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I 

Abstract 

Tailoring structural nonlinearities offers the potential to design well-behaved nonlinear structures with 

increased functionality and enhance the performance of modern engineering structures. In light of this 

concept, this research focuses on the behaviour of structural assemblies of nonlinear morphing elements. 

A compliant, multistable, reconfigurable mechanism is introduced, which consists of nonlinear morphing 

structural elements assembled in a truss-like configuration. 

Existing compliant mechanisms rely on flexible members and their elastic deformations to achieve 

multistability, but their range of motion is restricted by strength limitations. The compliant mechanism 

developed in this research uses morphing elements as the flexible members. These elements are composite 

structures of a double-helix architecture that can change shape and undergo large deformations while 

maintaining load-carrying capability and structural integrity. The variable geometry and customizable 

nonlinear stiffness characteristics of the double-helices enable the mechanism to be tailored and a variety 

of behaviours to be developed. 

For the study of the mechanical characteristics and design space of this mechanism, a simple truss structure 

has been chosen; a modified von Mises truss, pin-jointed at the apex and base supports. Two different 

approaches have been employed for the structural analysis of the mechanism: (i) an energy approach to 

identify the stable configurations of the truss across its workspace, with energy minima and maxima 

corresponding to stable and unstable equilibria, respectively; (ii) a path-following method, the modified-

Riks method, to explore the force-displacement space and obtain potential load paths between stable states 

under specific load cases. 

Both the multistability and reconfigurability of this mechanism have been explored. The mechanism’s 

multistable characteristics and response upon application of a load at the apex have been investigated 

parametrically by varying the lay-up of the composite strips, the geometry of the double-helix, and the 

initial truss geometry. Additionally, the reconfigurability of the mechanism has been explored. Based on 

the ability of the double-helical elements to switch twist direction when in fully extended state, the 

mechanism is able to change behaviour and operate in different modes, whilst maintaining its connectivity 

and mobility. Four reconfiguration modes can be obtained by combination of the two different helical 

deformation modes, resulting in significant variations in the mechanical response and stability 

characteristics of the mechanism between the different modes. The influence of the double-helices’ design 

parameters, and the initial geometry of the truss itself is explored for this case as well. 

Finally, a prototype is manufactured and tested for the validation of the results from the analytical model. 

A design of the test rig required for the setup and testing of the truss assembly has been developed. Overall, 

the experimental results have shown a good qualitative agreement with the predictions of the analytical 

model. Any discrepancies occurred can be well-justified by the experimental setup, limitations of the 

analytical model and an unexpected, nonuniform deformation of the double-helical elements along their 

lengths, noticed during testing. 
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τj imperfection factor 

υ nodal displacement vector of the truss system 

φ eigenvector of a specific eigenvalue problem 

ωj eigenvalues of the tangential stiffness matrix 
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Chapter 1  

Introduction 

1.1 Motivation 

In the field of robotics, there is a growing interest in the development of wearable devices—exosuits or 

exoskeletons—that assist or enhance human mobility. Over the past few years, a variety of such devices 

has been designed [1]; however, there are still challenges to be overcome, especially regarding the 

actuation technologies used to provide the motion. Current actuation systems are unable to offer agility 

and dexterity similar to that of biological muscles; the use of conventional mechatronics still limits their 

performance. Current systems are primarily based on electric motors, hydraulics or pneumatics that 

combine components like motors, cylinders, pumps and valves, resulting in heavy, rigid and quite bulky 

actuators [2]. Functional wearable devices also involve human-robot interaction, an interaction in a 

dynamic and uncontrolled environment, and thus require an actuation system that provides compliance. 

An actuation system that can simultaneously provide force control authority and power efficiency, whilst 

exhibiting back drivability, modularity and being lightweight and portable, remains a challenge for the 

design of functional wearable devices [3–5]. 

Recent advances in the field of actuation for wearable robotics have focused on the design and 

implementation of actuators with variable stiffness or adaptable compliance [5–9]. This type of actuator 

has the ability to provide control of the interaction force as well as to store and release energy due to the 

presence of elastic elements [10–12], allowing safer human-robot interaction, shock absorption, and 

greater power efficiency compared to stiff actuators [13, 14]. This is of particular interest in applications 
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where direct human-robot interaction is involved and safety is a critical concern, including prosthetics, 

wearable robotic devices, and rehabilitation robots [6, 15]. 

Over the past few years a variety of innovative compliant actuators have been designed, including electric 

compliant actuators [13] and pneumatic actuators [16]. The most widely developed have been the series 

elastic actuators (SEAs) [17–21]. To provide compliance and the potential to store energy, SEAs consist 

of an elastic component connected in series with a stiff actuator. Essentially a spring, either a linear or a 

torsion spring, depending on the application [21, 22], is introduced between the electro-mechanical 

actuator and the load [23]. The compliance of these actuators is defined by the spring constant, thus setting 

limitations to the performance of the system depending on the selected spring stiffness [24]. On the other 

hand, designs of varying compliance are more complex [13], requiring more components, e.g. two motors 

to control the stiffness and the equilibrium position or an additional damper device to efficiently store and 

retrieve energy. Based on a different design approach, pneumatic actuators usually follow an antagonistic 

setup, i.e. a parallel elasticity setup, to achieve bidirectional actuation similar to that of biological muscles 

and create nonlinear elastic behaviour [16]. This approach can be advantageous. However, disadvantages 

such as slow dynamics, hysteresis and the need for pressurized air set limitations to their successful 

application [7, 13]. 

This research draws upon the work on a composite morphing structure of a double-helix architecture by 

Lachenal et al. [25, 26]. The helical structure exhibits multiple stable states and nonlinear stiffness 

characteristics that could be exploited in robotic applications where force control, position accuracy and 

power efficiency, in addition to compliance, are key requirements, e.g. assistive support devices, 

exoskeletons [12, 23]. Indeed, following Lachenal’s work, Cappello et al. [12, 23, 27] employed the helix 

as the component of a transmission in the actuation system of a robotic exoskeleton device assisting human 

mobility. 

The actuation system developed by Cappello et al. [27] is based on the concept of series elastic actuators 

and combines current mechatronic technology with composite structures. It attempts to overcome current 

limitations of SEAs, by introducing the double-helix as the transmission connected in series with an 

electrical motor at one end and a reconfiguration actuator (ReAct) at the other. The torque generated by 

the motor evokes a twist of the double-helix which is then transformed into an axial force and a translation. 

Bowden cables are used to transfer the motion to the joint following an antagonistic setup (Figure 1.1).  
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Figure 1.1: Actuation system developed by Cappello et al. [27]. 

The actuation system was aimed at an application to assist elbow motion while being carried as a backpack. 

Introducing a multistable composite structure in the compliant actuator instead of the conventional springs 

presents many advantages. The safety of the system is increased through fine force and position control; 

energy can be saved since power is only needed to move the structure from one stable configuration to 

another, not to hold it [28, 29]; and, finally, the low weight of the composites can reduce the weight of the 

system, which is important when it comes to wearable devices. Nevertheless, weaknesses in the developed 

actuation system urge a design optimization or a redesign [27]. These include: system complexity; control 

issues arousing by the backlash introduced by a non-backdrivable mechanism incorporated to avoid back 

drivability of the ReAct; the relatively bulky design; and the low resulting passive stiffness at the joint. 

Additionally, the potential of the composite helical structure remains underexploited in the proposed 

configuration. 

Thus, moving on from this concept and building upon the idea to exploit the nonlinear stiffness 

characteristics of the helical structure for the generation of movement in robotic applications, we directed 

towards the development of a variable stiffness compliant mechanism [30–32]. The concept is inspired by 

the biological mechanism of the muscles’ operation and the spring-like property of tendons [33–35], in 

conjunction with the approaches of exoskeletons and of soft robots that, respectively, combine springs in 

parallel with a muscle-tendon to assist its motion [8, 36–39] and use elastomeric materials to mimic the 

properties of muscles [40–42]. The helical structure is proposed as a nonlinear elastic element to develop 

a compliant mechanism which approaches a movement similar to that of human limbs. 
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Figure 1.2: a) Simplified link-segment model for the lower human limb; b-c) potential configurations to simulate the 

gait motion. 

A link-segment structure with pin joints (Figure 1.2a) is frequently used to model human limbs and various 

ways to simulate its motion exist [43–54]. Some simple configurations are shown in Figure 1.2b, c where 

the double-helices could be employed to provide the motion and compliance. 

Nonetheless, it was considered paramount to first explore further the mechanics of the double-helix and of 

potential structural assemblies of double-helices, separately out of the scope of the human limb. Our 

knowledge of their implementation, interaction and performance for such applications is still limited. 

Therefore, this work focuses on a more fundamental work and the study of assemblies of double-helices 

in truss-like mechanisms. Their stability characteristics and potential mechanical properties are of primary 

interest in the general endeavour to master and expand the use of nonlinear elastic mechanisms in future 

applications, e.g. robotic applications, deployable structures etc. 

1.2 Objectives 

This work involves the development of a mechanism composed of morphing composite elements of a 

double-helix architecture. We exploit the morphing structures’ variable geometry and nonlinear stiffness 

characteristics to expand the design space of current compliant mechanisms by extending their range of 

motion and stability characteristics. 

Previous work by Lachenal et al. [25] has shown that the nonlinear mechanical characteristics of the helical 

composite morphing structure are highly tailorable. Our primary goal is to demonstrate the wide range of 

mechanical responses attainable with a mechanism that combines multiple double-helices. The design 

space of assemblies of nonlinear helical structures in a truss-like mechanism is explored and an attempt is 
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made to introduce the mechanism’s potential to the wider research community. To achieve this goal, the 

thesis focuses on the analysis of a mechanism of two double-helices assembled in a simple truss-like 

configuration. The stability characteristics of the mechanism are investigated by employing an energy 

approach, and potential load paths between stable states are predicted implementing a path-following 

method. The effect of key design parameters on the mechanism’s behaviour is explored. Parameters 

include: composite lay-up, geometrical features (sizing) and initial truss geometry. The purpose of this 

investigation is twofold: to reveal the high tailorability of the proposed mechanism’s characteristics, and 

to unveil the variety of potential mechanical responses. 

The reconfigurability of the proposed mechanism is studied alongside its multistability. The aim is to show 

the various available operation modes of the mechanism and the effect of these reconfiguration modes on 

the mechanism’s stability characteristics and mechanical response. Moreover, the effect of the composite 

lay-up of the helix and the initial truss geometry on the reconfiguration modes is explored. The result is a 

multistable, reconfigurable compliant mechanism that can be customized by tuning the properties of its 

constituent members and/or its geometry. 

A final objective of this study is to put into practice the proposed concept of a mechanism assembled of 

nonlinear morphing elements. A prototype of the mechanism is designed and manufactured to prove its 

feasibility, and experimentally assess the predictions of the analytical model. In conjunction with these, 

the purpose of the design and testing of a prototype is also to recognise any challenges to be addressed in 

future refined designs of this mechanism to make it suitable for future applications. 

1.3 Outline of the thesis 

This thesis introduces a novel compliant, reconfigurable mechanism consisting of nonlinear morphing 

elements assembled in truss-like configurations. Chapter 2 details a review of existing compliant and 

reconfigurable mechanisms, and provides an initiation of the reader to nonlinear structures, in particular to 

morphing structures. Chapter 3 focuses on the morphing structure of a double-helix architecture developed 

by Lachenal et al. [25], its analytical model and mechanical characteristics. These helical structures, 

capable of large axial deformations and with tailorable nonlinear stiffness characteristics, are further 

explored and combined in structural assemblies forming a truss-like mechanism. The synthesis of the 

structural assembly along with the methods employed for its analysis are presented in Chapter 4. The 

design space and the range of potential mechanical behaviour, stability characteristics and 
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reconfigurability, of the mechanism composed of these helical nonlinear morphing elements are explored 

in Chapter 5 and Chapter 6. A design, manufacture and testing of a prototype of such a truss-like 

mechanism is presented in Chapter 7. Finally, conclusions, final remarks and thoughts for future work are 

given in Chapter 8. 
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Chapter 2  

Literature Review 

2.1 Introduction 

The subject of this research lies between two engineering fields; from one aspect, we exploit composite 

morphing structures and their nonlinearities, exploring further their unique mechanical behaviour and rich 

design space; on the other, we attempt to introduce these structures to the field of mechanisms and robotics 

for potential future applications. Thus, we review these fields individually and introduce the wide research 

background of this work. First, the nonlinear behaviour of structures is presented and the exploitation of 

such phenomena for a wide range of applications in the engineering field is discussed. Next, a brief review 

on compliant mechanisms is performed, concentrating on mechanisms with characteristics of interest, 

including multistable and large displacement mechanisms. Finally, a concise overview of reconfigurable 

mechanisms is provided before concluding the chapter with a summary. 

2.2 Nonlinear Structures 

Conventionally, nonlinear behaviours, e.g. large displacements or strains, elastoplastic characteristics and 

variation in stiffness during loading, encountered in structures [55] were considered mechanisms of failure. 

These were often associated with collapse of the structure or an undesired response, e.g. the buckling of a 

slender beam or a thin shell or a cylinder under a compressive load. Engineers would try to avoid such 

behaviours during the design process, often resulting in overly conservative designs. In recent years, 

however, there has been an increasing interest to exploit nonlinear structural phenomena and the induced 

elastic instabilities—e.g. multistability and snap-through—to achieve new functionalities and improve the 
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performance of engineering structures [56–59]. Advances in analysis techniques and models to predict 

these features reliably [60, 61] also contribute towards this goal. 

Recent contributions in modern engineering designs that take into consideration structural nonlinearities 

for the development of well-behaved nonlinear structures reveal a variety of structural forms for diverse 

applications. These include structures that operate in the post-buckling regime [62, 63], where large 

motions and deformations are likely to occur; morphing structures that use multistability and snap-through 

behaviour to switch between different configurations [25, 29, 64–78]; and programmable materials that 

rely on elastic instabilities for their functionality [42, 79–87]. The field of applications of these structures 

is very broad. The sudden energy released when a structure buckles and the large deformation involved are 

advantageous features for adaptive and smart applications [58], applications that are energy related, such 

as actuators [42, 88, 89], MEMS [90], energy harvesters [91, 92], dampers [93, 94], or motion-related 

applications, such as morphing structures [64, 71, 95–97], deployable structures [81, 98–100]. 

Mechanical instabilities in polymeric materials are appealing for the development of smart structures. 

Patterned in periodic two- or three-dimensional porous structures and taking advantage of the underlying 

beam buckling, elastomers can be used to develop collapsible structures [42, 79, 80, 82–84, 87]. Shim et 

al. [83] have investigated diverse arrangements of holes in 2D elastomer plates and developed material 

structures with novel properties, i.e. metamaterials (Figure 2.1), with the potential to apply similar patterns 

onto curved surfaces or 3D structures [81, 82]. The “Buckliball” developed by Shim et al. [81] uses such 

arrays of voids on a spherical shell to enable folding and self-encapsulation (Figure 2.2a). More recently, 

Yang et al. [42] have used such elastomeric materials with a pattern of voids that resembles the pattern of 

mortar in a brick wall to achieve muscle-like motion in a pneumatic actuator (Figure 2.2b). Despite the 

high flexibility elastomeric materials offer and the reversibility and repeatability in their foldable 

behaviour, their load-carrying capability is still restricted, limiting their implementation primarily to soft 

structures applications. 
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Figure 2.1: Experimental images of four periodic porous structures of elastomeric material with differently arranged 

holes (50% initial porosity) loaded under uniaxial compression in the undeformed (top) and deformed (bottom) 

configuration with applied compressive engineering strain ε = 0.21 (scale bars: 20 mm) [83, 101]. 

 

Figure 2.2: a) Sequence of progressively deformed shapes of “Buckliball”, made of silicone-based rubber, pressurised 

by a motorised syringe pump (scale bar: 3 cm) [81]. b) Image of a vacuum-actuated muscle-inspired pneumatic 

structure made of Ecoflex lifting a small weight when actuated by applying a vacuum [42]. 

In contrast, fibre-reinforced polymer composites are widely used in load-bearing applications, such as in 

aerospace, automotive and marine industry. The ability to control the stacking sequence, the fibre 

orientation and material properties in each ply facilitates stiffness variability and tailorability, and the 

resulting anisotropy enables the development of multiple stable states. These features are attractive to smart 

applications. Multistability and buckling phenomena in composite laminates have been extensively 

studied [65, 67, 68, 72, 102–110]. The composites’ multistable behaviour is attributed to an induced stress 

field that can be achieved by diverse phenomena, including nonsymmetric lamination and residual stresses 

occurring from the cure cycle [102, 103, 109], Gaussian curvature [67, 72, 105, 108], tailored 

lamination [106] or fibre pre-stress [107]. Building upon the bistable behaviour encountered in 

nonsymmetric laminates, Dai et al. [70] introduced a grid structure formed from four identical 

nonsymmetric composite laminate shells that exhibits tristability (Figure 2.3a). Later, they expanded this 

work and developed multistable composite lattice structures using multiple tristable lattices in different 

arrangements (Figure 2.3b) [29]. Lachenal et al. [25, 26] took advantage of the presence of initial curvature 
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in composite strips to introduce a pre-stress and developed a bistable twisting structure assembled of two 

pre-stressed composite strips joined by spokes (Figure 2.3c). Developing this concept further, Lachenel et 

al. [74] designed a bistable twisting I-beam capable of large deformations (Figure 2.3d), whereas Pirrera 

et al. [73] introduced a multistable helical lattice structure by combining initially curved composite strips 

on a cylindrical geometry (Figure 2.3e). The large displacements and nonlinear deformations that 

characterise these multistable structures, owing to the snap-through behaviour between stable states, while 

retaining their load-carrying capability make them suitable candidates for use in morphing structures to 

enhance their shape adaptability and functionality. 

 

Figure 2.3: a) A tristable lattice structure assembled from four bistable nonsymmetric composite laminates in the plane 

(left), concave (middle) and convex (right) stable configurations [70]. b) Multistable lattice structures assembled from 

multiple tristable lattices in different arrangements [29]. c) A multistable composite twisting structure in a straight 

(left), twisted (middle) and coiled (right) configuration [25]. d) A bistable composite I-beam in a twisted 

configuration [74]. e) A multistable cylindrical lattice assembled from pre-stressed composite strips in an intermediate 

(top) and contracted (bottom) state [73]. 

Morphing structures are structures that change shape and undergo large deformations between the different 

states, thus requiring high compliance in the shape adaptation direction, while maintaining their structural 

integrity and load-carrying capability along the load direction [26, 64, 76]. Several studies in the past years 

have explored the ability to use morphing structures in aircraft or wind turbine designs to enhance their 

performance [64, 66, 68, 71, 77, 95, 97]. These morphing structures rely on multistable composite 

structures to develop the ability to adapt their shape and structural response to changes in the surrounding 

conditions. Diaconu et al. [64] presented three different concepts to induce morphing in an aerofoil section 

by introducing bistable composite structures in different parts within the aerofoil section, e.g. a flap-like 

structure with bistable shapes in the trailing edge or a bistable composite plate either parallel to the chord 

or along the main spar. Similar to these concepts, Arrieta et al. [97] used a multistable composite plate 

with variable stiffness [76], embedded diagonally along the rib in the aerofoil section, to achieve structural  
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Figure 2.4: a) Compliant aerofoil structure with a variable stiffness multistable composite element embedded [97]. b) 

A morphing composite air inlet demonstrator in a closed state (left), open state (middle), and bottom view in an open 

state (right) [66]. c) Twist morphing blade in the straight configuration without the skin (left), revealing the composite 

pre-stressed strips, and with the skin (right) [95]. 

adaptability with passive means (Figure 2.4a). A bistable morphing composite structure has been 

developed by Daynes et al. [66] to serve as an air inlet in an aircraft, capable of operating opened or closed 

without any holding force (Figure 2.4b). Lachenal et al. [95] employed their previously developed bistable 

twisting composite structure with its customizable stiffness characteristics in a wind turbine blade to 

improve the aerodynamic performance of the blade (Figure 2.4c). 

These implementations of nonlinear phenomena in the design of structures with advanced properties, like 

the composite morphing structures, can be regarded beneficial for the aerospace sector as well as other 

engineering applications, e.g. civil engineering applications, robotics etc. By integrating such structures 

and phenomena, new functional mechanisms can be developed for use in mechanical devices, deployable 

structures or actuation systems in robotics. The shape adaptability and geometrically nonlinear behaviour, 

combined with the variable stiffness of the composite morphing structures in particular, may also enable 

the ability to tune the desired behaviour in such mechanisms and/or structures. 

2.3 Compliant Mechanisms 

Compliant mechanisms are mechanisms that derive their mobility entirely or partially from elastically 

deformable components. Conversely to traditional rigid-body mechanisms that consist of rigid links and 

kinematic joints, compliant mechanisms transfer or transform motion, force, or energy using flexible or 

compliant members and their elastic deformations [111–114]. The flexibility of the mechanism can be 

increased either by changing the material composition or/and the geometry of its component or by 
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replacing the corresponding kinematic joint with flexure hinges [111, 112]. Technological advances with 

new materials becoming available and the development of the analysis techniques and tools have facilitated 

the design of compliant mechanisms [113–115]; the advantages offered by compliant mechanisms have 

significantly increased the scientific interest in this area and their consideration for a variety of 

applications [116, 117]. Compliant mechanisms can be beneficial in aerospace applications [116, 118], 

precision engineering [119–121], rehabilitation robotics [30, 122], MEMS devices [119, 123, 124], 

actuators [88], switches or valves [125] or for vibration isolation [126, 127]. 

By definition, compliant mechanisms rely, for their performance, on the elastic deflection of their members 

which results in large deformations and the ability of energy being stored in these elements and released at 

a later stage in addition to the development of nonlinear characteristics. Moreover, compliant mechanisms 

essentially have reduced number of kinematic joints, some are even monolithic, thus they are characterized 

by reduced friction, wear and backlash, which results in increased precision. In addition, the reduced 

number of parts may facilitate the assembly of the mechanism, reduce the weight and promote ease of 

scalability under certain conditions, i.e. material strains permitting, in a compliant mechanism. Taking 

advantage of these potentials, numerous studies on the development of compliant mechanisms exist in the 

literature. 

Inspired by spring elements, notably nonlinear leaf springs, Lobontiu [112] studied flexible hinges 

designed to undergo large deformations by introducing thin elements that bend or buckle between two rigid 

parts to provide the necessary flexibility and mobility, e.g. Figure 2.5a. Recognising limitations and 

challenges in the earlier flexures designs, i.e. limited range of motion, poor off-axis stiffness and high 

stress concentrations, Trease et al. [128] developed new designs for large-displacement compliant joints 

using multiple thin flexible beams (Figure 2.5b). In more recent years, Verotti et al. [129] introduced a 

flexure hinge built from a flexible curved beam connecting a pair of conjugate surfaces (Figure 2.5c), and 

Hanke et al. [130] used flexible beam elements with distributed stiffness made from fibre reinforced 

composite material to substitute traditional kinematic joints to develop compliant mechanisms and 

facilitate their design by exploiting the predefined beam deflection of the composite elements. The grasper 

tool tip (Figure 2.5d) developed by Chandrasekaran and Thondiyath [120] for surgical operations is based 

on such compliant joints, i.e. a corner-filleted flexure hinge (Figure 2.5a) [112], of polymer resin flexible 

beams arranged perpendicularly in succession, while the silicon micro gripper introduced by Verotti et 
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al. [124] relies for its mobility on the flexure hinges with the conjugated surfaces and the flexible curved 

beam (Figure 2.5e) [129]. 

Considerable work has been done on the development of multistable compliant mechanisms; a desirable 

feature for many applications. Various approaches and concepts have been introduced for the design of 

multistable compliant mechanisms exploiting diverse principles; the majority relies on buckling beams and 

their snap-through behaviour [88, 118, 131–138], while Wilcox and Howell [123] and Chen et al. [139] 

used tensile flexural pivots to design fully compliant bi- and tristable mechanisms, suitable for performance 

under tension and bending loads. Ohsaki and Nishiwaki [131] introduced an approach to design pin-jointed 

multistable compliant mechanisms taking advantage of the local snap-through behaviour of the 

mechanism’s individual elements. Han et al. [132] developed a planar quadristable compliant mechanism 

relying on the bistability of fully fixed curved beams; a monolithic compliant mechanism consisting of two 

nested frames, each incorporating a pair of curved beams, was manufactured and exhibited two stable states 

in each direction (Figure 2.6a). Oh and Cota [134, 135] presented a method to synthesize multistable 

mechanisms through a series combination of multiple bistable mechanisms of different load thresholds; by  

 

Figure 2.5: a) Schematic of a corner-filleted flexure hinge [112]. b) Conceptual design of a compliant revolute (left) 

and translational (right) joint based on flexible beams [128]. c) Prototype of conjugated surfaces flexure hinge made 

from PVC in its neutral and deformed configurations [129]. d) Compliant tool tip prototype in a neutral (top) and fully 

bent (bottom) state [120]. e) Design of a compliant micro gripper with conjugated surfaces flexure hinges and its 

pseudo-rigid body model superimposed [124]. 
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Figure 2.6: a) Prototype of a quadristable compliant mechanism in its four stable states [132]. b) Prototype of a 

rotational compliant mechanism from two serially connected bistable mechanisms in its four stable 

configurations [134]. c) Prototype of a tristable mechanism assembled from orthogonal compliant mechanisms in its 

three stable configurations [137]. d) Prototype of a compliant bistable release mechanism in its second stable (left) and 

its initial stable (right) configurations [118]. 

serially connecting two bistable mechanisms a mechanism with up to four stable configurations can be 

developed (Figure 2.6b). Following a similar concept, Gerson et al. [88] developed a multistable micro 

actuator capable of large displacements. A tristable compliant mechanism was introduced by Chen et 

al. [137] by combining two bistable mechanisms in a perpendicular configuration. The bistability of the 

individual mechanisms was achieved by a parallel combination of flexible beams with thicker midsections 

(Figure 2.6c). Zirbel et al. [118] used such variable thickness flexible beams to construct a compliant 

bistable mechanism as a non-explosive release mechanism (Figure 2.6d). 

Another promising field of compliant mechanisms is the development of statically balanced compliant 

mechanisms [121, 140–151]. Statically balanced mechanisms, unlike multistable mechanisms that exhibit 

static equilibrium in limited distinct positions, are characterized by static equilibrium throughout their 

range of motion [140]. This translates into a constant potential energy system, a system that deforms under 

a constant force, thus possessing zero or nearly zero stiffness [152]. In contrast to multistable compliant 

mechanisms that take advantage of the elastic response of their constituent elements for functionality, for 
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this type of mechanisms stiffness is considered unfavourable and thus needs to be minimised or eliminated. 

