virtual impedance is proposed in [101].

7.2.4. Voltage-Based Droop Control

In the voltage-based droop control, the characteristics of renewable energy sources are considered

in power sharing strategies of a microgrid [115]. This method divides the P/V droop control into two

droop controls, namely Pdc/Vg and Vg/Vdc droop control, and a constant power-band is added to the

Pdc/Vg droop control.

The Vg/Vdc droop control is responsible for indicating power supply status, for example, extra

generated power causes high dc-link voltage and lower generated power leads to low dc-link voltage.

The Vg/Vdc droop control is expressed as follows:

V∗
g = V◦

g + Kv(Vdc − V◦
dc) (33)

where V◦
g and V◦

dc are the set/reference terminal voltage and the dc-link voltage, respectively. In this

method, variation in terminal voltage also alters power supply to the network. To limit a voltage

deviation up to a certain point, the Pdc/Vg droop control is applied, as:

Pdc =















P◦
dc − Kp{Vg − (1 + b)V◦

g } if Vg > (1 + b)V◦
g

P◦
dc − Kp{Vg − (1 − b)V◦

g } if Vg < (1 − b)V◦
g

P◦
dc if (1 − b)V◦

g ≤ Vg ≤ (1 + b)V◦
g

(34)
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where P◦
dc is the set active dc power supply, b is the constant power band, and Kp is the power

droop coefficient. Constant power-bands are responsible for sharing power into the network

among dispatchable and non-dispatchable sources, where the Vg/Vdc controller facilitates the dc-link

voltage control.

This method takes full advantage of acceptable voltage deviation by incorporating a power band

in Pdc/Vg control strategy. For this reason, renewable energy sources can be utilised effectively with

maximum power point tracking. In addition, this method can supply flexible power without violating

the voltage limit to the network if voltage deviation goes beyond the constant power band. However,

in this control approach, the stability margin of the method and its practical implementation were

not yet investigated. Moreover, active power control in [115] is postponed up to a certain limit of the

terminal voltage considering the features of renewable energy sources (RESs). But, recent RESs use

an energy storage element [116], such as a battery that can deliver power into the network during

power mismanagement like a dispatchable generator. Therefore, the method (VBD) needs to be

modified for application in microgrids.

7.2.5. Virtual Flux Droop Control

To simplify an inverter control by eliminating multi-feedback loops and PWM, the virtual flux

method is first introduced in [91] as parallel connected inverter control and latter it is presented as

a microgrid control in [117]. The working principle of the virtual flux droop control is to droop the

virtual flux instead of inverter voltage droop. This method is applied in power sharing approach to

improve frequency deviation compared to the conventional one. The reason of improving frequency

regulation is that angular frequency of a virtual flux vector does not depend on angular differences.

In this method, active and reactive powers are proportional to the flux phase angle difference and flux

magnitude difference as follows:

δ = δ∗ − m(Prated − P) (35)

|Φv| = |Φ∗
v | − n(Qrated − Q) (36)

where δ∗ and Φ
∗
v are the reference phase angle difference of two flux amplitudes and reference inverter

output flux amplitude, respectively; Prated and Qrated are active and reactive power ratings of DG units,

respectively; m and n are the coefficients of P − δ and Q − |Φv| droop control.

7.2.6. V/I Droop Characteristic Method

A control method based on voltage/current (V/I) characteristics is proposed in [118] to improve

reactive power sharing, dynamic and stability of microgrids by drooping the direct and quadrature axis

voltage components with the corresponding currents according to a piecewise linear droop function.

In the V/I droop control, the inverter output voltage is drooped with respect to inverter output

current. In this method, two voltage signals are added to the d and q reference voltage and the injected

voltage are droop signals of steady-state and transient components. The V/I droop can be represented

as follows:

V∗
qi = Vo + Riiqi + Xiidi − mi f (iqi) (37)

V∗
di = Riidi − Xiiqi − ni f (idi) (38)

where the droop coefficients (m and n) are selected inversely proportional to the DG rating and f (idq)

are arbitrary functions of the currents and line impedances. This method may suffer from unbalanced

load currents on controller performances and oscillation issue for small droop coefficient [119],

and needs further investigation for exploring its application on non-dispatchable DG units.
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7.2.7. Other Control Methods

A multi-variable droop synchronous current converter control method is described in [120] to

manage currents of an LV network by enabling decouple of d- and q-axis current using the loop shaping

technique. To improve power sharing performance and line impedance mismatches, extra loops, such

as reactive current loop and on-line reactive power offset estimator, are incorporated in [102,121].

