2,160 research outputs found

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    An Inexpensive Robot Platform for Teleoperation and Experimentation

    Get PDF
    Most commercially-available robots are either aimed at the research community, or are designed with a single purpose in mind. The extensive hobbyist community has tended to focus on the hardware and the low-level software aspects. We claim that there is a need for a low-cost, general-purpose robot, accessible to the hobbyist community, with sufficient computation and sensing to run ``research-grade\u27\u27 software. In this paper, we describe the design and implementation of such a robot. We explicitly outline our design goals, and show how a capable robot can be assembled from off-the-shelf parts, for a modest cost, by a single person with only a few tools. We also show how the robot can be used as a low-cost telepresence platform, giving the system a concrete purpose beyond being a low-cost development platform

    Operating at a Distance-How a Teleoperated Surgical Robot Reconfigures Teamwork in the Operating Room

    Get PDF
    This paper investigates how a teleoperated surgical robot reconfigures teamwork in the operating room by spatially redistributing team members. We report on findings from two years of fieldwork at two hospitals, including interviews and video data. We find that while in non-robotic cases team members huddle together, physically touching, introduction of a surgical robot increases physical and sensory distance between team members. This spatial rearrangement has implications for both cognitive and affective dimensions of collaborative surgical work. Cognitive distance is increased, necessitating new efforts to maintain situation awareness and common ground. Moreover, affective distance is introduced, decreasing sensitivity to shared and non-shared affective states and leading to new practices aimed at restoring affective connection within the team. We describe new forms of physical, cognitive, and affective distance associated with teleoperated robotic surgery, and the effects these have on power distribution, practice, and collaborative experience within the surgical team

    An alternative control structure for telerobotics

    Get PDF
    A new teletobotic control concept which couples human supervisory commands with computer reasoning is presented. The control system is responsive and accomplishes an operator's commands while providing obstacle avoidance and stable controlled interactions with the environment in the presence of communication time delays. This provides a system which not only assists the operator in accomplishing tasks but modifies inappropriate operator commands which can result in safety hazards and/or equipment damage

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer

    Diseño de un robot móvil autónomo de telepresencia

    Get PDF
    The recent rise in tele-operated autonomous mobile vehicles calls for a seamless control architecture that reduces the learning curve when the platform is functioning autonomously (without active supervisory control), as well as when tele-operated. Conventional robot plat-forms usually solve one of two problems. This work develops a mobile base using the Robot Operating System (ROS) middleware for teleoperation at low cost. The three-layer architec-ture introduced adds or removes operator complexity. The lowest layer provides mobility and robot awareness; the second layer provides usability; the upper layer provides inter-activity. A novel interactive control that combines operator intelligence/ skill with robot/autonomous intelligence enabling the mobile base to respond to expected events and ac-tively react to unexpected events is presented. The experiments conducted in the robot laboratory summarises the advantages of using such a system.El reciente auge de los vehículos móviles autónomos teleoperados exige una arquitectura de control sin fisuras que reduzca la curva de aprendizaje cuando la plataforma funciona de forma autónoma (sin control de supervisión activo), así como cuando es teleoperada. Las plataformas robóticas convencionales suelen resolver uno de los dos problemas. Este tra-bajo desarrolla una base móvil que utiliza el middleware Robot Operating System (ROS) para la teleoperación a bajo coste. La arquitectura de tres capas introducida añade o elimina la complejidad del operador. La capa más baja proporciona movilidad y conciencia robótica; la segunda capa proporciona usabilidad; la capa superior proporciona interactividad. Se presenta un novedoso control interactivo que combina la inteligencia/habilidades del op-erador con la inteligencia autónoma del robot, lo que permite que la base móvil responda a los eventos esperados y reaccione activamente a los eventos inesperados. Los experi-mentos realizados en el laboratorio robótica resumen las ventajas de utilizar un sistema de este tipoDepartamento de Ingeniería de Sistemas y AutomáticaMáster en Electrónica Industrial y Automátic
    corecore