Different approaches can be adopted to achieve a statically balanced mechanism, mainly orientated towards 

means to balance the positive stiffness that compliant mechanisms usually exhibit over their elastic 

deformation with a negative stiffness mechanism either by introducing pre-stressed elements or relying on 

bistability and buckling phenomena in beams. Hoetmer et al. [141] used a compressed plate spring with 

preloaded displacement as the negative stiffness element and developed three statically balanced 

mechanisms exhibiting nearly zero stiffness, two grippers and a multiplier (Figure 2.7a). A generic zero-

stiffness compliant joint was designed by Morsch and Herder [142]. The joint is essentially a flexural pivot 

made of leaf springs arranged crosswise in two different parallel planes combined with two pairs of pre-

stressed compliant leaf springs (Figure 2.7b). Berntsen et al. [147] developed a compliant four-bar linkage 

mechanism balanced internally using opposing pre-stressed leaf springs to compensate for the energy from 

the curved leaf springs constituting the joints of the four-bar mechanism during its deformation (Figure 

2.7c). Elsewhere, Chen and Zhang [143] presented two concepts to achieve fully compliant statically 

balanced mechanisms from multistable mechanisms, relying on the performance of buckling beams instead 

of pre-stressed elements. Thus, they introduced a weight compensator developed from a constant force 

bistable mechanism, while by combining different multistable mechanisms the ability to develop a 

mechanism with zero stiffness over a prescribed range of motion was demonstrated. Similarly, Pham and 

Wang [144] developed a bistable mechanism for force regulation and overload protection consisting of 

multiple curved buckling beams exhibiting constant force over a specified displacement range (Figure 

2.7d), and Chen and Lan [145] introduced a constant force end effector by combining the positive stiffness 

of a linear spring with the negative stiffness of a bistable mechanism composed of buckling beams (Figure 

2.7e). Moreover, they showed that by pre-stressing the linear spring, the balanced mechanism can be 

adjusted to operate in different environments. Tolman et al. [150] combined constant force mechanisms 

with a sliding joint and a fixed link consisting of initially angled beams in parallel to develop a statically 

balanced system (Figure 2.7f), while by combining two straight positive-stiffness beams and two inclined 

negative-stiffness beams Liu [121] developed a constant force micro gripper. Radaelli and Herder [148] 

proposed a gravity balancer by designing a specially shaped beam clamped at both ends capable of 

balancing a defined weight over a large range displacement (Figure 2.7g). 
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Figure 2.7: a) Statically balanced compliant mechanisms; two grippers and a multiplier prototypes (left to right) [141]. 

b) Prototype of a zero-stiffness compliant cross-axis flexural joint [142]. c) Prototype of the four-bar linkage compliant 

mechanism internally balanced with two pre-stressed leaf springs [147]. d) Prototype of a constant force mechanism 

over a certain displacement range at its two stable configurations [144]. e) Prototype of a constant force end effector 

combining linear springs with bistable beams [145]. f) A statically balanced compliant mechanism prototype 

assembled from individual constant force mechanisms [150]. g) A specially shaped polycarbonate double-clamped 

beam acting as a compliant gravity balancer mechanism [148]. 

Besides the numerous advantages associated with compliant mechanisms, there are still several challenges 

to overcome for their systematic use in the various applications. Compliant mechanisms rely for their 

operation on the elastic deformation and the nonlinear behaviour of their flexible components. Even though 

this might provide the ability to achieve large displacements and multistability, in many instances, 

limitations may arise to the designs from the development of high stresses, thus restricting the full 

exploitation of the mechanism’s capabilities. Moreover, another issue that compliant mechanisms may face 

is fatigue depending the application [114]. 

2.4 Reconfigurable Mechanisms 

New perspectives in the design of mechanisms, robotic devices and/or structures have been opened by 

incorporating nonlinear structural responses and compliance in mechanisms. Nevertheless, the ever-

increasing functional demands in these fields have drawn researchers’ interest towards another feature: the 
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reconfigurability of the mechanisms or structures. Reconfigurability provides flexibility and enables a 

mechanism or structure to adapt to different environments and to perform multiple tasks [153–155]. In 

recent years, the field of reconfigurable mechanisms has shown rapid growth. Several mechanisms have 

been developed that can exhibit reconfiguration and operate in different modes for use in a variety of 

applications, e.g. antennas [156, 157], packaging manipulation [158], foldable or deployable 

structures [159–162], robotics [163–166] and adaptive building architecture [167, 168]. 

This ability of a mechanism to change its configuration and perform multiple tasks is strongly related to 

changes in the connectivity and mobility of the mechanism’s components. Various ways to attain 

reconfigurability have been explored in the literature; the majority concentrates on the development of 

reconfigurable mechanisms through alterations in the kinematic joints, the degrees of freedom, the 

orientation of the joint axes or links and the number of links, and taking advantage of any singularities or 

variations in the constraints that would change the mechanism’s mobility [155, 159–161, 164, 169–180]. 

Gan et al. [174] modified a traditional Hooke’s joint to an rT joint (Figure 2.8a), by inserting an additional 

rotational degree of freedom to enable reconfiguration. Plitea et al. [176] introduced a reconfigurable robot 

design using a modular structure and interchanging its active to passive joints between reconfiguration 

modes, whereas Matheou et al. [168] used a 4-bar mechanism combined with struts and cables to construct 

an adaptable spatial structure achieving reconfiguration by selectively locking joints. Using parallelogram 

4-bar mechanisms, a reconfigurable deployable canopy was developed by Jovichikj et al. [181] which 

attains reconfigurability by relative alignment of its links (Figure 2.8b). Meanwhile, Galletti and 

Fanghella [170] presented the design of reconfigurable closed loop mechanisms based on serial kinematic  

 

Figure 2.8: a) An rT joint with an additional degree of rotation enabling axis 1 to rotate about axis 2 and can be fixed 

by bolting it to the groove [174]. b) Prototype of the reconfigurable canopy based on 4-bar mechanisms in two deployed 

configurations [181]. c) Prototype of a reconfigurable mechanism based on angulated elements in different 

configurations [160]. 
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chains by modifying their constraints, and Li et al. [160, 161, 180] explored the use of angulated elements 

to design reconfigurable deployable mechanisms exploiting the singularity in the angulated elements at 

certain transition configurations (Figure 2.8c). 

Another approach to attaining reconfigurability, mostly in structures for foldable and deployable 

applications, has been the use of variable geometry trusses. Miura et al. [182] introduced a tessellation of 

octahedral trusses forming a variable geometry truss structure; the structure combined extendable and fixed 

length members connected with hinges to change the geometric configuration of the assembly (Figure 

2.9a). They explored its application to trusses with arbitrary curvature and their use as manipulator arms, 

as other researchers did later as well [183, 184] (Figure 2.9b). Finistauri and Xi [185] employed the 

variable geometry truss concept to develop a mechanism for a morphing aircraft wing. A successor of these 

trusses can be considered the tensegrity truss structures which incorporate cables instead of struts to create 

reconfigurable structures or mechanisms (Figure 2.9c) [186–188]. 

Reconfigurability can also be achieved by various other means, including the use of shape memory alloys 

or polymers [189, 190], architected materials [191–194] and/or origami principles [158, 162, 189, 193, 

195–198]. Liu et al. [190] used pre-strained polymer sheets to create foldable 3D shapes with the aid of  

 

Figure 2.9: a) A variable geometry truss through its transformation from a completely folded to deployed 

configuration [182]. b) General structure of a variable geometry truss manipulator [184]. c) A zero stiffness tensegrity 

mechanism in different configurations [186]. 
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light-absorbing inks as hinges, relying on the different absorption coefficients and various ink patterns to 

achieve controllability (Figure 2.10a). Self-folding structures were also generated by Hernandez et 

al. [189] based on foldable, shape memory alloy sheets and origami patterns. A deployable, reconfigurable 

structure developed by Pehrson et al. [198] used a monolithic thick sheet incorporating folds as in origami, 

introducing compliance along the folds by accommodating the thickness of the material. In further 

extension of this latter concept, De Figueiredo et al. [162] developed a design method to synthesize thick 

rigid origami-based structures for applications that require foldability and stiffness (Figure 2.10b). By 

exploiting architected materials with underlying nonlinearities and mechanical instabilities, in situ changes 

of their spatial architecture may be achieved, enabling switching between different configurations [193, 

194, 197]. For example, the shape reconfigurable architected materials by Haghapanah et al. [193] rely on 

bistable structural elements for the development of 2D or 3D lattice materials with high multi-axial 

deformation and shape change that could be used for energy absorption applications (Figure 2.10c). In a 

similar aspect, 3D reconfigurable architected materials were developed by Overvelde et al. [192] by 

exploiting tessellations of assemblies of rigid plates with elastic hinges, exhibiting a broad range of 

responses and mobility. 

 

Figure 2.10: a) A polymer dome structure created using inks with different optical absorption under a blue LED (scale 

bar: 5 mm) [190]. b) Modification of the hexagonal twist pattern for a foldable structure using thickness variation for 

the hinges and a prototype of thick panels in its various configurations [162]. c) Prototype of a 2D and a 3D shape 

reconfigurable material using a bistable triangular unit hinge mechanism fabricated through laser cutting of Teflon 

sheets in various configurations [193]. 
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2.5 Summary 

Researchers’ and engineers’ attitude towards nonlinear phenomena in structures has changed over the past 

decades. Large displacements or strains and buckling phenomena that were associated with failure, 

compromising the integrity and stability of the structure, are now being exploited for efficiency and 

functionality. Increasing number of studies explore these nonlinear phenomena and their potential, in an 

attempt to provide a better understanding and the ability to harness these nonlinearities in the design of 

engineering structures. New routes in the design of mechanisms and/or structures are also opened up, new 

architected materials are emerging, enabling to enhance their functionality and performance. Nonlinearities 

are already being explored in new technologies, e.g. the development of smart structures, shape adaptable 

structures or compliant mechanisms. Compliant mechanisms have been developed that use nonlinear 

responses to increase flexibility and advance their stability characteristics, as well as reconfigurable 

architected materials that base their ability to transform on nonlinear phenomena, e.g. buckling. Thus, it 

becomes evident that the integration of these fields and technologies is inevitable and it seems promising 

for the development of mechanisms for diverse applications. 

In this work a compliant mechanism is introduced that exploits the nonlinear characteristics of a composite 

helical morphing structure that can undergo large deformations while maintaining its load-carrying 

capability. For the first time, these helical elements are combined into structural assemblies introducing a 

compliant, multistable and reconfigurable mechanism. The structural assemblies are studied both 

analytically, using energy landscapes and conventional path-following methodologies, and experimentally, 

using a custom designed test rig. It is the first time that the manufacture of such assemblies is attempted 

and presented herein. The mechanism is essentially a hybrid compliant mechanism; it still comprises of 

traditional joints for the assembly of its constituent elements and the mechanism’s geometry itself, yet it 

relies on the compliance of its composite morphing components and their elastic response for functionality. 

The use of these morphing elements as the flexible components of the mechanism is originally exploited 

in this work and the additional benefits these assemblies may offer are investigated. The underlying 

incentive in using these morphing elements is to enable large deformations to be achieved and stability 

characteristics of interest to be developed. Additionally, the nonlinear characteristics of the composite 

morphing elements can be highly tailorable; thus, the ensuing mechanism can be tuned to feature a variety 

of responses. Besides the featured multistability, the mechanism’s reconfigurability can be considered, i.e. 
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its ability to change its configuration and behaviour in multiple operation modes. All these potentials are 

considered for the mechanism proposed in the scope of this work. 

The following chapters explore the aforementioned concept: the development of a compliant mechanism 

assembled of morphing structures that exhibits multistability as well as reconfigurability. Specifically, the 

following chapter (Chapter 3) introduces the geometrical and mechanical characteristics of the morphing 

structure selected for this purpose. Next, the assembly of a mechanism consisting of these morphing 

elements is introduced; its kinematics and the methods employed for its analysis are presented too. The 

mechanism’s stability characteristics and its sensitivity to key design parameters are explored in Chapter 5. 

Chapter 6 investigates the mechanism’s reconfigurability and the effect of the different reconfiguration 

modes on the mechanism’s stability and mechanical response. The design, manufacture and test of a 

prototype are presented in Chapter 7, and final remarks and thoughts for potential future directions of this 

work are included in the final chapter (Chapter 8). 
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Chapter 3  

A Double-Helix Morphing Composite Structure 

3.1 Introduction 

Unlike conventional structures where nonlinearities and large deformations are considered undesirable and 

associated with failure phenomena, like buckling, [42, 199–201] morphing structures are able to undergo 

large deformations and change their shape while maintaining their structural integrity and load carrying 

capability [26]. Such structures and their nonlinear characteristics can be exploited for potential use in 

various applications such as mechanisms, deployable structures and robotics. Lachenal et al. [25] 

introduced a morphing structure made of two carbon fibre reinforced polymer (CFRP) strips arranged in a 

double-helix architecture. This helical element is capable of large axial deformation and, beyond its 

variable geometry, exhibits highly tailorable nonlinear stiffness characteristics. The analytical model of 

the structure has been developed by Lachenal [202], and its mechanical behaviour has been extensively 

analysed. Lachenal et al. [95, 202] exploited the variable stiffness of the helical structure and manufactured 

a prototype of a twist morphing tip for wind turbine applications, while Masia et al. [12] and Cappello et 

al. [27] taking advantage of the multistability of the helical structure introduced a compliant actuator for 

wearable exoskeletons assisting elbow motion. In this work, building upon these previous researches, we 

take a step further and combine these helical elements into structural assemblies introducing a compliant, 

multistable mechanism. Thus, we first introduce this helical morphing element itself. 

In this chapter, a description of this helical morphing structure is detailed in §3.2 and the above-mentioned 

analytical model is presented in §3.3, based upon which the synthesis and analysis of a truss-like 
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mechanism composed of these helical elements combined in structural assemblies are developed in this 

thesis. The behaviour of the composite morphing structure and its sensitivity to various design parameters 

are discussed in §3.4. 

3.2 Description of the double-helix morphing structure 

The morphing structure consists of two carbon fibre reinforced plastic strips of dimensions L × W, 

connected by rigid spokes placed at equal distances (Figure 3.1). The spokes maintain the strips at a 

constant distance H = 2R, where R is the radius of an underlying cylinder, upon which the deformed strips 

can be assumed to lie [23, 25]. A pre-stress, in particular a distributed bending moment, is introduced in 

the strips by manufacturing them on a cylindrical mould of radius Ri and subsequently flattening them to 

form the double-helix. The double-helix is able to twist under the application of an axial force at its ends, 

which results in large axial displacement, Δl. The structure can deform from a straight to a completely 

coiled configuration, defined by the helix angle θ ϵ [−90°, 90°] between the local x-axis and the global X-

axis of the helix [26]. The angle θ is defined to be positive for anti-clockwise rotations starting from the 

straight configuration. The displacement Δl of one end of the structure from the straight configuration is 

given by [25]: 

∆l = L − l = L(1 − cos θ), (3.1) 

where l is the projected length of the strip along the axis of the cylinder. 

In each helix the number of spokes varies depending on the length L of the strips with their actual in-

between distance defined in an intuitive-like way to address the following. On one side, the selected 

distance should ensure that the strips will deform along the surface of an underlying cylinder, with the 

helix maintaining a circular cross section when twisted, and avoid buckling of the strip section between 

two consecutive spokes, which would result in an ellipsoidal cross section when the helix moves towards 

the coiled configuration. On the other side, the distance between the spokes should be sufficient enough to 

allow the seamless twist of the helix from an extended to a fully coiled configuration. This is to avoid: i) 

increasing the stiffness structure due to the limited available free length of the strip between the spokes 

and maintain the helix compliance, and ii) the spokes colliding early enough during the helix deformation 

limiting its range of motion. 



A Double-Helix Morphing Composite Structure 

25 

 

Figure 3.1: a) Initially curved (radius Ri) composite strips are flattened to introduce pre-stress; b) the strips are joined 

by rigid spokes to form a double-helix structure, which c) can deform from a straight (light grey) to twisted (dark) 

configurations. 

3.3 Analytical model [26, 202] 

A two-dimensional analytical model of the strain energy of the helix was developed by Lachenal [202]. 

His work drew from an earlier, inextensional model on cylindrical shells of Guest and Pellegrino [108], 

extended to account for extensional deformations and membrane strains based on the work of Giomi and 

Mahadevan [203]. The main assumptions and expressions of this model are given below. 

In this model, double-helices each consisting of composite strips with the same lay-up are assumed. The 

composite strips of the double-helix are considered as two-dimensional elements of dimensions L × W 

with both bending and membrane deformations occurring in them, thus the total strain energy of a double-

helix can be calculated by [204]: 

 U =
n

2
∫ ∫ [ ε

0

∆κ
]

T

[
A B

B D
] [ ε

0

∆κ
] dx dy

W 2⁄

-W 2⁄

,

L

0

 (3.2) 

where n is the number of composite strips, ε0 is the tensor of the mid-plane strains and Δκ is the tensor of 

the change in curvature, both referring to the local coordinate system of the strips. A, B and D are the in-

plane, bending-extension coupling and bending stiffness matrices of the Classical Laminate Theory, 

respectively [205]. Equation (3.2) expands to: 
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 U =
n

2
∫ ∫ ε0T

Aε0 dx dy

W 2⁄

-W 2⁄

L

0

+ n ∫ ∫ ε0T
B∆κ dx dy

W 2⁄

-W 2⁄

L

0

+
n

2
∫ ∫ ∆κTD∆κ dx dy

W 2⁄

-W 2⁄

,

L

0

 (3.3) 

with the three terms on the right-hand side capturing the energy contribution due to the stretching, bending-

extension coupling and bending deformations, respectively [202]. It is worth noting that the major 

contribution to the total strain energy of the double-helix is made by bending deformations. The assumption 

by Giomi and Mahadevan [203], that only x-axis strains result from the deformation of the helix, is also 

taken into consideration in this model. Therefore, the membrane strain energy and the bending-extension 

elastic energy contributions are reduced to expressions that include only the terms A11 and B11. It is also 

worth noting that the bending-extension contribution can be neglected due to the near-zero B11 for the 

selected composite lay-ups in this work (as described in Section 3.4). 

Following Giomi and Mahadevan [203] that only x-axis strains are developed during the deformation of 

the structure, the mid-plane strain tensor is calculated as: 

 ε0 = [

εx
0

εy
0

γ
xy
0

] = [
α11Nx

0

0

] , (3.4) 

where α11 refers to the term of the in-plane compliance matrix of the composite (α = A-1) and Nx is the 

axial force that arises during the deformation of the structure, given by [203]: 

 Nx = D22
* C2

' cosh(k1y) cos(k2y) − D22
* C1

' sinh(k1y) sin(k2y) , (3.5) 

where D* = BA-1B is the reduced bending stiffness matrix, and the following terms are defined [203]: 

C1
' =

(α11D22
* )

1 2⁄
C1 + H21C2

α11D22
* + H21

 2
 (3.6) 

C2
' =

(α11D22
* )

1 2⁄
C2 − H21C1

α11D22
* + H21

 2
 (3.7) 

C1 = (∆κy
c − κy

G)
k1 cosh (

W
2

k1) sin (
W
2

k2) + k2 sinh (
W
2

k1) cos (
W
2

k2)

k1 sin (
W
2

k2) cos (
W
2

k2) + k2 sinh (
W
2

k1) cosh (
W
2

k1)
 (3.8) 
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C2 = (∆κy
c − κy

G)
k2 cosh (

W
2

k1) sin (
W
2

k2) − k1 sinh (
W
2

k1) cos (
W
2

k2)

k1 sin (
W
2

k2) cos (
W
2

k2) + k2 sinh (
W
2

k1) cosh (
W
2
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∆κy
c = −

D12
* ∆κx + D26

* ∆κxy

D22
*

 (3.10) 

κy
G =

κxy
2

4κx

 (3.11) 

k1 = (
√s2 + s1

2
)

1
2⁄

 (3.12) 

k2 = (
√s2 − s1

2
)

1
2⁄

 (3.13) 

s1 = −
H21κx

α11D22
* + H21

 2
 (3.14) 

s2 = −
κx

2

α11D22
* + H21

 2
 (3.15) 

where H = −A-1
B, ∆κy

c is the transverse curvature developed from constitutive behaviour (thus the 

superscript c), and κy
G is the transverse curvature developed to eliminate Gaussian curvature (thus the 

superscript G). 

With the spokes keeping the strips at a constant distance throughout the transformation of the helix, the 

strips are assumed to deform tangent to the surface of a cylinder of constant radius R, while uniform 

deformation of the mid-surface of the strips is also assumed. Thus, only Δκx and Δκxy changes of curvature 

can occur with regards to the manufactured shape. Whereas deformations in the y-direction are the result 

of boundary conditions and material properties. According to Giomi and Mahadevan [203], the transverse 

change of curvature of the strip is found by solving the fourth order differential equation: 

(α11D22
* + H21

 2 )
∂

4
My

∂y
4

+ 2H21κx

∂
2
My

∂y
2

+ κx
2My

= κx{D22
* (cxcy − cxy

2 + κxy
2 ) + κx[D12

* (κx − cx) + D26
* (κxy − cxy) − D22

* cy]}, 

(3.16) 
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where  My is the moment across the width of the strip (assumed constant along the length L), cx = 1 Ri⁄ , 

cy = cxy = 0 are the initial manufactured curvatures, and κx, κxy are the curvatures of the deformed strip 

expressed as [26]: 

κx =
1

2R
(1 − cos(2θ)) (3.17) 

κxy =
1

R
sin(2θ) (3.18) 

Given no forces or torques are applied on the longitudinal edges of the strip, the boundary conditions are: 

∂My

∂y
= My = 0,        y = ± W 2⁄  (3.19) 

and the general solution of Eq. (3.16) is developed as below: 

∆κy
i = κy

G + (C1 + H21C2
' ) cosh(k1y) cos(k2y) + (C2 − H21C1

' ) sinh(k1y) sin(k2y) (3.20) 

Therefore, the tensor of the change in curvature Δκ is calculated as: 

∆κ = [

∆κx

∆κy

∆κxy

] =
1

2R

[
 
 
 
 1 − cos(2θ) −

2R

Ri

2R∆κy
i

2 sin(2θ) ]
 
 
 
 

 (3.21) 

The total strain energy of the helical structure can be used to explore its stability. Equilibrium 

configurations can be found by setting the first derivative of the total strain energy U with respect to the 

helix angle θ equal to zero, with the stable ones defined by a strictly positive second derivative of the total 

strain energy U with respect to the helix angle θ in addition [26]. 

∂U

∂θ
= 0,

∂
2
U

∂θ
2

> 0 (3.22) 

The axial force F necessary to extend or contract the composite structure is also derived from the strain 

energy U by applying Castigliano’s theorem [25]: 

F =
∂U

∂Δl
, (3.23) 
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where Δl is the deformation of the structure from the straight configuration and the axial stiffness k is 

subsequently given by [25]: 

k =
∂

2
U

∂Δl
2
 (3.24) 

3.4 Double-helix response 

Based on the analytical model above, the helical structure can be tailored to provide customizable stiffness 

characteristics and strain energy profiles through appropriate selection of various design parameters, such 

as the lay-up of the strips, the pre-stress and the geometry of the structure [25]. In this work, we focus on 

lay-ups of five plies of the form [β2/0/β2] and [β2/0/−β2], where β ϵ [0°, 90°] is the fibre angle, measured 

with respect to the longitudinal, local x-axis of the composite strip. The angle β is defined to be positive 

towards the y-axis and the plies are stacked in the positive z-direction. Five plies are considered sufficient 

to provide significant strain energy variation during the helix deformation, with additionally the 0° ply in 

the middle ensuring a minimum strength and preventing delamination issues [25]. Conceptually, a 

symmetric lay-up, i.e. the [β2/0/β2] herein, exhibits no coupling between bending and extensional 

responses, while a balanced and antisymmetric lay-up, i.e. the [β2/0/−β2] lay-ups, exhibits no extension-

shear or bend-twist coupling. 

For the results herein, helices with dimensions L = 95 mm, R = 15 mm, Ri = 30 mm and W = 5 mm 

have been used; these dimensions followed from an optimization of the helical structure performed to meet 

specific design requirements in earlier work by the author done as part of the Extended Project of the CDT 

program [206]. In that work, as the helical structure was aimed to be used as part of an actuator of a 

wearable robotic device assisting the motion of the arm and carried as a backpack, space and weight 

limitations applied, in addition to requirements regarding the performance of the helix and the safe 

interaction between the human and the device. Thus, the helical structure was optimised with regards to its 

dimensions, while a point of stable equilibrium was required ideally at a helix angle θ of 45°, transitioning 

from the extended to the complete coiled configuration. Moreover, a limitation of 50 N to the maximum 

axial force of the helix was applied to minimise peak force outputs whilst maintaining the ability to sustain 

the weight of the arm given the current exoskeleton. The material properties used for the helical strips are 

given in Table 3.1.  
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Table 3.1: Hexcel IM7/8552 unidirectional carbon fibre prepreg properties [25, 208] 

Material E11 (GPa) E22 (GPa) G12 (GPa) ν12 (–) thickness (mm) 

IM7/8552 163.7 11.5 5 0.3 0.105 

 

Figure 3.2 shows the evolution of the strain energy of the helix over its entire workspace as a function of 

the helix angle θ and for double helices of different laminates of symmetric and antisymmetric stacking 

sequence: respectively, [β2/0/β2] and [β2/0/−β2]. The corresponding axial blocking force is shown in Figure 

3.3 as a function of Δl. For strips where β = 0°, β = 90° or antisymmetric ones, the strain energy is 

periodic and symmetric with respect to θ = 0° (Figure 3.2), meaning that, in these cases, helices will 

exhibit identical behaviours in θ ϵ [0°, 90°] and θ ϵ [0°, −90°], and therefore, the same force-

displacement response (identical responses between Figure 3.3a, b for these lay-ups). This is in contrast to 

the behaviour of symmetric angle-ply lay-ups. For instance, the strain energy for the [452/0/452] lay-up in 

Figure 3.2 retains the periodicity but breaks the symmetry around θ = 0°, meaning that the force-

displacement response will differ in θ ϵ [0°, 90°] and θ ϵ [0°, −90°] (diverse responses between Figure 

3.3a, b for such lay-ups). This difference provides the basis for the reconfigurability of the helix [207]. 

In addition, the double-helix features bistability, meaning that two self-equilibrated shapes may exist. The 

stability of the structure can be found by inspection of its strain energy evolution (Figure 3.2), with stable 

(marked as crosses in Figure 3.2) and unstable (marked as dots in Figure 3.2) configurations corresponding 

to minima and maxima of the strain energy, respectively. For laminates where β = 0°, the straight and the 

fully coiled configurations correspond to energy maxima, thus these configurations are unstable, while the 

stable equilibria can be found at θ = ±45°. In contrast, for strips where β = 90° or antisymmetric lay-ups, 

the structure exhibits energy maxima at θ = ±45°, i.e. unstable equilibria, whereas its stable equilibria are 

positioned at θ = 0°—the straight configuration—and at θ = ±90°—the fully coiled ones. For symmetric 

angle-ply lay-ups, the position of the equilibria, both stable and unstable, can take any value of 

θ ϵ [−90°, 90°]. It is observed, however, that for deformation of the helix with θ ϵ [0°, −90°], the stability 

point will lie closer to the fully coiled configuration, as opposed to the deformation mode with θ ϵ [0°, 90°], 

where the stable position takes a helix angle value closer to the straight configuration and additionally a 

stable boundary equilibria is achieved at θ = 90° (marked with triangles in Figure 3.2). 
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Figure 3.2: Strain energy profiles as a function of the helix angle θ of double-helices with L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm for different strip lay-ups. Dots (●) represent unstable equilibria; crosses (+) stable equilibria; 

triangles (▲) boundary equilibria. 

