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ABSTRACT 

 

Compliant mechanisms find use in numerous applications both in micro and macro scale devices. Most of the current 

compliant mechanisms base their behavior on beam flexures. Their range of motion is thus limited by the stresses developed 

upon deflection. Conversely, the proposed mechanism relies on elastically nonlinear components to achieve large 

deformations. These nonlinear elements are composite morphing double-helical structures that are able to extend and coil 
like springs, yet, with nonlinear stiffness characteristics. A mechanism consisting of such structures, assembled in a simple 

truss configuration, is explored. A variety of behaviors is unveiled that could be exploited to expand the design space of 

current compliant mechanisms. The type of behavior is found to depend on the initial geometry of the structural assembly, 

the lay-up, and on other characteristics specific of the composite components. 

 

1. Introduction 

 

Compliant devices have been of great interest among researchers in the fields of mechanisms, robotics and 

morphing structures. The interest stems from their potential and the variety of promising applications both at the micro and 

macro scale [1]. Mechanisms are parts of machines and other devices used to transfer motion, force or energy. Conventional 

mechanisms consist of rigid links and base their performance on movable joints. Unlike rigid-link mechanisms, compliant 

mechanisms utilize the flexibility of their members to transmit or transform motion and forces [2]. The field of application 
for compliant mechanisms is broad [1]. They can be used in precision positioning systems, e.g. optical fiber alignment [3], 

in rehabilitation devices [4], in MEMS/NEMS such as switchers [5], in nano-injectors [6], deployable structures [7] or space 

applications [8]. Compliant mechanisms can also be employed for efficient energy harvesting or vibration isolation [9,10]. 

Compliant mechanism can be considered as springs with variable stiffness. To modulate their stiffness 

characteristics or to achieve nonlinear behavior, combinations of cam and beam structures [11] or cam rollers with floating 

springs have been used, leading to complex and relatively bulky designs [12]. State-of-the-art compliant mechanisms take 

advantage of the flexibility of their constituent materials to obtain designs that are lightweight, easily scalable and with 

reduced friction and no need for lubricants. However, these compliant mechanisms often rely on flexures, whose range of 

motion is limited by the stresses developed upon elastic deformation [13]. To achieve higher effective strains and extend the 

range of motion currently available, this work proposes the use of morphing composite structures as the flexible elements in 

a compliant mechanism. 
Morphing structures are able to change shape and undergo large deformations while maintaining their load-carrying 

capability and structural integrity [14]. In the present work, the composite double-helical structure proposed by Lachenal et 

al. [14,15] has been selected as the deformable component for compliance. This morphing structure exhibits multistability 
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and nonlinear stiffness characteristics that can be tailored to meet specific desirable behaviors. For simplicity and for the 

sake of illustration, in this work, the double-helical structures are combined into a simple truss-like compliant mechanism, 

resembling a von Mises truss. The result is a rich mechanical response stemming from the interaction of geometric and elastic 

nonlinearity, as well as the inherent nonlinearity of the morphing components. 

The proposed illustrative mechanism could be used as the structural building block to design more complex 
assemblies for bespoke mechanical properties and kinematics, e.g. [16,17]. For instance, lattice structures have already been 

shown to be able to provide unique combinations of properties and behaviors [16,18]. In this respect, by tailoring its 

architecture and properties, the proposed mechanism may be used as the unit cell to create 2D and 3D structures with 

reconfigurable behavior, for dynamic applications, energy efficiency, to control structural deployability or isolate 

vibrations [18]. 

In addition to introducing the said compliant mechanism, the aim of this paper is to demonstrate the richness of its 

design space and the range of attainable mechanical behaviors. The remainder of the paper is organized as follows. Section 

2 presents the analytical model and the nonlinear elastic behavior of the compliant double-helical structure, followed by a 

description of the analysis and synthesis methods for assemblies of double-helices in a von Mises-like truss configuration. 

Results are presented in section 3 as energy landscapes and equilibrium manifolds. The effect of various design parameters 

on desirable features, such as multistability and constant stiffness, is explored. A prototype of the new mechanism is 

manufactured and experimental results are presented in section 4. Finally, concluding remarks are given in section 5. 
 

2. Structural Assemblies of Double-Helices 

 

2.1 Double-Helix Structure 

 

The helical structure (Fig. 1) consists of two prestressed carbon fiber reinforced polymer strips of dimensions L × W 

connected by rigid spokes to keep them apart at a constant distance H = 2R, where R is the radius of an underlying cylinder 

upon which the deformed strips are assumed to lie [15,19]. Prestress is introduced by manufacturing the strips on a 

cylindrical mold of radius Ri and subsequently flattening them, to form the double-helix. The structure can deform 

continuously from an uncoiled (straight) configuration to coiled configurations defined by the angle � ∈ [−90°, 90°] 
representing the pitch of the helix. The angle � is defined to be positive for anti-clockwise rotations starting from the straight 

configuration (Fig. 1) [14]. The lay-up of the composite strips can be tailored to influence the mechanical response of the 

double helix. In this work, we focus on helix deformation limited to � ∈ [0°, 90°] and on lay-ups of five plies of the form 

[β2/0/β2] and [β2/0/-β2], where β is the fiber angle measured with respect to the local x-axis of the strips. The angle β is 

defined to be positive towards the y-axis (see Fig. 1a) and the plies are stacked in the positive z-direction. Figure 2 shows a 

manufactured prototype of the helix. 

 

 
Figure 1: a) Initially curved (radius Ri) composite strips are flattened to introduce prestress; b) the strips are joined by rigid spokes to 

form a double-helix structure, which c) can deform from a straight (light grey) to a twisted (dark) configuration (θ < 0). 
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Figure 2: Manufactured prototype of the double-helix structure in a) straight, b) stable twisted, c) unstable twisted and d) fully coiled 
configuration. 
 

