
DOI 10.1007/s00165-009-0111-1
BCS © 2009
Formal Aspects of Computing (2010) 22: 3–31

Formal Aspects
of Computing

Refinement algebra for probabilistic programs
Larissa Meinicke1 and Kim Solin2

1 Åbo Akademi, Åbo, Finland. E-mail: larissa.meinicke@abo.fi
2 Uppsala University, Uppsala, Sweden. E-mail: kim.solin@filosofi.uu.se

Abstract. We identify a refinement algebra for reasoning about probabilistic program transformations in a total-
correctness setting. The algebra is equipped with operators that determine whether a program is enabled or
terminates respectively. As well as developing the basic theory of the algebra we demonstrate how it may be used
to explain key differences and similarities between standard (i.e. non-probabilistic) and probabilistic programs
and verify important transformation theorems for probabilistic action systems.

Keywords: Refinement algebra, Probability, Kleene algebra, Action systems, Data refinement, Atomicity
refinement

1. Introduction

Probabilistic programs, programs in which probabilistic choices may be made, have applications in areas such
as distributed computing and reliable systems modelling. In order to be able to reason about such programs one
would like a technique for understanding how and when it is possible to transform one probabilistic program
into another while preserving some notion of correctness. For example, suppose we have a program

do e � (a do b od) � l � r od (1)

in which e, a, b, l and r represent programs which may include discrete probabilistic choices (we use x p ⊕ y
to denote the discrete probabilistic choice in which x is executed with probability p and y is taken with proba-
bility 1 − p), in addition to the more commonplace operators sequential composition, ; , and nondeterministic
choice, �, which may be used to represent design freedom in specifications, or uncertainty. These programs may
implicitly contain a guard, which denotes when they are enabled to be executed. Program (1), which we shall refer
to as a probabilistic action system [ST96], may be used to represent the concurrent execution of atomic actions,
e, (a do b od), l and r by an unfair scheduler: on each iteration the scheduler nondeterministically selects an
enabled action for execution; it continues execution indefinitely, or until all of the actions become disabled. We
may like to know under what circumstances is it possible to replace Program (1) by another, say

do e � a � b � l � r od (2)

in which atomic action (a do b od) has been decomposed, thereby increasing the amount of parallelism in
the system. Theorems for reasoning about transformations of this kind are often referred to as separation and
reduction or atomicity refinement theorems, and have been shown to play a useful role in the development and

Correspondence and offprint requests to: L. Meinicke and K. Solin, E-mail: larissa.meinicke@abo.fi; kim.solin@filosofi.uu.se

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15133193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 L. Meinicke, K. Solin

verification of non-probabilistic distributed systems [Doe77, Lip75, LS89, Bac89, BvW99, Coh00]. We may also
be interested in knowing when, and in what context, Program (2) may be replaced by replaced by another

do e ′ � a ′ � b ′ � l ′ � r ′ od

which uses a different data representation. Theorems of this variety, data refinement theorems, may be used to
develop abstract program specifications into concrete program implementations.

The answers to these questions are not as straightforward and simple as they may seem. Although
transformation rules for non-probabilistic programs are well understood, transformation rules for probabilistic
programs differ in subtle, but important ways from their better-known non-probabilistic counterparts [MW05,
MCM06, MH06, MH08b, Mei08]. A technique for justifying and explaining such transformations should aspire
to being both reliable and uncomplicated to use. Which methods are at hand?

Abstract algebra has a solid mathematical underpinning and simultaneously provides a perspicuous notation
that allows for simple symbol pushing instead of tedious model-theoretic reasoning. Several examples have
demonstrated how abstract algebra may be employed as an efficient tool for reasoning about programs. For
example, in early work, Kozen used Kleene algebra with tests for proving transformation rules of loops in a
partial-correctness framework [Koz97]. Solin and von Wright have then used refinement algebras for program
reasoning in a total-correctness environment [vW02, vW04, SvW06, Sol06]. In addition to providing a suitable
level of abstraction at which to perform and explain proofs, such algebras are a convenient way to describe
similarities and dissimilarities between different program models and to reuse results proved in an algebra over
different models for which the axiomatisation is sound. Recent results have also shown that abstract-algebraic
proofs may be simple to automate [HS08].