 

Figure 3.3: Load-displacement curves of double-helices with L = 95 mm, R = 15 mm, Ri =30 mm, W = 5 mm for 

different strip lay-ups. a) θ ϵ [0°, 90°]; b) θ ϵ [0°, −90°]. The displacement Δl has been normalized to the length L of 

the strips, with Δl/L = 0 representing the fully-extended and Δl/L = 1 its fully coiled configurations. 
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Figure 3.4: Axial stiffness as a function of the displacement Δl of double-helices with L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm for different strip lay-ups. a) θ ϵ [0°, 90°]; b) θ ϵ [0°, −90°]. The displacement Δl is 

normalized to the length L of the strips, with Δl/L = 0 representing the fully-extended and Δl/L = 1 its fully coiled 

configurations. 

Another interesting feature in the behaviour of the double-helix is its highly tailorable nonlinear 

characteristics. Focusing on the load-displacement response of the helix in Figure 3.3, it is observed that 

the load-displacement curve is nonlinear, with the axial force altering signs as the helix deforms from a 

straight to a fully coiled configuration. Thus, the helix exhibits nonlinear stiffness characteristics as well, 

with its stiffness interchanging between areas of either positive or negative stiffness over its workspace 

(Figure 3.4). The negative stiffness of the helix can be exploited for vibration isolation and energy 

harvesting applications [91, 209]. 

A manufactured prototype of a double-helix of a symmetric angle-ply strip lay-up is presented in Figure 

3.5 in different configurations for helix angles both θ ϵ [0°, 90°] and θ ϵ [0°, −90°]. An external force is 

required to keep such double-helix in its extended configuration, thus the hands holding it in that 

configuration (Figure 3.5a). For deformations in θ ϵ [0°, 90°], the helix is stable at a slightly twisted 

configuration (Figure 3.5b)—it stays at that configuration by itself—while for further coiled configurations 

an external force is required (Figure 3.5c) until it reaches its fully coiled position that in this case is a stable 

boundary equilibrium (Figure 3.5d). On the other hand, for deformations in θ ϵ [0°, −90°], an external 

force is required to hold the helix in a slightly twisted configuration (Figure 3.5e), while the helix is stable 

at a further coiled configuration (Figure 3.5f)—no hands holding the helix at this position—and again an 

external force is required at its fully coiled configuration (Figure 3.5g). 
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Figure 3.5: Manufactured prototype of the double-helix structure of a symmetric [90/45/0/45/90] strip lay-up, with 

dimensions L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm in a) straight configuration; b) stable, c) twisted, and 

d) fully coiled configurations for θ ϵ [0°, 90°]; e) twisted, f) stable, and g) fully coiled configurations for θ ϵ 

[0°, −90°]. 

It was found that the lay-up of the composite strips has the most significant effect in the load-displacement 

curves of the double-helices; the sensitivity to varying geometric parameters has also been explored. The 

results shown in Figure 3.6 are for helices of a symmetric angle-ply strip lay-up with β = 45° of different 

geometric characteristics. For Figure 3.6a-d a single geometric feature of the double-helix is altered each 

time keeping everything else constant, while for Figure 3.6e the dimensions of the helix are changed 

keeping a constant ratio Ri/R = 2 and L ≈ 2πR for a constant strip width value. As mentioned, the effect of 

the geometric characteristics in the load-displacement curves of the helices is not as significant as that of 

varying the composite strip lay-up. Specifically, it is observed that the helix response remains the same for 

helices of different strip length L (coinciding lines in Figure 3.6a); similar responses occur for helices of 

different strip width W (Figure 3.6b), radius R (Figure 3.6c), or different pre-stress, as captured by the 

radius Ri (Figure 3.6d), with slight differences in the absolute values of the axial force and stiffness of the 

helix. To add to this, even a proportional change of the double-helix geometric features maintains a similar 

load-displacement response (Figure 3.6e). 
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Figure 3.6: Load-displacement curves of double-helices of a [452/0/452] strip lay-up: a) for different lengths L, 

R = 15 mm, Ri = 30 mm, W = 5 mm. b) for different widths W, L = 95 mm, R = 15 mm, Ri = 30 mm;  c) for different 

radius R, L = 95 mm, Ri = 30 mm, W = 5 mm; d) for different initial curvatures of the strips Ri, L = 95 mm, R = 15 mm, 

W = 5 mm; e) for different dimensions L, R and Ri, keeping a constant ratio Ri/R = 2 and L ≈ 2πR. The displacement 

Δl is normalized to the length L of the strips in each case for comparison purposes, with Δl/L = 0 representing the fully-

extended and Δl/L = 1 its fully coiled configurations. 
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3.5 Summary 

The morphing structure consisting of two pre-stressed, composite strips joined by rigid spokes, initially 

introduced by Lachenal [202] and presented in the sections above, exhibits a remarkable behaviour as a 

structure. This helical structure is able to undergo large deformations and maintain its structural integrity; 

can deform from an extended to a fully coiled configuration, similar to a spring element, while exhibiting 

nonlinear stiffness characteristics. These characteristics are highly tailorable and along with the different 

stability behaviours that can be achieved, can be exploited in a variety of applications [12, 91, 95]. With 

Lachenal [202] having already explored the design space of this helical structure as individual elements, 

what triggered our interest is the potential these structures might present if multiple are combined together. 

Our curiosity on the behaviour of assemblies composed of such elements and exploring their design space 

have been the primary subject of this research. 

In this thesis, drawing upon this helical structure a mechanism is introduced that uses these morphing 

structures as its flexible members. In the next chapter, the assembly of such helical structures in a 

mechanism of a truss-like configuration is presented along with the methods employed for the structural 

analysis and investigation of the stability response of this mechanism. The results of the analysis and the 

sensitivity of the mechanism to various design parameters, followed by the manufacture and experimental 

testing of a prototype are included in the chapters further below. 
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Chapter 4  

A Compliant Mechanism Based 

on Double-Helix Composite Structures and its Analysis Methods 

4.1 Introduction 

Compliant devices have been of great interest among researchers in the fields of mechanisms, robotics and 

morphing structures. This interest stems from their capabilities and the variety of promising applications 

both in micro and macro scale devices [117]. Mechanisms are parts of machines and other devices used to 

transfer motion, force or energy. Conventional mechanisms consist of rigid links and base their mobility 

on movable joints. Unlike rigid-link mechanisms, compliant mechanisms utilize the flexibility of their 

members to transmit or transform motion and forces [210]. The field of application for compliant 

mechanisms is broad [117]. 

Compliant mechanisms can be considered as variable stiffness structures. To modulate their stiffness 

characteristics or to achieve desired nonlinear behaviour, combinations of cam and beam structures [211] 

or cam rollers with floating springs have been used, leading to complex and relatively bulky designs [212]. 

State-of-the-art compliant mechanisms take advantage of the flexibility of their constituent materials to 

obtain designs that are lightweight, easily scalable and with reduced friction and no need for lubricants. 

However, these compliant mechanisms often rely on flexures, whose range of motion is limited by stresses 

developed upon elastic deformation [128]. To achieve higher effective strains and extend the range of 

motion currently available, this work proposes the use of morphing composite structures as the flexible 

elements in a compliant mechanism. 
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The compliant mechanism developed in this research uses morphing elements as the flexible members, 

that can change shape and undergo large deformations while maintaining their load-carrying capability and 

structural integrity. The composite morphing double-helical structures presented in the previous chapter 

(Chapter 3) are able to extend and coil like springs, yet, with nonlinear stiffness characteristics. With this 

helical structure as the deformable component for compliance, a mechanism consisting of such structures, 

assembled in a simple truss configuration, is introduced and its design space and mechanical behaviours 

are explored. The result is a rich mechanical response stemming from the interaction of geometric and 

elastic nonlinearity, as well as the inherent nonlinearity of the morphing components. 

The proposed illustrative mechanism could be used as the structural building block to design more complex 

assemblies for bespoke mechanical properties and kinematics, e.g. [213, 214]. For instance, lattice 

structures have already been shown to provide unique combinations of properties and behaviours [193, 

213]. In this respect, by tailoring its architecture and properties, the proposed mechanism may be used as 

the unit cell to create 2D and 3D structures with reconfigurable behaviour, for dynamic applications, energy 

efficiency, to control structural deployability or isolate vibrations [193, 215]. 

In this chapter, the proposed compliant mechanism is introduced. Section 4.2 presents the synthesis of a 

compliant mechanism in a truss-like configuration consisting of nonlinear double-helical elements and its 

design parameters, followed by a description of the analysis methods employed for the investigation of the 

mechanical characteristics and behaviour of these mechanisms in §4.3. 

4.2 Structural Assemblies of Double-Helices 

The composite double-helical structure developed by Lachenal et al. [25, 26] can deform from an extended 

to a completely coiled configuration, and functions as a nonlinear spring. The present work further explores 

these elements and their nonlinearities, combining them in structural assemblies. For simplicity and the 

sake of illustration, to present the family of possible new mechanisms conceptually arising from the ideas 

put forward in this work, we focus on a simple structure resembling a von Mises truss [216, 217]. This 

structure serves as a well-known reference for the study of nonlinear, compliant mechanisms and their 

stability [218]. 

The proposed assembly of two double-helices forms a truss-like structure, as shown in Figure 4.1. The 

assembly is a 2-degree-of-freedom, modified von Mises truss with two double-helices forming the truss 
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members, connected by pin joints at the apex and base. Consequently, the truss members are only loaded 

axially. As such, their transverse and bending stiffness characteristics are not considered here. In its initial 

configuration, the structure has height H0 and a base angle α0,i with respect to the horizontal; its members 

have length L0,i corresponding to the length of their longest self-equilibrated configuration, and an axial 

stiffness ki that varies upon deformation. An external load P is applied at the apex, which is free to move 

horizontally and vertically by υh and υv, respectively. Henceforth, we shall refer to υp as to the displacement 

of the apex in the direction of the applied load. Figure 4.2 shows the geometry of the assembly of double-

helices in a deformed configuration under an applied load at the apex. 

 

Figure 4.1: Schematic representation of the assembly of double-helices in a truss-like configuration with both supports 

pinned [207]. The initial configuration is determined by the equilibrium length L0,i of the double-helices and by the 

initial angle α0,i of the truss configuration. 

 

Figure 4.2: Schematic representation of a deformed configuration of the assembly of double-helices in a truss-like 

mechanism under an applied load at the apex. 

The following geometrical relations, with notation presented in Figure 4.1 and Figure 4.2, describe the 

initial and deformed configurations, with the deformed configuration’s characteristics expressed as a 

function of the horizontal and/or vertical displacement of the apex: 

V0,1 = L0,1 cos 𝛼0,1 , (4.1) 
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H0 = L0,1 sin α0,1 , (4.2) 

α0,2 = arcsin (
H0

L0,2

) , (4.3) 

V0,2 = L0,2 cos 𝛼0,2 , (4.4) 

l1 = L0,1
√1 − 2

υv

L0,1

sin α0,1 + (
υv

L0,1

)

2

+ 2
υh

L0,1

cos 𝛼0,1 + (
υh

L0,1

)

2

, (4.5) 

sin α1 =
H0 − υv

l1
=

sin α0,1 − υv L0,1⁄

√1 − 2
υv

L0,1
sin α0,1 + (

υv

L0,1
)

2

+ 2
υh

L0,1
cos 𝛼0,1 + (

υh

L0,1
)

2

, 

(4.6) 

cos 𝛼1 =
V0,1 + υh

l1
=

cos 𝛼0,1 + υh L0,1⁄

√1 − 2
υv

L0,1
sin α0,1 + (

υv

L0,1
)

2

+ 2
υh

L0,1
cos 𝛼0,1 + (

υh

L0,1
)

2

, 

(4.7) 

l2 = L0,2
√1 − 2

υv

L0,2

sin α0,2 + (
υv

L0,2

)

2

− 2
υh

L0,2

cos 𝛼0,2 + (
υh

L0,2

)

2

, (4.8) 

sin α2 =
H0 − υv

l2
=

sin 𝛼0,2 − υv L0,2⁄

√1 − 2
υv

L0,2
sin α0,2 + (

υv

L0,2
)

2

− 2
υh

L0,2
cos 𝛼0,2 + (

υh

L0,2
)

2

, 

(4.9) 

cos 𝛼2 =
V0,2 − υh

l2
=

cos 𝛼0,2 − υh L0,2⁄

√1 − 2
υv

L0,2
sin α0,2 + (

υv

L0,2
)

2

− 2
υh

L0,2
cos 𝛼0,2 + (

υh

L0,2
)

2

. 

(4.10) 

The elongation ΔLi of the truss members from the initial configuration of the assembly is: 

∆L1 = L0,1 − l1 = L0,1 (1 − √1 − 2
υv

L0,1

sin α0,1 + (
υv

L0,1

)

2

+ 2
υh

L0,1

cos 𝛼0,1 + (
υh

L0,1

)

2

) , (4.11) 

∆L2 = L0,2 − l2 = L0,2 (1 − √1 − 2
υv

L0,2

sin α0,2 + (
υv

L0,2

)

2

− 2
υh

L0,2

cos 𝛼0,2 + (
υh

L0,2

)

2

) . (4.12) 



A Compliant Mechanism Based on Double-Helix Composite Structures and its Analysis Methods 

41 

4.3 Analysis of the Structural Assemblies 

Two approaches are employed for the analysis of the structural assemblies. First, energy landscapes are 

used to represent and characterize the behaviour of the compliant mechanism over its workspace. Next, a 

path following method is applied to investigate the mechanism’s response under specific load cases and to 

obtain potential load paths between stable positions. 

4.3.1 Strain Energy Landscapes 

Strain energy landscapes are an effective way to identify stable configurations of the structure at either 

global or local minima of the strain energy across the mechanism’s workspace. Herder [140] and Radaelli 

et al. [219, 220] have used potential (strain) energy landscapes to design statically-balanced structures, 

while Kala and Kadina [221] used the potential energy to study the stability of steep von Mises trusses. 

With the potential energy defined as the energy stored in a body when it is being deformed, the energy of 

a system can be described as a function of the possible positions of an endpoint [220]. The corresponding 

strain energy landscape can be determined by mapping the values of the strain energy corresponding to 

this endpoint at its range of positions [140, 220]. For a more complex system, i.e. a mechanism or structure 

consisting of multiple parts connected at an end effector, the total strain energy can be calculated from the 

individual components’ strain energy at that point, similar to a building block approach [219]. Thus, the 

strain energy landscape can be derived from the sum of the strain energy of the constituents at each 

potential position of the selected point; this presumes that the strain energy function of the constituents is 

single-valued at each position of the end effector. As mentioned in [220], this technique can be applied 

irrespectively of the type and shape of the constituents members. 

Herein, stable and unstable equilibria of the truss are identified by inspection of the strain energy landscape. 

For this particular configuration of the assembly of double-helices (Figure 4.1), where their free ends are 

connected to a single moving point (the apex), the total strain energy is uniquely determined by the position 

of the end effector (the apex), and is the sum of the strain energy of the constituent helical members. In 

this thesis, the strain energy, Ui, of each helix given by Eq. (3.2) is used to calculate the total potential 

energy, Utot, of the truss mechanism (Eq. (4.13)) and the corresponding contour plots are produced. Stable 

and unstable equilibria are pinpointed, respectively, as minima and maxima of the strain energy functional. 
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The strain energy landscapes provide a means to qualitatively compare the structural response of the truss 

structures with different design parameters. 

Utot = ∑ Ui . (4.13) 

Indicatively, we present here in Figure 4.3 the case of a simple von Mises truss consisting of two identical 

members pin-jointed at the apex and base supports with a vertical load at the apex. For simplicity, we have 

considered linear springs as the constituent elements of the truss. The corresponding contour plots of the 

strain energy for a single linear spring and for the assembled von Mises truss are shown in Figure 4.3. It is 

observed that the stability points are effectively captured in these plots: the shallow configuration of a von 

Mises truss is stable at the initial configuration and its reverse state (points 1 and 2 in Figure 4.3b), while 

it exhibits a single unstable equilibrium position when the constituent members are collinear (point M in 

Figure 4.3b) [222]. 

 

Figure 4.3: Strain energy contour plot for a) a single linear spring with finite free length ls0 fixed at one end, and b) 

the assembled von Mises truss of two identical such linear spring elements pin-jointed. The attainable workspace is 

limited by the maximum elongation of the spring members; here this was set to 1.5 times of the spring’s free length. 

The initial truss configuration is indicated with the black spring elements. Points labelled 1 and 2, corresponding to 

energy minima, denote stable equilibria, while point M identifies position of unstable equilibrium. 

4.3.2 Path-following Method 

Figure 4.4 shows the free-body diagram for the apex, displaced at an arbitrary position. The following 

equilibrium equations occur: 

Ph = −(F1 cos 𝛼1 − F2 cos 𝛼2), (4.14) 
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Pv = −(F1 sin 𝛼1 + F2 sin 𝛼2), (4.15) 

where F1, F2 correspond to the helix axial forces obtained by Eq. (3.23), and α1, α2 are the deformed truss 

angles of each truss member with respect to the horizontal (Figure 4.4) with their trigonometric functions 

of sine and cosine defined in Eqs. (4.6), (4.7), (4.9) and (4.10). 

 

Figure 4.4: Free-body diagram of the assembly of double-helices in the truss-like configuration. 

These equations are nonlinear and it is difficult to find the roots to define positions of possible equilibrium 

and to check their stability, let alone to determine complete equilibrium paths [223]. Thus, a numerical 

procedure is required to solve this system of Eqs. (4.14), (4.15). 

Previous studies on the behaviour of the von Mises truss suggest that the structure undergoes a snap-through 

when loaded beyond a critical value with a vertical force at the apex [222, 224, 225]. By modifying the 

original system of the von Mises truss, introducing geometrical and/or structural imperfections, e.g. 

increasing the height to base width ratio [223] or adding springs [226, 227], further instabilities are 

introduced. This may lead to a variety of different post-critical structural responses, including snap-through 

and snap-back, primary and secondary branches both with multiple critical points [228–230]. To solve 

these nonlinear problems, iterative algorithms are employed. 

As the double-helices are expected to introduce further nonlinearities, an iterative path-following algorithm 

is required to determine the load-displacement response of the structural assemblies. The arc-length method 

is an efficient method to solve nonlinear systems and capture behaviours like snap-through and snap-back 

including the areas of instability [135, 231–234]. Specifically, in this work we use the modified-Riks 

method developed by Crisfield [231] as presented in [235]. 
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The system of governing equilibrium equations of the assembly is obtained by balancing the forces acting 

on the mechanism (both internal and external), thus, in its general form, the system of nonlinear equations 

we are interested to solve is written: 

R(υ) = 0, (4.16) 

where υ is the nodal displacement vector, in our case of the apex so υ = [υh υv]T, and R is the residual: 

R(υ) = Pint(υ) − Pext = Pint(υ) − λP̅ext, (4.17) 

where Pext is the external load vector, in our case Pext = [Ph Pv]
T, λ is a scalar load parameter and P̅ext is 

a constant external load vector, and Pint is the internal load vector, here expressed as:  

Pint(υ) = [
F1 cos 𝛼1 − F2 cos 𝛼2

F1 sin 𝛼1 + F2 sin 𝛼2
] . (4.18) 

Therefore, the residual vector R is considered as a function of both υ and λ. 

Hence, for the assembly of double-helices in the truss configuration of Figure 4.1, the problem becomes: 

[
Rh

Rv
] = [

F1 cos 𝛼1 − F2 cos 𝛼2

F1 sin 𝛼1 + F2 sin 𝛼2
] − λ [

P̅h

P̅v

] , (4.19) 

where Rh, Rv refer, respectively, to the horizontal and vertical components of the residual, and P̅h, P̅v are 

the constant horizontal and vertical external loads applied, respectively. 

Based on the modified-Riks method by Crisfield [231] in [235], the solution at the rth iteration of the nth 

load step, given the solution (υn
(r−1), λn

(r−1)
) at the (r−1)st iteration of the same load step, is determined as 

follows: 

Rn
(r−1) − δλn

(r)
P̅ext +KTδυn

(r) = 0, (4.20) 

where Rn
(r−1) is the unbalanced load vector at the (r−1)st iteration, δλn

(r)
 and δυn

(r)
 are the load and 

displacement incremental solutions, respectively, and KT is the tangential stiffness matrix defined as: 

KT =
∂R

∂υ
, (4.21) 
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calculated at the converged solution of the previous load step, υn−1. For the assembly of the double-helices, 

the tangential stiffness matrix is given by: 

KT =

[
 
 
 
 
∂Rh

∂υh

∂Rh

∂υv

∂Rv

∂υh

∂Rv

∂υv ]
 
 
 
 

, (4.22) 

where 

∂Rh

∂υh

=
∂(F1 cos 𝛼1 − F2 cos 𝛼2 − λP̅h)

∂υh

=
∂(F1 cos 𝛼1 − F2 cos 𝛼2)

∂υh

= cos 𝛼1

∂F1

∂υh

+ F1

∂ cos 𝛼1

∂υh

− cos 𝛼2

∂F2

∂υh

− F2

∂ cos 𝛼2

∂υh

, 

(4.23) 

∂Rh

∂υv

=
∂(F1 cos 𝛼1 − F2 cos 𝛼2 − λP̅h)

∂υv

=
∂(F1 cos 𝛼1 − F2 cos 𝛼2)

∂υv

= cos 𝛼1

∂F1

∂υv

+ F1

∂ cos 𝛼1

∂υv

− cos 𝛼2

∂F2

∂υv

− F2

∂ cos 𝛼2

∂υv

, 

(4.24) 

∂Rv

∂υh

=
∂(F1 sin 𝛼1 + F2 sin 𝛼2 − λP̅v)

∂υh

=
∂(F1 sin 𝛼1 + F2 sin 𝛼2)

∂υh

= sin 𝛼1

∂F1

∂υh

+ F1

∂ sin 𝛼1

∂υh

+ sin 𝛼2

∂F2

∂υh

+ F2

∂ sin 𝛼2

∂υh

, 

(4.25) 

∂Rv

∂υv

=
∂(F1 sin 𝛼1 + F2 sin 𝛼2 − λP̅v)

∂υv

=
∂(F1 sin 𝛼1 + F2 sin 𝛼2)

∂υv

= sin 𝛼1

∂F1

∂υv

+ F1

∂ sin 𝛼1

∂υv

+ sin 𝛼2

∂F2

∂υv

+ F2

∂ sin 𝛼2

∂υv

, 

(4.26) 

∂F1

∂υh

=
∂F1

∂Δl1

∂Δl1

∂υh

, (4.27) 

∂F1

∂υv

=
∂F1

∂Δl1

∂Δl1

∂υv

, (4.28) 

∂F2

∂υh

=
∂F2

∂Δl2

∂Δl2

∂υh

, (4.29) 

∂F2

∂υv

=
∂F2

∂Δl2

∂Δl2

∂υv

, (4.30) 
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∆l1 = L1 − l1 = ∆L1 + L1 − L0,1, (4.31) 

∆l2 = L2 − l2 = ∆L2 + L2 − L0,2, (4.32) 

with Li being the length of the helix in its fully extended configuration, li the projected length of the helix 

along the axis of its underlying cylinder and ΔLi the elongation of the truss members from the initial 

configuration of the assembly. It is worth mentioning that in these calculations the axial helix forces have 

been estimated from the helix strain energy U numerically using central finite differences. 

Equation (4.20) can be rewritten as: 

δυn
(r) = −(KT)

−1Rn
(r−1) + δλn

(r)(KT)
−1P̅ext, (4.33) 

δυn
(r) ≡ δυ̅n

(r) + δλn
(r)

δυ̂n, (4.34) 

δυ̅n
(r) = −(KT)

−1Rn
(r−1), (4.35) 

δυ̂n = (KT)
−1P̅ext, (4.36) 

with δυ̂n calculated at the beginning of each load step. 

The incremental load parameter δλn
(r)

 is obtained from the solution of the following equation: 

q
1
(δλn

(r))
2
− 2q

2
δλn

(r) + q
3
= 0, (4.37) 

where the coefficients q1, q2 and q3 are given by: 

q
1
= δυ̂n

T
δυ̂n, (4.38) 

q
2
= (δυ̅n

(r) + ∆υn
(r−1))

T
δυ̂n, (4.39) 

q
3
= (δυ̅n

(r) + ∆υn
(r−1))

T
(δυ̅n

(r) + ∆υn
(r−1)) − (Δsn)

2. (4.40) 

From the two solutions of this quadratic equation (Eq. (4.37)), we choose the one that gives a correction 

closer to the previous converged correction so that the solution evolves forward. This can be defined by 

the product of the ∆υn
(r−1) and ∆υn

(r), selecting the root with the positive one. In case of both roots giving a 

positive value for this product, δλn
(r) = − q

3
(2q

2
)⁄ .   
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The initial incremental load parameter in each load step is given by [233]: 

δλn
(0) = (sign of (∆υn−1

(r) )
T

δυ̂n
(r)) Δsn(δυ̂n

T
δυ̂n)

−1/2
. (4.41) 

Δs is the arc-length, defined in Crisfield’s method [231] as the radius of the circle with a centre at the 

current equilibrium point. For the first iteration of the first load step, Δs is estimated by: 

Δs = δλ1
(0)√δυ̂1

T
δυ̂1, (4.42) 

where δυ̂1 is calculated at an assumed solution υ0 and δλ1
(0)

 is an assumed load increment, both values 

assigned by the user at the beginning. These values would change depending of the underlying problem to 

be solved. Usually for υ0, a known solution of an equilibrium point would be selected—the energy 

landscapes were considered to be a useful guide for this—while the assignment of a certain value for δλ1
(0)

 

could occur after multiple trial and error runs. For subsequent load steps the arc-length can be adjusted by: 

Δsn = Δsn−1

𝐼d

𝐼0

, (4.43) 

where Id is the number of desired iterations, defined by the user, and I0 the number of actual iterations 

performed in the previous step until convergence was achieved. This provides control over the number of 

iterations taken to converge in the subsequent load step, by automatically giving small arc-lengths in areas 

of severe nonlinearity. In our calculations we chose not to perform this adjustment and maintain a constant 

arc-length, as the initial arc-length defined was adequate to track the converged solutions within a 

reasonable number of iterations. 

