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Dynamic instability in the mechanics of elastic structures is a fascinating topic, with many

issues still unsettled. Accordingly, there is a wealth of literature examining the problems

from different perspectives (analytical, numerical, experimental etc.), and coverings a

wide variety of topics (bifurcations, chaos, strange attractors, imperfection sensitivity,

tailor-ability, parametric resonance, conservative or non-conservative systems, linear or

non-linear systems, fluid-solid interaction, follower forces, etc.). This paper provides

a survey of selected topics of current research interest. It aims to collate the key

recent developments and international trends, as well as describe any possible future

challenges. A paradigmatic example of Ziegler paradox on the destabilizing effect of small

damping is also included.

Keywords: dynamic stability, Ziegler paradox, follower forces, codimension-1 bifurcations, codimension-2

bifurcations

1. INTRODUCTION

The topic of dynamic stability, or to put it in Bolotin terms “dynamic instability” [1], is inherently
a highly multidisciplinary problem, impacting a wide variety of fields (mathematics, engineering,
chemistry, biology, ecology, economic, etc.). This review focuses on engineering applications with
particular emphasis on elastic structural systems. This issue has attracted significant scientific
interest, beginning with the first rigorous definition of stability provided by Aleksandr Mikhailovic
Lyapunov at the end of the nineteenth century [2]. Despite its relatively long tradition, the dynamic
instability of elastic systems has yet to be fully explored, and several highly topical issues still
await clarification.

Dynamic instability phenomena, in contrast with their static counterparts, take place at a
non-zero critical frequency and involve all mechanical problems in which the inclusion of time
cannot be avoided. This is the case for structural mechanical systems subjected to a dynamic loading
in their equilibrium state: either, where the load applied is sudden (e.g., shock, impact loading etc.),
or in the case of aero- or hydro-elastic forces, or pulsating parametric forces, or follower forces,
and so on [3–6]. Dynamic stability issues may also affect systems whose post-critical response is
a dynamic process, and/or systems that are in motion in their unperturbed state. It is important
to highlight that all real-world stability problems are dynamic, although they can be successfully
modeled as static.

The present review cannot be seen as a thorough survey of the dynamical stability of mechanical
systems. This would be an impossible task, and beyond the scope of a single article. The research
literature is too extensive, and the issues too many. For a more complete understanding, the
reader is referred to the countless textbooks that have been written on the topic [1, 2, 4–11].
Rather, the attempt here is to focus on current issues and trends, while giving an overview of the
pertinent literature, with special emphasis on some relevant outstanding topics. The paper will
proceed as follows. Section 2 briefly discusses the fundamental concepts in static and dynamic
stability, including a short summary of both local and global bifurcations, and of chaos (section 2.2).
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Mascolo Dynamic Stability of Structures

Section 3 focuses on the difference between linear and non-
linear instability, highlighting some misleading interpretations
of the dynamic response of a mechanical system caused by
linearization near a fixed point. Sections 4 and 5 present
two different methods—the primary analytical/semi-analytical
method, and the numerical method—that are used to solve
equations governing the dynamic stability of structures. Section 6
emphasizes the strong sensitivity of dynamic systems, including
a presentation of the main techniques used to address this
problem. A paradigmatic example on the destabilizing effect
of small vanishing damping (Ziegler paradox) is also given.
Section 7 reviews some experimental investigations, with
emphases on experimental developments in follower-forces,
while section 8 reviews some recent developments in innovative
smart applications. Section 9, finally, contains concluding
remarks, highlighting the necessity of intensifying experimental
investigations into post-buckling behavior in order to close the
gap between analytical and experimental studies.

2. FUNDAMENTALS OF STABILITY

Instability phenomena that take place at zero natural frequency
are known as static. These encompass problems that involve
path-independent forces (e.g., conservative forces) and more
generally all problems where load is applied in a static or
quasi-static manner. Vice versa, the term dynamic instability
refers to a large class of problems and several different physical
phenomena which require the inclusion of time. Examples of
dynamic instability in structural mechanics include [1, 12]:
i. parametric resonance. Instabilities of periodic motions

(i.e., parametrically excited vibrations) can be occur when
a structural system is loaded by periodic (i.e., time-
varying) excitation; or the system parameters are periodically
modulated. In such cases, the system experiences parametric
resonance [13–15]: an equilibrium point becomes unstable,
and any even small perturbations involve large amplitude
oscillations. A classic example of this phenomenon is a
person on a swing, which can be modeled as a pendulum of
varying length [16]. A considerable amount of research and
reviews have been carried out on this topic. Most deal with
pulsating forces that result in the parametric resonance of
columns, shallow arches, or shells. Others deal with internal
parametric excitation and with the parametric resonance
that occurs in fluid-solid interaction problems [17, 18].
Finally, several studies have employed parametric resonance
in micro-electro-mechanical systems (MEMS) (see [19] and
references therein).

ii. Instabilities under the sudden loading of conservative
systems. These include a large number of dynamic problems
(e.g., arches and arch-like structures, shells, and initially
curved panels) in which the structures are either loaded
with a large integral impulse and vanishingly small duration
loads (e.g., by impact load), or suddenly loaded with
constant magnitude and infinite duration loads. In such
cases, the critical state that corresponds to quasi-static
loading degenerates in a limit point, with the loss of

stability resulting in a codimension-2 bifurcation (i.e., snap-
through buckling). In such cases, the transition, or “jump”
to another non-adjacent equilibrium point is a dynamic
process. The first to tackle these issues were Hoff and
Bruce [20], who in the early 1950s proved the dynamic
buckling of flat arches under lateral sinusoidal loading
by investigating Total Potential Energy. Their pioneering
paper led to significant interest in stability issues associated
with shallow arches over the reminder of the twentieth
century. Important research contributions were also made
by other outstanding scientists. Budiansky and Roth [21],
for instance, investigated a suddenly loaded shallow spherical
shell with axisymmetric behavior by numerically integrating
the motion equations. Simitses [22], meanwhile, analyzed the
snap-through behavior of low arches and shallow spherical
caps. And Hsu [23–25] produced a qualitative investigation
of the trajectory of the motion in the phase-plane (Total
Energy-Phase Plane Approach). The book [4] contains a
survey of some relevant results achieved on the subject.

