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An Inexpensive Robot Platform for Teleoperation and Experimentation

Daniel A. Lazewatsky and William D. Smart

Abstract— Most commercially-available robots are either
aimed at the research community, or are designed with a single
purpose in mind. The extensive hobbyist community has tended
to focus on the hardware and the low-level software aspects.
We claim that there is a need for a low-cost, general-purpose
robot, accessible to the hobbyist community, with sufficient
computation and sensing to run “research-grade” software. In
this paper, we describe the design and implementation of such
a robot. We explicitly outline our design goals, and show how
a capable robot can be assembled from off-the-shelf parts, for
a modest cost, by a single person with only a few tools. We
also show how the robot can be used as a low-cost telepresence
platform, giving the system a concrete purpose beyond being a
low-cost development platform.

I. INTRODUCTION

Most commercial robots fall into one of two distinct
categories. Either they are aimed at the research market
or at general consumers. Research robots tend to be pro-
hibitively expensive (from the consumer point of view, at
least), lack application-level software, and have a daunting
learning curve (for those not already familiar with robotics).
Consumer robotics products, on the other hand, tend to be
inexpensive, but are often engineered for a single purpose,
lack sophisticated computation resources and sensors, and
are not really designed for tinkering with.

There is a large, active hobbyist robotics community, but
much of their effort goes into designing and implementing
the hardware and low-level control for their robots, fre-
quently relying on low-power embedded microcontrollers for
all computation. This limits the type of software development
that is easily done on these platforms; the development
environments and support libraries for these environments
are typically not as rich as for more powerful, full-featured
computing systems. For those with a software background,
this can be seen as a limitation, making it hard to get involved
with robotics.

By designing a robot with a full computer system, in-
cluding an off-the-shelf operating system and a variety of
development environments and tools, we hope to lower
the barrier for entry for programmers, and those without a
low-level software background. In addition, our choice of
middleware for the system makes available a wide variety of
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common robotics algorithms, making it possible to develop
application-level software more quickly than if one had to
implement these fundamental algorithms from scratch.

In this paper, we present a robot system designed to bridge
the gap between these three worlds: hobbyist, research, and
commercial. Our goal is to allow hobbyists to experiment
with research-grade software, on an accessible and extensible
platform constructed from commercial off-the-shelf parts. In
particular, we are interested in making it easy for those with
only a software background to get involved in robotics at the
hobbyist level.

Towards this end, we have designed and implemented a
low-cost robot from off-the-shelf parts that can be assembled
by a non-expert in a few hours. All of the parts are readily
available from on-line sources, and we have provided exten-
sive assembly instructions on our web site. The robot uses
only open-source software, and can be running autonomously
only a few minutes after the software is installed.

We also present an example open-source telepresence
application for our robot. This application serves an example
that exercises much of the functionality of the robot, gives the
robot a concrete purpose, and provides example source code
which can be used as a starting point for further software
development.

II. DESIGN GOALS

Our overall goal is to bridge the gap between the research
and hobbyist robotics communities, especially for individuals
with a background in software rather than in hardware. Our
design goals for this system are:

1) Off-the-shelf parts. The system should be assembled
from commonly-available off-the-shelf parts, by some-
one with no formal hardware training.

2) Easy to assemble. The system should be simple enough
to assemble that a 12-year-old can manage it under adult
supervision. The assembly should only use commonly-
available hand tools.

3) Low cost. The system should be affordable to the hob-
byist community. Although “affordable” means different
things to different people, we feel it is reasonable to
define it as being of comparable cost to a desktop
computer system.

4) Useful. The robot should be useful out-of-the box.
Specifically, it should be more than a collection of parts
and low-level software. In addition to being a platform
that enables tinkering and experimentation, it should
have a concrete purpose.

5) Open and extensible. The hardware and software for
the system should be open, allowing users to modify it



Fig. 1. A full view of the robot.

as they please.
6) Accessible to non-experts. It should be possible to run

the system, and to make modifications to it, without an
advanced degree in robotics.

7) Capable. The robot should be capable of running “re-
search grade” robotics algorithms, of the sort that ap-
pear in our conferences and journals. These algorithms
should be available for users to experiment with, even
if they do not have a full understanding of how they
work.