∆υn
(r) is the correction to the solution calculated by: 

∆υn
(r) = ∆υn

(r−1) + δυn
(r)

, (4.44) 

which for the first iteration of each load step becomes: 

∆υn
(1) = δυn

(1)
. (4.45) 

Finally, the total solution of the nth load step is given by: 
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υn = υn−1 + ∆υn
(r), (4.46) 

λn = λn
(r−1)

+ δλn
(r)

. (4.47) 

The above procedure is repeated until convergence is achieved, ‖R‖ < tol, where tol is defined by the user. 

For the calculations herein tol = 10-8 has been selected. 

The modified-Riks method by Crisfield [231], employed here, as well as other common path-following 

methods, allow us to follow arbitrary nonlinear equilibrium paths. However, these methods by themselves 

are unable to directly identify stability points—bifurcation or limit points—and switch to a different 

equilibrium path if secondary branches exist. The consideration of stability phenomena is deemed 

necessary for cases where the load-displacement curve does not increase monotonically and there are 

multiple possible displacements corresponding to one load level and the reverse. For this purpose, further 

algorithms are required [236–238]. 

Herein, additionally to the modified-Riks method, we employ an algorithm to detect bifurcations and limit 

points by investigating the eigenvalues of the system’s tangential stiffness matrix. A perturbation based on 

the respective eigenvectors is then applied to the solution at the bifurcation points for the computation of 

the branching paths [237, 238]. The stability of an equilibrium branch is characterised by the eigenvalues, 

with negative eigenvalues indicating instability. 

The use of the eigenvalues of the system’s tangential stiffness matrix is a general and effective mean to 

describe the stability of a structure, independently of the method used for its structural analysis. For 

example, in a simple von Mises truss consisting of two identical members pin-jointed at the apex and base 

supports with a vertical load at the apex, one zero eigenvalue exists at the limit point where the snap-

through takes place, while at least one of the eigenvalues is negative along the area of instability. Figure 

4.5 shows the load-displacement curve of a von Mises truss with linear springs as its constituent elements 

and the corresponding areas of instability. It also shows the variation of the current eigenvalues for the 

equilibrium path. Stable and unstable equilibria have been also marked according to the corresponding 

strain energy contour in Figure 4.3b. 
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Figure 4.5: Load-displacement curve (purple) of the assembled von Mises truss of two identical linear spring elements 

under a vertical load P at the apex. Results are for initial truss angle α0,1 = 35°. Dashed line represents section of 

instability; points 1 and 2 are stable equilibrium points. Point M is an unstable equilibrium point. The load has been 

normalized with respect to the load value at the maximum peak (Pcrit). The displacement has been normalized with 

respect to the initial height of the truss structure. The variation of the corresponding eigenvalues ωj of the tangential 

stiffness matrix of the system are included (cyan lines). The eigenvalues have been normalised to a value 103 to fit the 

scale of the load-displacement curve. 

Specifically, a stability point—either a bifurcation or a limit point—is defined as a point of singularity of 

the tangent stiffness matrix, thus it can be identified by the criteria below [237]: 

KT(υ)φ = 0, (4.48) 

det KT(υ) = 0. (4.49) 

where φ refers to an eigenvector of a specific eigenvalue problem. Hence, for each converged solution on 

the primary equilibrium path, obtained initially by employing the Riks-method to solve Eq. (4.19), the 

tangential stiffness matrix KT is calculated and the corresponding eigenvalues ωj are evaluated. Next, the 

eigenvalues are inspected for a change in their sign between consecutive converged solution points to 

define positions of potential bifurcation or limit points. It is worth mentioning that the points on the primary 

equilibrium path, found as solutions using the arc-length method, are not the actual stability point but 

within sufficient accuracy close to the exact stability point. The exact calculation of the stability point is 

out of the scope of the present analysis. Applying the perturbation for the computation of branching paths 

at the converged solution of the primary equilibrium path that is close enough, within incremental 

calculation, to the actual stability point is deemed appropriate to obtain the secondary branch in case of a 

bifurcation point. 
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To distinguish between a bifurcation or a limit point the following criteria have been defined [238, 239]: 

limit points: φTP̅ext ≠ 0, (4.50) 

bifurcation points: φTP̅ext = 0. (4.51) 

Thus, at the detected point near the stability point the eigenvector is calculated and the above criteria are 

checked to define whether a bifurcation or a limit point exists at this stability position. Since we have not 

determined the exact stability point, in our calculations we used the following formula to define a 

bifurcation point: 

φTP̅ext

‖φ‖‖P̅ext‖
< 10−3. (4.52) 

In case of a bifurcation point, the computation of the secondary branches is required. Similar to the 

computation of the primary equilibrium path, the modified-Riks method is employed, but in this case a 

perturbation to the solution at the bifurcation point is performed. A new initial displacement, υ0,bf, is 

calculated as the starting displacement vector for the branching path given by [237]: 

υ0,bf = υ + ∑ ξj

φ
j

‖φ
j
‖

, (4.53) 

where υ is the displacement vector of the converged solution near the bifurcation point, φj is the eigenvector 

corresponding to the ωj eigenvalue that changes sign and ξj is a scaling factor, critical for successful 

computation of the branching path, defined by [237]: 

ξj = ±
‖υ‖

τj

, (4.54) 

where τj is an imperfection factor with a value in the order of 100; in our calculations a value of 50 was 

selected. 

The detection of limit and bifurcation points is performed in the secondary branch as well. The above 

procedure is followed for the computation of any other secondary branch that might exist. Combined, the 

path-following method and the stability analysis enable the load-displacement response of the structural 

assemblies to be characterised fully. 
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4.4 Summary 

Current compliant mechanisms rely on flexible members, whose design is often limited by strength 

considerations. In this research, a new compliant mechanism is introduced that consists of nonlinear 

morphing elements. These elements: (i) are composed of composite strips in a double-helix architecture; 

(ii) exhibit nonlinear stiffness characteristics; and (iii) are able to undergo large axial deformations whilst 

maintaining structural integrity. These helical structures exhibit highly tailorable nonlinear stiffness 

characteristics, thus enabling the ensuing mechanism to feature a variety of structural responses. 

To study the new mechanism—explore the potential behaviours and stability features it may develop—we 

focus on a simple structure, an assembly of two double-helices in a truss-like configuration. Two analysis 

methods are employed to explore the properties of the structural assemblies. Initially, we use strain energy 

landscapes to study the stability characteristics of the compliant mechanism qualitatively across its 

workspace and to identify equilibrium configurations. To investigate the response to specific loads, a path 

following method with bifurcation tracking is employed to capture the full nonlinear response. Combined, 

these methods provide full insight into the mechanical properties of the compliant mechanisms. 

The following chapters present the rich design space of such mechanism; by tailoring the inherent 

properties of its elements—and subsequently its architecture—access to a wide design space is opened up. 

The next chapter presents results from the numerical analysis of the assemblies of double-helices with the 

simplest possible geometry, focusing on investigating the mechanical behaviour and stability 

characteristics, and their sensitivity to various design parameters. The reconfigurability of the mechanism 

is explored in a subsequent chapter, followed by the manufacture of a prototype and the experimental 

validation of the analytical results. Conclusions and final remarks are drawn in the last chapter of the thesis. 

 



 

 

 

 



 

53 

Chapter 5  

Multistability in 

Mechanisms of Nonlinear Morphing Elements 

5.1 Introduction 

Multistable mechanisms, i.e. mechanisms that are self-equilibrated in two or more stable configurations, 

continue to interest the research community, because they promise benefits for diverse applications, across 

a number of fields and length scales. For instance, multistability is investigated for use in devices such as 

switches, valves, precision positioning systems, reconfigurable structures, rehabilitation robotic devices, 

energy harvesters, and weight compensators [91, 94, 119, 122, 123, 136, 240, 241]. An attractive feature 

of multistable mechanisms is that they do not require any power input to hold stable configurations, which 

might help save energy during operation. This characteristic can be exploited, for instance, in deployable 

structures that, once actuated (sometimes even passively), can self-lock in either a stowed or extended 

configuration [118, 242]. In addition, since in general two stable equilibria will necessarily be separated 

by an unstable one, multistable devices present regions of negative stiffness over their workspace that can 

be used for statically balanced mechanisms [243, 244] or weight compensators [143]. 

It is noted that much of the literature on devices with multiple equilibria refers to bistable ones. Articles 

on multistability are scarcer. Oh and Kota [135] proposed the synthesis of a multistable compliant devices 

by combining bistable ones. In a similar manner, Han et al. [132] developed a quadristable mechanism, 

whilst tristability was achieved by Chen et al. [137] by employing orthogonally oriented compliant 

structures. The majority of these works are based on compliance, i.e. the ability to transfer motion, force 

or energy is achieved through elastic deformations of the underlying components, rather than the mobility 
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of joints [210]. While this may offer the possibility to achieve multistability [111], the complexities 

involved often result in high stresses being developed, thus posing strength limits to the potential design 

configurations and, consequently, the capabilities obtainable [137]. 

This work proposes the use of double-helix morphing composite structures as the flexible elements in a 

compliant truss-like mechanism (see Chapter 4). These helical DNA-like structures, as presented in 

Chapter 3, beyond variable geometry, exhibit tailorable nonlinear stiffness characteristics. This 

tailorability enables the ensuing mechanism to be tuned to feature a variety of responses, and a wide range 

of potential behaviours to be developed. The proposed truss-like mechanism may be used either on its own 

or as the unit cell in lattice structures [193, 214]. 

In this chapter, we reveal the richness of this new mechanism’s design space and the range of attainable 

mechanical behaviours. In the following sections, the nonlinear behaviour and multistability of the 

mechanism is explored using both an energy approach and a path-following method to trace equilibrium 

branches in the force-displacement space. The results presented herein focus on the analysis of the simplest 

geometry for the mechanism, an assembly of two double-helices in a truss-like structure pin-jointed at the 

apex and base supports (see Chapter 4), for a variety of potential combinations of double-helices with lay-

ups of the form [β2/0/β2] and [β2/0/−β2], where β is the fibre angle measured with respect to the local x-axis 

of the composite strip—as mentioned previously in Chapter 3—and on helix deformation limited to 

θ ϵ [0°, 90°]. Section 5.2 introduces the results from initial analyses of these structural assemblies, while 

§5.3 and §5.4 focus on the effect of various design parameters on desirable features, such as multistability 

and constant stiffness. Finally, the chapter concludes with a summary and final remarks in §5.5. 

5.2 Initial results 

In the initial analyses the double-helices have the following geometric parameters: L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm. Two geometric configurations are considered: a shallow (α0,1 = 35°) and a steep 

(α0,1 = 70°) truss. Three composite lay-ups are chosen from Chapter 3 to represent the three types of curve 

in Figure 3.2 and explore the ensuing responses of the structural assemblies: a unidirectional (UD) lay-up 

([05]); a symmetric lay-up ([452/0/452]); and an antisymmetric lay-up ([452/0/−452]). These truss and 

double-helix configurations are selected to illustrate representative obtainable properties. 
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The strain energy landscapes for different truss configurations are presented in Figure 5.1. The workspace 

is bounded by the maximum extension of the helices, and the initial configuration of the mechanism is 

indicated. The strain energy contours allow the mechanism’s stability characteristics to be explored; valleys 

correspond to stable equilibria, whereas peaks and saddle points denote unstable equilibria. Stable and 

unstable internal equilibria are labelled with Arabic numbers (1–5) and Roman letters (A–H, J, K and M), 

respectively. Latin numerals (I–IV) are used for stable boundary equilibrium positions, where at least one 

of the two helices is fully extended. 

For shallow trusses, the UD and symmetric lay-ups feature bistability, with stable states at the initial 

position and at a vertical displacement 2H0 (points 1 and 2 in Figure 5.1a, b). For double-helices of 

antisymmetric lay-up, the assembly displays only unstable interior equilibria (points G, H and M in Figure 

5.1c), but four stable boundary equilibria can be observed (points I–IV in Figure 5.1c). For steep trusses, 

the structure can exhibit: i) bistability, for a [05] lay-up (points 1 and 2 in Figure 5.1d); ii) quadristability, 

when double-helices of a symmetric lay-up are combined (points 1–4 in Figure 5.1e); iii) pentastability, in 

case of an antisymmetric lay-up, with a single interior stable point, when the double-helices are collinear 

with a zero horizontal displacement (point 5 in Figure 5.1f), and an additional four boundary equilibria 

(points I–IV in Figure 5.1f). 

The force-displacement response for a vertical load at the apex is presented in Figure 5.2. The 

corresponding positions of the apex are superimposed on the strain energy plots in Figure 5.1 (red markers). 

For most cases, a bifurcation of the equilibrium path is present, resulting in both horizontal and vertical 

displacements of the apex. The bifurcated branch intersects the primary path at two bifurcation points. 

Interestingly, the bifurcated branches enable the mechanism to deform to all the possible internal 

equilibrium configurations identified on the strain energy landscape just by applying a vertical load at the 

apex. For shallow trusses with a [05] lay-up or an antisymmetric one, where no bifurcation of the 

equilibrium path occurs, all internal equilibrium configurations are also traversed. Areas of both stability 

and instability—marked with a solid and dashed line, respectively, in Figure 5.2—are present in most 

cases, with the stable regions found only on the primary equilibrium path with the exemption of steep 

trusses with a symmetric lay-up, where areas of stability are present in the bifurcated branch as well, and 

of shallow trusses with an antisymmetric lay-up, where the entire path is unstable. 
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Figure 5.1: Strain energy landscapes for a compliant mechanism of identical double-helices assembled in a truss-like 

configuration. Results are for initial truss angles α0,1 = 35° and α0,1 = 70°, with composite strips of [05], [452/0/452] and 

[452/0/−452] lay-ups. The initial truss configurations are indicated with black lines. Points labelled 1–5 denote stable 

equilibria, while points A–H, J, K and M identify positions of unstable equilibrium; points I–IV denote stable boundary 

equilibria. The positions of the truss apex under an applied vertical load (Ph = 0) and/or horizontal load (Pv = 0) are 

superimposed on the landscapes: red points indicate the equilibrium paths of the apex under the application of a vertical 

load; blue points indicate the equilibrium paths of the apex under the application of a horizontal load. 
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Figure 5.2: Load-displacement curves of the assembled structure of identical double-helices under the application of 

a vertical load at the apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-

helices with varying lay-ups. Dashed line represents sections of instability; points 1–5 are stable equilibrium points. 

Points A–H, J, K and M are unstable equilibrium points. The load has been normalized with respect to the load value 

at the maximum peak (Pcrit) in each case. The displacement has been normalized with respect to the initial height of 

the truss structure. 

 

Figure 5.3: Load-displacement curves of the assembled structure of identical double-helices under the application of 

a horizontal load at the apex. Results are for different initial truss angle a) α0,1 = 35° and b) α0,1 = 70° and of double-

helices with varying lay-ups. Dashed line represents sections of instability. Points 1 and 2 are stable equilibrium points; 

points A–H, J, K and M are unstable equilibrium points. The load has been normalized with respect to the load value 

at the maximum peak (Pcrit) in each case. The displacement has been normalized with respect to the initial width of the 

truss structure. 

The force-displacement response of the structure under a horizontal load at the apex is depicted in Figure 

5.3. The corresponding positions of the apex are superimposed on the strain energy plots in Figure 5.1 

(blue markers). A bifurcation of the equilibrium path—with the bifurcated branches intersecting the main 

path in two bifurcation points—occurs for all cases, except for double-helices of a symmetric lay-up 

assembled in a steep truss, where three disconnected equilibrium paths are observed, two of which are 
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mirrored with respect to the horizontal traversing the supports (Figure 5.1e). Similar to the case of a vertical 

applied load, all the internal equilibrium configurations can be traversed via the application of a horizontal 

load. Notable is the region of linear load-displacement response along the main equilibrium path despite 

the use of nonlinear elements. This response is accompanied by a circular displacement path of the apex, 

as illustrated in the respective strain energy plots (Figure 5.1a, c, d, f). This region is a stable area of 

constant stiffness for the [05] lay-up, but is unstable for double-helices of antisymmetric lay-up (Figure 

5.3). The use of double-helices with symmetric lay-up invokes non-linear behaviour, particularly for a 

steep truss. Additionally, for this configuration, a jump in the load-displacement curve of one of the 

disconnected equilibrium paths is noticed (Figure 5.3b). The mechanics of this jump is explained in §5.4. 

In all cases closed-loop deformation paths of the apex can be observed. 

Figure 5.4 shows the response of the assembly of double-helices with symmetric lay-up in a shallow truss 

configuration under a combined loading (Ph = Pv). A more complex behaviour is observed with the load-

displacement curve forming an “S-shaped” curve. Although no bifurcation of the equilibrium path occurs, 

the mechanism nonetheless traverses all five equilibrium points. The structure also maintains its bistability 

as the energy minimum exists independent of the loading conditions. 

 

Figure 5.4: Load-displacement curve (left) and deformation (right) of the assembled structure (with initial angle 

α0,1 = 35°) of two identical double-helices (with a [452/0/452] lay-up) under combined loading (Ph = Pv) at the apex. 

Points 1 and 2 are stable equilibrium points; points J, K and M are unstable equilibrium positions. Dashed lines (left) 

represents areas of instability. The load has been normalized with respect to the load value at the maximum peak (Pcrit). 

The displacement, υp, of the apex in the direction of the applied load has been normalized with respect to the initial 

length L0. Black lines (right) indicate the initial truss configuration. 
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Figure 5.5: Load-displacement curves (left) and deformation (right) of the assembled structure of double-helices of 

different length under the application of a) a vertical load and b) a horizontal load at the apex. Points 1–4 are stable 

equilibrium points; points A–E are unstable equilibrium points. The truss has initial angle α0,1 = 35° and double-helices 

of [452/0/452] lay-up, and lengths L1 = 95 mm, L2 = 71 mm. Dashed lines (left) represent areas of instability. The load 

has been normalized with respect to the load value at the maximum peak (Pcrit) for each case. The displacement has 

been normalized with respect to the initial height or width of the truss structure, respectively for vertical or horizontal 

loading. Black lines (right) indicate the initial truss configuration. 

Combining double-helices of different properties further expands the ability to tailor the force-

displacement response of the structural assemblies. Illustratively, Figure 5.5 shows the response of double-

helices of identical symmetric lay-up [452/0/452] but with different lengths L, combined in a shallow truss. 

It is noted that any symmetry present in previous cases in the assembled structure is lost. The assembled 

structure experiences quadristability. Under a vertical load, two disconnected equilibrium paths are 

identified, one of which forms a closed loop, while a horizontal load results in a bifurcation of the 

equilibrium path. In both loading conditions all possible equilibria, both stable and unstable, are accessed. 

Further investigation of asymmetric trusses is beyond the scope of this work, and we focus on cases of 

using truss members of the same properties. 
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In the following sections the sensitivity of salient behaviours identified above—specifically, multistability 

and constant stiffness—to changes in design parameters of the structure is further explored. 

5.3 Multistability 

Two double-helices with a symmetric [452/0/452] lay-up assembled into a steep truss with initial angle 

α0,1 = 70° exhibit four stable internal equilibrium configurations (see Figure 5.1e). Multistable mechanisms 

have found use in applications such as switches, positioners, and reconfigurable structures [137]. The 

characteristics of multistability of the trusses are therefore of particular interest. Here, we explore the effect 

of linear springs, initial truss geometry, and lay-up of the composite strips, on the reference configuration. 

For comparison purposes, the values in the load-displacement graphs (Figure 5.6–Figure 5.10) have been 

normalized with respect to a critical load Pcrit—the maximum peak of the load-displacement curve—and 

the initial height H0 of the truss structure. 

Replacing the double-helices with linear springs results in the loss of quadristability; although a bifurcation 

of the equilibrium path is still present under an applied vertical load, no region of stability is identified on 

the bifurcated branch (see Figure 5.6). While points 3 and 4 (Figure 5.6a) are stable equilibrium positions 

for the case of double-helices, for linear springs these positions labelled as J and K become unstable. Points 

3, 4, J and K refer to positions where the truss elements are collinear (Figure 5.6b). For both cases, linear 

springs and double-helices, the axial forces have opposite sign, thus the system self-equilibrates. For the 

case with linear springs (points J and K in Figure 5.6b) the equilibrium is unstable. Conversely, for the 

case with double-helices (points 3 and 4 in Figure 5.6b), the two helices also have axial stiffnesses of 

opposite sign: the helix displaying negative axial force has negative stiffness. As a consequence, the helices 

tend to deform in opposite directions, which ultimately stabilises the equilibrium state (Figure 5.6c). 
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Figure 5.6: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear springs 

under a vertical load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Points 1–4 are stable 

equilibrium points; points A–F, J, K and M are unstable equilibrium points. Dashed lines represent areas of instability. 

b) Deformation of the assembled structures. The initial truss configurations are indicated with black lines. c) Axial 

force with respect to displacement of a linear spring (left) and of a double-helix (right). 

The initial geometry of the assembled structure significantly affects its multistable behaviour. A shallow 

truss (α0,1 = 35°) is bistable, while for higher initial truss angles, α0,1 = 45° or α0,1 = 70°, the mechanism 

exhibits quadristability under the application of a vertical load (Figure 5.7a). This behaviour is closely 

linked to the characteristics of the double-helices themselves. In shallow trusses the two stable positions 

are the initial one and the one at a vertical displacement equal to 2H0 (points 1 and 2, respectively, in Figure 

5.7a), while points M, J and K are unstable equilibria. Positions J and K on the bifurcation path, which 

occur when the double-helices are horizontal, are noticed in steeper trusses too, but as stable equilibria 

(points 3 and 4 in Figure 5.7a). In these stable equilibrium positions—where the helices are collinear—the  
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Figure 5.7: a) Load-displacement curves of a mechanism with different initial truss angles α0,1 consisting of double-

helices of [452/0/452] lay-up, under the application of a vertical load at the apex. Points 1–4 are stable equilibrium 

points. Points A–F, J, K and M are unstable equilibrium points. Dashed lines represent areas of instability. b) Axial 

forces of double-helices at selected equilibrium points for the different initial truss angles. 

 

Figure 5.8: Strain energy landscape for a compliant mechanism of identical double-helices with a [452/0/452] 

composite strip lay-up, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm, assembled in a truss-like configuration with 

initial base angle α0,1 = 45°. Points 1–4 denote stable equilibrium positions, while points C–F and M indicate positions 

of unstable equilibrium. The positions of the truss apex under an applied vertical load (Ph = 0) are superimposed as red 

points. The initial truss configuration is indicated with black lines. 

double-helices have axial stiffness of opposite sign and the axial forces have either opposite sign (points 3 

and 4 for α0,1 = 70° in Figure 5.7b) or are both negative (points 3 and 4 for α0,1 = 45° in Figure 5.7b). In 

either case, due to the different truss geometry—for α0,1 = 45° points 3 and 4 are located between the two 

base supports (Figure 5.8), while for α0,1 = 70° outside—the helices pull against each other, thus stabilising 

the equilibrium. 

The lay-up of the composite strips of the double-helix also significantly affects the load-displacement 

behaviour of the double-helix (see Figure 3.3). The reference structure consists of double-helices with a 
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symmetric [452/0/452] lay-up. In Figure 5.9, we explore the behaviour of the mechanism with initial angle 

α0,1 = 70° for varying ply angle β in symmetric lay-ups of the form [β2/0/β2]. For a ply angle β = 0° the 

assembly is bistable, with both the initial configuration and the configuration at vertical displacement 2H0 

being stable (points 1 and 2 in Figure 5.9). Note that none of the equilibrium points encountered on the 

secondary path correspond to a stable state in this case. For a ply angle β = 90° the double-helix load-

displacement curve is similar to that of an antisymmetric lay-up (Figure 3.3), thus the characteristics of the 

mechanism with β = 90° or an antisymmetric lay-up are the same, with the structure exhibiting one internal 

stable equilibrium when the double-helices are collinear (point 5 in the main path, Figure 5.9), plus four 

boundary equilibria (Figure 5.1f). For all other ply angles, 0° < β < 90°, the assembly is quadristable. For 

the relevant deformation of the truss structures the reader is referred to Figure 5.1d-f. 

Variations in the geometrical features of the double-helix result in minor differences in its load-

displacement behaviour (see Chapter 3) and thus have a limited effect on the multistability of the 

mechanism. Relevant graphs of load-displacement for a steep truss (α0,1 = 70°) for different geometrical 

characteristics of the double-helices under an applied vertical load at the apex are gathered in Figure 5.10.  

  

Figure 5.9: Load-displacement curves of the assembled structure into a steep truss with initial angle α0,1 = 70° of 

identical double-helices for different symmetric lay-ups of the form of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 

45°, 60° under the application of a vertical load at the apex. Points 1, 2 and 5 are stable equilibrium points on the main 

paths; points 3 and 4 on the bifurcation paths. Points A, M, B, G and H are unstable equilibrium points on the main 

paths; points C–F, J and K on the bifurcation paths. Dashed lines represent areas of instability. 
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Figure 5.10: Load-displacement curves of the assembled structure into a steep truss with initial angle α0,1 = 70° of 

identical double-helices under the application of a vertical load at the apex, with different a) widths W, lay-up 

[452/0/452], L = 95 mm, R = 15 mm, Ri = 30 mm; b) radius R, lay-up [452/0/452], L = 95 mm, Ri = 30 mm, W = 5 mm; 

c) initial curvatures of the strips Ri, lay-up [452/0/452], L = 95 mm, R = 15 mm, W = 5 mm; d) dimensions L, R and Ri, 

keeping a constant ratio Ri/R = 2 and L ≈ 2πR, lay-up [452/0/452], W = 5 mm. Points 1 and 2 are stable equilibrium 

points on the main path; points 3 and 4 on the bifurcation path. Points A, M and B are unstable equilibrium points on 

the main path; points C–F on the bifurcation path. Dashed lines represent areas of instability. 

Variations in the width W of the strips, the radius R and the initial curvature of the strips Ri result in different 

load-displacement curves for the double-helices (Figure 3.6). The mechanism remains quadristable, 

although the stiffness of the structure will vary. Changing the length L of the double-helix has no effect on 

the double-helix response (Figure 3.6a), so an investigation of this parameter on the response of the 

assembled structure is omitted. The ability of scaling up the structure is also explored. For this purpose, 

double-helices of different dimensions L, R, Ri but with constant ratios Ri/R = 2 and L/R ≈ 2π have been 

used. The load-displacement behaviour of such double-helices has been included in Figure 3.6e and the 

response of an assembled structure of these helices is presented in Figure 5.10d. The load-displacement 
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curves of the different mechanisms are identical, meaning that the structure can be scaled up or down while 

maintaining the quadristable behaviour. 