iii. Instabilities in non conservative systems [6, 11]. In a large
number of engineering applications, the forces are statically
applied but the system is non-conservative. This is the
case for follower-force problems, rotating shafts (whirling),
and aeroelasticity instability (i.e., fluid-solid interaction
and flutter). Some of these problems (e.g., the follower-
force problem) exhibit two different types of unstable
behavior: divergence and flutter instabilities. Divergence
instability is a typical quasi-static-bifurcation leading to an
exponentially growing motion. Flutter instability, conversely,
is a typical dynamic instability leading to the absorption
of energy from a steady source by means of self-sustaining
oscillations. Divergence instability can be determined by
classical approaches (i.e., a classical, quasi-static bifurcation
technique, potential energy, or kinetic energy methods).
Flutter instability, meanwhile, is only detectable using
dynamic analysis. This last observation has given rise to
an amount of paradoxes in the last century, the most
famous of which is the destabilization effect due to small
damping (Ziegler paradox [26, 27]), which is described in
detail in section 6.1. Rotor-dynamic instability, conversely,
leads to unstable torsional and whirling vibrations that were
recognized by Crandall [28]. The rotors’ dynamic behavior is
affected by their filling ratio, the effect of surface oscillations
(i.e., the sloshing motion) of the rotating liquid, and also
by damping which in this context has a destabilizing effect.
Flow-induced instabilities are a fascinating topic pertinent to
aircraft, spacecraft, airfoil, nuclear power plants, conveying
pipes, etc. Fluid-solid interaction leads to panel flutter
instability, divergence and parametric resonance. The issue
has been widely explored in the literature, notably in light of
the notorious collapse of Tacoma Narrow Bridge near Seattle
in 1940.

2.1. Stability Criteria
Due to the great variety of phenomena that encompass instability,
it is not possible to provide a universal way of looking at
stability. Depending on the nature of the problem, three main
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FIGURE 1 | Simple illustrative representation of stable, unstable, and indifferent equilibrium positions in the small (A–C) and in the large (D–F). The arrows represent

admissible perturbations.

approaches and three ensuing criteria can be employed to assess
the stability of a structure’s equilibrium: the equilibrium method
(static approach) proposed by Euler, the energy method and
the dynamic method. All three above-mentioned methods are
independent, meaning that the results that they provide may
not always be comparable. The equilibrium method investigates
the existence of a non-trivial equilibrium state infinitesimally
close to the initial one. From a mathematical point of view
this is equivalent to investigating the existence of non-trivial
solution for the equilibrium equation of the perturbed system.
The existence of at least one more neighboring equilibrium
state implies that the equilibrium configuration of the elastic
body is unstable. It is important to stress that the equilibrium
method provides non-trivial solutions only in the case of non-
linear elasto-static problems. Furthermore, if there are non-
conservative forces (e.g., follower forces) it can give paradoxical
and erroneous results, so its applicability is restricted to
conservative systems. Finally, it is general unable to detect so
called snap-through instability (the typical instability of shallow
arches and domes) and dynamic flutter instability.

The energy method can be applied, more generally, to systems
where an energy functional exists (e.g., conservative mechanical
systems). It is based on the Lagrange-Dirichlet theorem which
states that the equilibrium locus of a conservative system with
holonomic and scleronomic constraints will be stable if and only
if the total potential energy E (the sum of potential energy of
deformation and strain energy) takes a minimal value in the
class of virtual displacements (i.e., infinitesimal displacements
satisfying kinematical constraints). Accordingly, for any optional
but sufficiently small deviation from an equilibrium state the
stability points are associated with the stationarity of the second
variation of the total potential energy ∂2E . Figure 1 provides a
very illustrative graphical representation of this approach: the
structure is modeled as a ball which is initially in balance on
an energy surface. When a small perturbation is applied the ball
moves from its equilibrium position. Generally, three cases can
arise. In the first case, the ball is in equilibrium at the lowest point
of a concave surface, moving away from its equilibrium point and
then releasing, it will roll back toward the position of minimal
potential energy and the equilibrium will be stable (Figure 1A).

In the second case, the ball is on top of hump, as shown
in Figure 1B, and the stationary point has a maximal potential
energy. Accordingly, moving away from its equilibrium position

and releasing, the ball rolls farther away from equilibrium and
the equilibrium will be unstable. Finally, when the ball is located
on a flat surface and it is moved away from its original spot, it
adopts a new different equilibrium position (Figure 1C) without
any change in potential energy. In this case the equilibrium is
said to be indifferent. It is necessary to stress that this stability
criterion is only a local in scope, because a large perturbation can
lead to stability in the small and instability in the large [e.g., in
the case shown in Figure 1D a large perturbation sends the ball
over the small hump definitively removing it from the stationary
point] or vice versa (Figure 1E).

The process through which the structure (i.e., the ball)
returns to (or moves away from) its current state is a
time-dependent process and should be treated as such
(i.e., dynamically). A dynamic approach provides a much
more complete insight into static instability problems as it
enables the computation and tracking of the complete state
vector (i.e., displacement and velocity fields) and yields
accurate information on the post-buckling response of
the structure.

The dynamic method is a more general approach which can
be used to investigate static and dynamic stability alike. It is
based on the classical definition of stability which goes back to
Lyapunov (the so-called two-metric stability of Lyapunov) which
states that a necessary and sufficient condition for stability of an
equilibrium point is that all solutions of the evolution equations
that govern the problem starting nearby initial conditions remain
close to this state all the time. In terms of phase space this can
be geometrically interpreted as follows: once a sphere however
small in radius ε > 0 is chosen around the equilibrium
point x∗, it is always possible to construct another sphere of
radius δ(ε) that is contained in the ε-sphere (Figure 2). All
the trajectories x(t) with its origin in the δ-sphere will remain
in the ε-sphere when the time increase and will never reach
its limit.