The analytical model of the composite structure [14,15] is based on its total strain energy, calculated as: 

 	 = 
n
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where n is the number of composite strips, ε0 is the mid-plane strain tensor and Δκ is the tensor of the change in curvature, 

both referred to the local coordinate system of the strips. A, B and D are the in-plane, bending-extension coupling and 
bending stiffness matrices from Classical Laminate Theory [20]. Conceptually, a symmetric lay-up, i.e. the [β2/0/β2] lay-ups 

herein, exhibits no coupling between bending and extensional responses, while a balanced and antisymmetric lay-up, i.e. the 

[β2/0/-β2] lay-ups, exhibits no extension-shear or bend-twist coupling. Following the assumption by Giomi and 

Mahadevan [21] that only x-axis strains are developed during the deformation of the structure, and noting that the bending-

extension contribution can be neglected due to the near-zero B11 for the selected composite lay-ups, the strain tensor is 

calculated as: 
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0
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where α11 is a term of the compliance matrix S: 

 

S = 
A B

B D
��1  ,                                                                                                                                                                                            (3) 

 

and Nx is the axial force arising upon deformation. Further, assuming constant curvatures Δκx and Δκxy along the length L 

and width W of the strip, while letting the transverse curvature Δκy vary along the width, Δκ becomes: 

 

Δκ = � Δκx

Δκy
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where Δκy
i
 refers to the transverse change of curvature as developed in [14]. 

The axial force F necessary to extend or contract the helix is derived from the strain energy by applying Castigliano’s 

theorem [15]: 

 

F = 
∂U

∂Δl
,                                                                                                                                                                                                   (5) 

 

where Δl is the deformation of the structure from the straight configuration. 
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Figure 3: Load-displacement curves of double-helices for different lay-ups of the form [β2/0/β2] or [β2/0/-β2], where β is the ply angle. 
The displacement Δl is normalized to the length L of the strips, with Δl/L = 0 representing the fully-extended and Δl/L = 1 its fully coiled 
configuration. All double-helices shown have two self-equilibrated configurations with no external force required to maintain the shape. 
 

 
Figure 4: Schematic representation of the assembly of double-helices in a truss-like configuration with both supports pinned [22]. The 
initial configuration is determined by the equilibrium length L0,i of the double-helices and by the initial angle α0,i of the truss configuration. 
 

Figure 3 shows the axial force versus displacement curves for the double-helices used in this paper (L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm). The response of the double-helix is nonlinear, with both axial force and stiffness changing sign as 

the helix deforms from the extended (Δl/L = 0) to the fully coiled (Δl/L = 1) configuration. All double-helices considered 

here have multiple configurations of self-equilibrium (F = 0), although these are not always stable. The behavior of the 

double-helix is determined by the dimensions of the structure, the prestress of the strips, and the lay-up of the composite 

plies [19]. The lay-up of the composite strip affects the stiffness characteristics of the helices through the A, B and D 

matrices, resulting in different shapes of the load-displacement curves for helices of different lay-ups (see Fig. 3). In 

comparison, the geometrical features of the helix affect only the magnitudes of the load-displacement curves. In this sense, 

the lay-up of the composite strips has the most significant effect on the load-displacement curves of the double-helices and 
is therefore shown here; for brevity, the sensitivity to varying geometric parameters is shown in Appendix A.1. 

 

2.2 Structural Assemblies of Double-Helices 

 

The double-helix can deform from an extended to a completely coiled configuration, and functions as a nonlinear spring. 

The present work further explores these elements and their nonlinearities, combining them in structural assemblies. The 

proposed assembly forms a truss-like structure, as shown in Fig. 4. The assembly is a 2-degree-of-freedom, modified von 

Mises truss with two double-helices forming the truss members, connected by pin joints at the apex and base. Consequently, 

the truss members are only loaded axially. As such, their transverse and bending stiffness characteristics are not considered 

here. In its initial configuration, the structure has height H0 and a base angle α0,i with respect to the horizontal; its members 
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have length L0,i corresponding to the length of the longest self-equilibrated configuration, and an axial stiffness ki that then 

varies upon deformation. An external load P is applied at the apex, which is free to move horizontally and vertically by υh 

and υv, respectively. More generically, further below, we refer to υp as to the displacement of the apex in the direction of the 

applied load. 

 
2.3 Analysis of the Structural Assemblies 

 

Two approaches are employed for the analysis of the structural assemblies. First, energy landscapes are used to represent 

and characterize the behavior of the compliant mechanism over its work space. Next, a path following method is applied to 

obtain the potential load paths for specific load cases. 

 

2.3.1 Strain Energy Landscapes 

 

Strain energy landscapes are an effective way to identify stable configurations of the structure at either global or local minima 

of the strain energy across the work space [23]. For this particular configuration of the assembly of double-helices (Fig. 4), 

where their free ends are connected to a single moving point (the apex), the total strain energy is uniquely determined by the 

position of this end effector, and is the sum of the strain energy of the constituent helical members given by Eq. (1). The 
strain energy landscapes provide a means to qualitatively compare the structural response of the truss structures. 

 

2.3.2 Path-following Method 

 

Previous studies on the behavior of the von Mises truss suggest that the structure undergoes a snap-through when loaded 

beyond a critical value with a vertical force at the apex [24,25]. As the double-helices are expected to introduce further 

nonlinearities, an iterative path-following algorithm is required to determine the load-displacement response of the structural 

assemblies. The arc-length method is an efficient method to solve nonlinear systems and capture behaviors like snap-through 

and snap-back including the areas of instability [26,27]. Specifically, we use the modified-Riks method developed by 

Crisfield [28]. Additionally, bifurcations and limit points are detected by investigating the eigenvalues of the system’s 

tangential stiffness matrix. A perturbation based on the respective eigenvectors is then applied to the solution at the 
bifurcation points for the computation of the branching paths [29,30]. The stability of an equilibrium branch is characterized 

by the eigenvalues, with negative eigenvalues indicating instability. Combined, the path-following method and the stability 

analysis enable the load-displacement response of the structural assemblies to be characterized fully. 

 

3. Results and Discussions 

 

The results presented herein focus on the analysis of the simplest geometry for the structural assembly of double-

helices, i.e. the modified von Mises truss as depicted in Fig. 4. The aim of this work is to highlight the richness of structural 

response available by studying the potential (strain) energy landscapes of the assembly and exploring load paths under 

various load conditions and for a variety of potential combinations of double-helices. 