McIver et al. [MW05, MCM06] and Meinicke and Hayes [MH06, MH08b, Mei08] have identified that alge-
braic reasoning also works well where probabilistic programs are concerned. In their work, McIver et al. [MW05,
MCM06] specified a relaxation of Kleene algebra suitable for probabilistic programs, known as probabilistic
Kleene algebra, and used it to derive a probabilistic separation and reduction theorem which has been applied in
the verification of a protocol in [MCM06]. This algebra, like Kleene algebra, contains a weak iteration (or Kleene
star) operator, ∗, which may be used to represent finite (or terminating) iterations, but it does not contain oper-
ators for representing possibly infinite iterations. For this reason, we say that it is suitable for reasoning about
partial—but not total—program correctness. In related work, Meinicke and Hayes [MH06, MH08b, Mei08]
explored algebraic properties of probabilistic programs within a total-correctness framework, in which possibly
infinite iterations are expressible, and used them to derive transformation theorems for probabilistic loops and
action systems within a particular program model.

In this paper, we identify and explore a very general abstract algebra for reasoning about probabilistic
programs in a total-correctness framework. That is, we lift the concrete-algebraic approach to probabilistic
programs of Meinicke and Hayes [MH06, MH08b] to a more abstract level, in the same way that Solin and
von Wright [vW02, vW04, SvW06] lifted the concrete-algebraic approach to non-probabilistic programs of Back
and von Wright [BvW99]. Unlike probabilistic Kleene algebra [MW05], this algebra contains both operators
for expressing terminating and possibly non-terminating iterations. We consider the ability to express programs
that are possibly non-terminating as important: in non-reactive programs a non-terminating loop is a classical
programming error. Also, reactive programs—programs in which the behaviour over time is visible—may exhibit
non-terminating behaviours.

One very important feature of this algebra is its simplicity. Like probabilistic Kleene algebra, the algebra
has operators to represent sequential composition, choice and iterations, but it does not contain a probabilistic
choice operator, or other probabilistic-program specific attributes. This decision reflects an important observa-
tion: many non-trivial transformation rules for probabilistic systems, such as the data refinement and separation
and reduction rules we derive in Sect. 8, may in fact be specified and verified without having to reason directly
about probabilistic choices or other probabilistic-program specific attributes. The generality of the algebra not
only allows us to hide unnecessary details, but it allows us to use the algebra to capture similarities between
different models—both probabilistic and non-probabilistic. This implies that results verified in the algebra are
valid across a range of models, including

• Non-reactive non-probabilistic program models like the isotone predicate transformers which may be used to
model programs with two forms of nondeterministic choice, angelic and demonic choice, in a total-correctness
framework. Given a game-theoretic interpretation, demonic nondeterministic choice, �, represents a choice
which cannot be controlled by someone observing the execution of a program, and which, if possible, will be
made to her disadvantage, while an angelic choice, �, can be favourably influenced by the same observer in

Refinement algebra for probabilistic programs 5

order to achieve a desired outcome. These two forms of choice together may be used for modelling two-player
games and contracts [BvW98].

• Non-reactive probabilistic program models like the nondeterministic expectation transformers, or the dually
nondeterministic expectation transformers [MM01a, MH08b]. The first of these models, the nondeterministic
expectation transformers, may be used to express probabilistic programs with a total-correctness semantics
in which discrete probabilistic choice and demonic nondeterministic choice are expressible, while the second
model, the dually nondeterministic expectation transformers, generalises the first by additionally allowing the
expression of angelic choice.

Reactive probabilistic program models, including that described by Meinicke and Solin in [MS08], seem to also
be likely models for the algebra.

We also introduce guards and assertions into the refinement algebra. Guards form a Boolean subalgebra
of the carrier set and can be used when modelling for example the predicates of conditionals and loops. Since
Boolean algebra is again a very well-known structure, this does not endanger the simplicity of the abstraction.
Assertions, which can also be used to model predicates but behave differently from guards when the predicate
does not hold, are defined in terms of guards. Moreover, we define operators that determine whether a program is
enabled or terminates, respectively. The last-mentioned operators are similar to the domain operator of relational
algebra and thus familiar to several people with a background in computer science or discrete mathematics.