5.4 Constant stiffness 

Another interesting behaviour from the initial results is the development of a mechanism of constant 

stiffness while undergoing large deformations under a horizontal load at the apex. The mechanism with 

double-helices of [05] lay-up (L = 95 mm, R = 15 mm, Ri = 30 mm and W = 5 mm) at an initial truss angle 

α0,1 = 70°, exhibits a stable main equilibrium path with constant stiffness, and is used as the reference 

mechanism for this feature. To investigate the reasons producing constant stiffness, Figure 5.11 presents a 

comparison to the case of a truss with linear springs instead of double-helices. In both cases bifurcation of 

the main equilibrium path is present. However, our focus here is on the behaviour of the main equilibrium 

path. The mechanism consisting of linear springs does not exhibit constant stiffness and its deformation 

follows an ellipsoidal path under the application of a horizontal load at the apex, while the reference mech- 

 

Figure 5.11: a) Load-displacement curve of a mechanism consisting of double-helices compared to one of linear 

springs under a horizontal load at the apex. Initial truss angle α0,1 = 70° is used for both assemblies. Dashed lines 

represent areas of instability. b) Deformation of the assembled structures of linear springs (left) and of double-helices 

(right). The initial truss configurations are indicated with black lines. Points 1 and 2 are stable equilibrium positions; 

points J, K and M are unstable equilibrium positions. 
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anism of double-helices presents a linear load-displacement response (Figure 5.11a)—verified by the 

expression of the best fit curve (y = 0.4001x, SE = 0.003)—and a circular deformation path. The circular 

path has radius r = H0 and is centred at the midpoint between the supports (Figure 5.11b). 

Trusses of different initial geometry α0,1 all exhibit a linear load-displacement response corresponding to 

the main equilibrium path, while the bifurcated branch is nonlinear (Figure 5.12). A shallow truss presents 

a higher stiffness to a horizontal load at the apex. In all cases the main deformation path of the apex is 

circular (centred at the midpoint between the supports with radius equal to H0), with a horizontal bifurcation 

path across the diameter when the apex is level with the supports (blue markers in Figure 5.1a, d). 

Changes in the lay-up of the strips of the double-helix have a more significant impact on the behaviour of 

the compliant mechanism (Figure 5.13). Specifically, for β = 0° the mechanism exhibits a linear load-

displacement response of the main equilibrium path and bifurcates to a path with a nonlinear response. The 

main path with constant stiffness is stable, compared to the bifurcated branch which is generally unstable. 

The mechanism exhibits a similar behaviour for a [902/0/902] lay-up, but in this case the path with constant 

stiffness characteristics is unstable. For all other ply angles 0° < β < 90°, a nonlinear load-displacement 

response is observed, and no bifurcation of the equilibrium path occurs. Instead, three independent 

equilibrium paths are identified—two mirrored closed-loop paths with identical load-displacement curves, 

and a horizontal path along the horizontal diameter, i.e. when the apex is level to the supports. Indicatively, 

the reader can refer to Figure 5.1e, which depicts the deformation of the mechanism with double-helices 

of a [452/0/452] lay-up (blue markers). This horizontal equilibrium branch presents a jump in the 

corresponding load-displacement curve at the positions where the apex traverses the supports (υh = ±V0). 

At these positions, the fully coiled helix turns around the support and switches direction, uncoiling out and 

away from the hinge point. In this scenario the helix reaction force also switches direction, which explains 

the sudden jump in the equilibrium manifold. It is noted that the double-helix in its fully coiled 

configuration is assumed to have zero length, thus the rotation of the helix around the support does not 

suggest a change in the horizontal displacement. 
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Figure 5.12: Load-displacement curves of a mechanism of different initial truss angles α0,1 consisting of double-helices 

of [05] lay-up, under the application of a horizontal load at the apex. Points 1 and 2 are stable equilibrium points; points 

J, K and M are unstable equilibrium points. Dashed lines represent areas of instability. 

 

Figure 5.13: Load-displacement curves of the assembled structure into a steep truss with initial angle α0,1 = 70° of 

identical double-helices for different symmetric lay-ups of the form of [β2/0/β2] for a) β = 0°, 45°, 90° and b) β = 30°, 

45°, 60° under the application of a horizontal load at the apex. Points 1–5 are stable equilibrium points; points A, C, 

F–H, J, K and M are unstable equilibrium positions. Dashed lines represent areas of instability. 

Less significant is the influence of the double-helix geometry on the behaviour of the assembled structure. 

The impact of varying the double-helix geometry on its response to a horizontal load applied at the apex is 

explored in Figure 5.14. Mechanisms of different dimensions L, R, Ri but with constant ratios Ri/R = 2 and 

L/R ≈ 2π present no influence in the response with the load-displacement curves matching each other, 

giving the ability of scaling the mechanism to the required dimensions for an application (Figure 5.14d). 

Varying the radius R or the initial curvature of the strips of the double-helices consisting the mechanism 

affect the mechanism’s workspace. Although the load-displacement curves coincide for most of the 
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workspace, for small values of the radius R and/or higher values of the Ri there are limitations to the 

maximum horizontal displacement of the mechanism thus in these cases the load-displacement curve does 

not have a bifurcated branch, instead it consists of two independent load paths (Figure 5.14b, c). Changes 

in the width W of the strips of the double-helices has no significant influence on the response of the 

mechanism with the load-displacement curves being identical with a slight deviation being observed in the 

case of wider strips towards the maximum horizontal displacement (Figure 5.14a). 

 

Figure 5.14: Load-displacement curves of the assembled structure into a steep truss with initial angle α0,1 = 70° of 

identical double-helices under the application of a horizontal load at the apex with different d) widths W, lay-up [05], 

L = 95 mm, R = 15 mm, Ri = 30 mm; b) radius R, lay-up [05], L = 95 mm, Ri = 30 mm, W = 5 mm; c) initial curvatures 

of the strips Ri, lay-up [05], L = 95 mm, R = 15 mm, W = 5 mm; d) dimensions L, R and Ri, keeping a constant ratio 

Ri/R = 2 and L ≈ 2πR, lay-up [05], W = 5 mm. Points 1 and 2 are stable equilibrium points; points J, K and M are 

unstable equilibrium points. Dashed lines represent areas of instability. 
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5.5 Summary 

A new compliant mechanism consisting of morphing elements with tailorable nonlinear stiffness has been 

introduced in Chapter 4. In the current chapter, aiming to illustrate the rich design space of this new 

mechanism, we explore the ensuing nonlinear behaviour and multistability of the system—an assembly of 

two double-helices connected with pinned joints forming a truss-like structure. The proposed mechanism 

could be used either on its own or as a building block in a larger lattice structure. Its behaviour can be 

tailored by tuning global geometric parameters and/or the characteristics of the double-helices themselves. 

The response of the mechanisms is analysed globally by inspecting its potential (strain) energy landscape; 

peaks and valleys corresponding to unstable and stable equilibria, respectively. The mechanism’s 

multistability characteristics are investigated parametrically by varying the lay-up of the composite strips 

composing the double-helices, the geometrical features of the double-helices and the initial truss geometry. 

Quadristable behaviour is obtained for steep trusses and symmetric composite lay-ups of the form [β2/0/β2], 

with 0° < β < 90°. For β = 0° and β = 90°, the mechanism becomes bistable and pentastable, respectively. 

Similarly, the mechanism transitions from being quadristable to being bistable for decreasing initial truss 

angles. Responses in load-displacement space are investigated by path-following equilibrium branches. 

Interestingly, via application of a vertical load, a path is found that connects all internal equilibria of the 

trusses: the equilibrium path bifurcates, with the bifurcated branch intersecting the main path in two points. 

Under the application of a horizontal load at the apex, the mechanism demonstrates a stable region of 

constant stiffness for β = 0°, regardless of the initial truss angle, with the deformation path forming a circle. 

Again, bifurcations of the equilibrium path lead to connecting all internal equilibria. The type of structural 

behaviour is found to depend primarily on the lay-up of the strips of the double-helices and the initial 

geometry of the structural assembly. The geometrical characteristics of the double-helices have limited 

effect on the behaviour of the mechanism, thus making the concept scalable. 

In this chapter we focused on the numerical analysis of the structural assemblies of double-helices with the 

simplest possible geometry and with helices limited to pitches θ in the range [0°, 90°]. A variety of 

behaviours were demonstrated that could be exploited to expand the design space of current compliant 

mechanisms. In the next chapter, this work is extended and the reconfigurability of the mechanism is 

explored taking advantage of the ability of the helical elements to deform to configurations with 

θ ϵ [0°, −90°], which leads to the development of different responses. Following up, Chapter 7 deals with 
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the manufacture and experimental testing of prototypes of the proposed mechanism and any challenges in 

this procedure, to conclude in the last chapter with some final remarks and future thoughts on this research. 
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Chapter 6  

Reconfigurability in 

Mechanisms of Nonlinear Morphing Elements 

6.1 Introduction 

Over the past decades, the interest of researchers in reconfigurable mechanisms has increased [155]. 

Traditional mechanisms are disadvantageous in terms of flexibility and the ability to adapt to dynamic 

environments or changing operating requirements [154]. The capability of a mechanism to change its 

configuration, and to operate with different modes that can be exploited to serve multiple purposes, is what 

triggered the scientific interest in reconfigurable mechanisms [153]. Reconfigurability is attractive for 

numerous applications, such as antennas [156, 157], deployable structures [195, 245], robotics [163–165], 

adaptive building architecture [168], or even in carton packaging manipulation [153], where there is a need 

for change in structural configuration and behaviour for adaptation to different operating requirements. 

As reconfiguration entails change in form, topology and configuration of the mechanism, various ways to 

achieve reconfigurability have been investigated [155]. Most of the approaches developed focus on 

achieving reconfigurability through changes of the joint motion range [175], limiting to a mechanism’s 

mobility or degrees of freedom [170, 176], alterations in the geometry [158], changing orientation and 

number of links [172, 173] or a combination of the above [173]. Controlling the mobility and connectivity 

of revolute joints has been a common means to attain reconfiguration [158, 163, 170, 174, 177, 245]. 

Alternative ways to attain reconfiguration are based on the use of functional materials, such as shape 

memory alloys [189], architected materials [193], and/or the principles of origami [189, 193, 197, 198]. 



Morphing Mechanisms Based on Nonlinear Helical Composite Elements 

72 

The compliant mechanism proposed in this work is able to change its behaviour and operate in different 

modes, whilst maintaining its connectivity and mobility. Reconfigurability in this mechanism is achieved 

through the exploitation of the inherently nonlinear elastic characteristics of the constitutive elements, not 

the joint characteristics. The mechanism, as presented in Chapter 4, consists of morphing composite 

structures of double-helix architecture assembled in a truss-like configuration. The helical elements’ ability 

to change their twist direction combined with the diverse nonlinear stiffness characteristics enable the 

mechanism to be reconfigured, and a variety of potential behaviours to be developed. 

The current chapter presents this novel, reconfigurable mechanism and the diverse mechanical responses 

induced from the different achievable configurations. In the following sections, the ensuing 

reconfigurability and stability characteristics of the mechanism are explored using both an energy approach 

and a path-following method to trace the mechanism’s response in force-displacement space. The influence 

on the mechanism’s behaviour of the double-helices’ design parameters, and of the initial geometry of the 

truss itself, is also explored. First, in section 6.2, we investigate steep trusses by analysing the strain energy 

landscapes corresponding to all possible combinations of the helical deformation modes. We then study 

the trusses’ response upon application of various load cases—a vertical, a horizontal or a combined load—

at the end effector. Next, these results are compared to those for trusses with double-helices of different 

lay-ups (§6.3), as well as to those for shallower trusses (§6.4). Conclusions are drawn in the last 

section (§6.5). 

6.2 Reconfigurability 

The helical structure, used as the main component of this new mechanism, can deform from a straight to a 

completely coiled configuration defined by the helix angle θ ϵ [−90°, 90°] (see Chapter 3). Crucially, in 

the straight configuration (θ = 0°), the structure can be nudged into one of two connected, but distinct, 

deformation modes: one with θ ϵ [0°, 90°] or one with θ ϵ [0°, −90°] (Figure 6.1). The helical structure 

exhibits tailorable stiffness characteristics and strain energy profiles that can be customized by tuning 

various design parameters, such as the lay-up of the strips, pre-stress and geometry of the strips [25]. 
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Figure 6.1: Straight (light grey) and twisted (dark) configurations of the double-helix composite structure with (a) 

θ ϵ [0°, 90°] and (b) θ ϵ [0°, −90°]. 

As presented in Chapter 3, the force-displacement response and thus the stiffness properties of double-

helices with symmetric angle-ply lay-ups differ for pitch angles θ in [0°, 90°] or [0°, −90°] (Figure 3.2–

Figure 3.3). This allows the mechanism to be reconfigured to exhibit different responses. The mechanism 

can be reconfigured by forcing it onto a state where one or both helices are fully extended and then nudging 

either one or both to switch twisting mode. Unlike common approaches, no change in the connectivity 

and/or pin joints of the mechanism is required; the reconfigurability is introduced solely by the nonlinear 

elastic components and their ability to switch twist direction once in their fully extended configuration. 

Thus, it is highlighted that the reconfiguration can take place only along the boundary of the workspace, 

where at least one helix is fully extended. There are two configurations that both helices are fully extended 

and thus they can be reconfigured at the same time. It is also noted that the reconfiguration positions do 

not necessarily correspond to equilibrium configurations. 

Four different mechanism modes can be obtained combinatorically from the two helical modes. More 

specifically, the mechanism can be reconfigured into the following modes: 

• Mode I: both helices twist with helix angle θ ϵ [0°, 90°]; 

• Mode II: both helices twist with helix angle θ ϵ [0°, −90°]; 

• Mode III: one helix deforms with θ ϵ [0°, 90°], and the second with θ ϵ [0°, −90°], and its reverse. 

In the following, we consider a truss consisting of two identical helices, which can be reconfigured 

individually by changing their twist orientation. Since the difference in mechanical response in θ ϵ [0°, 90°] 

and θ ϵ [0°, −90°] provides the basis for the reconfigurability of the helix, only symmetric lay-ups of the 

form [β2/0/β2], where β ϵ [0°, 90°], are considered herein. The reconfigurability of the mechanism is 

explored by studying the behaviour and stability characteristics of the truss-like assembly. 
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Figure 6.2: Strain energy landscapes for a compliant mechanism of double-helices of a [452/0/452] composite strip 

lay-up, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle 

α0,1 = 70° for different reconfiguration modes. a) Mode I: θi ϵ [0°, 90°]; b) Mode II: θi ϵ [0°, −90°]; c) Mode III: 

θ1 ϵ [0°, 90°], θ2 ϵ [0°, −90°]. Points labelled 1–4 denote stable equilibria, while points A–H identify positions of 

unstable equilibrium. Points I–IV denote stable boundary equilibria. Black lines represent the double-helices at the 

initial truss configuration. 

Figure 6.2 depicts the strain energy landscapes for the three potential reconfiguration modes for 

mechanisms consisting of double-helices of a [452/0/452] lay-up, arranged in a steep configuration with 

α0,1 = 70°. As evidenced by the different strain energy landscapes, once the mechanism is reconfigured to 

one of the different reconfiguration modes, its stability characteristics alter immediately. Stable and 

unstable equilibria, i.e. minima and maxima of the energy landscape, are marked, respectively, with Arabic 

numerals and Roman letters. Additionally, stable equilibria may be found on the boundary of the landscape; 

these points are marked with Roman numerals. For Mode I (Figure 6.2a), the mechanism displays 

quadristability; specifically, four interior minima. Conversely, Mode II (Figure 6.2b) features only one 
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interior minimum, plus four boundary equilibria. Mode III (Figure 6.2c) features ten extrema, of which 

two are minima, and three additional stable boundary equilibria. 

The force-displacement response of the mechanism upon application of a vertical load at the end effector 

is presented in Figure 6.4. The corresponding solution manifolds are superimposed on the strain energy 

plots in Figure 6.3 (red markers). For Mode I, a bifurcation is present, intersecting at two points with the 

main path, resulting in sideways apex displacements. Two of the four stable states are located on the main 

(vertical) path, i.e. the initial configuration and the fully inverted state at a vertical displacement of 2H0  

 

Figure 6.3: End effector positions upon application of a load P on the apex superimposed on the corresponding strain 

energy landscapes for different reconfiguration modes of the truss with an initial angle α0,1 = 70° consisting of double 

helices of [452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm. a) Mode I; b) Mode II; c) Mode III. Red 

points indicate the equilibrium paths of the apex under the application of a vertical load (Ph = 0). Blue points indicate 

the equilibrium paths of the apex under the application of a horizontal load (Pv = 0). Green points indicate the 

equilibrium paths of the apex under the application of a combined load (Ph = Pv). Points 1–4 are stable equilibrium 

points. Points A–H are unstable equilibrium points. Points I–IV denote stable boundary equilibria. 



Morphing Mechanisms Based on Nonlinear Helical Composite Elements 

76 

 (points 1 and 2, in Figure 6.4a). The other two equilibria are on the bifurcated branch on the horizontal, 

i.e. at a vertical displacement of H0 (points 3 and 4 in Figure 6.4a). A bifurcation is present in Mode II as 

well, though the only stable interior configuration occurs when the double-helices are collinear with zero 

horizontal displacement of the apex (point 1 in Figure 6.4b). Along the bifurcated path two areas of nearly 

zero force can be observed for the motion range between points C, D, E and F, G, H (Figure 6.4b). In 

Mode III, no bifurcation occurs, however, the end effector experiences both horizontal and vertical 

displacement. Two independent closed loop equilibrium paths are identified with one stable equilibrium 

each. The stable states are encountered when the double-helices are collinear (points 1 and 2 in Figure 

6.4c). 

 

Figure 6.4: Load-displacement curves of the truss with an initial angle α0,1 = 70° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a vertical load at the apex 

(Ph = 0) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1–4 are stable equilibrium 

points. Points A–H are unstable equilibrium points. Dashed line represents the areas of instability. The load is 

normalized with respect to the load value at the maximum peak (Pcrit) in each case. 
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Figure 6.5: Load-displacement curves of the truss with an initial angle α0,1 = 70° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a horizontal load at the 

apex (Pv = 0) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1–4 are stable equilibrium 

points. Points A–H are unstable equilibrium points. Dashed line represents the areas of instability. The load is 

normalized with respect to the load value at the maximum peak (Pcrit) in each case. 

The equilibrium paths of the apex under a horizontal load at the end effector are also superimposed on the 

strain energy plots in Figure 6.3 (blue markers). The corresponding force-displacement response of the 

mechanism for the three reconfiguration modes is presented in Figure 6.5. For Mode I, three disconnected 

equilibrium paths are observed (blue markers in Figure 6.3a); two mirrored closed loop paths with identical 

load-displacement curves, and a horizontal path across the diameter when the apex is level with the 

supports. This latter path presents a jump in the corresponding load-displacement curve at a horizontal 

displacement of ±V0, positions where the apex traverses the supports, with the fully coiled helix turning 

around the support and switching direction, uncoiling out and away from the hinge point (Figure 6.5a). 

Therefore, the helix reaction force too switches direction, which explains the sudden jump in the 
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equilibrium manifold. For Mode II, a closed loop equilibrium path, entirely unstable, is identified 

intersecting twice with a horizontal bifurcation path across the diameter when the apex is level with the 

supports (blue markers in Figure 6.3b). As before, a jump in the load-displacement curve of the horizontal 

path is observed at a horizontal displacement of ±V0 (Figure 6.5b). In Mode III, bifurcation of the 

equilibrium paths occurs resulting in three connected equilibrium paths (blue markers in Figure 6.3c). A 

horizontal bifurcation path across the diameter when the apex is level with the supports is observed—as in 

Modes I and II—with a jump in its load-displacement curve at a horizontal displacement of ±V0. This path 

intersects at two points with the primary closed loop path that is unstable, and at one point with a third path 

characterized by areas of both stability and instability (Figure 6.5c). In all cases all possible equilibria, both 

stable and unstable are accessed. 

Figure 6.6 shows the response of the mechanism under a combined load (Ph = Pv) at the apex. The 

corresponding positions of the apex are superimposed on the strain energy plots in Figure 6.3 (green 

markers). For both Mode I and Mode II, a single equilibrium path is identified, with no bifurcation, that 

traverses all possible equilibria, both stable and unstable. In Mode I, a jump is observed in the load-

displacement curve at the positions the apex traverses the supports since the fully coiled helix, and thus its 

reaction force, turns around the support and switches direction uncoiling out and away from the hinge point 

(Figure 6.6a). In Mode II, two areas of nearly zero force can be observed for the motion range between 

points C, D, E and F, G, H (Figure 6.6b)—similar to the case of a vertical load. For Mode III, two 

independent equilibrium paths accessing all possible equilibria are observed, both exhibiting both stable 

and unstable areas (Figure 6.6c). A jump in the load-displacement curve of one of the paths is observed 

that corresponds to the locations that the apex traverses the supports. As explained above, the fully coiled 

helix switches direction, uncoiling out and away with its reaction force switching direction as well, 

justifying the sudden jump. 
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Figure 6.6: Load-displacement curves of the truss with an initial angle α0,1 = 70° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a combined load at the 

apex (Ph = Pv) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1–4 are stable 

equilibrium points. Points A–H are unstable equilibrium points. Dashed line represents the areas of instability. The 

load is normalized with respect to the load value at the maximum peak (Pcrit) in each case. 

6.3 Effect of composite lay-up 

The composite lay-up affects the properties of the double-helices, namely their nonlinear axial stiffness, 

and thus the characteristics of the assembly. In this section, we investigate the effect of lay-up on the 

various reconfiguration modes. 

6.3.1 Mode I 

Figure 6.7 shows the energy landscapes for a truss identical to that of Figure 6.2a, with the strips’ lay-up 

changed to [302/0/302] and [602/0/602]. The landscapes show no qualitative differences, apart from overall 

rescaling, and changes in the absolute values and relative positions of the extrema. In conclusion, all 
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characteristic features, including quadristability, bifurcations and the connectivity between stable 

equilibria (Figure 6.8) under the various load cases, are preserved. 

Figure 6.9 shows the load-displacement curves upon the application of a vertical, horizontal and combined 

load at the apex corresponding to the two laminate lay-ups. Similar to the [452/0/452] strip lay-up, the load  

 

Figure 6.7: Strain energy landscapes for a compliant mechanism of double-helices of L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle α0,1 = 70° for composite strips of 

[β2/0/β2] lay-up for the reconfiguration Mode I. a) [302/0/302]; b) [602/0/602]. Points labelled 1–4 denote stable 

equilibria, while points A–G identify positions of unstable equilibrium. Black lines represent the double-helices at the 

initial truss configuration. 

 

Figure 6.8: End effector positions upon application of a load P on the apex superimposed on the corresponding strain 

energy landscapes for reconfiguration Mode I of the truss with an initial angle α0,1 = 70° consisting of double helices 

of L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm and lay-ups: a) [302/0/302]; b) [602/0/602]. Red points indicate the 

equilibrium paths of the apex under the application of a vertical load (Ph = 0). Blue points indicate the equilibrium 

paths of the apex under the application of a horizontal load (Pv = 0). Green points indicate the equilibrium paths of the 

apex under the application of a combined load (Ph = Pv). Points 1–4 are stable equilibrium points. Points A–G are 

unstable equilibrium points. 
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Figure 6.9: Load-displacement curves of the truss with an initial angle α0,1 = 70° for different lay-ups, [302/0/302] and 

[602/0/602], for the reconfiguration Mode I under the application of a-b) a vertical (Ph = 0), c-d) a horizontal (Pv = 0) 

and e-f) a combined (Ph = Pv) load at the apex. Points 1–4 are stable equilibrium points. Points A–G are unstable 

equilibrium points. Dashed line represents the areas of instability. The load is normalized with respect to the load value 

at the maximum peak (Pcrit) in each case. 
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path bifurcates to secondary branches upon a vertical load at the apex, while three independent equilibrium 

paths—a horizontal and two mirrored closed loop paths (blue markers in Figure 6.8)—are observed under 

a horizontal load and a single equilibrium path under a combined load. Yet in each loading condition all 

equilibrium positions are accessed. Each equilibrium path is characterized of the alteration between 

continuous areas of stability and instability, with the exception of the horizontal equilibrium path across 

the diameter with the supports in the case of a horizontal load at the apex where a jump in the load-

displacement curve occurs at the positions of the supports (υh = ±V0). As explained in the previous section 

(§6.2), this sudden jump is justified by the switch in the direction of the helix reaction force as the fully 

coiled helix is assumed to turn around the support. 

6.3.2 Mode II 

Figure 6.10 shows the energy landscapes for a truss identical to that of Figure 6.2b, with the strips’ lay-up 

changed to [302/0/302] and [602/0/602], where the helices are now set for Mode II. For a [302/0/302] lay-up 

the truss develops two interior stable equilibria (marked as points 1 and 2 in Figure 6.10a), positioned 

slightly above and below the centre of the landscape where the single minimum for the [452/0/452] 

configuration is located. Again, apart from overall rescaling of the energy values and changes of the relative 

distance between extrema, all other features are maintained, leading to a total of eleven interior equilibrium 

configurations. Although shallower, the boundary equilibria too are maintained. As for the [452/0/452] case, 

for β = 60° the mechanism exhibits a single stable equilibrium configuration, when the double-helices are 

collinear and the apex horizontal displacement is zero (point 1 in Figure 6.10b), as well as four boundary 

equilibria. 

The mechanism’s force-displacement responses upon application of a vertical, horizontal and combined 

load at the end effector are presented in Figure 6.12, with the corresponding apex position superimposed 

once more on the strain energy plots (red, blue and green markers, respectively, in Figure 6.11). For a 

vertical load, the bifurcations are preserved for both the [302/0/302] and the [602/0/602] lay-ups; still none 

of the equilibrium positions on the bifurcated branch is stable. For β = 30°, areas of nearly zero force are 

present, both in the principal and bifurcated branch, for motion along the positions D, E and F, or 1, B and 

2, or G, H and K (Figure 6.12a). For β = 60°, the number of unstable equilibrium points along the bifurcated 

path reduced from six for the [452/0/452] and [302/0/302] lay-ups to two (Figure 6.12b). For a horizontal 

load, for β = 60° a closed loop equilibrium path is identified with a horizontal bifurcation path across the  
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Figure 6.10: Strain energy landscapes for a compliant mechanism of double-helices of L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle α0,1 = 70° for composite strips of 

[β2/0/β2] lay-up for the reconfiguration Mode II. a) [302/0/302]; b) [602/0/602]. Points labelled 1 and 2 denote stable 

equilibria, while points A–H and K identify positions of unstable equilibrium. Points I–IV denote stable boundary 

equilibria. Black lines represent the double-helices at the initial truss configuration. 