 

3.1 Initial Results 

 

In the initial analyses all double-helices have the following geometric parameters: L = 95 mm, R = 15 mm, Ri = 30 mm, 

W = 5 mm. Two geometric configurations are considered: a shallow (α0,1 = 35°) and a steep (α0,1 = 70°) truss. Three 

composite lay-ups are chosen from Fig. 3 to represent the three types of curve in the graph and explore the ensuing responses 

of the structural assemblies: a unidirectional (UD) lay-up ([05]); a symmetric lay-up ([452/0/452]); and an antisymmetric lay-

up ([452/0/-452]). These truss and double-helix configurations are selected to illustrate representative obtainable properties. 

The strain energy landscapes for different truss configurations are presented in Fig. 5, allowing their stability characteristics 

to be explored; valleys correspond to stable equilibria, whereas peaks and saddle points denote unstable equilibria. Stable 

and unstable internal equilibria are labelled with Arabic numbers (1–5) and Roman letters (A–H, J, K and M), respectively. 

Latin numerals (I–IV) are used for stable boundary equilibrium positions, where at least one of the two helices is fully 

extended. For shallow trusses, the UD and symmetric lay-ups feature bistability, with stable states at the initial position and 
at a vertical displacement 2H0 (points 1 and 2 in Fig. 5a, b). For double-helices of antisymmetric lay-up, the assembly 

displays only unstable interior equilibria (points G, H and M in Fig. 5c), but four stable boundary equilibria can be observed 

(points I–IV in Fig. 5c). For steep trusses, the structure can exhibit: i) bistability, for a [05] lay-up (points 1 and 2 in Fig. 5d); 

ii) quadristability, when double-helices of a symmetric lay-up are combined (points 1–4 in Fig. 5e); iii) pentastability, in 
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case of an antisymmetric lay-up, with a single interior stable point, when the double-helices are collinear with a zero 

horizontal displacement (point 5 in Fig. 5f), and an additional four boundary equilibria (points I–IV in Fig. 5f). 

The force-displacement response for a vertical load at the apex is presented in Fig. 6. The corresponding positions of the 

apex are superimposed on the strain energy plots in Fig. 5 (red markers). For most cases, a bifurcation of the equilibrium 

path is present, resulting in both horizontal and vertical displacements of the apex. Interestingly, the bifurcated branches 
enable the mechanism to deform to all the possible internal equilibrium configurations identified on the strain energy 

landscape just by applying a vertical load at the apex. For shallow trusses with a [05] lay-up or an antisymmetric one, where 

no bifurcation of the equilibrium path occurs, all internal equilibrium configurations are also traversed. 

 

 
Figure 5: Strain energy landscapes for a compliant mechanism of identical double-helices assembled in a truss-like configuration. Results 
are for initial truss angles α0,1 = 35° and α0,1 = 70°, with composite strips of [05], [452/0/452] and [452/0/-452] lay-ups. The initial truss 
configurations are indicated with black lines. Points labelled 1–5 denote stable equilibria, while points A–H, J, K and M identify positions 
of unstable equilibrium; points I–IV denote stable boundary equilibria. The positions of the truss apex under an applied vertical load 
(Ph = 0) and/or horizontal load (Pv = 0) are superimposed on the landscapes: red points indicate the equilibrium paths of the apex under 

the application of a vertical load; blue points indicate the equilibrium paths of the apex under the application of a horizontal load. 

 

The force-displacement response of the structure under a horizontal load at the apex is depicted in Fig. 7. The corresponding 
positions of the apex are superimposed on the strain energy plots in Fig. 5 (blue markers). A bifurcation of the equilibrium 

path occurs for all cases, except for double-helices of a symmetric lay-up assembled in a steep truss, where three 

disconnected equilibrium paths are observed (Fig. 5e). Similar to the case of a vertical applied load, all the internal 

equilibrium configurations can be traversed via the application of a horizontal load. Notable is the region of linear load-

displacement response along the main equilibrium path despite the use of nonlinear elements. This response is accompanied 

by a circular displacement path of the apex, as illustrated in the respective strain energy plots (Fig. 5a, c, d, f). This region 

is a stable area of constant stiffness for the [05] lay-up, but is unstable for double-helices of antisymmetric lay-up (Fig. 7). 

The use of double-helices with symmetric lay-up provokes non-linear behavior, particularly for a steep truss. Additionally, 

for this configuration, a jump in the load-displacement curve of one of the disconnected equilibrium paths is noticed 
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(Fig. 7b). The mechanics of this jump is explained in section 3.3. In all cases closed-loop deformation paths of the apex can 

be observed. 

Figure 8 shows the response of the assembly of double-helices with symmetric lay-up in a shallow truss configuration under 

a combined loading (Ph = Pv). A more complex behavior is observed with the load-displacement curve forming an “S-

shaped” curve. Although no bifurcation of the equilibrium path occurs, the mechanism nonetheless traverses all five 
equilibrium points. The structure also maintains its bistability as the energy minimum exists independent of the loading 

conditions. 

 

 
Figure 6: Load-displacement curves of the assembled structure of identical double-helices under the application of a vertical load at the 
apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-helices with varying lay-ups. Dashed line 
represents sections of instability; points 1–5 are stable equilibrium points. Points A–H, J, K and M are unstable equilibrium points. The 
load has been normalized with respect to the load value at the maximum peak (Pcrit) in each case. The displacement has been normalized 

with respect to the initial height of the truss structure. 
 

 
Figure 7: Load-displacement curves of the assembled structure of identical double-helices under the application of a horizontal load at 
the apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-helices with varying lay-ups. Dashed line 

represents sections of instability. Points 1 and 2 are stable equilibrium points; points A–H, J, K and M are unstable equilibrium points. 
The load has been normalized with respect to the load value at the maximum peak (Pcrit) in each case. The displacement has been 
normalized with respect to the initial width of the truss structure. 
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Figure 8: Load-displacement curve (left) and deformation (right) of the assembled structure (with initial angle α0,1 = 35°) of two identical 
double-helices (with a [452/0/452] lay-up) under combined loading (Ph = Pv) at the apex. Points 1 and 2 are stable equilibrium points; 

points J, K and M are unstable equilibrium positions. Dashed lines (left) represents areas of instability. The load has been normalized with 
respect to the load value at the maximum peak (Pcrit). The displacement has been normalized with respect to the initial length L0. 
 