The contents of the paper are organised as follows. First, the general refinement algebras that are used in the
paper are identified and their suitability for probabilistic program models is explained. Guards and assertions are
then introduced in Sect. 4. In Sect. 5, enabledness and termination operators are defined in the algebra and we
discuss how they may be interpreted for probabilistic program models. A discussion of the limitations of using
such a simple algebra to reason about probabilistic programs appears in Sect. 6, and basic properties which may be
verified in the algebra are summarised in Sect. 7. We then explore and demonstrate the capabilities of the algebra
in Sect. 8 by using it to reason about transformation theorems for probabilistic action systems. First we demon-
strate that some fundamental action system transformation and data refinement theorems from the model-based
work of Meinicke and Hayes [MH06, MH08b] may be given simple proofs in the abstract algebra. By lifting these
earlier model-specific results into the abstract algebra, we demonstrate their validity across a wider range of mod-
els, as well as demonstrating the ability of the algebra to verify practical and important results. We then use the
algebra to derive new separation and reduction theorems for probabilistic action systems. We conclude in Sect. 9.
Details of two probabilistic program models, expectation-transformer models [MMS96, MM05, MM01a], that
are used throughout the text to motivate the algebra are provided in Appendix A: Appendix A.1 briefly outlines
the expectation-transformer theory of Morgan and McIver [MM01a], and in Appendix A.2 we justify the sound-
ness of our axiomatisation with respect to the models from Appendix A.1. In Appendix A.3 we verify some other
properties which are used to support the discussions in the text.

2. A very general refinement algebra

We use the term refinement algebra to refer to the set of abstract algebras closely related to Kleene algebra that
are suitable for reasoning about programs in a total-correctness framework. The most studied of these algebras
is von Wright’s demonic refinement algebra (dRA) [vW02, vW04], a variant of Kleene algebra which is sound
with respect to program models, like the infinitely conjunctive predicate transformers, in which only one form of
nondeterministic choice is expressible. As noted by von Wright [vW04], the demonic refinement algebra is not
suitable for program models like the isotone predicate transformers in which both demonic and angelic choices
are present. As a result, he proposed a generalised algebra, the general refinement algebra (gRA), which is suit-
able for such a model. This algebra, which is also related to the algebras presented in [MCM06, TF06, M0̈4], is
relatively new and unexplored. The axioms of the demonic refinement algebra are also not sound with respect to
program models, like those used in [MH08b], in which discrete probabilistic choice as well as either one or two
forms of nondeterministic choice coexist. However, we observe here that the general refinement algebra axioms
are, and that this algebra is a very simple, but powerful tool for probabilistic program reasoning.

In this section we outline von Wright’s general refinement algebra, and we discuss its suitability for probabi-
listic programs. We also investigate and develop further the basic theory of the algebra. The two main motivating
probabilistic program models we refer to are the nondeterministic and the dually nondeterministic expectation
transformers [MMS96, MM05, MM01a] which were investigated in the concrete-algebraic work of Meinicke and
Hayes [MH08b]. Details of these models and soundness arguments may be found in Appendixes A.1 and A.2.

6 L. Meinicke, K. Solin

2.0.1. Axiomatisation

The general refinement algebra is axiomatised over the operators

; ,�,∗ , and ω,

and the constants

� and 1.

The elements of the carrier set can be seen as probabilistic program statements. The operators should then be
understood so that � is demonic choice—a choice we cannot affect and which is not made with respect to any
probability—and ; is sequential composition. The constant � is magic, a program statement that establishes any
postcondition; and 1 is skip. Weak iteration ∗ (the Kleene star) can be seen as an iteration of any finite length.
Strong iteration ω is an iteration that either terminates or goes on infinitely. The strong iteration operator may
be used to model well-known programming statements such as while-loops, which are possibly non-terminating.
While-loops that are certainly terminating may be more specifically modelled using the weak iteration operator.
We also define a refinement ordering on the algebra by

x � y ⇔df x � y 	 x

to be read “y establishes anything that x does and possibly more” (intuitively, if x is refined by y , then a demon
would always choose x since y can do anything that x does and possibly more; by choosing x the demon has a
better chance of winning).1