A Q/V̇ droop control technique with designing V̇, rate of change of voltage magnitude, restoration

mechanism is presented in [122] to enhance reactive power sharing and maintain steady-state

voltage magnitude.

8. Future Work

From the above literature review, it is clear that each and every control technique has its own

unique application, benefits and drawbacks as shown in Tables 1 and 3. It is important to take into

consideration the high penetration of the RESs with different power ratings in a distribution network.

This makes complexity in controlling microgrids, especially in network power quality and accurate

power sharing techniques among DG units. Therefore, advanced control techniques (such as artificial

intelligent, predictive control and multi-agent systems) need to be designed/implemented to maintain

power quality and improve the power sharing issues. As the effective control application depends

on model accuracy of the system, the uncertainty model of a microgrid, for example catastrophe,

power and load uncertainty, should also be considered while designing a controller. Furthermore,

the complexity of the advanced algorithms can be further reduced to implement it in practical systems.

Table 3. Benefits and drawbacks of power sharing strategies.

Control Methods Advantages Disadvantages

Suitable for high and medium voltage line Sluggish dynamic response
P/f droop Not dependable on communication line Poor reactive power regulation

Easy implementation and flexible expansion Sensitive in physical components

Suitable for low voltage transmission line Sluggish dynamic response
P/V droop Not dependable on communication line Poor active power regulation

Easy implementation and flexible expansion Sensitive in physical components

Adaptive derivation
Enhanced power sharing Not suitable for complex network
Eliminating voltage and frequency distortion Difficulty in implementation of multiple DGs
Improving dynamic stability of power sharing

Frequency based signal injection
Suitable for different types of load application Harmonic issue in voltage control
Robustness in system parameter variation Complicated implementation

Voltage based droop
Suitable for high resistive network Difficulty in practical implementation
Suitable for renewable energy control Voltage varies during load changes
Easy power balancing

Virtual flux control
Improved frequency control Implementation difficulty in a large system
Simple control structure Slow dynamic performance

V/I droop control
Improved faster dynamic Oscillation issue for small droop coefficients
Ensure accurate real and reactive power sharing Voltage issue under heavy load conditions
Suitable for small inertia DG units

Most of the DG units in a microgrid are based on renewable energy sources, which have

a low-inertia compared to conventional generators. These low-inertia of DG units may experience

severe voltage and/or frequency changes during abrupt disturbances. Although some of the research

work is presented to increase the response time of the DG units by applying flywheel and/or mimicking

synchronous generators [123–129], there are still opportunities for researchers to further examine the

microgrid with improved inertia.

Application of different types of loads in a microgrid has an adverse effect on a DG unit control

and operation. However, research work is frequently validated by the simulation of the above

controllers with linear loads for power quality improvements and power sharing techniques. There are

opportunities to validate the controllers with non-linear loads, such as dynamic loads, electric vehicles,
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constant power loads, and induction motors, which are seldom applied in literature. The application

of these types of loads with experimental setup needs to be reconsidered in the future research.

Maintaining stable operation of microgrids becomes challenging due to the increased participation

of non-linear loads and high penetration of DG units. Although the microgrid stabilities with linear

loads are extensively studied over the past period [95,130–132], the determination of stability margins

for DG units and synchronous generators with non-linear loads, such as induction motors, constant

power loads and electrical vehicles are not studied thoroughly.

9. Conclusions

This paper presents a technical overview of different control techniques for DG units in an

islanded microgrid. The aim of this research is to provide a detailed and thorough review of

different control levels of microgrids which is very important in the development of smart microgrids.

The historical development of the control methods used in the power industry and those reported

in the literature is documented. The key discussions are divided into two parts: inner-loop controls

and primary controls without communication. It is realised from the literature review on inner-loop

controllers that the acceptability of suitable inner-loop controls for DG units completely depends on

the microgrid characteristics. For example, if microgrid parameters are sensitive, robust controllers for

voltage control are preferable. In addition, if the harmonics are in a concern, certain controllers

are able to address this, e.g., resonant and predictive controllers, compared with others like PI

controller. On the other hand, as a primary control, communication-based controls suffer from

risk of communication failure that can jeopardise microgrid stability, whereas droop based controls

have exhibited a superior performance in terms of power sharing, power quality, reliability, flexibility,

and extensibility. The shortcomings of conventional power sharing are overcome by applying various

techniques, such as virtual impedances, frame transformation, V/I droop control and so on. Each

method has its unique features. Different control approaches are compared in this paper showing their

relative benefits and drawbacks. Moreover, the future research direction that needs to be carried out

for the development and implementation of smart microgrids is also presented.
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Abbreviations

The following abbreviations are used in this manuscript:

DGs Distributed generations

RESs Renewable energy sources

PECs Power electronic converters

MOSFETs Metal-oxide-semiconductor field-effect transistors

PWM Pulse width modulation

CSIs Current source inverters

VSIs Voltage source inverters

PCC Point of common coupling

SC Supervisory controller

MGCC Microgrid central control

PLL Phase-locked loop

PR Proportional-resonant

DB Deadbeat

THD Total harmonic distortion

SMC Sliding mode control

LQR Linear quadratic regulator
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LQI Linear quadratic integrator

VBD Voltage-based droop

RC Repetitive controller

NN Neural network

mi Modulation index of PWM

G Generator

Z Line impedance

E Supply voltage

V Terminal voltage

S Apparent power

P Active power

Q Reactive power

L Filter inductor

C Filter capacitor

Cdc DC-link capacitor

vg Instantaneous grid voltage

v∗g Reference instantaneous voltage for control

iL Instantaneous line current

i∗L Reference instantaneous current for control

V∗ Reference grid voltage

ω∗ Reference angular frequency

Pm Measured active power

Qm Measured reactive power

P∗ Reference active power

Q∗ Reference reactive power

Id Direct axis current component

Iq Quadratic axis current component

I∗d Reference direct current component

I∗q Reference quadratic current component

Iα Alpha axis current component

Iβ Beta axis current component

ω∗
s Reference angular frequency set by supervisory controller

V∗
s Reference voltage set by supervisory controller

pq Small real power in the injected signal
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81. Prodanović, M.; Green, T.C. High-quality power generation through distributed control of a power park

microgrid. IEEE Trans. Ind. Electron. 2006, 53, 1471–1482.

82. Majumder, R.; Chaudhuri, B.; Ghosh, A.; Majumder, R.; Ledwich, G.; Zare, F. Improvement of stability and

load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans. Power Syst.

2010, 25, 796–808.

83. Pota, H.R.; Hossain, M.J.; Mahmud, M.; Gadh, R. Control for microgrids with inverter connected

renewable energy resources. In Proceedings of the IEEE PES General Meeting| Conference & Exposition,

National Harbor, MD, USA, 27–31 July 2014; pp. 1–5.

84. Lu, L.Y.; Chu, C.C. Consensus-based droop control synthesis for multiple DICs in isolated micro-grids.

IEEE Trans. Power Syst. 2015, 30, 2243–2256.

85. Yu, X.; Khambadkone, A.M.; Wang, H.; Terence, S.T.S. Control of parallel-connected power converters for

low-voltage microgrid—Part I: A hybrid control architecture. IEEE Trans. Power Electron. 2010, 25, 2962–2970.

86. Delghavi, M.B.; Yazdani, A. An adaptive feedforward compensation for stability enhancement in

droop-controlled inverter-based microgrids. IEEE Trans. Power Deliv. 2011, 26, 1764–1773.

87. Xinchun, L.; Feng, F.; Shanxu, D.; Yong, K.; Jian, C. The droop characteristic decoupling control of parallel

connected UPS with no control interconnection. In Proceedings of the 2003 IEEE International Electric

Machines and Drives Conference, Madison, WI, USA, 1–4 June 2003; IEEE: Piscataway, NJ, USA, 2003;

Volume 3, pp. 1777–1780.

88. Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.;

Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans.

Smart Grid 2014, 5, 1905–1919.

89. Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies

in hierarchical controlled microgrids. IEEE Trans. Power Electron. 2017, 32, 2427–2451.

90. Barklund, E.; Pogaku, N.; Prodanovic, M.; Hernandez-Aramburo, C.; Green, T.C. Energy management in

autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans. Power Electron.

2008, 23, 2346–2352.

91. Chandorkar, M.C.; Divan, D.M.; Adapa, R. Control of parallel connected inverters in standalone AC supply

systems. IEEE Trans. Ind. Appl. 1993, 29, 136–143.

92. Marwali, M.N.; Jung, J.W.; Keyhani, A. Control of distributed generation systems-Part II: Load sharing

control. IEEE Trans. Power Electron. 2004, 19, 1551–1561.

93. Engler, A.; Osika, O.; Barnes, M.; Hatziargyriou, N. DB2 Evaluation of the Local Controller Strategies; European

Commission: Brussels, Belgium; Luxembourg, 2005.

94. Bhuiyan, F.A.; Yazdani, A. Multimode control of a DFIG-based wind-power unit for remote applications.

IEEE Trans. Power Deliv. 2009, 24, 2079–2089.

95. Bottrell, N.; Prodanovic, M.; Green, T.C. Dynamic stability of a microgrid with an active load. IEEE Trans.

Power Electron. 2013, 28, 5107–5119.
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