The interested reader can find a more in-depth and detailed
description of the concepts presented in this Section in references
[29–34].

2.2. A Brief Survey of Static and Dynamic
Bifurcations
By slightly varying one or more system parameters, the
qualitative behavior of solutions can abruptly change, resulting
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FIGURE 2 | Geometric interpretation of stability in the sense of Lyapunov.

in bifurcations [7, 8]. Equilibria can then be created or destroyed.
Periodic, quasi-periodic, homoclinic, heteroclinic, or chaotic
dynamics may also appear. In a static problem, three different
types of codimension-1 bifurcations of static equilibria can occur
(Figure 3):

i. transcritical bifurcation (also known as exchange of stability)
whereby a stable and an unstable point of equilibrium
coalesce at the asymmetric point of bifurcation and then
re-emerge, switching their stability;

ii. saddle-node bifurcation whereby two equilibria move toward
each other, collide and finally annihilate one other;

iii. supercritical or subcritical pitchfork bifurcation.
Supercritical pitchfork bifurcation is also known as safe
bifurcation, whereby two non-zero symmetrical equilibrium
points appear at small amplitude. Subcritical pitchfork
bifurcation, meanwhile, is also known as dangerous
bifurcation as it results in a leap from zero to large
amplitude. The latter is common in the buckling of
symmetrical arches [10].

All the above bifurcations are local, in the sense that they involve
the degeneracy of some eigenvalues of the Jacobian matrices
associated with fixed points.

Moreover, when real-world circumstances cause
imperfections to break the symmetry, a limit point (i.e.,
a maximum point of the load-path) can be reached [9],
leading to snap-through instability. This is also known as
codimension-2 cusp bifurcation. In such cases, the instability
behavior is controlled by two independent parameters: the
beam lateral deflection and the imperfection amplitude to
name just an illustrative example. At the limit point, the
structure abruptly “jumps” in a distant stable equilibrium state,
leading to large amplitude displacements and a potentially
catastrophic event for the structure’s equilibrium. This

impressive static bifurcation for a shallow elastic arch is sketched
in Figure 4.

In the case of dynamic stability, the emergence of a trace of
limit cycles rather than a static equilibrium path (Figure 5) leads
to more complex types of local fixed point bifurcations [10, 35].
These include:

iv. cyclic fold (tangent) bifurcation whereby two limit cycles
(stable and saddle) approach each other along the unstable
manifold as a control parameter changes, then collide at
the bifurcation and disappear with a bang (snap-through
phenomenon). In terms of the eigenvalues of the Jacobians
associated with cycles, this is a zero-eigenvalue bifurcation
(i.e., the bifurcation occurs when one of the eigenvalues
equals zero);

v. Hopf bifurcation whereby a pair of complex conjugate
eigenvalues crosses the imaginary axis of the complex plane
from left to right as the values of the control parameter
increase from negative to positive, then sinks to become a
saddle. As in the case of pitchfork bifurcation, it can be sub-
critical or super-critical, resulting in stable or unstable closed
orbits, respectively;

vi. Flip (periodic-doubling) bifurcation of cycles whereby a
stable limit cycle loses its stability at the same time as a
new closed orbit (either super-critical or sub-critical) arises,
featuring a double period with respect to the original cycle;

vii. Neimark-Sacker (secondary Hopf) bifurcation of cycles
whereby a limit cycle loses its stability, giving rise to an
attracting two-dimensional invariant torus T2. In this case, a
pair of complex conjugate eigenvalues crosses the unit circle
in the complex plane. On the torus are located long-period
cycles of different stability types.

The first two bifurcations typically occur in second-order
systems, while the last two can occur only in systems of an order
greater than or equal to three. In addition to these bifurcations
there are the so-called global bifurcations of cycles that involve
large regions of the phase plane:

viii. heteroclinic bifurcation, in which all the solutions
migrate from one saddle point to the other, including
heteroclinic cycles;

ix. homoclinic bifurcation as an infinite-period bifurcation in
which part of a limit cycle moves increasingly close to a
saddle point, before touching it the bifurcation, becoming
a homoclinic orbit.

In this instance, however, investigating the behavior of the system
via a single fixed point provides only partial information about
the system’s overall behavior.

Another fascinating possibility for a dynamic system is that
a slight variation in a control parameter elicits a catastrophic
transition toward a different attractor. The transition may take
place from cyclic to quasi-static, or even in chaotic regimes
(route to chaos). The latter is true in the case of the Šilnikov
bifurcation and the Feigenbaum cascade [36]. The Šilnikov
bifurcation is a homoclinic bifurcation that triggers the collision
in a three-dimensional state space of a saddle cycle and a stable
torus, leading to the so-called “torus explosion.” The Feigenbaum
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FIGURE 3 | Phase portrait evolution by changing the parameter λ (left) and bifurcation diagram corresponding to the normal form (right).
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FIGURE 4 | Codimension-2 cusp bifurcation of a shallow elastic arch. Unless otherwise stated, continuous and dashed lines represent stable and unstable equilibria,

respectively.

cascade is an infinite collection of period doubling bifurcation
connected to each other by periodic orbits in a pattern known
as a “cascade.”

3. LINEAR VS. NON-LINEAR THEORY

In a structural system non-linearity can arise from a number
of causes, including geometry (e.g., large displacements and/or
rotations, curvature, shape etc.), material properties (i.e.,
nonlinear stress-strain relations) and structural damage (e.g.,
breathing cracks [37]).