Definition 2.1 A general refinement algebra (gRA) is a structure over the signature

(; ,�,∗ ,ω ,�, 1)

satisfying the following axioms and rules (� has least precedence, followed by ;, and then ∗ and ω, which have
equal precedence—we omit ; so that x ; y is written xy when no confusion can arise):2

x � (y � z) 	 (x � y) � z , (3)
x � y 	 y � x , (4)
x � � 	 x , (5)
x � x 	 x , (6)
x (yz) 	 (xy)z , (7)

1x 	 x 	 x1, (8)
�x 	 �, (9)

x (y � z) � xy � xz , (10)
(x � y)z 	 xz � yz , (11)

x ∗ 	 1 � xx ∗, (12)
x � yx � z ⇒ x � y∗z , (13)

xω 	 1 � xxω and (14)
yx � z � x ⇒ yωz � x , (15)

where the order � is defined by x � y ⇔df x � y 	 x . �

To model program abortion, we define a constant ⊥ by

⊥ 	df 1ω (16)

and it is easily verified via axioms (15) and (8) that

⊥ � x and ⊥x 	 ⊥ (17)

1 The one not familiar with this form of intuition can consult Back and von Wright [BvW98].
2 Note that a typographical error appears in [vW04]: the distributivity axioms (10) and (11) are mistakenly written as x (y � z) 	 xy � xz
and (x � y)z � xz � yz .

Refinement algebra for probabilistic programs 7

hold for any x [vW02], so ⊥ is a least element and is right annihilating. In a program interpretation, ⊥ may be
seen as abort, a program establishing no postcondition. It is easy to prove that all the operators are isotone in all
their arguments with respect to � and that � is a partial order.

The general refinement algebra is sound with respect to both the set of nondeterministic, and dually nonde-
terministic expectation transformers over a possibly infinite state space. (See Appendixes A.1 and A.2.)

2.0.2. Discussion

Let us look a bit closer at some of the axioms. Like demonic refinement algebra, most of those not pertaining to
the strong iteration operator should be familiar from Kleene algebra: in fact two of the Kleene algebra axioms are
absent and one has been modified. The annihilation axiom x� 	 � is absent since it is not suitable for models, like
the expectation-transformer models used in [MH08b], in which non-terminating behaviour cannot be modified
by executing subsequent commands—including �. For the same reason it is also excluded from other algebras
including the demonic refinement algebra [vW02] and Möller’s Lazy Kleene algebra [M0̈4]. The remaining two
axioms from Kleene algebra (and demonic refinement algebra) which have been, respectively, modified and elided
are right distributivity,

x (y � z) 	 xy � xz , (18)

and the induction axiom

x � xy � z ⇒ x � zy∗. (19)

As noted by Meinicke and Hayes [MH06], these properties do not hold for programs which exhibit branching
behaviour, and so right-distributivity is suitably weakened to right sub-distributivity (axiom (10)) and the induc-
tion axiom is elided. Although the induction axiom is elided in the general algebra, a weakening of this axiom
has been shown to be valid for general refinement algebras that satisfy additional properties.

Any general refinement algebra that is also a complete lattice3 (induced by the ordering �), and for which
each element x of the carrier set is semi-cocontinuous4 has the following induction property for all x , y and z in
the carrier set:

x � x (y � 1) � z ⇒ x � zy∗. (20)

We thus refer to a general refinement algebra which takes (20) as an additional axiom as a semi-cocontinuous
general refinement algebra (scc. gRA).5 The axiom (20) is independent of the axioms of general refinement algebra,
just as (19) is also independent [Koz90]: in fact, the same example used by Kozen in [Koz90], may also be used
to prove independence in our case.

For finite state spaces, both the set of nondeterministic and dually nondeterministic expectation transformers
are complete lattices whose elements are semi-cocontinuous [MH08b]. Consequently, as shown by Meinicke and
Hayes [MH08b], they also satisfy unfolding axiom (20). On the other hand, for infinite state spaces, semi-conti-
nuity is lost in both models and axiom (20) fails to hold [Mei08].