III. HARDWARE

The robot, shown in figure 1, consists of an iRobot Create
mobile base with a stalk, approximately 1.22m in length,
extending upwards. A convertible tablet netbook is clamped
at the top of the stalk, providing all of the robot’s computing
power, along with speakers and a microphone. A pan-tilt
camera is mounted above the computer.

In designing a robot that is useful and capable, we would
like the robot to be able to interact with people and things
in a human-scale world. This means that simply placing a
netbook on an inexpensive mobile base (such as the iRobot
Create) is not sufficient; the stalk mounted on top of the base

shifts the interactions possible with the robot from looking
at peoples’ feet, to being able to look at their faces. This
is important for our example telepresence application (see
section IV-B), but does introduce some addition problems,
mostly with the stability of the system. Should a user choose
to do so, it is trivial to omit the stalk, and mount the netbook
directly on the base, making the system much more stable
(but limiting the applications that the system can be used
for).

A. Specific Hardware Used

The major hardware components in the robot are:
1) Base: iRobot Create.
2) Computer: Lenovo S10-3t netbook. Any other

similarly-sized convertible tablet computer could also
be used.

3) Pan/Tilt Camera: Logitech Orbit USB camera.
4) Navigation Camera: Logitech QuickCam Pro 9000

USB camera. Many other low cost webcams could also
be used.

5) Body: 80/20 R© T-slotted extrusion.
All of these are consumer-grade and consumer-priced, and
are generally available on-line. While the specific models
used are not important, especially for the cameras and
computer, all of the hardware components must work reliably
with Linux. USB cameras have traditionally not had strong
Linux support, so some care must be exercised in the
selection of the these devices, but USB video device class
(UVC) cameras should work out of the box with modern
Linux distributions.

The pan/tilt camera is used during teleoperation as the
primary camera for the remote operator. It points out at the
world, and can be moved to attend to different things. The
navigation camera is mounted lower down the body, pointed
at the floor directly in front of the robot. Studies by Paulos
and Canny [9] as well as our own experiences suggest that
the view from this camera is extremely helpful, allowing the
remote user to more effectively navigate the robot through
tight spaces.

In addition to providing a standard hardware configuration,
in keeping with our goal of an open and extensible system,
the platform should be open enough so it can be easily
extended and tailored to user needs. The use of 80/20 R©

hardware allows use of an extensive catalog of inexpensive
and easy to assemble parts, as well as simple mounting of
cameras and other devices with standard tripod mounting
holes. A full parts list can be found on our website1 along
with several recommended configurations.

B. Limitations of the Hardware Design

Assembling the robot from off-the-shelf parts has resulted
in a number of limitations. Although solutions to several of
these limitations are straightforward, most involve access to
tools not commonly found in the home, or assume a certain
level of skill with hardware. While we expect some users

1http://telepresence.cse.wustl.edu



of this platform to possess both the skills and ability to
overcome these limitations, we cannot make this assumption
for all of the intended users, many of whom will have no
such tools or expertise.

The most significant limitation is in the stability of the
robot. Mounting the laptop high above the base places it
at approximately at (short) human face height, but also
makes the system somewhat unstable, since the laptop is
heavy compared to the rest of the components. This can be
addressed by putting extra ballast in the base (extra batteries,
for example), or by imposing software limits on acceleration
(see section IV-C).

Flexing in the plastic base is also a source of instability.
This flexing is actually a feature of the Create base, since
it allows it to navigate over the edges of carpets and other
slightly raised obstacles. The base could be stiffened with
additional hardware, but this would come at the cost of
reduced mobility. Again we made the decision to retain the
mobility, and deal with the stability issues in software.

IV. SOFTWARE

A. Software Architecture
The robot control software uses ROS [10], a free, open-

source middleware platform for robotics. ROS meets our
design requirements of openness and extensibility and low
cost, and also provides the following important features:

1) Support for multiple programming languages. At the
time of writing, ROS supports C++, Python, Octave, and
LISP. Python support is particularly important, since this
is a popular, accessible language that is easy for non-
specialists to learn and use.

2) Well-documented, and with a supportive user com-
munity. ROS has extensive on-line documentation, a
mailing list for questions, and a large, supportive user
community. This is a vital resource for hobbyists who
do not have access to a “local expert” to help them with
software problems as they come up.