The well-known Hartzman Grobman theorem [38] describes
the topological equivalence between the local phase portrait
near a hyperbolic fixed point and the phase portrait of a
linearized system

ẋ = f (x, λ) = f0(λ)+ f1(λ)x+ f2(λ)x
2 + o(x3) (1)

(i.e., there is homeomorphism from one phase portrait to the
other). In view of this statement, many non-linear instability
problems can be easily addressed using linear analysis. However,
the geometric non-linearity of large deflection as well as physical
or constructional non-linearities play a detrimental role in
determining the actual stability limit of both conservative and
non-conservative systems. The phase portrait and the time-
amplitude diagrams of two basic types of bifurcations instability
(saddle point divergence instability and flutter instability) in
Figure 6 illustrate this point. The figure clearly shows how
linearization can induce a misleading interpretation of the static
or dynamic behavior. In both cases, a bounded stable response in
the large is misinterpreted as an unbounded unstable response
by linear investigation [39]. Moreover, in the case of flutter
instability, the linear analysis fails to detect new attractors, such as
stable limit cycles, as is the case in the well-known Beck problem
[40, 41], the Nicolai paradox [41, 42], and the Ziegler paradox
[26, 27] (further details on the latter are discussed in the section
6.1 of this paper).

To summarize, as the effect of “turning on” the higher-
order terms in the normal form involves a violation of non-
degeneracy condition of non-linear terms (i.e., some Lyapunov

coefficients do not vanishing at the critical point) the phase
portrait is qualitative alterated. Therefore, the truncated normal
form is not able to capture all essential events on the
behavior for the global system and “strange” dynamics. This
is the case of the so-called “degenerate bifurcations” (e.g.,
codimension-2 cusp, Bautin and Bogdanov-Takens bifurcations).
They are undetectable by monitoring only the eigenvalues
but we have to take into account the higher-order Taylor
series coefficients of f (x, λ) at the equilibrium. Clarifying
examples of beams, plates and thin-walled structures in which
the eigenvalues analysis obscures the possibility of multiply
compound branching behavior and potentially dangerous
post-buckling behavior are included in Guarracino [43] and
Guarracino and Walker [44].

In the context of non-linear behavior of structures under
dynamic loading in addition to the more traditional direct
problem, another issue worth of attention is the inverse
bifurcation problem of determining model parameters to result
in certain desired values of the external parameters (see [45, 46]
and references therein). The key idea is to map the bifurcation
manifold back to the space of parameters. In so doing, it serves
two purposes: firstly, for a given set of external parameters,
the identification of the parameter configurations that lead to
a specific property or interesting dynamics (bifurcation control
problem); secondly, the design of system parameters in such
a way as to ensure the desire qualitative outcome (bifurcation
prediction problem).

4. ANALYTICAL AND SEMI-ANALYTICAL
METHODS

The stability problem for dynamic system is generally governed
by non-linear Partial Differential Equations (PDEs). In very
limited and clearly defined cases such problems may be
solved in closed analytical form; for example, by solving the
transcendental equation of stability that is associated to the
integration of differential equations of stability [47, 48]. This
leads to a non-linear eigenvalue problem that, most of the time,
it is preferred approximate by a linear eigenvalues problem.
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FIGURE 5 | Phase portrait evolution by changing the parameter λ of local and

global dynamic stability.

The first theoretical predictions of dynamic buckling loads
were conducted by Hoff and Bruce [20]. They provided the
dynamic buckling of flat arches under lateral sinusoidal loading.
Techniques by which to integrate the equations governing
the study of the stability of equilibria and periodic orbits
include various analytical and semi-analytical methods. Their
applicability is, however, limited and strongly dependent on
the involved parameters. A short survey of these methods is
given below.

i. The perturbation method is an approximate direct technique
that provides the solution for weakly non-linear problems
and the associated boundary conditions in form of a
small parameter power series (i.e. a perturbation series)
[49]. The heavy dependence on physical parameters is its
greatest drawback, and as such it is entirely unsuitable
for strongly non-linear problems. Combined methods
(i.e. semi-analytical methods) first of all approximate the
unknown displacement field by polynomial or coordinate
functions, then analytically solve the discretized governing
PDEs (i.e., the obtained set of non-linear ordinary-
differential equations).

ii. One such method is the traditional Taylor expansion
method. By appropriately adjusting the number of terms
of the series expansion and the step-size, it provides a
highly-accurate and stable solution in terms of unknown
higher-order derivatives. It is hence particularly suitable
and useful when the analyzed problem requires both
long-time numerical simulations and high-levels of
solution accuracy. However, this method requires an
increasing amount of computational effort as the system
dimension increases.

iii. The semi-analytical Adomian Decomposition Method
(ADM) gives a solution for PDEs in a polynomial form, by
employing the so-called “Adomian polynomials.” The major
advantage of the ADM is that it provides a simple algebraic
system of equations to solve [50].

iv. The Homotopy Analysis Method (HMA) provides solutions
for highly non-linear stability in the form of analytical
expressions (i.e., convergent series). This significantly
increases the convergence speed for the solutions. The
method, which is independent of small parameters, is very
efficient and simple. It has thus been widely utilized in recent
literature addressing snap-through issues [51]. Both here and
in the ADM method, solution convergence can be obtained
without the need to linearize the stability equations.

v. Another proven approach for determining the critical load of
elastic structures is phase plane/space analysis. This method
involves the topological characterization of the stability
boundary (i.e., the locus of equilibrium points and periodic
orbits in the parameter space).

vi. In the special case of conservative loads, stability can be
assessed, alternative, by using the well-known Lagrangian-
Dirichlet and Lyapunov theorems [31, 52]. By pursuing the
energy based approach, a lower conservative bound of the
critical load can be obtained by leaving non-linear equations
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of motion unsolved [53, 54]. The solution of variational
energy governing equations generally follows a step-wise
procedure (Rayleigh-Ritz method, Galerkin method, etc.).
The drawbacks of an energetic approach are, on one
hand, the overly conservative buckling load, and, on the
other, the impossibility of including rigorous damping effects,
even though these can have a significant effect on the stability
of a structure [55, 56].