 

Figure 6.11: End effector positions upon application of a load P on the apex superimposed on the corresponding strain 

energy landscapes for reconfiguration Mode II of the truss with an initial angle α0,1 = 70° consisting of double helices 

of L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm and lay-ups: a) [302/0/302]; b) [602/0/602]. Red points indicate the 

equilibrium paths of the apex under the application of a vertical load (Ph = 0). Blue points indicate the equilibrium 

paths of the apex under the application of a horizontal load (Pv = 0). Green points indicate the equilibrium paths of the 

apex under the application of a combined load (Ph = Pv). Points 1 and 2 are stable equilibrium points. Point A–H and 

K are unstable equilibrium points. Points I–IV denote stable boundary equilibria. 
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Figure 6.12: Load-displacement curves of the truss with an initial angle α0,1 = 70° for different lay-ups, [302/0/302] 

and [602/0/602], for the reconfiguration Mode II under the application of a-b) a vertical (Ph = 0), c-d) a horizontal 

(Pv = 0) and e-f) a combined (Ph = Pv) load at the apex. Points 1 and 2 are stable equilibrium points. Points A–H and 

K are unstable equilibrium points. Dashed line represents the areas of instability. The load is normalized with respect 

to the load value at the maximum peak (Pcrit) in each case. 
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diameter when the apex is level with the supports (blue markers in Figure 6.12d), similar to the [452/0/452] 

case. Whereas for β = 30°, three independent equilibrium paths are observed (blue markers in Figure 

6.11a); two mirrored closed loop paths with identical load-displacement curves, and a horizontal path 

across the diameter traversing the supports. For both lay-ups, a jump in the load-displacement curve of the 

horizontal path is observed at a horizontal displacement of ±V0 (Figure 6.12c, d). For a combined load, a 

single equilibrium path, alternating between areas of stability and instability, is identified for both the 

[302/0/302] and the [602/0/602] lay-up that traverses all possible equilibria. Unlike the [452/0/452] case, no 

area of nearly zero force can be observed for β = 60°, while for β = 30° nearly zero force is required for 

the motion range between points 1, B and 2 (Figure 6.12e, f). 

6.3.3 Mode III 

The strain energy landscapes for Mode III are presented in Figure 6.13. For β = 30°, a total of twelve 

interior equilibrium positions are identified, of which three are stable (marked as points 1–3 in Figure 

6.13a), and two stable boundary equilibria (points I and II in Figure 6.13a). The mechanism is pentastable 

for a [602/0/602] lay-up, with the two stable states when the two double-helices are collinear (points 1 and 

2 in Figure 6.13b), plus three boundary equilibria (points I–III in Figure 6.13b). Figure 6.15a, b presents 

the load-displacement curves under a vertical load at the apex. The corresponding positions of the apex are 

superimposed on the strain energy plots with red markers in Figure 6.14. Similarly to the [452/0/452] lay-

up, for both ply angles, two independent closed loop equilibrium paths are found, with the apex 

experiencing both horizontal and vertical displacement, and with stable equilibrium positions present in 

both paths (points 1–3 in Figure 6.15a, b). Though only for β = 30°, a nearly zero force area can be 

observed in the outer equilibrium path (motion range among points 1, E and 2 in Figure 6.15a). 

Figure 6.15c, d shows the response of the mechanism under a horizontal load at the apex. The 

corresponding positions of the apex are superimposed too on the strain energy plots in Figure 6.14 (blue 

markers). As in the [452/0/452] case, for β = 30° bifurcation of the equilibrium paths occurs resulting in 

three connected equilibrium paths—a horizontal bifurcation path across the diameter when the apex is level 

with the supports that intersects twice with a closed loop path and once with a third path—and all possible 

equilibria being accessed (blue markers in Figure 6.14a). For β = 60°, three connected equilibrium paths  
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Figure 6.13: Strain energy landscapes for a compliant mechanism of double-helices of L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle α0,1 = 70° for composite strips of 

[β2/0/β2] lay-up for reconfiguration Mode III. a) [302/0/302]; b) [602/0/602]. Points labelled 1–3 denote stable equilibria, 

while points A–H and K identify positions of unstable equilibrium. Points I–III denote stable boundary equilibria. 

Black lines represent the double-helices at the initial truss configuration. 

 

Figure 6.14: End effector positions upon application of a load P on the apex superimposed on the corresponding strain 

energy landscapes for reconfiguration Mode III of the truss with an initial angle α0,1 = 70° consisting of double helices 

of L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm and lay-ups: a) [302/0/302]; b) [602/0/602]. Red points indicate the 

equilibrium paths of the apex under the application of a vertical load (Ph = 0). Blue points indicate the equilibrium 

paths of the apex under the application of a horizontal load (Pv = 0). Green points indicate the equilibrium paths of the 

apex under the application of a combined load (Ph = Pv). Points 1–3 are stable equilibrium points. Points A–H and K 

are unstable equilibrium points. Points I–IV denote stable boundary equilibria. 
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Figure 6.15: Load-displacement curves of the truss with an initial angle α0,1 = 70° for different lay-ups, [302/0/302] 

and [602/0/602], for the reconfiguration Mode III under the application of a-b) a vertical (Ph = 0), c-d) a horizontal 

(Pv = 0) and e-f) a combined (Ph = Pv) load at the apex. Points 1–3 are stable equilibrium points. Points A–H and K 

are unstable equilibrium points. Dashed line represents the areas of instability. The load is normalized with respect to 

the load value at the maximum peak (Pcrit) in each case. 
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are identified too—two closed loop equilibrium paths each intersecting at two points with the third 

horizontal equilibrium path along the diameter that traverses the supports—yet equilibrium positions D 

and E are left inaccessible (blue markers in Figure 6.14b). For both lay-ups, there is one entirely unstable 

closed loop equilibrium path, while the horizontal bifurcation path presents a jump in its load-displacement 

curve at a horizontal displacement of ±V0 (Figure 6.15c, d). This jump is explained by the switch in the 

direction and thus the reaction force of the fully coiled helix as it uncoils out and away from the hinge 

point. 

The mechanism’s force-displacement response upon application of a combined load at the end effector is 

presented in Figure 6.15e, f with the corresponding apex position superimposed once more on the strain 

energy plots in Figure 6.14 (green markers). For β = 30°, three independent equilibrium paths are observed 

(Figure 6.15e), compared to the two identified earlier for β = 45° in Figure 6.6c. One of these equilibrium 

paths is completely unstable, while there is a closed loop one that exhibits a jump in its load-displacement 

curve that, as in previous cases, stems from the fact that the fully coiled helix is assumed to switching 

direction uncoiling out. For β = 60° a single path is observed (Figure 6.15f). Unlike for β = 30° and β = 45° 

where all possible equilibria are traversed, for a [602/0/602] lay-up positions 1 and E are not accessed under 

a combined load at the apex (green markers in Figure 6.14). 

6.4 Effect of initial truss geometry, α0,i 

Finally, the effect of the initial truss geometry, α0,i, on the mechanism’s behaviour and its reconfigurability 

is explored. Figure 6.16 presents the strain energy landscapes for a shallow truss configuration with 

α0,1 = 35° and a [452/0/452] strip lay-up for the three reconfiguration modes. 

For a shallow truss with double-helices operating in Mode I, a total of five equilibrium positions are 

identified with only two being stable (marked as points 1 and 2 in Figure 6.16a), compared to the four 

stable configurations out of a total of eleven equilibria in a steep truss (marked as points 1–4 in Figure 

6.2a). Mode II for a shallow truss shows three interior equilibrium positions, none of which are stable 

(Figure 6.16b), and four stable boundary equilibria (points I–IV). This contrasts with the steep truss, which 

has a single stable interior equilibrium position. Mode III shows four interior equilibria, of which one is 

stable (point 1 in Figure 6.16c), plus two stable boundary equilibria (points I and II). 
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Figure 6.16: Strain energy landscapes for a compliant mechanism of double-helices of a [452/0/452] composite strip 

lay-up, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle 

α0,1 = 35° for different reconfiguration modes. a) Mode I: θi ϵ [0°, 90°]; b) Mode II: θi ϵ [0°, −90°]; c) Mode III: 

θ1 ϵ [0°, 90°], θ2 ϵ [0°, −90°]. Points labelled 1 and 2 denote stable equilibria, while points A–C identify positions of 

unstable equilibrium. Points I–III denote stable boundary equilibria. Black lines represent the double-helices at the 

initial truss configuration. 

The load-displacement curves for the shallow truss under a vertical, horizontal and combined load at the 

end effector are presented in Figure 6.18–Figure 6.20. The apex positions are superimposed on the strain 

energy plots in Figure 6.17. Under a vertical load, for reconfiguration Mode I, for both the shallow and 

steep truss, a bifurcation of the equilibrium path occurs. However, the shallow truss only displays 

bistability, with stable states at the initial configuration and at a vertical displacement of 2H0 (points 1 and 

2, in Figure 6.18a) and the bifurcated branch being entirely unstable (Figure 6.18a). For Mode II, the mech- 
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Figure 6.17: End effector positions upon application of a load P on the apex superimposed on the corresponding strain 

energy landscapes for different reconfiguration modes of the truss with an initial angle α0,1 = 35° consisting of double 

helices of [452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm. a) Mode I; b) Mode II; c) Mode III. Red 

points indicate the equilibrium paths of the apex under the application of a vertical load (Ph = 0). Blue points indicate 

the equilibrium paths of the apex under the application of a horizontal load (Pv = 0). Green points indicate the 

equilibrium paths of the apex under the application of a combined load (Ph = Pv). Points 1 and 2 denote stable 

equilibria, while points A–C identify positions of unstable equilibrium. Points I–III denote stable boundary equilibria. 

anism is unstable for a shallow truss. A statically balanced area with nearly zero force can be observed 

between points A, B and C (Figure 6.18b). In this mode, unlike in the steep truss, for the shallow truss no 

bifurcation occurs, with the apex experiencing only a vertical displacement under the applied load (red 

markers in Figure 6.17b). Mode III shows a closed loop load-displacement curve (Figure 6.18c). The 

compliant mechanism displays monostability with the single stable point encountered in one of the 

configurations where the helices are collinear (point 1 in Figure 6.17c). The mechanism experiences a 

single closed loop equilibrium path (red markers in Figure 6.17c), as opposed to the behaviour for a steep 

truss, where a second, disconnected equilibrium path is observed. 
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Figure 6.18: Load-displacement curves of the truss with an initial angle α0,1 = 35° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a vertical load at the apex 

(Ph = 0) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1 and 2 are stable equilibrium 

points. Points A–C are unstable equilibrium points. Dashed line represents the areas of instability. The load is 

normalized with respect to the load value at the maximum peak (Pcrit) in each case. 

Upon a horizontal load at the apex, for Mode I, for a shallow truss, the equilibrium path bifurcates. Unlike 

in a steep truss, where three disconnected equilibrium paths are identified (blue markers in Figure 6.3a), 

here two connected paths are observed (blue markers in Figure 6.17a); one closed loop and one horizontal 

across the diameter when the apex is level with the supports, yet due to the difference in geometry no jump 

in the load-displacement curve is observed for the shallow truss (Figure 6.19a). For Mode II, for both the 

shallow and steep truss, a closed loop equilibrium path is identified with a horizontal bifurcation path 

across the diameter when the apex is level with the supports (blue markers in Figure 6.17b). However, in 
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Figure 6.19: Load-displacement curves of the truss with an initial angle α0,1 = 35° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a horizontal load at the 

apex (Pv = 0) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1 and 2 are stable 

equilibrium points. Points A–C are unstable equilibrium points. Dashed line represents the areas of instability. The 

load is normalized with respect to the load value at the maximum peak (Pcrit) in each case. 

the shallow truss the load-displacement curve is a continuous one with a secondary branch and no jump 

since the apex at no position traverses the supports given the geometry of the truss (Figure 6.19b). In 

Mode III, bifurcation of the equilibrium path occurs resulting in two connected equilibrium paths (blue 

markers in Figure 6.17c), compared to the three in case of a steep truss. Additional to the main path—

which is entirely unstable—a horizontal bifurcation path across the diameter when the helices are collinear 

is observed—as in a steep truss but with no jump in the load-displacement curve (Figure 6.19c). In all cases 

all possible equilibria, both stable and unstable are accessed. 
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Figure 6.20: Load-displacement curves of the truss with an initial angle α0,1 = 35° consisting of double helices of 

[452/0/452] layup, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm under the application of a combined load at the 

apex (Ph = Pv) for different reconfiguration modes: a) Mode I; b) Mode II; c) Mode III. Points 1 and 2 are stable 

equilibrium points. Points A–C are unstable equilibrium points. Dashed line represents the areas of instability. The 

load is normalized with respect to the load value at the maximum peak (Pcrit) in each case. 

For a combined load, for both Mode I and Mode II, similarly to the steep truss, a single equilibrium path 

is identified, with no bifurcation (green markers in Figure 6.17a, b). The corresponding load-displacement 

curves are continuous traversing all possible equilibria, characterized of both stable and unstable areas for 

Mode I (Figure 6.20a), but only unstable ones for Mode II (Figure 6.20b). For Mode III, for a shallow 

truss, a single closed loop equilibrium path is observed with a continuous load-displacement curve of both 

areas of stability and instability (Figure 6.20c), accessing all possible equilibria (green markers in Figure 

6.17c), as opposed to the two independent equilibrium paths identified in a steep truss (Figure 6.6c). 
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6.5 Summary 

The reconfigurability of the multistable mechanism consisting of morphing elements of a double-helix 

architecture arranged in a truss-like configuration is introduced in this chapter. The reconfigurability of the 

mechanism is based on the inherent ability of the double-helical elements to switch their twist direction 

when in the fully extended state, while the truss mechanism’s connectivity and joint types are maintained. 

This constitutes a novel approach of attaining reconfigurability. As a result, a mechanism with two identical 

double-helical elements can achieve four different reconfiguration modes (Mode I, Mode II, Mode III and 

its reverse). The mechanism’s multistability characteristics and its response in the force-displacement 

space are explored for the different reconfiguration modes. 

Similarly to the previous chapter, two analysis methods have been employed to study the mechanism’s 

characteristics in the different reconfiguration modes. Strain energy landscapes are used to identify stable 

and unstable equilibria, corresponding to valleys and peaks, respectively. A path-following method has 

been employed to trace equilibrium paths in force-displacement space for different cases of applied loads 

at the apex, i.e. a vertical (Ph = 0), a horizontal (Pv = 0) and a combined (Pv = Ph) load. 

The various reconfiguration modes induce significant changes in the mechanical behaviour of the 

mechanism studied herein. For a steep truss (α0,1 = 70°) with a symmetric composite lay-up [β2/0/β2], the 

mechanism is quadristable in Mode I, and the equilibrium paths access all equilibria either through 

bifurcation for a vertical load, or multiple independent paths for a horizontal load or a single path for a 

combined load. For Mode II, the response depends on the fibre angle, with β = 30° showing two internal 

stable equilibria, and one for β = 45° and β = 60°, in addition to the four stable boundary equilibria. Again, 

bifurcations of the equilibrium path enable all internal equilibria to be traversed upon application of either 

a vertical or a horizontal load. In Mode III, the structure exhibits two internal stable equilibria for β = 45° 

and β = 60°, but three for β = 30°, and for a horizontal load at the apex, three connected equilibrium paths 

are identified. Upon application of a vertical load, however, two disconnected equilibrium paths are 

identified for all lay-ups, while under a combined load, the three independent equilibrium paths for β = 30°, 

are reduced to two for β = 45°, to a single for β = 60°, thus leaving some equilibria isolated. Further to 

these results, the effect of the initial truss geometry on the mechanism’s behaviour and its reconfigurability 

is explored. It is found that the geometry significantly affects the structural behaviour and characteristics 

of the truss assembly. For a shallow truss (α0,1 = 35°), the mechanism is bistable in Mode I, and tristable 
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in Mode III, while in Mode II none of the interior equilibrium positions identified are stable. The energy 

landscapes were found to be an effective means to convey the qualitative changes in mechanical behaviour 

between the reconfiguration modes. 

The present chapter studied the reconfigurability of this assembly of double-helices and its mechanical 

response. The next chapter concentrates on the manufacturability of a prototype of the reconfigurable, 

multistable mechanism introduced in this work and the experimental validation of the results from the 

structural analysis of this mechanism. Subsequently, the thesis concludes in its final chapter with some 

final comments and suggestions for future work. 
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Chapter 7  

Manufacture and Test of 

a Prototype Mechanism of Nonlinear Morphing Elements 

7.1 Introduction 

The manufacture of compliant and/or reconfigurable mechanisms can be challenging. Besides the potential 

development of high stresses in the mechanism’s members during deformation when it comes to 

mechanisms with large deflections/displacements, the complex shapes and/or trajectories the mechanism 

is expected to achieve may result in structural impracticability of the mechanism for the selected 

dimensions and geometry, putting either further limitations in the design or requiring a different approach 

and/or the use of additional components for a practical feasible mechanism. 

Specifically, in this chapter we focus on the manufacture of a prototype of the novel mechanism assembled 

of double-helices in a truss-like configuration introduced in the previous chapters and the experimental 

validation of the results from the analytical structural analysis. Our primary aim is to demonstrate the 

manufacturability of the proposed reconfigurable, multistable mechanism. Thus, the design presented 

herein attempts to demonstrate the ability to achieve the various reconfiguration modes, while the 

experimental testing focuses on a vertical load applied at the apex to validate the analytical model. 

The rest of the chapter is structured as follows. Section 7.2 presents the design of the test rig required for 

the set-up and testing of the truss assembly. Section 7.3 includes a modification of the analytical model 

presented in Chapter 4 to account for changes in the truss geometry occurred from the design of the 

mechanism test rig. Section 7.4 presents the manufacture process, test set-up and results for a single double-



Morphing Mechanisms Based on Nonlinear Helical Composite Elements 

98 

helix, whereas sections 7.5 and 7.6 focus on the experimental set-ups and test results of the assembly of 

double-helices in a truss-like configuration. The chapter concludes in section 7.7 with a summary. 

7.2 Double-helix assembly mechanism test rig design 

To demonstrate the manufacturability of the proposed reconfigurable mechanism and validate the results 

from the analytical model, a prototype was built. Figure 7.1 illustrates the design of the test rig for the 

assembly of the double-helices in a truss-like configuration, produced in the Autodesk Inventor 3D CAD 

software. Figure 7.2 presents the actual test rig. Detailed CAD drawings of the individual customized 

components and fixtures are included in the Appendix A.1. 

 

Figure 7.1: CAD design of the fixture for the assembly of the double-helices in a truss-like configuration. The two 

helices of the mechanism connect to a single rod along the apex of the truss. The apex is attached to a test machine to 

measure force and displacement, and is allowed to move vertically in a U-shaped frame (green profiles). The supports 

of the helices are attached to a base frame (blue profiles) that can move horizontally with respect to the fixed lower 

base frame (red profiles). This configuration effectively enables the lateral movement of the apex under a purely 

vertical applied load. 

 

Figure 7.2: Test rig for the experimental testing of the mechanism of double-helices. 
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In the design of the prototype, several practical problems needed to be addressed, such as the attachment 

of the double-helices in a truss-like configuration allowing twist of the double-helices around the axis of 

the truss members upon application of a vertical load, the implementation of both a horizontal and a vertical 

movement of the apex, and the ability of the truss-like mechanism to deform to configurations where the 

truss members pass through the hinge point at the supports. 

The strain energy landscapes derived from the structural analysis in the previous chapters present a 

symmetry around the horizontal that traverses the supports for all reconfiguration modes (see Figure 6.2). 

Therefore, being able to capture the deformations and mechanical responses of the upper half of the design 

space for the various reconfiguration modes is considered sufficient for the design of the test rig and the 

experimental testing. Additionally, for Mode I and II the strain energy landscapes are also symmetric with 

respect to a vertical axis passing through the apex in the initial truss configuration, thus for simplicity the 

experimental testing is performed in one of the quarters of the design space. 

For the validation of the results from the analytical model, we focus on the mechanical response under the 

application of a vertical load at the apex. However, even upon applying a vertical load at the apex the 

mechanism is expected to undergo both a vertical and a horizontal displacement based on the structural 

analysis of the mechanism (see Figure 6.2). Therefore, one of the first challenges was to achieve sideways 

movement of the truss apex, given that the crosshead of the test machine is able to provide only a vertical 

movement and vertical load. Drawing upon the work of Radaelli and Herder [148] who used a platform of 

three orthogonally placed rollers underneath the base of a monolithic compliant mechanism to measure a 

vertical load while the horizontal movement is unconstrained, we designed our test rig so that the base of 

the actual truss structure is free to move horizontally, while the apex itself is restricted to move vertically. 

For this purpose, the design consists of a lower base frame that is fixed to the test machine and a top base 

frame, where the supports of the truss mechanism are attached, free to slide and move horizontally with 

respect to the lower frame (Figure 7.1). The result is a test arrangement which is statically equivalent to 

the system depicted in Figure 4.1. Both frames are assembled from aluminium profiles (Bosch Rexroth, 

30 x 30 mm, 8 mm slot). Linear motion components, i.e. linear guideways with rails, are used to provide a 

rigid linear horizontal movement of the top base frame along the lower base frame. 

For a steep truss, in the analytical model, we allow the mechanism to deform to configurations outside the 

area enclosed by the supports, effectively allowing the helices to pass through the supports. In practice, 
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achieving such configurations entails the helices to be connected in offset, parallel planes. However, having 

two helices connected opposed and in parallel planes creates a moment on the connecting rod. To account 

for the potential torsion that could be developed in such configuration, instead of using more helices in 

offset, parallel planes to create another couple force to equilibrium the first one, a vertical U-shaped frame 

(Figure 7.1) has been designed. This frame is connected to the rod forming the apex where the two helices 

are attached to and fixed to the static lower base frame. It allows vertical movement of the apex, while 

reacts the torque through the placement of linear guides, as we cannot rely on the load cell reacting the 

torque. This approach compromises for any space limitations—instead of using four helices—and benefits 

from minimising any additional torsion that may occur due to any minor dissimilarities between two helices 

from the manufacturing process. The downside is the increased friction due to the parallel linear guides. 

Aluminium profiles (Bosch Rexroth, 30 x 30 mm, 8 mm slot) are used to form the U-shaped frame. Linear 

guideways with rails are placed on the vertical members of this U-shaped frame to allow the vertical 

displacement of the apex. It is noted that indeed no torsion or deflection of the U-shaped frame was 

observed during the experiments. 

For the ability of the double-helix to deform from an extended to a coiled configuration under an axial 

load, a fixture enabling twisting is required at one of the helix extremities. In our design we chose the upper 

end of the helices to allow the twist, at the apex of the truss structure. The fixture consisting the apex is 

made of a shaft—a rod attached at its ends to the U-shaped frame and at its middle to the load transducer 

of the test machine with a suitable designed fitting (see Appendix A.1)—and the fittings for the helices 

(see Appendix A.1). The end fitting of the helix is a U-shaped bracket with bearings press-fitted in each 

side (Figure 7.3). Ball bearings are used to allow: i) the rotation of the helix around the longitudinal axis 

of the shaft—the rod passes through the ball bearings on the two parallel edges of the U-shaped bracket, 

and ii) the twist of the helix around its longitudinal axis—the end spoke of the helix is attached to the 

remaining side of the bracket. A different design is required for the end spoke of the helix on this side to 

enable its attachment to the ball bearing of the end fitting (see Appendix A.1). 

To ensure that the helix axis stays aligned with the end fitting as it deforms and avoid any out of plane 

deformation of the helix strips, a second spoke is located near the end spoke, bearing a pin to align the two 

spokes and keep the strips deforming along the longitudinal axis of the helix (Figure 7.3). The piston 

concept is adopted for this, with the pin fixed to the second spoke and free to slide in/out to the end spoke 
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enabling the helix to coil-uncoil while twisting maintaining the alignment. Special care was required in the 

refinement of the second spoke, with the side towards the end spoke flattened, and its location to avoid 

collision of the spokes early in the helix twist. 

Finally, the other end of the helix is attached to an L-shaped bracket on the top base frame forming the 

supports of the truss structure of the assembly of the double-helices. This end fitting of the helix has a 

simpler design with only requirement to allow rotation of the helix around the support. This rotational 

degree is achieved with a ball bearing press-fitted between the end helix spoke and the end fitting (see 

Appendix A.1). The dimensions of the L-shaped bracket, specifically its vertical length, is selected such 

that it allows enough space, i.e. at least the radius of the helix, from the top base frame for when the helices 

become collinear once in the horizontal position. 

It is worth noting that any friction in the ball bearings and/or other joints is neglected in the calculations. 

 

Figure 7.3: Double-helix configuration a) with a pin between the two end spokes to ensure deformation of the helix 

along the longitudinal X-axis of the helix; b) without a pin resulting in out of plane deformation. 

7.3 Adapted analytical model 

The design of the mechanism’s test rig presented above, to address the challenges mentioned, resulted in 

introducing some features not included in the analytical model employed in the previous chapters. Our 

initial analytical model—presented in Chapter 4 and used to produce the results included in Chapter 5 and 

Chapter 6—assumes in the geometry of the truss-like mechanism that the truss members lengths consist 

entirely of the length of the double-helix and that the helix stroke deformation is its whole length. However, 

in the design developed above, additional length was required at either end of the helix to connect to the 

base support and apex. Furthermore, as pointed out during the manufacture and testing of the double-helix 

below, its deformation stroke is in practice limited by a stowed length from the strips and/or spokes 

touching in the fully coiled configuration (Figure 7.4). 
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Figure 7.4: Schematic specifying the lengths for the constituent parts of the truss member in the mechanism. 

 

Figure 7.5: Schematic representation of the new geometry of the assembly of double-helices in a truss-like 

configuration. The initial configuration is determined by the equilibrium length L0,i of the double-helices, the lengths 

for the end fittings at the base support and apex, lend_b,i and lend_a,i respectively, and by the initial angle α0,i of the truss 

configuration. 

The end fitting lengths affect the truss geometry thus resulting in change of the kinematics of the 

mechanism, but it is easy to adopt in our initial model calculations. Figure 7.5 depicts the new truss 

geometry. In its initial configuration, the structure has height H0 and a base angle α0,i with respect to the 

horizontal; its members have length lbar,i defined as: 

lbar,i = lend_b,i + L0,i + lend_a,i, (7.1) 

where L0,i corresponds to the length of the longest self-equilibrated configuration of the helix, lend_b,i is the 

length for the end fitting at the base support and lend_a,i is the length for the end fitting at the apex. 

Equations 4.1–4.12 defining the geometrical relations need to be redefined to accommodate for the lengths 

of the end fittings by substituting L0,i to lbar,i. No other modifications are required in the model. The rest of 

the equations 4.13–4.54 are used as they are taking into consideration the new geometrical relations. 
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Unlike the end fitting lengths, the stowed length has no effect on the analytical calculations other than 

posing a limitation to the attainable deformed configurations in practice. 

Strain energy landscapes are used to qualitatively detect any differences in the mechanical behaviour and 

stability characteristics between the two models. Figure 7.6 shows the strain energy landscapes of the 

mechanism assembled of double-helices in a truss-like configuration with initial truss angle α0,1 = 70°, and 

lend_a,i = 25 mm and lend_b,i = 0 mm—as derived from the test rig design—for the different reconfiguration 

modes. As in Figure 6.2, double-helices of a [452/0/452] strip lay-up and with dimensions L = 95 mm, 

R = 15 mm, Ri = 30 mm and W = 5 mm are used. The strain energy landscapes, thus the design space, 

present gaps around the hinge points of the supports occurring from the length accounted for the end 

fittings. Changes in the relative distance between extrema are observed and features, including the stable 

equilibria and the connectivity between them, are affected. 