3) Access to research-grade robotics algorithms. There
is an extensive and constantly-growing collection of
robotics software available in ROS. At the time of
writing, over thirty research institutions are actively
publishing ROS software. This gives users access to
a wide variety of state-of-the-art algorithms for path-
planning, localization, mapping, and SLAM.

4) Extensive suite of development tools. In addition to the
middleware itself, ROS has a number of visualization
and development tools that make it easier for novice
programmers to develop and debug robot control soft-
ware.

5) Modularity. ROS is designed to be highly modular,
allowing users to largely ignore the parts of the con-
trol software that they are not interested in (low-level
drivers, for example), and to concentrate on the ones
that are important to them. It also allows algorithms
and modules to be portable across robot platforms, as
long as the low-level driver modules are in place, and
expose a common API.

The ROS middleware is structured as a graph of
independently-running nodes, each of which publishes the
results of some computation on incoming data, either from
sensors or from other nodes. We refer the interested reader
to the paper by Quigley et al. [10] for more details on ROS,
but note that it is a highly modular system, which allows
high-level applications to be constructed relatively quickly.
Nodes for many common robotics algorithms (path-planning,
navigation, mapping, SLAM, etc.) are already available,
documented on-line, and integrated into the middleware

B. Telepresence Application

The primary goal of this work is the design and imple-
mentation of a low-cost robot that will make it easier for
those with a software background to become involved in
robotics. However, just providing a hardware platform leaves
a potential user with two important questions: (1) What is it
good for? (2) What do I do now?

To address these questions, we have also developed an
example telepresence application for our robot. This serves
to give the robot something that it can do “out of the box,”
while also providing an example application that exercises
all of the hardware on the robot.

Robot telepresence systems are becoming increasingly
popular [3] (see section VI for an overview) and are some-
thing that a potential hobbyist will likely be familiar with, at
least in concept. As a telepresence system, We do not claim
that our system is a as capable as many of the commercial
solutions; our goal is to use the telepresence application to
illustrate what our robot can do, how to write applications for
it, and to provide an example application. Having said that,
the application is sophisticated enough to use in a realistic
setting. The authors have used it to successfully participate
in remote meetings, including at doctoral thesis defenses.

The software for the telepresence application is built on
the ROS middleware, and is available for download from our
web site. It includes all of the drivers required for interacting
with the base and cameras, and a web-based interface for
remotely driving the robot about. The web interface is shown,
shown in figure 2 is loosely based on Willow Garage’s
Texai web interface, and implements simple keyboard-based
controls for moving the robot. The full system is shown in
figure 3, and consists of the following custom nodes:

1) iRobot Create drivers. Developed by Brown Uni-
versity2, this node takes in ROS velocity command
messages, and exposes iRobot Create’s sensor data in
the ROS message format.

2) Webcam driver. Uses OpenCV to capture images from
the two webcams and send them as ROS messages [2].

3) Image saver. Listens for webcam images and makes
them available to the web interface.

4) Driving web application. Written as an application for
ROS’ webui package, this presents a HTML interface
which listens for keypresses, sends keypress data to

2http://code.google.com/p/brown-ros-pkg/



Fig. 3. A screenshot of rxgraph, one of the many debugging tools included with ROS showing the node graph of the included software stack.

Fig. 2. The basic web interface, showing a keyboard-based driving
interface, and view of the two cameras.

ROS using HTTP requests, and translates those HTTP
requests into ROS velocity messages.

C. Overcoming Hardware Limitations in Software

The use low-cost consumer-grade hardware, while lower-
ing the overall cost of the system, has the effect of lowering
the robustness and quality of the parts used, compared to
research-grade robots. However, many of the limitations
introduced by inexpensive hardware can be compensated for
in software.

1) Inaccurate Pan/Tilt Movement: The pan/tilt camera
used on the robot is unable to report its pose, and cannot
be accurately and consistently commanded to a given pose.
This uncertainty increases with time, as the nominal pose
and the actual pose diverge more and more. This problem

is likely due to slippage and backlash in the gear train and
to inaccurate motor encoders. These errors can be modeled,
and the current pose of the pan/tilt mechanism tracked with
an Extended Kalman Filter. Driving the unit to its pan and
tilt limits on initialization will give us a known starting pose.