5. NUMERICAL METHODS

The main focus of the study of dynamic systems is the
detection, analysis and continuation of their equilibria (i.e., limit
cycles, homoclinic, and heteroclinic orbits), as well as tracing
the associated bifurcation diagrams. An analytical approach
is generally preferred, as it offers a quick, exact solution.
Without numerical calculations, however, this is an arduous
or sometimes non-viable task in view of the complexity of
bifurcation boundaries, especially when dealing with multi-
dimensional systems and strongly non-linear stability problems.
A numerical approach, conversely, provides more general, albeit
approximate, solutions to the stability problem. It significantly
reduces integration times and allows for parametric studies. It
also enables the physics of very complex problems to be taken
into account, providing accurate results for a relatively high
computational effort [57].
The equilibria, i.e., the solutions of the ODE’s associated to the
stability problem

ẋ = f (x), x ∈ R (2)

can achieve fairly accurate predictions via numerical integration.
When the load approaches a fixed point, the stiffness matrix
become ill-conditioned. This can then be used as a constraint by
which to obtain the critical points, in addition to the governing
equations. Much attention has been given to this issue, including
incremental-iterative procedures. These are generally based on
Newton’s method with its modifications (e.g., the Newton-chord
and -secant method, Newton-Kantorovich method, etc.), or the
Broyden method, path-following techniques, and continuation
methods, such as the arc-length continuation method [10, 33,
58, 59]. Searching limit cycles is, however, a more difficult
task. In the literature, this problem is generally formulated
as a periodic Boundary-Value Problem (BVP) on a fixed
interval that is solved using various numerical approaches under
differing assumptions:

i. The shooting time-stepping method (i.e., multiple or
parallel shooting) [60] is a simple and effective iterative
method. From an initial estimate, it computes continually-
improving approximations of the solution to an evolution
problem. This is a very general approach that replaces
the considered boundary-value problem with an equivalent
initial value problem. To do this, the time interval is split
into a number of sub-intervals. Subsequently, the underlying
initial value problem is solved at every time increment.
However, the convergence of the method cannot always be
ensured, and in some cases (e.g., when the problem is highly
sensitive to the initial conditions, or when the Monodromy

matrix has widely separated eigenvalues in the interval over
which the integration is carried out) a machine overflow
can occur.

ii. The finite difference (FDM) and finite element methods
(FEM) [60, 61] are a very popular way to study stability
problems, especially those involving geometric non-linearity.
The key idea underlying all FDMs is to approximate, point-
wise, the derivatives in the differential equations by finite
difference equations. In this manner, the system of partial
differential equations (PDEs) that govern the problem results
into a system of simultaneous algebraic equations which is
typically solved by means of iterative methods (e.g., Gauss-
Seidel method, Jacobi method, and many others). FDM is
a very simple discretization method for understanding and
applying and it can be applied to fairly difficult problems.
However, it may run into difficulty, when the problem is non-
linear. Indeed, non-linearity in differential equations results
in a large algebraic system which is in turn non-linear, this
leads a large computational effort.

The FEM is versatile and widely-usedmethod, particularly
suitable for problems with complex geometries. It yields
an approximate solution of the differential equations by
discretizing the global solution domain into a number of sub-
domains (i.e., elements). A solution is found at a finite set of
points by means of several methods (Rayleigh-Ritz method,
Galerkin weighted residual method, etc.). Trial functions
(i.e., finite elements) are defined on each element; they are
nonzero only in that element and zero everywhere else.
The resulting piecewise approximation is substituted in the
original differential equation leading to an algebraic system
of equations.

iii. The Differential-Quadrature Method [62] is a recent mesh-
less technique for solving partial and total differential
equations which offers a compelling alternative to the
conventional finite difference and finite element methods.
This method replaces partial derivatives in the differential
equations with weighted sum of function values at all the
discrete points (mesh points) of global domain. Due to the
independence of the variational principles, this method is
simple both in terms of mathematics and programming.
Although it can be a computationally expensive technique,
it provides highly accurate solutions.

Other frequently used numerical methods seen in the literature
are the so-called differential transformation-based element
method, and Reduced-Order Models (ROM). Most modern
software packages are focused on bifurcation analysis. The
most well-known of these are AUTO [63] and LOCBIF, which
are especially suited to detecting global and local bifurcations,
respectively. CONTENT [64] and MATCONT [65] are also
worthy of mention here.

6. IMPERFECTION SENSITIVITY

Generally, dynamic stability problems exhibit extreme sensitivity
to slight geometrical (overall and or cross-sectional defects),
loading imperfections, thermal stresses, and even vanishing, but
non-zero, damping forces (for further details, see the section 6.1).
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FIGURE 6 | A comparison between linear and non-linear investigations of static and dynamic bifurcations.

As their structural behavior can be strongly affected by sensitivity,
the first limit point is approached considerably earlier than
the bifurcation load in the imperfect structure compared with
the perfect structure. This results in a significant drop in load
carrying capacity and large out-of-plane displacements. It is
hence necessary to properly take account of the effects of
imperfections on the stability in the design process. The critical
state sensitivity analysis has been frequently discussed in the past.
Recently a number of authors have used a range of approaches
to address the problem [66] Among the methods that allow the
effects of structural imperfections to be taken into account, the
following are especially noteworthy:

i. The Koiter-Newton method is a step-by-step method that
combines a non-linear reduced order model (ROM), based
on Koiter’s initial post-buckling expansion, and the Newton
arc-length correction method. The resulting algorithm
provides a very accurate and efficient equilibrium path,
even when buckling is present and/or the structure is
imperfect [67].

ii. Incremental-iterative methods [59] make it possible to
directly determine (i.e without tracking the equilibrium
paths of imperfect structure) the limit points and simple
or multi-bifurcations of parameterized structures in
the entire parameter space, via an incremental-iterative
(predictor-corrector) algorithm. The latter combines a
load incremental scheme with an iterative scheme (e.g.,
arclength method will be used for load incremental

scheme and minimum residual displacement method
will be used for iterative scheme). However, methods
such as this lead to errors that do not increase with the
parameter values and are therefore often preferred to
perturbation approaches.

iii. Perturbation analysis [68] provides a direct methodology
for investigating the sensitivity to structural imperfections
in bifurcation problems. The perturbation surrounding the
critical point is examined for both equilibrium equations and
the critical constraint.

iv. The Lyapunov-Schmidt-Koiter asymptotic approach [69]
relies on the Lyapunov-Schmidt decomposition and Koiter’s
asymptotic expansion about the bifurcation point. An
effective and reliable approach that is suitable for elastic
structures under conservative loading, it is able to provide not
only an accurate equilibrium path but also the least desirable
imperfection shapes.