 
Figure 9: Load-displacement curves (left) and deformation (right) of the assembled structure of double-helices of different length under 

the application of a) a vertical load and b) a horizontal load at the apex. Points 1–4 are stable equilibrium points; points A–E are unstable 
equilibrium points. The truss has initial angle α0,1 = 35° and double-helices of [452/0/452] lay-up, and lengths L1 = 95 mm, L2 = 71 mm. 
Dashed lines (left) represent areas of instability. The load has been normalized with respect to the load value at the maximum peak (Pcrit) 
for each case. The displacement has been normalized with respect to the initial height or width of the truss structure, respectively for 
vertical or horizontal loading. 
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Combining double-helices of different properties further expands the ability to tailor the force-displacement response of the 

structural assemblies. Illustratively, Fig. 9 shows the response of double-helices of identical symmetric lay-up [452/0/452] 

but with different lengths L, combined in a shallow truss. It is noted that any symmetry present in previous cases in the 

assembled structure is lost. The assembled structure experiences quadristability. Under a vertical load, two disconnected 

equilibrium paths are identified, one of which forms a closed loop, while a horizontal load results in a bifurcation of the 
equilibrium path. In both loading conditions all possible equilibria, both stable and unstable, are accessed. Further 

investigation of asymmetric trusses is beyond the scope of this paper, and we focus on cases of using truss members of the 

same properties. 

In the following sections the sensitivity of salient behaviors identified above—specifically, multistability and constant 

stiffness—to changes in design parameters of the structure is further explored. 

 

3.2 Multistability 

 

Two double-helices with a symmetric [452/0/452] lay-up assembled into a steep truss with initial angle α0,1 = 70° exhibit four 

stable internal equilibrium configurations (see Fig. 5e). Multistable mechanisms have found use in applications such as 

switches, positioners, and reconfigurable structures [31]. The characteristics of multistability of the trusses are therefore of 

particular interest. Here, we explore the effect of linear springs, initial truss geometry, and lay-up of the composite strips, on 
the reference configuration. For comparison purposes, the values in the load-displacement graphs (Figs. 10–12) have been 

normalized with respect to a critical load—the maximum peak of the load-displacement curve—and the initial height of the 

truss structure. 

Replacing the double-helices with linear springs results in the loss of quadristability, although a bifurcation of the equilibrium 

path is still present (see Fig. 10). While points 3 and 4 (Fig. 10a) are stable equilibrium positions for the case of double-

helices, for linear springs these positions labelled as J and K become unstable. Points 3, 4, J and K refer to positions where 

the truss elements are collinear (Fig. 10b). For both linear springs and double-helices the axial forces have opposite sign, 

thus the system self-equilibrates. For the case with linear springs (points J and K in Fig. 10b) the equilibrium is unstable. 

Conversely, for the case with double-helices (points 3 and 4 in Fig. 10b), the two helices also have axial stiffnesses of 

opposite sign: the helix displaying negative axial force has negative stiffness. As a consequence, the helices tend to deform 

in opposite directions, which ultimately stabilizes the equilibrium state (Fig. 10c). 
The initial geometry of the assembled structure significantly affects its multistable behavior. A shallow truss (α0,1 = 35°) is 

bistable, while for higher initial truss angles, α0,1 = 45° or α0,1 = 70°, the mechanism exhibits quadristability under the 

application of a vertical load (Fig. 11a). This behavior is closely linked to the characteristics of the double-helices 

themselves. In shallow trusses the two stable positions are the initial one and the one at a vertical displacement equal to 2H0 

(points 1 and 2, respectively, in Fig. 11a), while points M, J and K are unstable equilibria. Positions J and K on the bifurcation 

path, which occur when the double-helices are horizontal, are noticed in steeper trusses too, but as stable equilibria (points 

3 and 4 in Fig. 11a). In these stable equilibrium positions—where the helices are collinear—the double-helices have axial 

stiffness of opposite sign and the axial forces have either opposite sign (points 3 and 4 for α0,1 = 70° in Fig. 11b) or are both 

negative (points 3 and 4 for α0,1 = 45° in Fig. 11b). In either case, due to the different truss geometry, the helices pull against 

each other, thus stabilizing the equilibrium. 

The lay-up of the composite strips of the double-helix can significantly affect the load-displacement behavior of the double-

helix (Fig. 3). The reference structure consists of double-helices with a symmetric [452/0/452] lay-up. In Fig. 12, we explore 
the behavior of the mechanism for varying ply angle β in symmetric lay-ups of the form [β2/0/β2]. For a ply angle β = 0° the 

assembly is bistable, with both the initial configuration and the configuration at vertical displacement 2H0 being stable 

(points 1 and 2 in Fig. 12). Note that none of the equilibrium points encountered on the secondary path correspond to a stable 

state in this case. For a ply angle β = 90° the double-helix load-displacement curve is similar to that of an antisymmetric lay-

up (Fig. 3), thus the characteristics of the mechanism with β = 90° or an antisymmetric lay-up are the same, with the structure 

exhibiting one internal stable equilibrium when the double-helices are collinear (point 5 in the main path, Fig. 12), plus four 

boundary equilibria (Fig. 5f). For all other ply angles, 0° < β < 90°, the assembly is quadristable. For the relevant 

deformation of the truss structures the reader is referred to Fig. 5d-f. 

Variations in the geometrical features of the double-helix result in minor differences in its load-displacement behavior 

(Appendix A.1) and thus have a limited effect on the multistability of the mechanism. Relevant graphs of load-displacement 

for different geometrical characteristics of the double-helices have been included in Appendix A.2. 
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Figure 10: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear springs under a vertical 

load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Points 1–4 are stable equilibrium points; points A–F, J, K and 
M are unstable equilibrium points. Dashed lines represent areas of instability. b) Deformation of the assembled structures. c) Axial force 
with respect to displacement of a linear spring (left) and of a double-helix (right). 
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Figure 11: a) Load-displacement curves of a mechanism with different initial truss angles α0,1 consisting of double-helices of [452/0/452] 
lay-up, under the application of a vertical load at the apex. Points 1–4 are stable equilibrium points. Points A–F, J, K and M are unstable 
equilibrium points. Dashed lines represent areas of instability. b) Axial forces of double-helices at selected equilibrium points for the 
different initial truss angles. 
 