In gRA, we have that axiom (13) is equivalent to

x � yx ⇒ x � y∗x , (21)

and (20) is equivalent to

x � x (y � 1) ⇒ x � xy∗. (22)

This may be verified in the same way as the equivalence of axiom (13) and (21), and of (19) and

x � xz ⇒ x � xz ∗, (23)

in Kleene algebra [Koz94].

3 That is, each subset of the carrier set has a least upper bound and a greatest lower bound [DP90].
4 An element x of a complete lattice is semi-cocontinuous if for all non-empty codirected subsets of the carrier set Y , x ; (�y ∈ Y • y) 	
(�y ∈ Y • x ; y), where a set Y is codirected iff (∀y1, y2 ∈ Y • (∃y3 ∈ Y • y3 � y1 ∧ y3 � y2)), and the greatest lower bound of a set of
elements Y is written as (�y ∈ Y • y).
5 We have earlier referred to this structure as a probabilistic demonic refinement algebra, but we find scc. gRA more apt.

8 L. Meinicke, K. Solin

Property (22) is taken as an axiom in the probabilistic Kleene algebra [MCM06] instead of (20). As mentioned
above, it is not always valid for probabilistic models, in particular infinite state space models—this motivates its
absence in gRA.

In Kleene algebra (and dRA), the induction axiom (19) has a “matching” unfolding property,

x ∗ 	 1 � x ∗x , (24)

which is derivable from the axioms, excluding (19). In general refinement algebra, this property is not derivable,
however it has another counterpart. An analogous property also holds true of strong iteration, despite the fact
that it only has one induction rule.6

Proposition 2.2 For any x in the carrier set of a gRA, the equations

x ∗ 	 x ∗(x � 1) � 1 (25)
xω 	 xω(x � 1) � 1 (26)

hold.7

Proof. The first claim is proved by

x ∗(x � 1) � 1
� {isotony}

x ∗1 � 1
� {1 is unit (8), isotony}

x ∗

and

x ∗ � x ∗(x � 1) � 1
⇐ {x ∗ � 1 and isotony}

x ∗ � x ∗(x � 1)
⇐ {induction (13)}

x ∗ � xx ∗ � x � 1
⇔ {xx ∗ � x }

x ∗ � xx ∗ � 1
⇔ {unfolding (12)}

true.

The reverse refinement of the second claim is proved exactly as the first, and

xω � xω(x � 1) � 1
⇐ {xω � 1 and isotony}

xω � xω(x � 1)
⇐ {induction (15)}

xxω(x � 1) � 1 � xω(x � 1)
⇔ {unfolding (14), distributivity (11)}

xxω(x � 1) � 1 � xxω(x � 1) � x � 1
⇔ {commutativity of choice (4), basic poset property}

xxω(x � 1) � 1 � x
⇐ {basic poset property}

xxω(x � 1) � x
⇐ {isotony}

xω(x � 1) � 1
⇐ {xω � 1, isotony, 1 is unit (8)}

true

gives the other direction. �

6 This also means that in monodic tree Kleene algebra [TF06] the axiom 1 + x ∗(x + 1) ≤ x ∗ could actually be elided.
7 Note that the more general properties zx ∗ 	 zx ∗(x � 1) � z and zxω 	 zxω(x � 1) � z also hold.

Refinement algebra for probabilistic programs 9

As in the demonic refinement algebra [vW02], we include unfolding (14) and induction (15) axioms for the
strong iteration operator. Unlike the demonic refinement algebra and lazy omega algebra [M0̈4], general refine-
ment algebra does not include the isolation axiom, xω 	 x ∗ � xω�, which states that a strong iteration may be
decomposed into a simple choice between performing any finite or an infinite number of iterations: this property
is not satisfied by probabilistic—nor angelic—programs [MH06].

Although the primary focus of this paper is performing total correctness reasoning, we do not exclude
discussions of the weak-iteration operator, since it may (in some circumstances) be applied when it is reasonable
to assume that an iteration is terminating (see [MCM06, MH06]). In Sect. 8.1 we show how weak iteration, via
the new scc. gRA axiom (20), plays an important role in the derivation of a data refinement rule for probabilistic
action systems.

3. Healthiness conditions

In this section we introduce “healthiness conditions” to the algebra. The healthiness conditions are stated in a
fashion that would correspond to defining them in a point-free way in the expectation-transformer model, that is
without going down to the level of expectations.

