4,617 research outputs found

    Refinement algebra for probabilistic programs

    Get PDF
    We identify a refinement algebra for reasoning about probabilistic program transformations in a total-correctness setting. The algebra is equipped with operators that determine whether a program is enabled or terminates respectively. As well as developing the basic theory of the algebra we demonstrate how it may be used to explain key differences and similarities between standard (i.e. non-probabilistic) and probabilistic programs and verify important transformation theorems for probabilistic action systems.29 page(s

    Optimizing Abstract Abstract Machines

    Full text link
    The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.Comment: Proceedings of the International Conference on Functional Programming 2013 (ICFP 2013). Boston, Massachusetts. September, 201

    Foundational Extensible Corecursion

    Full text link
    This paper presents a formalized framework for defining corecursive functions safely in a total setting, based on corecursion up-to and relational parametricity. The end product is a general corecursor that allows corecursive (and even recursive) calls under well-behaved operations, including constructors. Corecursive functions that are well behaved can be registered as such, thereby increasing the corecursor's expressiveness. The metatheory is formalized in the Isabelle proof assistant and forms the core of a prototype tool. The corecursor is derived from first principles, without requiring new axioms or extensions of the logic

    Motivation In Public Sector Unionized Organizations

    Get PDF
    Developing creative ways to motivate unionized public sector employees is a growing concern.  The concept of motivation within the public sector work place is something that is generally understood but unfortunately not often practiced.  This paper looks deeper at the perception that public sector unions receive overly generous compensation and pension plans while their members deliver substandard performance

    Barnes Hospital Record

    Get PDF
    https://digitalcommons.wustl.edu/bjc_barnes_record/1161/thumbnail.jp

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201
    corecore