2) Unstable, Lightweight Base: The instability of the
robot can be decreased by simply adding extra weight to the
base. However, this makes the robot heavier, slows it down,
and shortens the battery life. We addressed this problem by
putting in place software limits on the robot’s motions. With
no limits, the robot accelerates to its maximum velocity of
approximately 0.35 ms−1 almost instantly. If we assume an
acceleration period of 0.5s, this is an acceleration of 0.7
ms−2.

We placed asymmetric limits on acceleration and decel-
eration. Empirical testing showed that a maximum acceler-
ation of 0.6 ms−2 and maximum deceleration of -1.0 ms−2

resulted in stable operation. Velocities are constrained such
that

vt = vt−1 + a dt

until the target velocity is reached, using a controller fre-
quency (dt−1) of 20Hz.

The acceleration limits made the robot significantly more
stable, and difficult (though not impossible) to tip over
accidentally. The acceleration values were chosen to be as
large as possible to minimize any perceived sluggishness in
the controller.

3) No Depth Sensor: Most research robots have depth
sensors, such as laser range-finders or stereo vision sys-
tems, available to them. However, these devices tend to be
expensive, either to purchase or in terms of computation.
We can give our robot some basic range-sensing capabilities
by implementing Horswill’s Polly algorithm which uses
a single, uncalibrated, low-resolution camera to do visual
obstacle avoidance [4]. The algorithm assumes that the area
directly in front of the camera is free space, and builds a
color histogram model of it. All other areas in the image
that match this model are assumed to also be free, and are
marked as safe. Horswill observed that when the camera is
positioned near the floor, approximately parallel to it, pixel
height in the image corresponds to depth in the world. The
Polly algorithm takes advantage of this by searching from
the bottom of the image up, looking for the highest ‘safe’
pixel in a contiguous block, and moving towards it.

The Polly Algorithm has been implemented on a 75 MHz
embedded microcontroller [12], and can be expected to run
well on the Atom processor of our robot’s netbook.



Research grade depth sensors (stereo cameras, laser
rangefinders, structured light cameras, time of flight cameras,
etc) are extremely expensive, generally costing more than our
complete robot. This makes autonomous obstacle avoidance
more difficult, and limits the use of many current SLAM
algorithms. The sensors the robot does have lend themselves
well to use with visual odometry (vSLAM) approaches, such
as vSLAM [6] and MonoSLAM [1]. However, these tend to
be computationally expensive, and are unlikely to be able
to run on the relatively modest processors on most netbook-
class computers. However, as netbooks get more powerful, it
may be possible in the future. Additionally, as low cost depth
sensors (such as the Microsoft Kinect [7]) become available,
the extensible design of our platform will allow for their easy
integration.

4) Autonomous Docking: In addition to causing instabil-
ity, we found that the added weight caused the Create to
move too slowly to dock autonomously with its charging
station when using its built-in docking routines. When loaded
with our additional hardware, the robot cannot build suffi-
cient momentum to properly insert itself into the dock.

To overcome this, we have implemented our own au-
tonomous docking routine, which exposes the robot’s speed
as a user-defined parameter. The routine uses the Create’s
infrared sensor to position the robot in front of the dock and
drive along a path until it is properly docked.

V. USER EXPERIENCE

Our goal is to make the process of acquiring the parts,
building the robot, and running the demonstration application
to be as simple and straightforward as possible. We believe
that early frustration with the system might cause some
potential users to give up before they have a working robot,
which we want to avoid at all costs.

To that end, we have created an on-line parts listing,
integrated with a wish-list at amazon.com. This means that
potential users can order the parts for their robots quickly,
with only a few mouse clicks. Once the parts arrive, users
can download detailed assembly instructions from our web
site. Informal testing indicates that assembling the system
from parts, using the instructions, and with no additional
help takes less than two hours for someone unfamiliar with
the robot. The entire robot can be assembled using only two
hex keys (included in the parts list).

Once the hardware is assembled, the user must install
Ubuntu Linux on the netbook, again following on-line
instructions. Once the operating system is in place, the
ROS middleware can be installed using the Ubuntu package
manager (just like any other set of software packages).
We include detailed instructions for this on our web-site,
assuming no prior knowledge of Linux. We also give links to
other web sites, showing how to configure and customize the
Linux installation. Our future plans include a custom Linux
distribution, with all necessary components pre-installed, that
users can download directly from our web-site.