Both of these two latter approaches offer the possibility of fully
automated implementation through the finite element method,
and provide highly accurate results. However, their validity is
limited to a very small range around the bifurcation or the
limit point.

6.1. The Effect of Damping: A Paradigmatic
Example
In the past, the buckling problem under follower forces was
frequently addressed using the equilibrium method, which goes
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FIGURE 7 | The Ziegler double pendulum.

back to Euler [70] (i.e., investigating the existence of an adjacent
non-trivial equilibrium state). This has led to many ambiguities,
paradoxes and errors [41].

One of the best-known paradoxes is the so-called “Ziegler
paradox” [26, 27]. This concerns the sensitivity of the stability of
the upward double pendulum depicted in Figure 7 to vanishing
(non-zero) damping forces. As long as it is undamped, this
system is stable for a wide range of loads. However, it becomes
unstable as soon as the slightest damping is observed. Since its
discovery by Ziegler in 1952, this paradox has attracted extensive
attention from researchers [26, 27, 41]. Worthy of note is
the fascinating explanation on dissipation-induced instabilities
provided by Kirillov and Verhulst in their recent work [71]. They
stated that the destabilization of the system by small dissipation
is closely related to Whitney umbrella singularity emerging
on the stability boundary. Ziegler’s pendulum consists of a
two-degrees-of-freedom double-rod system with concentrated
elasticity and inertia. This is subjected to a follower force
F acting in the axis of the second bar. The system consists
of two visco-elastically hinged rigid bars of length ℓ1 and
ℓ2. The inertia and the elasticity of the system are provided
by two lumped masses m1 and m2, which are located at
the middle of each bar, and by two rotational springs of
stiffness k1 and k2 and mechanical linear damping coefficient
c1 and c2 (all positive and real quantities), respectively.
The evolution of the system in time (t) is unequivocally
defined by the Lagrangian parameters ϕ1(t) and ϕ2(t) (i.e.,
the rotation angles that the two rods form descending the
vertical axis).

The non-linear dynamic motion equations are easily derived
from the well-known Euler-Lagrange equation

(

m1ℓ
2
1

4
+m2ℓ

2
1

)

ϕ̈1 +
m2ℓ2ℓ1

2
cos (ϕ2 − ϕ1) ϕ̈2 + (c1 + c2) ϕ̇1

−c2ϕ2 +
m2ℓ2ℓ1

2
sin (ϕ2 − ϕ1) ϕ̇2

1 + k1ϕ1 + k2 (ϕ1 − ϕ2)

+Fℓ1sin (ϕ2 − ϕ1) = 0
(

m2ℓ2ℓ1

2

)

cos (ϕ2 − ϕ1) ϕ̈1 +
m2ℓ

2
2

4
ϕ̈2 (3)

+
m2ℓ2ℓ1

2
sin (ϕ2 − ϕ1) ϕ̇2

1 − k2 (ϕ2 − ϕ1) − c2ϕ̇1 + c2ϕ̇2 = 0

where (·) denotes differentiationwith respect to time t. In passing,
it of note that a static analysis of the system leads us to exclude
the possibility that the column loses its stability by neutral
equilibrium, provided that the determinant of Equation (3)
cannot vanish. Linearizing Equation (3) with respect to (ϕ1,ϕ2)

near the fixed point (0, 0) leads to the following linear equation

M8̈ + C8̇ + (K+ G)8 = O (4)

where 8 = [ϕ1,ϕ2]T is the vector collecting the Lagrangian
coordinates (here the superscript T denotes the transposition
operation); and M, C, K, and G are the mass matrix, the
viscosity matrix, the linear stiffness matrix and the geometric
matrix, respectively.

M =
[

m1ℓ
2
1+4m2ℓ

2
1

4
m2ℓ2ℓ1

2
m2ℓ2ℓ1

2
m2ℓ

2
2

4

]

, C =
[

c1 + c2 −c2
−c2 c2

]

,

K =
[

k1 + k2 −k2
−k2 k2

]

, G =
[

−Fℓ1 Fℓ1
0 0

]

.

(5)

Furthermore, it should be noted that the problem is non-
conservative because of the non-symmetry of the geometric
matrix. Assuming, as usual, an harmonic function of time as
a solution:

ϕi = fie
−i�t i = 1, 2 (6)

where fi is the complex amplitude, i is the imaginary unit and
� is the circular frequency, the following algebraic eigenvalue
problem in non-dimensional form is obtained:

[

− �2M+ i�C+ (K+ G)

]

f = O (7)

Equation (7) can be rewritten in a dimensionless manner as

[

1− γ + k+ (1+ c)νω̃ + ℓ2ω̃2(1+ ρ/4) −1+ γ − νω̃ + ℓω̃2/2
−1− νω̃ + ℓω̃2/2 1+ νω̃ + ω̃2/4

] [

f1
f2

]

=
[

0
0

]

(8)

where we have introduced the following dimensionless constants:
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FIGURE 8 | Codimension-one eigenvalues evolution of undamped Ziegler

double pendulum under increasing follower load F (ρ = ℓ = k = c = 1) and

v = 0.