For Mode I (Figure 7.6a) the mechanism develops five stable equilibria compared to the four in the 

previous results (Figure 6.2). The difference is detected in the position where the two helices are collinear 

with zero horizontal displacement of the apex (point 5 in Figure 7.6a). This configuration is now a stable 

equilibrium. This is due to the end fitting lengths considered in this model; on the one hand the energy 

landscape is now interrupted around the hinge points of the supports and the area around point 5 becomes 

a valley; on the other the helices deform more in that configuration than before resulting in both helices 

having negative axial forces and axial stiffnesses of a positive sign, thus the system self-equilibrates while 

the helices pull against each other, thus stabilizing the equilibrium (Figure 7.7). Additionally, a second 

bifurcation of the equilibrium path is detected, intersecting the primary equilibrium path in two positions 

(red markers in Figure 7.6a). This path is discontinuous owing to the gaps in the strain energy landscape 

from the end fitting lengths. Discontinuities are also present in the secondary equilibrium path for Mode II 

(red markers in Figure 7.6b) and in the inner equilibrium path for Mode III (red markers in Figure 7.6c). 

For Mode II the mechanism develops two interior stable equilibria (points 1 and 2 in Figure 7.6b), 

positioned slightly above and below the position where the single minimum for the results of the initial 

model is located. Similar is the two stable equilibria observed in the outer equilibrium path for Mode III 

(points 1 and 2 in Figure 7.6c), while no stable equilibrium is encountered in the inner path. For both 

Mode II and Mode III, the boundary equilibria are preserved. 



Morphing Mechanisms Based on Nonlinear Helical Composite Elements 

104 

 

Figure 7.6: Strain energy landscapes for a compliant mechanism of double-helices of a [452/0/452] composite strip 

lay-up, L = 95 mm, R = 15 mm, Ri = 30 mm, W = 5 mm assembled in a truss-like configuration with an initial angle 

α0,1 = 70°, lend_a,i = 25 mm and lend_b,i = 0 mm for different reconfiguration modes. a) Mode I: θi ϵ [0°, 90°]; b) Mode II: 

θi ϵ [0°, −90°]; c) Mode III: θ1 ϵ [0°, 90°], θ2 ϵ [0°, −90°]. Points labelled 1–5 denote stable equilibria, while points A–

H identify positions of unstable equilibrium. Points I–IV denote stable boundary equilibria. Black lines represent the 

double-helices at the initial truss configuration. Red points indicate the equilibrium paths of the apex under the 

application of a vertical load (Ph = 0). Shaded ring areas represent the limitation from the stowed length of the helix. 
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Figure 7.7: Axial forces of double-helices of a [452/0/452] composite strip lay-up, L = 95 mm, R = 15 mm, 

Ri = 30 mm, W = 5 mm at selected equilibrium points of the mechanism for the reconfiguration Mode I. 

A closer inspection of the strain energy landscapes taking into consideration the stowed length of the 

double-helices (shaded ring area in Figure 7.6) reveals equilibrium configurations, i.e. positions 3, 4 and 5 

for Mode I (Figure 7.6a), 1, B and 2 for Mode II (Figure 7.6b), and E and B for Mode III (Figure 7.6c), 

close to the boundaries of the attainable design space that might create a practical difficulty in obtaining 

them or that cannot at all be achieved. Thus, changes to the dimensions of the double-helices are made to 

facilitate the manufacture and assembly of the double-helices, and to attain as many of the equilibria as 

possible during testing. Double-helices with dimensions L = 300 mm, R = 30 mm, Ri = 60 mm and 

W = 10 mm are employed for the manufacture and experimental testing of the mechanism. A width of 

10 mm is selected to account for drilling holes on the composite strip for the attachment of the spokes, 

while the choice of a lengthy helix (L = 300 mm) is made to allow enough space for the mechanism to 

deform to equilibria where the helices are in tightly coiled configurations. Figure 7.8 shows the strain 

energy landscapes of the assembly of such double-helices with a [452/0/452] lay-up in a truss-like 

configuration with initial angle α0,1 = 70°, lend_a,i = 25 mm and lend_b,i = 0 mm for the different 

reconfiguration modes. Conversely to the results above in Figure 7.6, these energy landscapes are similar 

to those of the initial model used for the analysis of the mechanism shown in Figure 6.2. Apart from the 

blank areas around the supports accounting for the end fitting lengths, and changes in the energy absolute 

values and relative positions of the extrema, all characteristic features, including stability, bifurcations and 

connectivity between stable equilibria are preserved for all reconfiguration modes. 
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Studying the effect of the end fitting lengths of the helix is out of the scope of this research. It is nonetheless 

clear that the end fitting length affects the mechanism behaviour and presumably some critical ratios of the 

end fitting lengths to the length of the helix exist defining the transition between the various behaviours. 

As a final step before moving on to the manufacture and test of the mechanism, a stress evaluation of the 

double-helices is performed using the Classical Laminate Theory [246] as well as a finite element model 

analysis [25]. Both Tsai-Wu [247] and Tsai-Hill [248] criteria are employed to check the stresses. High 

stresses occur on the top layer in the composite strips as the helix deforms from an extended to a fully 

coiled configuration; thus a decrease of the helix twisting stiffness is required. Checking individually each 

of the longitudinal, transverse and in-plane shear stresses in this ply, high stress is encountered in the tensile 

transverse direction. By replacing this layer, as well as the bottom one to maintain the symmetry, to a layer 

with a fibre angle at 90° instead of 45°, the stress criteria are now fulfilled. Alternatively, the use of a 

material with similar properties but with higher strain capabilities could have been considered. However, 

the same material used for the earlier analytical results presented herein was preferred, the Hexcel 

IM7/8552 unidirectional carbon fibre prepreg (see Table 3.1), which is a representative aerospace 

engineering grade composite-laminate material system and to maintain consistency throughout the present 

work. The strain energy landscapes of the mechanism with double-helices of a [90/45/0]s are presented in 

Figure 7.9. No qualitative difference in the overall behaviour is observed other than an overall rescaling—

compared to Figure 7.8—with all characteristic features maintained. 
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Figure 7.8: Strain energy landscapes for a compliant mechanism of double-helices of a [452/0/452] composite strip 

lay-up, L = 300 mm, R = 30 mm, Ri = 60 mm, W = 10 mm assembled in a truss-like configuration with an initial angle 

α0,1 = 70°, lend_a,i = 25 mm and lend_b,i = 0 mm for different reconfiguration modes. a) Mode I: θi ϵ [0°, 90°]; b) Mode II: 

θi ϵ [0°, −90°]; c) Mode III: θ1 ϵ [0°, 90°], θ2 ϵ [0°, −90°]. Points labelled 1–5 denote stable equilibria, while points A–

G identify positions of unstable equilibrium. Points I–IV denote stable boundary equilibria. Black lines represent the 

double-helices at the initial truss configuration. Red points indicate the equilibrium paths of the apex under the 

application of a vertical load (Ph = 0). Shaded ring areas represent the limitation from the stowed length of the helix. 
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Figure 7.9: Strain energy landscapes for a compliant mechanism of double-helices of a [90/45/0/45/90] composite 

strip lay-up, L = 300 mm, R = 30 mm, Ri = 60 mm, W = 10 mm assembled in a truss-like configuration with an initial 

angle α0,1 = 70°, lend_a,i = 25 mm and lend_b,i = 0 mm for different reconfiguration modes. a) Mode I: θi ϵ [0°, 90°]; b) 

Mode II: θi ϵ [0°, −90°]; c) Mode III: θ1 ϵ [0°, 90°], θ2 ϵ [0°, −90°]. Points labelled 1–5 denote stable equilibria, while 

points A–H identify positions of unstable equilibrium. Points I–IV denote stable boundary equilibria. Black lines 

represent the double-helices at the initial truss configuration. Red points indicate the equilibrium paths of the apex 

under the application of a vertical load (Ph = 0). Shaded ring areas represent the limitation from the stowed length of 

the helix. 

  



Manufacture and Test of a Prototype Mechanism of Nonlinear Morphing Elements 

109 

7.4 Double-helix manufacture, experimental set-up and results 

Prior to the assembly of the double-helices in the truss-like mechanism and the experimental testing for 

the validation of the analytical model and the results presented in the section above (§7.3), the constituent 

members of the mechanism, the double-helices, were examined separately. In this section the manufacture 

process of a double-helix prototype is presented and the experimental results of the individual helices upon 

an axial load at their extremity are discussed. 

7.4.1 Double-helix manufacture 

The manufactured double-helices are composed of composite strips of a [90/45/0]s lay-up and dimensions 

L = 300 mm by W = 10 mm. A symmetric lay-up was chosen as representative to show the 

reconfigurability of the mechanism later on, while a 10 mm strip width was selected to allow for drilling 

the holes to accommodate the spokes. For the manufacture of the double-helices a similar process to the 

one described in [25] was followed. The composite strips consist of 5 plies of unidirectional Hexcel 

8552/IM7 pre-impregnated carbon fibre reinforced plastic [208] with the 0° direction corresponding to the 

longitudinal x-axis of the strip (see Figure 3.1). Patches 10 x 10 mm of 90° unidirectional Hexcel 8552/IM7 

were placed on top and bottom of the strip laminate as local reinforcement at the spoke’s interface to avoid 

delamination issues (Figure 7.10a). The strips were initially laid-up flat and then placed on an aluminium 

cylindrical mould of radius Ri = 60 mm to cure (Figure 7.10a, b). A silicon sheet was placed on top of the 

release film to provide a nice surface finish to the strips, and a bag inside a bag was built to seal the laminate 

and apply vacuum bag to remove excess air and consolidate it (Figure 7.10c). An autoclave was used to 

cure the composite under a combination of pressure and heat [208]. 

 

 

Figure 7.10: Manufacture stages of the helix strips: a) lay-up of the strips flat, including local reinforcement at the 

interface with the spokes; b) place of the strips on an aluminium cylindrical tool; c) vacuum bag of the laminate. 
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After curing, the composite strips were ground to remove excess resin from their perimeter, owing to resin 

flow during curing, using an EcoMet 250 Buehler grinder/polisher machine. Next, the holes to 

accommodate the spokes were drilled on the strips using a Herbert B High Speed Bench drilling machine 

with a suitable drill bit to ensure delamination was minimised. Moreover, a rig made of Perspex acrylic 

material was designed to facilitate the drilling by keeping the curved strip flat and securing the position of 

the hole (Appendix A.2). Seven holes with a 2 mm diameter were created in each strip; the first two at a 

25 mm distance and the rest equally spaced. Stainless steel rods were used as the spokes to assemble the 

helices and keep the strips apart at a constant distance, machined at their ends to fit an M2 x 5 mm screw. 

Nylon washers were placed in-between the spokes, the strip and the screws to limit friction, while the 

spokes were loosely tightened to allow the strip to twist freely around the spokes’ axes. 

7.4.2 Experimental set-up 

The double-helices are tested under the application of an axial load. One end of the helix is connected to 

the load transducer of the moving crosshead of a universal testing machine through a fixture that allows 

twist of the helix (see Appendix A.3). A ball bearing is placed where the end spoke of the helix is attached 

to the fixture to allow twist of the helix around its longitudinal axis. The other end of the helix is fixed; the 

end spoke of the helix is press-fitted to an L-shaped bracket that is fixed to the test machine, while bolts 

are used to constrain any movement of the spoke (see Appendix A.3). An AGS-X Series Shimadzu test 

machine with 1 kN load cell and a precision of the force measurement within ±1% of the indicated test 

force (at 1/500 to 1/1 load cell rating) was used to perform the test and a displacement-control loading was 

employed at a rate of 0.5 mm/sec. Both vertical load and displacement were recorded using the Trapezium 

X software of the Shimadzu machine. Figure 7.11 shows the experimental set-up at different stages during 

the testing. 

 

Figure 7.11: Experimental set-up at different configurations: a) slightly twisted, b) twisted and c) coiled. 
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7.4.3 Results 

The double-helices were tested for deformations with helix angles θ both in [0°, 90°] and in [0°, −90°], 

with θ = 0° corresponding to the straight configuration. For each case two tests were performed: i) a 

compression test, starting from an extended configuration, the helix is deformed to reach a coiled 

configuration; and ii) a tensile test, starting from a coiled configuration, the helix is stretched until an 

extended configuration is reached. Figure 7.12a and b show the experimental results for double-helices 

deforming with helix angle θ ϵ [0°, 90°] for a compression and a tensile test, respectively. The results are 

compared with the results from the analytical model of the double-helix. The experimental results for helix 

deformations with θ ϵ [0°, −90°] for both compression and tensile tests are included in Figure 7.13a and b, 

respectively, and compared to the corresponding analytical results. 

The experimental results of four double-helices are included in Figure 7.12–Figure 7.13. A notation, i.e. 

HS 4-5, is used to describe each manufactured helix (the sample number). There is a good agreement 

between the experimental results for the different helices, demonstrating repeatability of the manufactured 

prototypes. Any deviations in the absolute load values in the experimental set of curves for the same test 

can be explained by dissimilarities of the helices due to manufacturing imperfections, including: i) 

misalignment of the holes with respect to the centre-line of the strip, owing to the difficulty in drilling 

holes on a curved composite strip (Figure 7.14); ii) slight variations of the strip width between helices as  

 

Figure 7.12: Load-displacement curves of double-helices for helix deformations with θ ϵ [0°, 90°] under a) a 

compression test and b) a tensile test. Results are for double-helices of a [90/45/0/45/90] lay-up, with dimensions 

L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. The displacement Δl is normalized to the length L of the strips, 

with Δl/L = 0 representing the fully-extended and Δl/L = 1 its fully coiled configuration. 
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Figure 7.13: Load-displacement curves of double-helices for helix deformations with θ ϵ [0°, −90°] under a) a 

compression test and b) a tensile test. Results are for double-helices of a [90/45/0/45/90] lay-up, with dimensions 

L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. The displacement Δl is normalized to the length L of the strips, 

with Δl/L = 0 representing the fully-extended and Δl/L = 1 its fully coiled configuration. 

 

Figure 7.14: Misalignment of the spokes with respect to the centre-line of the strip. Dashed line represents the axis 

that passes through the middle of the width of the strip along its length. 

well as along the length of the strip of the helix itself from the grinding of the edges of the composites; and 

iii) friction at the interface with the spokes. 

Figure 7.12a and Figure 7.13a show the results from the compression test for helix deformations with 

θ ϵ [0°, 90°] and θ ϵ [0°, −90°], respectively. An initial twist was applied at the start of the experiment to 

nudge the helix to a configuration with either θ ϵ [0°, 90°] or θ ϵ [0°, −90°], hence the delayed start of the 

experimental curves for the compression test. Starting from a slightly twisted configuration, the helix was 

then compressed to reach a coiled configuration. The test was stopped once the strips of the helix started 

colliding, and thus the experimental curves stop at a displacement Δl/L ≈ 0.85, close to the helix stowed 

length. Similarly, for the tensile test (Figure 7.12b and Figure 7.13b), the experiment for helix deformations 

with θ ϵ [0°, 90°] started from a coiled configuration where the helix strips collided. For θ ϵ [0°, −90°] the 

tests started at the stable coiled configuration (see Chapter 3). The helix was stretched until it reached the 

straight configuration (Δl/L = 0), however, the helix operating in θ ϵ [0°, −90°], would snap to a 
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configuration with θ ϵ [0°, 90°] as it approached the straight state, thus the sudden jump of the experimental 

curves in Figure 7.13b at Δl/L ≈ 0.04. 

A difference between the experimental results obtained by a compression and a tensile test is observed 

(Figure 7.12 and Figure 7.13). Overall higher load values are observed for a compression test, notably at 

the early stage of the test where the helix starts to twist and coil from an extended configuration (Figure 

7.12a and Figure 7.13a). This difference suggests a difficulty in the deformation of the helix at this section 

and the need of a higher axial force to achieve the coiling of the helix. This can be attributed to the friction 

developed at the joint of the helix with the fixture, i.e. the bearing, since through an applied vertical load 

we try to provoke a twist at the helix for it to coil, as well as the shear buckling of the helix noticed at this 

early stage during testing (Figure 7.15a). The use of elongated helices made them susceptible to buckling 

and additional imperfections, such as the nonuniform deformation of the helix noticed during the test, with 

the pitch varying across the helix length (Figure 7.15b). The nonuniform coiling was not observed in 

previous work by Lachenal et al. [25, 26] and is presumably dependent on the length-to-radius ratio of the 

helices. All these are thought to have caused the overall differences observed in the load values between a 

compression and a tensile test. 

Figure 7.12 and Figure 7.13 include also the corresponding results from the analytical model of the double-

helix. The actual lengths of the double-helices, from centre to centre of the end spokes, were measured at 

L = 292 mm after curing and grinding of the strips, thus the results herein were compared to the analytical 

results of a helix with dimensions L = 292 mm, R = 30 mm, Ri = 60 mm and W = 10 mm. These 

dimensions are also used for the results from the structural analysis of the mechanism assembled of double-

helices further below for a more accurate comparison to the experimental results. 

 

Figure 7.15: a) Shear buckling of the helix; b) nonuniform deformation of the helix; c) contact between adjacent 

spokes. 
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The analytical curves are in good qualitative agreement with the experimental data (Figure 7.12 and Figure 

7.13). Large quantitative differences are noticed between the experimental curves from a compression test 

and the analytical predictions for helix configurations slightly twisted (Δl/L < 0.25) that can be explained 

by the friction in the bearing and/or the localised buckling of the helix as explained above. For the rest of 

the helix configurations and the experimental results from a tensile test a close agreement is observed with 

the analytical model. The small differences between these curves can be attributed to variations between 

the model and the helix prototypes. Friction at the interface with the spokes and localised effect of the 

holes in the strips have not be taken into consideration in the analytical model. The local reinforcement 

placed at the regions of the holes to limit delamination, thus locally constraining the transverse curvature, 

was not modelled. Most significant nonetheless is the unexpected nonuniform deformation of the helix 

with the pitch varying across the helix length. This behaviour breaches a fundamental assumption for the 

analytical model of the helices. It is presumably dependent on the length-to-radius ratio of the helices as 

herein we used more elongated helices compared to the previous work by Lachenal et al. [25, 26], where, 

despite the mismatch of the experimental data and the analytical model predictions, such behaviour was 

not reported. In addition to this, the nonuniform deformation resulted in the spokes of the helices touching 

during coiling/uncoiling (Figure 7.15c) and the presence of slight kinks in the load-displacement curves. 

7.5 Initial experimental set-up and results for assembly of double-helices 

A truss prototype of the mechanism assembled of double-helices was manufactured and tested under 

application of a vertical load at the apex. This section presents initial test results to validate the analytical 

model and assess the feasibility of the proposed mechanism. 

7.5.1 Initial experimental set-up 

Figure 7.16 shows the set-up for the test of the assembly of double-helices in a truss-like configuration. In 

this initial set-up linear guides with ball bearing carriages were used to achieve the motion of the top base 

frame relative to the lower base frame to allow sideways movement of the truss structure, and thus the 

apex. This enabled measurement of equilibrium paths where both horizontal and vertical displacement of 

the apex occur, i.e. the bifurcation paths for Mode I and II or the equilibrium paths in Mode III (see red 

markers in Figure 7.9). The details of the test rig design have been discussed in previous section (§7.2). 



Manufacture and Test of a Prototype Mechanism of Nonlinear Morphing Elements 

115 

 

Figure 7.16: Experimental set-up of the truss assembly of double helices in different configurations during testing: a) 

configuration with both helices fully-extended; b-c) configurations along the main equilibrium path between points 1 

and B for Mode I with both helices twisted equally; d-e) configurations along the main equilibrium path between points 

1 and A for Mode II with both helices twisted equally. 

An AGS-X Series Shimadzu test machine with 1 kN load cell and a precision of the force measurement 

within ±1% of the indicated test force (at 1/500 to 1/1 load cell rating) was used to perform the test and 

apply a vertical load on the fixture, using a displacement-control loading at a rate of 0.5 mm/sec. Both 

vertical load and displacement were recorded using the Trapezium X software of the Shimadzu machine. 

To capture the horizontal displacement of the top base frame, and thus of the truss apex, an Imetrum Video 

Gauge camera system, with 17 fps frame rate and a 1392 x 1040 pixel camera with a 25 mm focal length 

lens, was used, set to track the horizontal displacement of a point close to the base support of the truss. 

7.5.2 Results 

First, the response of the prototype of the mechanism of the double-helices assembled in a steep truss 

(α0,1 = 70°), with both helices twisting with θ ϵ [0°, 90°] (reconfiguration Mode I) was investigated. Both 

a compression and a tensile test were performed, applying a vertical load at the apex of the assembled 

structure starting from different configurations. For the compression test, the helices were set close to the 

initial truss configuration with a truss angle α0,1 = 70° (point 1 in the energy landscape in Figure 7.9a), then 

compressed by applying a downwards displacement at the apex. The test stopped slightly after the helices 

become collinear. For the tensile test, starting from a configuration with the helices set collinear (i.e. point 

B in the energy landscape in Figure 7.9a) the apex was stretched upwards until both helices reach an 

extended configuration. The tests were also performed without the helices attached on the rig to measure 

the friction force due to the vertical linear guides placed on the U-shaped frame, which was then subtracted  
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Figure 7.17: Load-displacement curves under the application of a vertical load at the apex of the truss of double-

helices for reconfiguration Mode I, θ ϵ [0°, 90°], for a) a compression test and b) a tensile test. Dashed lines represent 

areas of instability for the analytical data. Results are for initial truss angle α0,1 = 70° and double-helices of a 

[90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. Points 1–4 are stable 

equilibrium points. Points A–G are unstable equilibrium points. The displacement has been normalized with respect 

to the initial height of the truss structure. 

from the force reading obtained for the assembly of the double-helices. Figure 7.17 depicts the load-

displacement curves from the experimental tests and the structural analysis of the mechanism. Large 

differences in the load values are observed between the analytical model and the experimental data from 

the compression test at the early stages of the experiment, when the helices are at slightly twisted 

configurations (Figure 7.17a). This discrepancy, noticed in the results from the compression test of a single 

helix too, is thought to be caused by the friction at the joint of the helix with the fixture at the truss apex, 

i.e. the bearing, trying to force a twist on the helices by an applied axial load, and/or by the occurrence of 

localised buckling in the helix which has not been observed before (Figure 7.18a, b). This localised 

buckling is primarily attributed to the use of such elongated helices, while it indicates also that the distance 

between the spokes and any misalignment in their position can affect the deformation of the strips. Other 

than this, a good correlation between the analytical model and the experimental data exists. Differences 

can be attributed to friction both between the spokes and the helical strips and at all other joints in the 

fixture, any imperfections during manufacturing of the helices and/or the presence of a nonuniform 

deformation of the helix, i.e. its pitch varying across the helix length (Figure 7.18c, d); all which were 

unaccounted for in the model. As a result of the nonuniform deformation of the helices, the spokes would 

touch during coiling/uncoiling (Figure 7.18e, f), introducing additional loads in the static equilibrium of 

the system, thus the kinks in the load-displacement curves for up/H0 > 0.4. The experiment was repeated  
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Figure 7.18: a-b) Localised buckling of the helix strips; c-d) nonuniform deformation of the helix along its length; e-

f) contact between adjacent spokes during coiling/uncoiling. 

for different sets of double-helices and a similar response was obtained. The sudden jump in one of the 

load-displacement curves for a compression test at up/H0 ≈ 0.1 (Figure 7.17a) occurred from a misfit of the 

pin between the two end spokes resulting in a wobbly end fitting and an out of plane deformation of the 

helix at that point. 

Next, to demonstrate the reconfigurability of the proposed mechanism, the truss prototype of the double-

helices was tested for reconfiguration Mode II, with both helices twisting with θ ϵ [0°, −90°]. Figure 7.19 

shows the load-displacement curve for the analytical model and the experimental results for a compression 

(Figure 7.19a) and a tensile test (Figure 7.19b). For the compression test, starting from a position with both 

helices at an extended configuration and a truss angle α0,1 = 70°, the truss apex was then compressed until 

the helices become collinear. An initial twist was applied at the start of the experiment to nudge the helices 

to a configuration with θ ϵ [0°, −90°], hence the delayed start of the experimental curves (Figure 7.19a). 

The experimental results are in good agreement with the predictions from the analytical model. Slightly 

higher absolute load values observed at configurations where both helices are slightly twisted are 

presumably the result of friction at the end fitting’s bearing from provoking a twist under an axial load 

while restricting the helices tendency to buckle or deform out of plane. For a tensile test, starting from a 

position where the helices are collinear (i.e. point 1 in the energy landscape in Figure 7.9b), the truss apex 

is pulled upwards to approach a configuration with both helices extended. As the helices uncoiled to reach 

their straight configurations, they would snap to configurations with θ ϵ [0°, 90°], hence the sudden jump 

in the load-displacement curve at up/H0 ≈ 0. Again, a good correlation between the analytical model and  
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Figure 7.19: Load-displacement curves under the application of a vertical load at the apex of the truss of double-

helices for reconfiguration Mode II, θ ϵ [0°, −90°], for a) a compression test and b) a tensile test. Dashed lines represent 

areas of instability for the analytical data. Results are for initial truss angle α0,1 = 70° and double-helices of a 

[90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, Ri = 60 mm, W = 10 mm. Point 1 denote a stable 

equilibrium. Points A–H are unstable equilibrium points. The displacement has been normalized with respect to the 

initial height of the truss structure. 

experimental data exists. The differences can be traced back to the individual helix behaviour for the same 

test and features that were not modelled, including the spokes effect, the local reinforcement at the holes, 

friction at the joints in the fixture, and/or were not expected, i.e. the nonuniform deformation of the helices 

that resulted in spokes colliding during testing, as already mentioned. 

In this set of experiments, we were unable to obtain the bifurcation paths of the reconfiguration Mode I 

and II or the equilibrium paths for the mechanism operating in the reconfiguration Mode III. The friction 

of the linear guides exceeded the horizontal force that the mechanism could provide, especially since only 

a vertical load is applied at the apex; this meant that the truss would not move laterally. In an attempt to 

overcome this problem, the set-up design was modified, as presented in the section below. 

7.6 Modified experimental set-up and results for assembly of double-helices 

The inability to achieve and trace the deformations of the apex on the bifurcation paths for the 

reconfiguration Mode I and Mode II or the equilibrium paths for Mode III, led to a revaluation of the set-

up design. The main problem was identified in the inability of the structure to slide on the linear guides 

and allow sideways movement of the truss structure. Thus, the linear guides were replaced by lower-

friction rollers that ran on the existing aluminium frame. The modified experimental set-up and the 

corresponding test results are presented below. 
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7.6.1 Modified experimental set-up 

Figure 7.20 shows the modified set-up for the test of the assembly of double-helices. In this set-up, the 

linear guides with ball bearing carriages used in the initial experimental set-up were replaced by rollers. 