Once the operating system and ROS middleware are in
place, executing a single script will start the web interface,

which can then be accessed from other computers via a web
browser. Again, we provide instructions that assume no prior
knowledge of Linux, with pointers to assist in debugging
network-related issues.

To provide further assistance, we have established a mail-
ing list and wiki on our web-site, for users to ask (and
answer) questions about installation, and other aspects of the
system.

A. Software Development

Although an introduction to computer programming is
beyond the scope of our goals, we do provide links to
introductory resources on our web-site. We also provide
links to specific sections of the ROS on-line documentation,
and tips on how to become a member of the ROS user
community. The ROS documentation includes an overview
of how ROS works and the concepts behind it, as well as a
set of tutorials covering the basics of interacting with ROS
such as navigation the ROS filesystem, creating and building
package, and using ROS’ included tools, through writing
nodes and subscribing to topics. All of the basic tutorials
which involve writing code have versions for both C++ and
Python.

After users have completed the ROS tutorials, our telep-
resence application provides a concrete starting point for
developing software applications for the robot, and interact-
ing with its hardware. The modular design of ROS makes
is particularly easy for the components of the telepresence
application (and any other application, for that matter) to be
reused as the building blocks of something new.

VI. RELATED WORK

There have recently been several entries in into the com-
mercial telepresence market, most notably the Texai from
Willow Garage, Inc, the QB from Anybots, Inc and the
VGo from Vgo Communications. These systems, though
all very capable, are prohibitively expensive for consumers
and hobbyists, many costing upwards of $10,000 USD [5]
[3]. On the other end of the spectrum, there are numerous
hobbyist-grade telepresence projects, including Sparky Jr.3,
an approximately $1,100 USD iRobot Create based telepres-
ence robot using custom hardware and software, and other
more expensive custom platforms. There are also hobbyist-
grade robots like LabRatTM [11], which was designed to be
an extremely inexpensive robot for classroom, hobbyist and
research use. Unlike these robots, we are not trying to pro-
vide a commercial telepresence platform, or a super-low cost
hobbyist robot, but rather a capable, extensible development
platform which can be configured for telepresence purposes
at a cost of an order of magnitude less than what is currently
available in similarly capable robots.

In 1998, Paulos and Canny asserted “[personal tele-
embodiment] systems can now be built at minimal cost”
resulting in “the extension of robotics in to the lives of
ordinary people,” [8] but no viable options have yet to mate-
rialize. If telepresence (and by extension, personal robotics)

3http://http://sparkyjr.ning.com/



are to permeate society as stated, the necessary understanding
of how to design effective software systems and interfaces
must progress significantly, and be available to hobbyists
and early adopters because, as we claim, the critical mass
of users does not exist within the research community for
this to happen. This critical mass can only come about if the
hardware necessary for basic work is within reach of anyone
wishing to experiment, and if the work done by these people
can be easily shared.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced the basic hardware requirements for a
functional telepresence robot, and put forth a low-cost design
that meets these requirements. This platform moves towards
bridging the gap between hobbyist and research robotics by
providing a standard platform, along with research-calibre
software development framework, and the ability for hob-
byists to take advantage of cutting edge systems in their
own work. The hardware is no more difficult to assemble
than the furniture bought by millions of people each year,
and the software can be installed automatically with several
scripts. We hope that this platform can put a low-cost, easy to
assemble, and useful robotic platform in the hands of anyone
interested in writing robot software, and provide a basis for
meaningful hobbyist involvement in the open-source robotics
community.

In building a low-cost robot, we must forgo using research-
grade parts, instead using consumer-grade hardware which
does not perform as well as the more expensive alternatives,
described in more detail in section IV-C. It is desirable for
these inexpensive parts to have performance better than was
intended by design. Out of the box, the pan tilt camera used
gives no estimates of its state (pan and tilt angles). We have
begun work on using visual observation sources to provide
state estimates to be used in Sparse Bundle Adjustment or a
Kalman Filter.

Given a low-cost, easy to assemble robotics platform, we
hope to hold a robot-building workshop at the St. Louis
Science Center to show children that even though the world
of robotics is complex and can be overwhelming, getting

started is easy. We plan on making these robots available
to operate over the internet using a web-based interface,
allowing people all over the world to explore the museum,
and providing a testbed for further human-robot interaction
work by ourselves and other HRI researchers.
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