 
Figure 12: Load-displacement curves of the assembled structure of identical double-helices for different symmetric lay-ups of the form 
of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 45°, 60° under the application of a vertical load at the apex. Points 1, 2 and 5 are stable 
equilibrium points on the main paths; points 3 and 4 on the bifurcation paths. Points A, M, B, G and H are unstable equilibrium points on 
the main paths; points C–F, J and K on the bifurcation paths. Dashed lines represent areas of instability. 
 

3.3 Constant Stiffness 

 

Another interesting behavior from the initial results is the development of a mechanism of constant stiffness while 

undergoing large deformations under a horizontal load at the apex. The mechanism consisting of double-helices of [05] lay-

up, L = 95 mm, R = 15 mm, Ri = 30 mm and W = 5 mm, at an initial truss angle α0,1 = 70°, exhibits a stable main equilibrium 

path with constant stiffness, and is used as the reference mechanism for this feature. To investigate the reasons producing 

constant stiffness, Fig. 13 presents a comparison to the case of a truss with linear springs instead of double-helices. In both 

cases bifurcation of the main equilibrium path is present. However, our focus here is on the behavior of the main equilibrium 

path. The mechanism consisting of linear springs does not exhibit constant stiffness and its deformation follows an ellipsoidal 
path under the application of a horizontal load at the apex, while the reference mechanism of double-helices presents a linear 

load-displacement response (Fig. 13a)—verified by the expression of the best fit curve (y = 0.4001x, SE = 0.003)—and a 

circular deformation path. The circular path has radius r = H0 and is centered at the midpoint between the supports (Fig. 13b). 

Trusses of different initial geometry α0,1 all exhibit a linear load-displacement response corresponding to the main 

equilibrium path, while the bifurcated branch is nonlinear (Fig. 14). A shallow truss presents a higher stiffness to a horizontal 
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load at the apex. In all cases the main deformation path of the apex is circular, with a horizontal bifurcation path across the 

diameter when the apex is level with the supports (blue markers in Fig. 5a, d). 

Changes in the lay-up of the strips of the double-helix have a more significant impact on the behavior of the compliant 

mechanism (Fig. 15). Specifically, for β = 0° the mechanism exhibits a linear load-displacement response of the main 

equilibrium path and bifurcates to a path with a nonlinear response. The main path with constant stiffness is stable, compared 
to the bifurcated branch which is generally unstable. The mechanism exhibits a similar behavior for a [902/0/902] lay-up, but 

in this case the path with constant stiffness characteristics is unstable. For all other ply angles 0° < β < 90°, a nonlinear load-

displacement response is observed, and no bifurcation of the equilibrium path occurs. Instead, three independent equilibrium 

paths are identified—two mirrored closed-loop paths with identical load-displacement curves, and a horizontal path along 

the horizontal diameter, i.e. when the apex is level to the supports. This equilibrium branch presents a jump in the 

corresponding load-displacement curve at the positions where the apex traverses the supports (υh = ±V0). At these positions, 

the fully coiled helix turns around the support and switches direction uncoiling out and away from the hinge point. In this 

scenario the helix reaction force too switches direction, which justifies the sudden jump in the equilibrium manifold. 

Indicatively, the reader can refer to Fig. 5e, which depicts the deformation of the mechanism with double-helices of a 

[452/0/452] lay-up (blue markers). In all cases closed-loop-deformation paths can be observed. 

Less significant is the influence of the double-helix geometry on the behavior of the assembled structure. The relevant load-

displacement curves can be found in the Appendix A.3. 
 

 
Figure 13: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear springs under a horizontal 

load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Dashed lines represent areas of instability. b) Deformation of the 
assembled structures of linear springs (left) and of double-helices (right). Points 1 and 2 are stable equilibrium positions; points J, K and 
M are unstable equilibrium positions. 
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Figure 14: Load-displacement curves of a mechanism of different initial truss angles α0,1 consisting of double-helices of [05] lay-up, under 
the application of a horizontal load at the apex. Points 1 and 2 are stable equilibrium points; points J, K and M are unstable equilibrium 
points. Dashed lines represent areas of instability. 
 

 
Figure 15: Load-displacement curves of the assembled structure of identical double-helices for different symmetric lay-ups of the form 
of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 45°, 60° under the application of a horizontal load at the apex. Points 1–5 are stable 
equilibrium points; points A, C, F–H, J, K and M are unstable equilibrium positions. Dashed lines represent areas of instability. 
 

4. Experimental Results and Discussion 

 

This section presents initial test results to validate the analytical model and assess the feasibility of the proposed 

mechanism. The preliminary results are part of a broader experimental campaign that constitutes future work. A truss 

prototype was manufactured and tested under application of a vertical load at the apex. For the manufacture of the double-

helices we followed the process described in [15]. Figure 16 shows the experimental set-up. The double-helices are attached 
to a base frame on one end and to a rod on the opposite end, forming the apex of the truss mechanism. The rod is attached 

to the crosshead of a universal testing machine and is free to move vertically but restricted to move horizontally. To achieve 

configurations where the apex experiences both horizontal and vertical displacements, the base of the truss mechanism is 

designed to have unconstrained horizontal movement by rolling along a lower frame fixed to the test machine; similarly to 

the solution in [32]. The result is a test arrangement which is statically equivalent to the system depicted in Fig. 4. 

An AGS-X Series Shimadzu test machine with 1 kN load cell and a precision of 1% was used to perform the test 

and apply a vertical load on the fixture. A displacement-control loading was employed for the tests at a rate of 0.5 mm/sec. 

Both vertical load and displacement were recorded using the Trapezium X software of the Shimadzu machine. To capture 

the horizontal displacement of the base frame, and thus of the truss apex, an Imetrum Video Gauge camera system, with 

17 fps frame rate and a 1392 x 1040 pixel camera with a 25 mm focal length lens, was used. 
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Figure 16: Experimental set-up. 

 

 
Figure 17: a) Load-displacement curves under the application of a vertical load at the apex of the truss of double-helices. Dashed lines 
represent areas of instability for the analytical data. The truss has initial angle α0,1 = 70° and double-helices of [90/45/0/45/90] lay-up, 
with dimensions L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. b) Corresponding strain energy landscape with the positions of the 
truss apex under an applied vertical load (Ph = 0) at the end effector superimposed; red markers are used for the analytical and green 
markers for the experimental data. Points 1–4 are stable equilibrium points. Points A–F and M are unstable equilibrium points. c-f) 
Different configurations of the prototype during testing: c) a configuration along the main path between points 1 and A with both helices 

twisted equally; d) a configuration close to point M, with the helices collinear and twisted equally; e) a configuration on the bifurcation 
path between points 1 and C, with the helices twisted to different extent; f) a configuration close to point 3, with the helices collinear but 
one in a slightly twisted and the other in a coiled configuration. 
 