The rollers were attached to the top base frame, that consists the base of the truss mechanism, and slid in 

the slot of the aluminium profiles of the lower base frame, that is fixed to the machine. The slot of the 

aluminium profiles was used as the guide for the rollers and kept them aligned. No other changes were 

made to the experimental set-up and the same experimental procedure was followed. 

 

Figure 7.20: a) Modified experimental set-up, comprising rollers, of the truss assembly of double-helices. b-e) 

Different configurations of a prototype during testing: b) a configuration along the main equilibrium path between 

points 1 and A for Mode I with both helices twisted equally; c) a configuration close to point B for Mode I, with the 

helices collinear and twisted equally; d) a configuration on the bifurcation path between points 1 and D for Mode I, 

with the helices twisted to different extent; e) a configuration close to point 3 for Mode I, with the helices collinear but 

one in a slightly twisted and the other in a coiled configuration. 

7.6.2 Results 

The use of the rollers allowed the structure to move horizontally, thus we were able to achieve 

configurations of the truss mechanism on the bifurcation paths for both reconfiguration Mode I and 

Mode II, additionally to their primary vertical equilibrium paths. It also enabled to perform the test with 

the mechanism reconfigured to Mode III. The experimental results of the mechanism for all reconfiguration 

modes are presented in Figure 7.21–Figure 7.23 and compared to the corresponding analytical results. 

Figure 7.21 shows the load-displacement curves obtained from the experimental testing of the prototype 

and the analytical model for the reconfiguration Mode I, where both helices are deforming to helix angles 

θ ϵ [0°, 90°]. The strain energy landscape is included with the positions of the apex superimposed both as 

predicted from the model (red markers in Figure 7.21, right) and as obtained from the displacement record- 
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Figure 7.21: Load-displacement curves (left) under the application of a vertical load at the apex of the truss of double-

helices for reconfiguration Mode I. Dashed lines represent areas of instability for the analytical data. The truss has 

initial angle α0,1 = 70° and double-helices of [90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, 

Ri = 60 mm, W = 10 mm. The positions of the truss apex under an applied vertical load (Ph = 0) at the end effector are 

superimposed on the corresponding strain energy landscape (right); red markers are used for the analytical and green 

markers for the experimental data. Black lines represent the double-helices at the initial truss configuration. Points 1–

4 are stable equilibrium points. Points A–G are unstable equilibrium points. Shaded ring areas represent the limitation 

from the stowed length of the helix. 

ings during testing (green markers in Figure 7.21, right). A tensile test was carried out on the prototype; 

starting from positions on the equilibrium paths with the helices collinear, the apex is moved upwards. To 

obtain the primary equilibrium path, the test started from the position where the helices are collinear and 

experience the same deformation, point B in Figure 7.21. To attain configurations on the bifurcation path, 

the position with one helix at an extended and one at a twisted configuration, yet being collinear, was 

selected as the starting position for the test (point 3 in Figure 7.21). In both cases, the test stopped once the 

rollers started losing contact with the lower base frame and the truss base was lifted. This outcome was not 

considered in the design of the test set-up, posing an unforeseen limitation to achieve certain 

configurations; nonetheless, the mechanism’s model could be validated. The experimental data are in good 

qualitative agreement with the predictions of the analytical model. Some differences in the actual values 

are observed that can be attributed to a variety of reasons as mentioned above, including: i) friction, which 

is unaccounted for in the model, both between the spokes and the composite helical strips and at all other 

joints in the fixture; ii) nonuniform deformation of the helix noticed during the test, with the pitch varying 

across the helix length; iii) the spokes of the helices touching during coiling/uncoiling as a result of the 

nonuniform helix deformation, evidenced by slight kinks in the load-displacement curves; iv) any 

imperfections during manufacturing of the helices. 
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The results for the mechanism operating in reconfiguration Mode II, with both helices twisting with helix 

angles θ ϵ [0°, −90°], are presented in Figure 7.22. The load-displacement curves as well as the strain 

energy landscape with the corresponding equilibrium paths of the apex for both the experimental and the 

analytical data are included. Like in Mode I, a tensile test was carried out, starting from different positions 

of the helices for the main equilibrium path and for its bifurcated branch, and applying a displacement-

control loading on the fixture, pulling the apex upwards. The test was terminated once the helices snapped 

to configurations with θ ϵ [0°, 90°], forcing the rollers to detach from the lower base frame, as evidenced 

by the sudden jump in the load-displacement curve at up/H0 ≈ 0 (Figure 7.22, left). For configurations on 

the primary equilibrium path, with zero horizontal displacement (vertical paths on the strain energy 

landscape in Figure 7.22, right), the test was initiated at a position with the helices collinear and with the 

same deformation (point 1 in Figure 7.22). A good correlation between the experimental data and the 

analytical predictions exists. Small differences can be attributed to differences between the model and the 

prototype that were unaccounted for, i.e. friction at the joints, effect of the spokes, nonuniform deformation 

of the helices resulting also in contact of adjacent spokes during testing, manufacture imperfections. The 

relatively higher values in the “belly” of the curve can be traced back to the behaviour of the individual 

helices, with the manufactured ones being stiffer at this mode of θ ϵ [0°, −90°]. To attain the bifurcation  

 

Figure 7.22: Load-displacement curves (left) under the application of a vertical load at the apex of the truss of double-

helices for reconfiguration Mode II. Dashed lines represent areas of instability for the analytical data. The truss has 

initial angle α0,1 = 70° and double-helices of [90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, 

Ri = 60 mm, W = 10 mm. The positions of the truss apex under an applied vertical load (Ph = 0) at the end effector are 

superimposed on the corresponding strain energy landscape (right); red markers are used for the analytical and green 

markers for the experimental data. Black lines represent the double-helices at the initial truss configuration. Point 1 

denote a stable equilibrium. Points A–H are unstable equilibrium points. Points I–IV denote stable boundary equilibria. 

Shaded ring areas represent the limitation from the stowed length of the helix. 
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path, an equilibrium configuration on it is selected as the starting point for the test (point C in Figure 7.22). 

Unlike in Mode I, the position with the helices being collinear, one at an extended and the other at a twisted 

configuration (point D in Figure 7.22), was infeasible due to limitation for the helices’ stowed length 

(shaded ring regions in Figure 7.22). Small sudden jumps observed in the load-displacement curve of the 

bifurcation path occurred from the rollers losing contact with the fixed, lower base frame and the truss base 

being lifted momentarily at these points, then manually put back and nudged to a position close to the 

desired path to continue the test. These positions can be traced as jumps in the corresponding path of the 

positions of the apex too (green markers in Figure 7.22, right) and help explain the mismatch of the apex 

positions path between the experimental and analytical data. 

Finally, the truss prototype was tested under a vertical load with the helices operating in Mode III. In this 

reconfiguration mode one helix deforms with θ ϵ [0°, 90°] and the second with θ ϵ [0°, −90°]. As above, a 

tensile test was performed. Starting from positions on the equilibrium paths where the helices are collinear 

(points 1 and 2 in Figure 7.23), a displacement-control loading was applied to move the apex upwards. The 

experimental results are displayed in Figure 7.23 and compared to the analytical ones. Both the load-

displacement curves and the strain energy landscape with the apex positions both from the analytical and  

 

Figure 7.23: Load-displacement curves (left) under the application of a vertical load at the apex of the truss of double-

helices for reconfiguration Mode III. Dashed lines represent areas of instability for the analytical data. The truss has 

initial angle α0,1 = 70° and double-helices of [90/45/0/45/90] lay-up, with dimensions L = 292 mm, R = 30 mm, 

Ri = 60 mm, W = 10 mm. The positions of the truss apex under an applied vertical load (Ph = 0) at the end effector are 

superimposed on the corresponding strain energy landscape (right); red markers are used for the analytical and green 

markers for the experimental data. Black lines represent the double-helices at the initial truss configuration. Points 1 

and 2 are stable equilibrium points. Points A–G are unstable equilibrium points. Points I–III denote stable boundary 

equilibria. Shaded ring areas represent the limitation from the stowed length of the helix. 
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the experimental data superimposed are shown. Overall, there is a good correlation between the 

experimental data and the predictions from the analytical model. Differences in the actual values can be 

attributed to features that were not modelled, as described previously. Sudden jumps in the load-

displacement curve of the outer equilibrium path occur at the positions that the rollers detached from the 

fixed, lower base frame; the truss base was lifted, then manually placed back and nudged to settle in a 

position and continue the test, evidenced by jumps in the apex positions path as well (green markers in 

Figure 7.23, right). The sudden jump observed in the load-displacement curve at up/H0 ≈ 0 (Figure 7.23, 

left), where both helices are slightly twisted, was caused by the helix with θ ϵ [0°, −90°] snapping to a 

configuration with θ ϵ [0°, 90°]; that was the termination point for this test. This reason, the snap of the 

helix with θ ϵ [0°, −90°] once in a slightly twisted configuration to a configuration with θ ϵ [0°, 90°], was 

also the obstacle in attaining configurations of the rest of the outer equilibrium path, in the region of the 

equilibrium points A and B where the helix with θ ϵ [0°, −90°] operates close to slightly twisted 

configurations (see Figure 7.23). While that was the issue for the outer equilibrium path, a difficulty in 

obtaining the inner path was caused by the helices’ stowed length restraints (shaded ring regions in Figure 

7.23). Therefore, an attempt to obtain the path in the region of point F (see Figure 7.23) was not made, 

given the limited area of feasible configurations. Even the position at point 2 (see Figure 7.23), a 

configuration very close to the boundary of the helix coiled deformation owing to its stowed length, was 

difficult to achieve and perform the test, requiring occasionally a gentle touch to assure the desired path 

was followed, explaining a slight divergence in the apex positions between the model predictions and the 

experimental data (Figure 7.23, right). 

7.7 Summary 

The present chapter focuses on the development of a prototype of the proposed mechanism to validate the 

analytical model and assess the feasibility of the concept. A test rig is designed, and a truss prototype is 

manufactured and tested under application of a vertical load at the apex. Several challenges are recognized 

in the design process, including the attachment of the double-helices in a truss-like configuration, and the 

implementation of both a horizontal and a vertical movement of the apex. To address the latter, the base of 

the truss mechanism is designed to have unconstrained horizontal movement by sliding along a lower frame 

fixed to the test machine; the result is a test arrangement statically equivalent to the system of the analytical 

model. 
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Variations in the geometry of the mechanism are induced by the design of the attachments of the helices 

in a truss configuration in the mechanism prototype. A change in the truss geometry affects the kinematics 

of the mechanism, and thus an amendment of the analytical model used in the previous chapters was 

required. The analytical results are updated to take into consideration the length required for the end fittings 

of the helices as occurred from the design, plus any stress limitations during the deformation of the helices 

and compared to the previous model. The modified model shows slight differences in the mechanical 

characteristics and response of the mechanism, with the helix length-to-end fittings length ratio becoming 

a key parameter. 

First, individual double-helices are manufactured and tested under an axial load at their extremity. Then, 

the helices are assembled in the truss mechanism and tested under a vertical load at the apex in the different 

reconfiguration modes. The experimental results are in good qualitative agreement with the predictions of 

the analytical model. Some differences in the actual values are observed that can be attributed to a variety 

of reasons, including: i) friction, which is unaccounted for in the model, both between the spokes and the 

composite helical strips and at all other joints in the fixture; ii) localised effect of the holes and iii) local 

reinforcements placed around the holes to limit delamination, that were also not modelled; iv) shear 

buckling of the helix and v) nonuniform deformation of the helix noticed during the test, with the pitch 

varying across the helix length, which were not observed in previous work by Lachenal et al. [25] and are 

presumably dependent on the length-to-radius ratio of the helix; vi) contact of adjacent spokes of the helices 

during coiling/uncoiling as a result of the nonuniform helix deformation, evidenced by slight kinks in the 

load-displacement curves; vii) any imperfections during manufacturing of the helices. 

These preliminary tests of the mechanism prototype include results for configurations exclusively on the 

primary equilibrium path for the reconfiguration Mode I and Mode II. The friction in the linear guides used 

to achieve the horizontal movement of the truss base of the mechanism was prohibitive of obtaining 

configurations of the mechanism in the reconfiguration Mode III and on the bifurcation path for the 

reconfiguration Mode I and Mode II, where the mechanism experiences both a horizontal and a vertical 

displacement of the apex. Thus, the linear guides are replaced by rollers and the test of the prototype is 

repeated. Within a broad aspect, the experimental results obtained and the analytical model showed a good 

correlation in the trend of the load-displacement curve. The manufacture of such helices and their assembly 

in a truss structure has been proven challenging, but the potential mechanical responses make it 
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worthwhile. The existing analytical model is inherently limited, thus the nonuniform coiling/uncoiling 

along the length of the helix was unanticipated. This behaviour and challenges in the set-up, i.e. the 

detachment of the truss base from the fixed lower frame, are not something that would have obviously 

appeared during the modelling, and only when considering practical prototypes. 

This chapter consisted the experimental section of this work. The next chapter concludes the thesis with a 

summary of the outcomes of the overall work presented in previous chapters, and some thoughts for future 

research. 
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Chapter 8  

Conclusions and Future Work 

8.1 Conclusions 

The main objective of this work has been to explore the design space of structural assemblies of nonlinear 

elements and reveal the variety of attainable mechanical responses. A novel compliant mechanism has 

been introduced consisting of composite morphing elements of a double-helix architecture assembled in a 

simple truss configuration. These helical composite structures are able to undergo large axial deformations 

while maintaining their structural integrity. Existing compliant mechanisms often rely on flexible members 

and their elastic deformations for their operation and to achieve multistability, however, their range of 

motion is restricted by strength limitations. The compliant mechanism presented in this work uses the 

morphing elements as the flexible members, enabling higher effective strains to be achieved and thus the 

expansion of the range of motion currently available. 

The helical structure used can deform from an extended to a completely coiled configuration, resembling 

the behaviour of springs, but with nonlinear stiffness. The double-helix exhibits tailorable nonlinear 

stiffness characteristics and strain energy profiles, including bistability, that can be customized by tuning 

various design parameters, including the composite lay-up and the geometry of the helix strips. Therefore, 

the helical elements’ variable geometry and customizable nonlinear stiffness characteristics enable the 

mechanism to be tailored, and a wide range of behaviours to be developed. 

In addition, the helical structure features two connected, but distinct, deformation modes; from the straight 

configuration the structure can be nudged to deform to helix angles of opposite chirality. For a symmetric 
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lay-up, a difference in the stiffness characteristics and the mechanical response of the helix is noted 

between the two deformation modes. This ability of the helix to change the helical pitch and the resulting 

stiffness profile enables the reconfigurability of the mechanism. The mechanism can be reconfigured to 

operate in different modes through the exploitation of the inherent nonlinear elastic characteristics of the 

helix, whilst maintaining its connectivity and mobility. 

To demonstrate the richness of the design space the effect of various design parameters on the stability 

characteristics and the mechanical response of the mechanism has been investigated. Two methods have 

been employed for the analysis of the mechanism. Strain energy landscapes have been used to study the 

multistability of the mechanism and have been shown an effective way to trace the qualitative changes in 

the behaviour between mechanisms with different characteristics. For the analysis of the mechanism in the 

force-displacement space, given the nonlinearity of the system, the modified-Riks method has been 

implemented and potential load paths between stable configurations have been obtained. 

The proposed compliant mechanism can exhibit up to five stable configurations. The mechanism’s 

multistability has been investigated by varying the composite lay-up of the helix strips, the geometrical 

features of the double-helices and the initial truss geometry of the mechanism. For steep trusses, the 

mechanism exhibits: i) bistability, for a [05] lay-up; ii) quadristability, for a [β2/0/β2] symmetric lay-up with 

0° < β < 90°; iii) pentastability with one internal stable equilibrium and four stable boundary equilibria, for 

a [β2/0/β2] symmetric lay-up with β = 90° and/or a [β2/0/−β2] antisymmetric lay-up. The mechanism with 

helices of a [β2/0/β2] symmetric lay-up with 0° < β < 90° transitions from being quadristable to being 

bistable for decreasing initial truss angles. No internal equilibrium is encountered for a mechanism with 

helices of a [β2/0/β2] symmetric lay-up with β = 90° and/or a [β2/0/−β2] antisymmetric lay-up assembled in 

a shallow truss, yet the four boundary equilibria are maintained. The geometrical features of the double-

helices were found to have a limited effect on the mechanism’s behaviour. 

The application of a vertical or a horizontal load at the apex of the truss mechanism has revealed 

equilibrium paths that connect all its internal equilibria. Regardless of the initial truss angle, under the 

application of a vertical load the equilibrium path bifurcates enabling all equilibria to be accessed. Under 

the application of a horizontal load, bifurcations are present too, except for a mechanism with helices of a 

[β2/0/β2] symmetric lay-up with 0° < β < 90°, where three disconnected equilibrium paths are found. 

Furthermore, it has been shown that a mechanism of constant stiffness can be developed while undergoing 
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large deformations, with the mechanism with helices of a [05] strip lay-up demonstrating a stable region of 

constant stiffness upon a horizontal load at the apex with a circular deformation path. 

This multistable mechanism exhibits four reconfiguration modes (Mode I, Mode II, Mode III and its 

reverse), thanks to the double-helix ability to switch its twist direction once in a fully extended state and 

the different mechanical response obtained for symmetric lay-ups of the form [β2/0/β2], with 0° < β < 90°. 

The reconfigurability of the mechanism has been explored and the effect of the fibre angle β in the 

symmetric lay-up of the helix strips and the initial truss geometry of the mechanism has been investigated. 

For a steep truss, regardless of the fibre angle, the mechanism exhibits quadristability in Mode I, where 

both helices are twisted clockwise, whereas the response in Mode II, where both helices are twisted 

anticlockwise, and Mode III, where one helix is twisted clockwise the other anticlockwise, depends on the 

fibre angle. The mechanism shows two internal stable equilibria for β = 30° and one for β = 45° and 

β = 60°, plus four boundary equilibria in Mode II. In Mode III, the mechanism transitions from three stable 

interior equilibria and two stable boundary equilibria for β = 30° to two stable interior equilibria and three 

boundary equilibria for β = 45° and β = 60°. For a shallow truss, the mechanism is bistable in Mode I, 

tristable in Mode III with one stable internal equilibrium, and quadristable in Mode II, yet none of the 

interior equilibrium positions identified are stable. 

The mechanism’s response in the force-displacement space upon a vertical, horizontal and a combined 

load at the apex has been explored for the different reconfiguration modes. It was found that the load paths 

obtained for a vertical, horizontal and a combined load in Mode I and Mode II access all internal equilibria 

through either bifurcation, multiple independent paths or even a single path. In Mode III, two disconnected 

equilibrium paths are identified for all lay-ups under the application of a vertical load enabling all internal 

equilibria to be traversed, however, upon a horizontal load at the apex, despite the three connected 

equilibrium paths, some equilibria are left isolated for β = 60°. Likewise, equilibria remain inaccessible for 

β = 60° upon a combined load where the three independent equilibrium paths obtained for β = 30°, are 

reduced to two for β = 45°, to a single for β = 60°. 

Finally, a prototype of the truss mechanism was manufactured and tested under a vertical load at the apex 

to assess its feasibility and validate the analytical model of the proposed mechanism. The design of the 

truss prototype has been proven challenging with several practical difficulties to be addressed. The 

deformation of the truss mechanism in its design space under a vertical load entails both a horizontal and 
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a vertical displacement of the mechanism’s end effector. The universal test machine used for the testing 

allows only vertical displacement of its crosshead and thus of the truss apex attached to it. The 

implementation of the horizontal displacement of the truss apex has been achieved by enabling the 

horizontal movement of the truss base. This approach involved a design of the prototype with a truss base 

frame free to slide on a lower frame fixed onto the test machine. Moreover, to assemble the helices into a 

truss-like configuration, a customized design of the helices end fittings has been implemented. This feature 

has resulted in a variation of the analytical model. The updated results have shown that the end fitting 

length-to-the helix length ratio is a key parameter of the mechanical behaviour of the mechanism, however, 

no major differences have been recorded on the stability characteristics of the mechanism. 

Individual double-helix prototypes were manufactured and tested under the application of an axial load at 

their extremity, followed by the experimental testing of the truss prototype upon a vertical load at the apex 

in the different reconfiguration modes. The use of linear guides to achieve the horizontal movement of the 

truss base was shown to be inadequate for our system, restricting the experimental results to equilibrium 

paths with only vertical displacement of the apex and zero horizontal. Improvements were made and the 

linear guides were replaced with rollers that successfully enabled configurations with both horizontal and 

vertical displacement of the apex to be attained. The testing of the truss prototype was challenging. A 

nonuniform deformation of the helix, experiencing different helix angle along its length, was noticed that 

has not been recorded before in the literature, questioning the effect of the helix radius-to-length ratio on 

the helix behaviour. This in turn resulted in adjacent spokes of the helix touching during coiling/uncoiling. 

The helix stowed length added limitations to the attainable configurations of the mechanism. Nonetheless, 

the experimental data obtained are in good qualitative agreement with the analytical predictions of the 

model proving the feasibility of the proposed mechanism. Differences in the actual values have been 

observed, attributed primarily to features that were not modelled and issues on the practical implementation 

encountered during testing. The experimental results have demonstrated that a detailed design and high 

precision in manufacturing is required, especially when nonlinear behaviours are involved since the 

slightest change might have a significant impact on the result. 

In this work, we developed a morphing structural element into a novel reconfigurable mechanism. Stepping 

on the customizable nonlinear stiffness characteristics of this morphing element, the interaction of multiple 

such components in a mechanism configuration was studied and the variety of mechanical responses were 
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explored analytically, followed by an experimental implementation. The overall outcome of this study has 

been proven constructive, allowing, of course, room for improvements and further research both in the 

analytical section as well as in the design of the mechanism prototype. A novel rich design space has been 

introduced, which can be promising for exploitation in future applications such as in robotics, prosthetics 

or deployable structures. 

8.2 Future work 

This research has introduced a novel compliant, reconfigurable mechanism consisting of morphing 

composite structures of a double-helix architecture. The variety of attainable mechanical responses of a 

mechanism assembled of two double-helices in the simplest truss geometry has been demonstrated and a 

prototype was manufactured to assess the feasibility of this concept. However, acknowledging the 

limitations considered for the analysis of this mechanism along with several challenges identified during 

manufacturing and testing of the prototype, this work can set the foundations for future studies. Below 

potential paths for further exploration are presented. 

This research has studied the multistability and reconfigurability of the proposed mechanism by showing 

energy landscapes and load-displacement curves. The effect of various parameters on these has been 

explored by assigning different values to the various design parameters. Our aim was to demonstrate the 

different behaviours that can be achieved, however, a more thorough analysis and a parametric study of 

the design space of the mechanism could be valuable to the scientific community. 

A variety of different attainable responses was shown for the mechanism of double-helices. Our results 

focused on symmetric assemblies of the helices in a truss-like configuration using identical helices. Even 

though we briefly presented results of the effect on the multistability and the mechanical response of a 

mechanism with helices of different lengths in Chapter 5, it would be of interest to investigate further the 

design space of non-symmetric truss configurations. 

As an outcome of the design of the prototype, in Chapter 7 an amendment to the analytical model was 

implemented to account for the length of the end fittings of the helices. It was observed that this yields an 

impact on the characteristics of the mechanism, varying the multistability between mechanisms with 

helices of different length. A more thorough investigation of the effect of the end fitting length to the 

mechanism’s behaviour would be appropriate, recognising there is a correlation between the helix length 
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and the end fittings length, and identifying the critical limits of their ratio for the transition between 

different behaviours. 

Among other observations from the testing of the truss prototype, was the nonuniform deformation of the 

helix, with the helix angle varying along the helix length during its coiling/uncoiling. As there was no 

precedent of this behaviour in the literature, it was considered presumably dependent on the radius-to-

length ratio of the helix and possibly the presence of some end effects occurring from the use of long strips. 

Such effects were not taken into consideration in the model assumptions, therefore, they could be explored 

and addressed either by developing the model to accommodate for this or by defining limitations to the 

dimensions of the helices for the model. 

The analysis performed in this study referred to the simplest truss geometry for the assemblies of double-

helices, it being essentially a two-element truss pin-jointed at the apex and base supports. Eventually, it 

would be of interest to extend this analysis to a more complicated synthesis and design of the initial 

configurations for the mechanism. Indicatively, variations of this truss geometry accounting for different 

boundary conditions could be a first step towards more complex layouts. For example, replacing one of 

the supports with a roller support (Figure 8.1a) would add another degree of freedom and a new set of 

behaviours of possible interest. Subsequently, this configuration could accommodate an additional double-

helix between the two base supports resulting in an arrangement with three helices (Figure 8.1b). 

Having in mind potential applications that such a mechanism may be of use, i.e. in deployable structures, 

for dynamic applications, as energy harvester or vibration isolator, it would be of interest not only study 

the various configurations for a 2D truss assemblies but extend the work to the design and analysis of 3D 

space assemblies. For example, a configuration of these helical elements assembled in a pyramid (Figure 

8.2) could be a natural extension of the current mechanism into the 3D space. 
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Figure 8.1: Schematic representation of potential different initial configurations for the truss-like mechanism of 

double-helices: a) two-element truss with one support (right) a roller; b) three-element truss with one support (right) a 

roller. 

 

Figure 8.2: Schematic representation of potential initial configuration for a mechanism assembled of double-helices 

in a pyramid configuration in the 3D space. 

A good qualitative agreement has been shown between the experimental data and the predictions of the 

analytical model. However, the experimental testing of the prototype revealed a number of issues, from 

assembly challenges to structural impracticalities, that should be addressed in future work. A refinement 

of the prototype design and the development and test of further prototypes will be required for a full 

experimental characterization of the mechanism, both qualitatively and quantitatively, and for a practical, 

application targeted implementation. 

The actuation of the proposed mechanism of double-helices is currently based on mechanical means and 

the direct application of a load or displacement at the end effector of the truss assembly. Given the different 

alternatives of actuating a structure being developed in the literature, it would be of interest to consider and 

explore alternative ways to trigger this mechanism, particularly as a certain type of actuation might be of 

a benefit for specific applications. 
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In this study we have shown the potentials of an assembly of nonlinear elements with certain geometrical 

and stiffness characteristics in a truss-like mechanism. Essentially, any element with a similar mechanical 

response could be used to achieve such behaviours. Thus, it would be of interest to replace the double-

helices to other structures of a similar geometry and variable stiffness, i.e. the cylindrical composite lattice 

structure introduced in [73] or a double-helix with variable radius, and examine their response, particularly 

as it may reveal a vast of new behaviours or address some of the impracticalities found in the current 

design. 
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