ω̃2 =
m2ℓ

2
2�̃

2

k2
, ρ =

m1

m2
, ℓ =

ℓ1

ℓ2
, k =

k1

k2
,

γ =
Fℓ1

k2
, c =

c1

c2
, ν =

c2

ℓ2
√
m2k2

, �̃ = −i�

(9)

Equation system 8 has non-trivial solutions (i.e., non-zero
amplitudes f1 and f2) only if its determinant vanishes. The latter
condition leads to the following quadratic equation for ω̃2

ω̃4

16
+

ω̃2

4
(11− 3γ )+ 1 = 0 (10)

where, for convenience, we have assumed ρ = ℓ = k = c = 1
and ν = 0 (i.e., circulatory system [26, 41]). The solutions are

ω̃2
1,2 = 2

(

−11+ 3γ ±
√

3
(

3γ 2 − 22γ + 39
)

)

(11)

which correspond to the following four eigen-frequencies

�̃ = ±
√

2k2
l22m2

(

−11+ 3γ ±
√

3
(

3γ 2 − 22γ + 39
)

)

(12)

It is interesting to note that the characteristic equation does
not admit the quasi-static solution ω̃ = 0. Figure 8 shows
the imaginary part vs. real part of the eigenvalues of the
obtained Ziegler column. When the follower force is zero
(γ = 0), the fixed points are four centers; i.e., two couples of
complex conjugate eigenvalues (±iωi) that lie on the imaginary
axis (points A and A′, B, and B′). The system is marginally
stable and the vibrations are sinusoidal. As the force gets
bigger, the characteristic roots move on the imaginary axis

FIGURE 9 | Real (solid line) and imaginary (dot line) parts of the eigenvalues ω̃

vs. dimensionless follower load γ , for v = 0.

and approach each other as a pair. At points C and E, the
force reaches the critical value (γ = 3). The eigenvalues
then collide two by two (reversible Hopf bifurcation), and
the geometrical stiffness matrix loses its self-adjointness (i.e.,
symmetry). From now, any infinitesimal increment of the
force δF entails that the eigenvalues (Re[ω̃1] > 0,Re[ω̃2] <

0, Im[ω̃i] 6= 0) split in a quadruplet and move from the
imaginary axis into the complex plane. This implies blowing-
up oscillatory instability (i.e., flutter instability) with self-excited
vibrations induced by non-linearities embedded in the system.
The eigenvalues become real when γ ≥ 4.3̄. There is no
vibration; rather, deflection diverges exponentially in time (i.e.,
divergence instability). Figures 9, 10 graphically represent the
regions of instability.

In the case of the viscoelastic Ziegler pendulum, for a suitably
small value of ν, the critical load is smallest in the undamped case

Pf =
(

4

3
+

ν2

2

)

k

ℓ
(13)

As sketched in Figure 11, if we assume ν = 0.1 we obtain γ =
1.78 vs. γ = 3 of the undamped system. This is the well-known
destabilizing effect of damping. The paradox is evenmore evident
when we reduce the viscosity to zero (ν → 0), because the flutter
load is still noticeably lower than those of the undamped system.

7. EXPERIMENTAL INVESTIGATIONS

The first experimental evidence of non-linear oscillatory
behavior in mechanical systems dates to the 1660s and the
pioneering works on pendulum dynamics by Marin Mersenne
and Christiaan Huygen. Further experimental campaigns were
conducted in the 1800s in an industrial context. Their aim
was to recognize the flutter instabilities of the throttle valves
of steam engines, the hunting motions of railway cars, the
whirling of rotors and so on. In 1859, Franz Melde carried out
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FIGURE 10 | Graphical study of Equation (11) to identify the region of stability, for v = 0.

an experiment on standing waves produced in a string made
to oscillate via a tuning fork, which opened the way to new
and fascinating knowledge in the field of parametrically excited
vibrations. Thereafter, the experimental observation of dynamic
instabilities saw a renewed interest in the 1970s, when researchers
focused their efforts on the possibilities of dynamic bifurcations
(saddle-node, pitchfork, period-doubling, andHopf bifurcations)
and on the routes to chaos and strange attractors (e.g., period-
doubling cascades, torus breakdown, dynamic codimension-2
bifurcations etc.). In recent decades, a great amount of effort has
been put into the study and experimental investigation of the
dynamic snap-through of shallow arches and the local buckling
of axially compressed shells under dynamic perturbation (see [61,
72] and references therein). Unlike their theoretical counterparts,
however, experimental developments in the dynamic bifurcation
of structures are still not well established, and a great deal of
research remains to be done. This is most likely due to the
difficulties entailed in the extreme sensitivity of the structural
responses and, in certain cases, the practical difficulties related
to analyzing mechanical models (this is the case for systems
involving follower forces). For example, considerable work still
needs to be done to close the gaps between theoretical and
experimental studies on large-amplitude vibrations and the
chaotic behavior of shells, plates and membranes (see [73]
and references therein). The same can be said of the dynamic
instability induced by follower forces (i.e., flutter and divergence).
The difficulty, in these cases, is in practically realizing a
tangential force [41]. This issue is still quite controversial. Certain
researchers consider follower forces as a completely unrealistic
“thought experiment,” undeserving of scientific consideration.
Others, conversely, maintain that follower forces is a realistic
topic with important real-world consequences. In this regard,
two articles entitled “Unrealistic Follower Forces” and “Realistic
Follower Force” by Koiter [74] and Sugiyama et al. [75],

FIGURE 11 | Real (black line) and imaginary (red line) part of the eigenvalues ω̃

vs. dimensionless follower load γ , for ν = 0.1.

respectively, are an interesting contribution to both sides of the
debate. Koiter, for his part, stresses:

The abundant literature on such non-conservative follower forces in

the second half of the present century is devoid of any mechanism

bymeans of which experiments on follower forces can be performed.

The absence of such physical evidence reduces the concept of

follower forces to a “Gedankenexperiment” without consequences

in the real world.

A few years later, Sugiyama retorts:

Admiringly, even now, there is a group of scientists who do not

believe in the reality of tangential follower forces. The origin of
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a follower force can be found in an end rocket thrust applied to

flexible missiles and spacecraft. In this sense a follower force is a

very realistic force in the field of aerospace structures engineering.

Bolotin [1] also spoke on the issue in 1999 as follows:

I am not at all a partisan of follower forces. It seems that since

1961 when I had published my book, I never returned to the topic.