The experimental results for a truss of double-helices with symmetric lay-up assembled in a steep configuration are 

included in Fig. 17 and compared to the corresponding analytical results. The double-helices have dimensions L = 292 mm, 

R = 30 mm, Ri = 60 mm, W = 10 mm, and a [90/45/0/45/90] lay-up. The analytical results are updated, taking into 
consideration also the length required for the end fittings of the helices. For simplicity, owing to the vertical and horizontal 

symmetry of the mechanism, the test of the prototype is performed for a quarter of the design space. The load-displacement 

curves as predicted by the analytical model and the experimental data are in good qualitative agreement. Some differences 
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in the actual values are observed that can be attributed to a variety of reasons, including: i) friction, which is unaccounted 

for in the model, both between the spokes and the composite helical strips and at all other joints in the fixture; ii) nonuniform 

deformation of the helix noticed during the test, with the pitch varying across the helix length which was not observed in 

previous work by Lachenal et al. [15] and is presumably dependent on the length-to-radius ratio of the helices; iii) the spokes 

of the helices touching during coiling/uncoiling as a result of the nonuniform helix deformation, evidenced by slight kinks 
in the load-displacement curves; iv) any imperfections during manufacturing of the helices. 

 

5. Conclusions 

 

A truss-like mechanism consisting of morphing elements has been introduced. The morphing elements consist of 

composite strips in a double-helix architecture and are capable of large axial deformations. These helical structures exhibit 

highly tailorable nonlinear stiffness characteristics, thus enabling the ensuing mechanism to feature a variety of structural 

responses. This paper explored the rich design space of such mechanism; by tailoring the inherent properties of its 

elements—and subsequently its architecture—access to a wide design space is opened up. 

Two analysis methods have been employed to explore the properties of the structural assemblies. Strain energy 

landscapes are used to study the stability characteristics of the compliant mechanism qualitatively across its work space and 

to identify equilibrium configurations. To investigate the response to specific loads, a path following method with bifurcation 
tracking is employed to capture the full nonlinear response. Combined, these methods provide full insight into the mechanical 

properties of the compliant mechanisms. 

Results herein focus on the simplest possible geometry, an assembly of two identical double-helices connected with 

pinned joints forming a truss-like structure. A variety of different behaviors has been observed through the energy 

landscapes, illustrating the rich design space. Quadristable behavior is obtained for steep trusses and symmetric composite 

lay-ups of the form [β2/0/β2], with 0° < β < 90°. For β = 0° and β = 90°, the mechanism becomes bistable and pentastable, 

respectively. The mechanism transitions from quadristable to bistable for decreasing initial truss angles. Under the 

application of a vertical load at the apex, the equilibrium path bifurcates, enabling access to all internal equilibrium 

configurations. Under the application of a horizontal load at the apex, the mechanism demonstrates a stable region of constant 

stiffness for β = 0°, regardless of the initial truss angle, with the deformation path forming a circle. Again, bifurcations of 

the equilibrium path lead to connecting all internal equilibria. The type of structural behavior is found to depend primarily 
on the lay-up of the strips of the double-helices and the initial geometry of the structural assembly. The geometrical 

characteristics of the double-helices have limited effect on the behavior of the mechanism, thus making the concept scalable. 

The study in this paper has focused on the numerical analysis of the structural assemblies of double-helices with 

the simplest possible geometry and with helices limited to pitches � in the range [0°, 90°]. A prototype of the proposed 

mechanism was manufactured and tested by applying a vertical load at the apex to validate the analytical predictions. Future 

work will involve the development of further prototypes, recognizing the challenges that might exist in manufacturing the 

proposed mechanisms. At the same time, this work can be extended to exploring the behavior of mechanisms of more 

complex geometries, and/or taking advantage of the ability of the helical elements to deform to configurations with � ∈ [0°, − 90°], which leads to the development of different responses that can be used as the basis for reconfiguration of the 

mechanism. Additionally, a refinement to the prototype design and manufacture process would be required. 

The rich mechanical response of this mechanism, with its ability to undergo large deformations maintaining a load-
carrying capability, its multistable characteristics and highly tailorable nonlinearities, along with its potential reconfigurable 

behavior, could be promising for a wide spectrum of applications from positioners, actuators and energy harvesters to 

rehabilitation devices, deployable structures and vibration isolators, where such features are desirable. 
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Appendix 

 

A.1 Force-Displacement Response of Double-Helix Structures 

 

 
Figure 18: Load-displacement curves of double-helices: a) for different dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and 
L ≈ 2πR, lay-up [452/0/452], W = 5 mm; b) for different widths W, lay-up [452/0/452], L = 95 mm, R = 15 mm, Ri = 30 mm; c) for different 
initial curvatures of the strips Ri, lay-up [452/0/452], L = 95 mm, R = 15 mm, W = 5 mm; d) for different radius R, lay-up [452/0/452], 
L = 95 mm, Ri = 30 mm, W = 5 mm; e) for different lengths L, lay-up [452/0/452], R = 15 mm, Ri = 30 mm, W = 5 mm. The displacement 
Δl is normalized to the length L of the strips in each case for comparison purposes, with Δl/L = 0 representing the fully-extended and 
Δl/L = 1 its fully coiled configuration. 
 

