57,492 research outputs found

    Fast detecting and tracking of moving objects in video scenes

    Get PDF
    18 pages. Quelques films de résultats sont disponible sur: http://www.ceremade.dauphine.fr/~pelletieIn this article we present a new method for detecting textured moving objects. Based on a known background estimation and a fixed camera, the algorithm is able to detect moving objects and locates them at video rate, moreover this method is used for object tracking purposes. Our method is multi-step: First, we use level lines to detect pixels of the background which are occluded by moving object. Then, we use an a contrario model as general framework to make an automatic clustering. Thus the moving objects are detected as regions and not only as pixels, eventually we correct this region to better fit the moving object. Experimental results show that the algorithm is very robust to noise and to the quality of the background estimation (e.g. ghosts). The algorithm has been successfully tested in video sequences coming from different databases, including indoor and outdoor sequences

    A conceptual spatio-temporal multidimensional model

    Get PDF
    Today, thanks to global positioning systems technologies and mobile devices equipped with tracking sensors, and a lot of data about moving objects can be collected, e.g., spatio-temporal data related to the movement followed by objects. On the other hand, data warehouses, usually modeled using a multidimensional view of data, are specialized databases to support the decision-making process. Unfortunately, conventional data warehouses are mainly oriented to manage alphanumeric data. In this article, we incorporate temporal elements to a conceptual spatial multidimensional model resulting in a spatio-temporal multidimensional model. We illustrate our proposal with a case study related to animal migration

    Decentralized Monitoring of Moving Objects in a Transportation Network Augmented with Checkpoints

    Get PDF
    This paper examines efficient and decentralized monitoring of objects moving in a transportation network. Previous work in moving object monitoring has focused primarily on centralized information systems, like moving object databases and geographic information systems. In contrast, in this paper monitoring is in-network, requiring no centralized control and allowing for substantial spatial constraints to the movement of information. The transportation network is assumed to be augmented with fixed checkpoints that can detect passing mobile objects. This assumption is motivated by many practical applications, from traffic management in vehicle ad hoc networks to habitat monitoring by tracking animal movements. In this context, this paper proposes and evaluates a family of efficient decentralized algorithms for capturing, storing and querying the movements of objects. The algorithms differ in the restrictions they make on the communication and sensing constraints to the mobile nodes and the fixed checkpoints. The performance of the algorithms is evaluated and compared with respect to their scalability (in terms of communication and space complexity), and their latency (the time between when a movement event occurs, and when all interested nodes are updated with records about that event). The conclusions identify three key principles for efficient decentralized monitoring of objects moving past checkpoints: structuring computation around neighboring checkpoints; taking advantage of mobility diffusion and separating the generation and querying of movement informatio

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    A qualitative approach to the identification, visualisation and interpretation of repetitive motion patterns in groups of moving point objects

    Get PDF
    Discovering repetitive patterns is important in a wide range of research areas, such as bioinformatics and human movement analysis. This study puts forward a new methodology to identify, visualise and interpret repetitive motion patterns in groups of Moving Point Objects (MPOs). The methodology consists of three steps. First, motion patterns are qualitatively described using the Qualitative Trajectory Calculus (QTC). Second, a similarity analysis is conducted to compare motion patterns and identify repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a continuous triangular model. As an illustration of the usefulness of combining these hitherto separated methods, a specific movement case is examined: Samba dance, a rhythmical dance will? many repetitive movements. The results show that the presented methodology is able to successfully identify, visualize and interpret the contained repetitive motions
    • 

    corecore