But one must be just: follower forces do exist, at least as a first

approximation, as the models of real forces, such as jet responses

and jet pressures. [...] Actually, most of the publications on follower

forces are of purely academic origin and seem artificial. [...] Who

knows, maybe we will meet this kind of problem in the future

when dealing with smart space structures. But bluntly speaking,

most recent papers on follower forces do not arouse much sympathy

from me.

For more details on this controversy, see Elishakoff’ enlightening
overview [76] in which he underlines the need to deploy a large
experimental campaign that can provide definite answers to the
feasibility of follower forces. Recent experimentations performed
by Bigoni and Noselli [77] and Bigoni et al. [78] are also very
impressive. Not only do they confirm the feasibility of follower
forces but their experimental results align qualitatively with their
theoretical equivalents. However, Kurnik et al. [79] show that the
system tested by Bigoni and Noselli [77] did not rigorously model
the original Ziegler column. We can thus conclude that this issue
is far from settled, and that further research will be required.

8. NEXT-GENERATION CHALLENGES

Over the last decades, the dynamic stability of elastic structures
have gone through a revival of interest across different
application areas, due to the possibility to harness mechanical
instabilities for additional functionality. Addressing the stability
problem in terms of an opportunity to exploit (buckliphilia)
rather than of catastrophe to avoid (buckliphobia) offers a
new stimulating layer of depth to the issue. A case in point
are the next-generation micro- or nano-electro-mechanical
systems (MEMS or NEMS), which are becoming increasingly
attractive to the scientific community due to their great potential
and functional advantages, including their extended working
range, tunable resonant frequencies, reliability, reconfigurability
and cost-effectiveness [19, 80]. These bi-stable systems exhibit
non-linear behaviors (softening or stiffening response, dynamic
pull-in or snap-through, chaotic vibrations) that are tunable,
for example, by prestress. They often exploit non-linearities
(due to resonance, buckling, dissipation and electrostatic or
piezoelettric actuation, to cite a few examples) as a means to
increase their performance. On this point, the use of parametric
resonance in MEMS is of particular applied interest as it
leads to an interesting and rather unusual mixed softening-
stiffening response. A considerable number of MEMS or NEMS
devices uses a dynamic operating mode. Of particular interest
to researchers are devices that exploit dynamic snap-through
instability as an actuation mechanism or for filtering applications
(e.g., band-pass filters). The range of applications is wide and
varied: relays, switches, valves, mechanical memories, drive

mechanisms (such as micro/nano-actuators), pressure sensors,
varactors, inductors, resonetors, transducers, clips, threshold,
controllers for micro-mirrors, etc. Numerous recent studies show
how the dynamic snap-through instability of MEMS and NEMS
shallow arches can be profitably employed; for example, for filter
and switch applications.

A further leading area of research in the fields of structural
health monitoring and non-destructive evaluation focuses on
post-buckling-based energy harvesting devices, such as self-
powered wireless sensors and sensor network [81]. Such
devices exploit the post-buckling snap-through behavior to
convert low-rate and low-frequency excitations into high-rate
motions. The latter in turn can be employed to generate
electric energy (by using, for example, piezoelectric transducers).
This solves the major drawback of the traditional wireless
sensors, that is the limited lifespan of batteries. Other
appealing applications involve the use of limit cycles, self-
sustained oscillation, and bifurcations for signal processing.
Devices such as these, and especially bifurcation amplifiers,
exploit the sudden transition (or “jump”) across bifurcations
to amplify signals making them suitable for taking highly
sensitive measurements.

The high-rate motion and multistability are appealing
features of buckling phenomena which can usefully exploited at
different scales for smartmorphable or shape-adaptive structures,
devices or metamaterials (inspired, for example, by origami or
kirigami technique) [82]. This can be achieved by specific
design strategies (e.g., the modal nurging) which lead the
structure to a peculiar equilibrium path [83]. The periodic
buckling, for example, can be usefully exploited to generate
reversible or irreversible (depending on the type of material
to be handled: shape-changing or shape-memory materials)
transformations in topology. Specific examples of applications
including self-deployable or -lockable structures, encapsulation
devices, radiofrequency switchable components, transformable
metamaterial structures, and many others.

9. CONCLUDING REMARKS

This paper set itself the ambitious goal of reviewing the recent
literature on the fascinating topic of the linear and nonlinear
dynamic instability of elastic mechanical systems. The aim
was to identify and examine the priority areas for existing
research, as well as those of significant future interest. The
stability theory of dynamic systems is a captivating but complex
issue, which incorporates many scientific disciplines. For this
reason, it has been widely investigated over the last century and
remains a highly active field of research. The more relevant and
innovative works over the last two decades were considered here.
However, given the volume of other similar research, others were
inevitably omitted, and the author requests some indulgence
on this point. Most of the key topics relating to dynamic
instabilities are currently well-understood andmature. They have
been adequately and extensively studied, both analytically and
numerically. A lot has been done, for example, with regard to the
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exploitation of codimension-2 bifurcations; for example, snap-
through as an actuation mechanism and for filtering applications
(e.g., band-pass filters) in the tailorable design of arch-shaped
micro/nano electromechanical system (MEMS/NEMS) devices
and bi-stable curved nano-beams (nanotubes and nanowires).
The exploitation of chaotic behavior and non-linear resonance
in a variety of advanced engineering applications is a cutting-
edge field in need of future attention from researchers. Two key
examples are the impact dampers used in the passive control
of vibrating systems, and the chaotic driven signal for system
identification. The latter paves the way for urgently needed
innovative tools to monitoring structures’ state of health. Despite
the available theoretical and numerical studies, experimental
data on some complicated bifurcations, chaos and post-buckling
behavior aremuch less frequent in the literature. This is especially
true in the case of non-conservative systems under follower-
forces, and of large-amplitude vibrations in panels and shells. In
the cases of follower-forces, it remains a matter of debate as to

whether they can be opportunely performed in an experimental
setting. As such, this stands out as a rich source of future research.
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