A.2 Influence of Double-Helix Geometrical Features on Multistability 

 

Variations in the width W of the strips, the radius R and the initial curvature of the strips Ri result in different load-

displacement curves for the double-helices (Fig. 18). The influence of these parameters on the multistable behavior of the 

mechanism under an applied vertical load at the apex is explored in Fig. 19. The mechanism remains quadristable, although 

the stiffness of the structure will vary. Changing the length L of the double-helix has no effect on the double-helix response 

(Fig. 18f), so an investigation of this parameter on the response of the assembled structure is omitted. The ability of scaling 

up the structure is also explored. For this purpose, double-helices of different dimensions L, R, Ri but with constant ratios 

Ri/R = 2 and L/R ≈ 2π have been used. The load-displacement behavior of such double-helices is included in Fig. 18b and 
the response of an assembled structure of these helices is presented in Fig. 19a. The load-displacement curves of the different 

mechanisms are identical, meaning that the structure can be scaled up or down while maintaining the quadristable behavior. 
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Figure 19: Load-displacement curves of the assembled structure of identical double-helices under the application of a vertical load at the 
apex, with different a) dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and L ≈ 2πR, lay-up [452/0/452], W = 5 mm; b) radius R, 
lay-up [452/0/452], L = 95 mm, Ri = 30 mm, W = 5 mm; c) initial curvatures of the strips Ri, lay-up [452/0/452], L = 95 mm, R = 15 mm, 

W = 5 mm; d) widths W, lay-up [452/0/452], L = 95 mm, R = 15 mm, Ri = 30 mm. Points 1 and 2 are stable equilibrium points on the main 
path; points 3 and 4 on the bifurcation path. Points A, M and B are unstable equilibrium points on the main path; points C–F on the 
bifurcation path. Dashed lines represent areas of instability. 
 

A.3 Influence of Double-Helix Geometrical Features on Constant Stiffness 

 

The impact of varying the double-helix geometry on its response to a horizontal load applied at the apex is explored in 
Fig. 20. Mechanisms of different dimensions L, R, Ri but with constant ratios Ri/R = 2 and L/R ≈ 2π present no influence in 

the response with the load-displacement curves matching each other, giving the ability of scaling the mechanism to the 

required dimensions for an application (Fig. 20a). Varying the radius R or the initial curvature of the strips of the double-

helices consisting the mechanism affect the mechanism’s work space. Although the load-displacement curves coincide for 

most of the work space, for small values of the radius R and/or higher values of the Ri there are limitations to the maximum 

horizontal displacement of the mechanism thus in these cases the load-displacement curve does not have a bifurcated branch, 

instead it consists of two independent load paths (Fig. 20b, c). Changes in the width W of the strips of the double-helices has 

no significant influence on the response of the mechanism with the load-displacement curves being identical with a slight 

deviation being observed in the case of wider strips towards the maximum horizontal displacement. 
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Figure 20: Load-displacement curves of the assembled structure of identical double-helices under the application of a horizontal load at 
the apex  with different a) dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and L ≈ 2πR, lay-up [05], W = 5 mm; b) radius R, lay-
up [05], L = 95 mm, Ri = 30 mm, W = 5 mm; c) initial curvatures of the strips Ri, lay-up [05], L = 95 mm, R = 15 mm, W = 5 mm; d) widths 

W, lay-up [05], L = 95 mm, R = 15 mm, Ri = 30 mm. Points 1 and 2 are stable equilibrium points; points J, K and M are unstable 
equilibrium points. Dashed lines represent areas of instability. 
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Figure Caption List 

 

Figure 1: a) Initially curved (radius Ri) composite strips are flattened to introduce prestress; b) the strips are joined by rigid 

spokes to form a double-helix structure, which c) can deform from a straight (light grey) to a twisted (dark) 

configuration (θ < 0). ..................................................................................................................................... 2 

Figure 2: Manufactured prototype of the double-helix structure in a) straight, b) stable twisted, c) unstable twisted and d) 

fully coiled configuration. ............................................................................................................................... 3 

Figure 3: Load-displacement curves of double-helices for different lay-ups of the form [β2/0/β2] or [β2/0/-β2], where β is the 

ply angle. The displacement Δl is normalized to the length L of the strips, with Δl/L = 0 representing the fully-

extended and Δl/L = 1 its fully coiled configuration. All double-helices shown have two self-equilibrated 

configurations with no external force required to maintain the shape. ............................................................... 4 

Figure 4: Schematic representation of the assembly of double-helices in a truss-like configuration with both supports 

pinned [22]. The initial configuration is determined by the equilibrium length L0,i of the double-helices and by 

the initial angle α0,i of the truss configuration. .................................................................................................. 4 

Figure 5: Strain energy landscapes for a compliant mechanism of identical double-helices assembled in a truss-like 

configuration. Results are for initial truss angles α0,1 = 35° and α0,1 = 70°, with composite strips of [05], 

[452/0/452] and [452/0/-452] lay-ups. The initial truss configurations are indicated with black lines. Points labelled 

1–5 denote stable equilibria, while points A–H, J, K and M identify positions of unstable equilibrium; points I–

IV denote stable boundary equilibria. The positions of the truss apex under an applied vertical load (Ph = 0) 

and/or horizontal load (Pv = 0) are superimposed on the landscapes: red points indicate the equilibrium paths of 

the apex under the application of a vertical load; blue points indicate the equilibrium paths of the apex under the 

application of a horizontal load. ....................................................................................................................... 6 

Figure 6: Load-displacement curves of the assembled structure of identical double-helices under the application of a vertical 

load at the apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-helices 

with varying lay-ups. Dashed line represents sections of instability; points 1–5 are stable equilibrium points. 

Points A–H, J, K and M are unstable equilibrium points. The load has been normalized with respect to the load 

value at the maximum peak (Pcrit) in each case. The displacement has been normalized with respect to the initial 
height of the truss structure.............................................................................................................................. 7 

Figure 7: Load-displacement curves of the assembled structure of identical double-helices under the application of a 

horizontal load at the apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-

helices with varying lay-ups. Dashed line represents sections of instability. Points 1 and 2 are stable equilibrium 
points; points A–H, J, K and M are unstable equilibrium points. The load has been normalized with respect to 

the load value at the maximum peak (Pcrit) in each case. The displacement has been normalized with respect to 

the initial width of the truss structure. .............................................................................................................. 7 

Figure 8: Load-displacement curve (left) and deformation (right) of the assembled structure (with initial angle α0,1 = 35°) 

of two identical double-helices (with a [452/0/452] lay-up) under combined loading (Ph = Pv) at the apex. Points 

1 and 2 are stable equilibrium points; points J, K and M are unstable equilibrium positions. Dashed lines (left) 

represents areas of instability. The load has been normalized with respect to the load value at the maximum peak 

(Pcrit). The displacement has been normalized with respect to the initial length L0. ............................................ 8 

Figure 9: Load-displacement curves (left) and deformation (right) of the assembled structure of double-helices of different 

length under the application of a) a vertical load and b) a horizontal load at the apex. Points 1–4 are stable 

equilibrium points; points A–E are unstable equilibrium points. The truss has initial angle α0,1 = 35° and double-

helices of [452/0/452] lay-up, and lengths L1 = 95 mm, L2 = 71 mm. Dashed lines (left) represent areas of 

instability. The load has been normalized with respect to the load value at the maximum peak (Pcrit) for each case. 

