270 research outputs found

    Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Full text link
    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction between the optical, electrical, and mechanical domains

    Recent Developments in the Dynamic Stability of Elastic Structures

    Get PDF
    Dynamic instability in the mechanics of elastic structures is a fascinating topic, with many issues still unsettled. Accordingly, there is a wealth of literature examining the problems from different perspectives (analytical, numerical, experimental etc.), and coverings a wide variety of topics (bifurcations, chaos, strange attractors, imperfection sensitivity, tailor-ability, parametric resonance, conservative or non-conservative systems, linear or nonlinear systems, fluid-solid interaction, follower forces etc.). This paper provides a survey of selected topics of current research interest. It aims to collate the key recent developments and international trends, as well as describe any possible future challenges. A paradigmatic example of Ziegler's paradox on the destabilizing effect of small damping is also included

    The Mechanics and Multiphysics of Biomimetic Discrete Exoskeleton Substrates

    Get PDF
    Biological structures have inspired synthetic materials with unparalleled performances such as ultra-lightweight design, tunable elasticity, camouflaging, and antifouling. Among biological structures, exoskeletal scales that cover the exterior surfaces of fishes, fur, and many reptiles. These exoskeletal scales had appeared in the earliest stages of evolution of complex multicellular life and continued their existence in spite of millions of years of evolutionary pressures. This makes them an attractive candidate for biomimicry to produce high performance multifunctional materials with applications to soft robotics, wearables, energy efficient smart skins, antifouling surfaces and on-demand tunable materials. Canonically speaking, biomimetic samples can be fabricated by partially embedding stiffer plate-like segments on softer substrates to create a bi-material system, with overlapping scales. The bending behavior of this system has been carried out using assumption of periodic engagement even after scales contact. This is true only under the most ideal loading conditions or if the scales are extremely dense akin to a continuum assumption on the scales. Here, we develop a rigorous theory with computational validation of key parameters which relaxes these restrictions. We also present an analytical study to demonstrate a bioinspired mechanical pathway to tailor the elasticity of cantilevered beams as an alternative to traditional functional gradation. In addition, we explore for the first time the dynamic behavior of these scales during oscillatory motion using analytical models, supported by finite element (FE) computations. Finally, inspired by the hypothesis that fur surfaces, which consist of plate-like topography, significantly change the initial stages of biofouling, we shed light on the fundamentals of this process by reducing the fur to a scale-covered elastica under flow with biomass suspensions. A FE coupled nonlinear deposition-large deflection model of the system is developed

    Multistable Morphing Mechanisms of Nonlinear Springs

    Get PDF

    Optimization of spider web-inspired phononic crystals to achieve tailored dispersion for diverse objectives

    Get PDF
    International audienceSpider orb webs are versatile multifunctional structures with optimized mechanical properties for prey capture, but also for transmitting vibrations. The versatility of such a system mainly derives from its variable geometry, which can be effectively used to design phononic crystals, thus inhibiting wave propagation in wide frequency ranges. In this work, the design of spider web-inspired singlephase phononic crystals through selective variation of thread radii and the addition of point masses is proposed, determined through the use of optimization techniques. The obtained results show that spider web geometry displays a rich vibration spectrum, which by varying its the geometric characteristics and adding localized masses can be tailored to manipulate wave modes, and the resulting two-dimensional phononic crystals present wide complete band gaps generated by Bragg scattering and local resonances
    • …
    corecore