The displacement has been normalized with respect to the initial height or width of the truss structure, 

respectively for vertical or horizontal loading. ................................................................................................. 8 

Figure 10: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear springs under 

a vertical load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Points 1–4 are stable 

equilibrium points; points A–F, J, K and M are unstable equilibrium points. Dashed lines represent areas of 

instability. b) Deformation of the assembled structures. c) Axial force with respect to displacement of a linear 

spring (left) and of a double-helix (right). ...................................................................................................... 10 
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Figure 11: a) Load-displacement curves of a mechanism with different initial truss angles α0,1 consisting of double-helices 

of [452/0/452] lay-up, under the application of a vertical load at the apex. Points 1–4 are stable equilibrium points. 

Points A–F, J, K and M are unstable equilibrium points. Dashed lines represent areas of instability. b) Axial 

forces of double-helices at selected equilibrium points for the different initial truss angles. ............................ 11 

Figure 12: Load-displacement curves of the assembled structure of identical double-helices for different symmetric lay-ups 

of the form of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 45°, 60° under the application of a vertical load at 

the apex. Points 1, 2 and 5 are stable equilibrium points on the main paths; points 3 and 4 on the bifurcation 

paths. Points A, M, B, G and H are unstable equilibrium points on the main paths; points C–F, J and K on the 

bifurcation paths. Dashed lines represent areas of instability. ......................................................................... 11 

Figure 13: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear springs under 

a horizontal load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Dashed lines represent 

areas of instability. b) Deformation of the assembled structures of linear springs (left) and of double-helices 

(right). Points 1 and 2 are stable equilibrium positions; points J, K and M are unstable equilibrium positions. . 12 

Figure 14: Load-displacement curves of a mechanism of different initial truss angles α0,1 consisting of double-helices of 

[05] lay-up, under the application of a horizontal load at the apex. Points 1 and 2 are stable equilibrium points; 

points J, K and M are unstable equilibrium points. Dashed lines represent areas of instability. ........................ 13 

Figure 15: Load-displacement curves of the assembled structure of identical double-helices for different symmetric lay-ups 

of the form of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 45°, 60° under the application of a horizontal load 

at the apex. Points 1–5 are stable equilibrium points; points A, C, F–H, J, K and M are unstable equilibrium 

positions. Dashed lines represent areas of instability. ..................................................................................... 13 

Figure 16: Experimental set-up. ..................................................................................................................................... 14 

Figure 17: a) Load-displacement curves under the application of a vertical load at the apex of the truss of double-helices. 

Dashed lines represent areas of instability for the analytical data. The truss has initial angle α0,1 = 70° and double-

helices of [90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. b) 

Corresponding strain energy landscape with the positions of the truss apex under an applied vertical load (Ph = 0) 

at the end effector superimposed; red markers are used for the analytical and green markers for the experimental 

data. Points 1–4 are stable equilibrium points. Points A–F and M are unstable equilibrium points. c-f) Different 

configurations of the prototype during testing: c) a configuration along the main path between points 1 and A 
with both helices twisted equally; d) a configuration close to point M, with the helices collinear and twisted 

equally; e) a configuration on the bifurcation path between points 1 and C, with the helices twisted to different 

extent; f) a configuration close to point 3, with the helices collinear but one in a slightly twisted and the other in 

a coiled configuration. ................................................................................................................................... 14 

Figure 18: Load-displacement curves of double-helices: a) for different dimensions L, R and Ri, keeping a constant ratio 

Ri/R = 2 and L ≈ 2πR, lay-up [452/0/452], W = 5 mm; b) for different widths W, lay-up [452/0/452], L = 95 mm, 

R = 15 mm, Ri = 30 mm; c) for different initial curvatures of the strips Ri, lay-up [452/0/452], L = 95 mm, 

R = 15 mm, W = 5 mm; d) for different radius R, lay-up [452/0/452], L = 95 mm, Ri = 30 mm, W = 5 mm; e) for 

different lengths L, lay-up [452/0/452], R = 15 mm, Ri = 30 mm, W = 5 mm. The displacement Δl is normalized 

to the length L of the strips in each case for comparison purposes, with Δl/L = 0 representing the fully-extended 

and Δl/L = 1 its fully coiled configuration. ..................................................................................................... 16 

Figure 19: Load-displacement curves of the assembled structure of identical double-helices under the application of a 

vertical load at the apex, with different a) dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and L ≈ 2πR, 

lay-up [452/0/452], W = 5 mm; b) radius R, lay-up [452/0/452], L = 95 mm, Ri = 30 mm, W = 5 mm; c) initial 

curvatures of the strips Ri, lay-up [452/0/452], L = 95 mm, R = 15 mm, W = 5 mm; d) widths W, lay-up 

[452/0/452], L = 95 mm, R = 15 mm, Ri = 30 mm. Points 1 and 2 are stable equilibrium points on the main path; 

points 3 and 4 on the bifurcation path. Points A, M and B are unstable equilibrium points on the main path; points 

C–F on the bifurcation path. Dashed lines represent areas of instability. ......................................................... 17 

Figure 20: Load-displacement curves of the assembled structure of identical double-helices under the application of a 

horizontal load at the apex  with different a) dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and L ≈ 2πR, 

lay-up [05], W = 5 mm; b) radius R, lay-up [05], L = 95 mm, Ri = 30 mm, W = 5 mm; c) initial curvatures of the 

strips Ri, lay-up [05], L = 95 mm, R = 15 mm, W = 5 mm; d) widths W, lay-up [05], L = 95 mm, R = 15 mm, 

Ri = 30 mm. Points 1 and 2 are stable equilibrium points; points J, K and M are unstable equilibrium points. 
Dashed lines represent areas of instability. ..................................................................................................... 18 

 