We thus say that an element x is conjunctive if it satisfies

x (y � z) 	 xy � xz (27)

for any y and z in the carrier set. As mentioned in the previous section, conjunctivity is not satisfied by all
probabilistic programs. It is, however, satisfied by a large subset of these: the programs which do not include
probabilistic (nor angelic) choices. When it is reasonable to take conjunctivity as an assumption, many useful
transformation rules which would otherwise not hold, may be verified. Also, we say that an element x is continuous
if the condition

(∀n • x (yn � u) � zxn � vx) ⇒ xyωu � zωvx (28)

holds for any y, z , u and v in the carrier set (the bound variable n also ranges over the carrier set). The condition
is closely related to the fusion lemma of fixpoint theory. So, continuity is, in a certain sense, here defined via the
fusion lemma (see Appendix A). To define continuity in the familiar fashion, we would need an operator for
expressing unbounded angelic choice, and this is not readily available in the present framework. Continuity is
required in order to prove some useful commutativity rules for iterations.

4. Guards and assertions

We now introduce guards and assertions into the algebra. Guards are to be seen as statements that check if a
predicate holds and skip if this is the case, otherwise behave like magic. Guards must be introduced slightly dif-
ferently in general refinement algebra than in demonic refinement algebra, since not every element is conjunctive
but we still want guards to satisfy conjunctivity. Hence, along the lines of Solin [Sol06], an element g of the carrier
set that

• is conjunctive and
• has a conjunctive complement ḡ satisfying gḡ 	 ḡg 	 � and g � ḡ 	 1

is called a guard. The first guard equation in the second condition says that either a predicate or its negation holds,
and therefore a sequential composition of a guard and its complement will always result in a miracle. The second
guard equation says that a demon will always be able to make the program skip when choosing between a guard
and the guard’s complement. It can be established that the guards form a Boolean algebra over (�, ; , ¯ , 1,�),
where � is meet, ; is join, ¯ is complement, 1 is the least element, and � is the greatest element [vW02].

Every guard is defined to have a corresponding assertion

g◦ 	 ḡ⊥ � 1 (29)

and so ◦ is a mapping from guards to a subset of the carrier set: the set of assertions. Assertions work in the same
way as guards, except that they abort if the predicate does not hold. If the predicate does not hold, then a demon
would choose the left hand side of the demonic choice: the negated guard would skip and the whole program

10 L. Meinicke, K. Solin

abort (which is what a demon wants). If, on the other hand, the predicate holds, then a demon would choose the
right hand side, since otherwise the negated guard would do magic and the demon would lose (the demon could
then no longer establish abortion).

Note that

g◦ 	 ḡ⊥ � g (30)

can be shown equivalent to (29). It is easy to show that

g1
◦ � 1 � g2 (31)

holds for any assertion g1
◦ and any guard g2 [vW02]. The properties

gg◦ 	 g and g◦g 	 g◦ (32)

are also easy to prove and will be used later on.
As already mentioned, gRA specifically requires that guards are conjunctive, which differs from dRA in which

all elements by axiomatisation are conjunctive. On the other hand, the derivation

g◦(x � y)
	 {assertion definition (29)}

(ḡ⊥ � 1)(x � y)
	 {distributivity (11)}

ḡ⊥(x � y) � x � y
	 {⊥ is left-annihilating (17), idempotence (6) and commutativity (4)}

ḡ⊥ � x � ḡ⊥ � y
	 {⊥ is left-annihilating (17)}

ḡ⊥x � x � ḡ⊥y � y
	 {distributivity (11) and assertion definition (29)}

g◦x � g◦y

proves that the conjunctivity of assertions follows from the conjunctivity of guards.

5. Enabledness and termination

Solin and von Wright have extended the demonic refinement algebra with operators for determining when
elements of the carrier set are enabled or terminating [SvW06], in a similar way to which Desharnais, Möller
and Struth added a domain operator to Kleene algebra [DMS06]. Here we include these operators in gRA and
describe how they may be given an interpretation for probabilistic programs.

5.1. Enabledness

The enabledness operator ε is a unary operator that maps a carrier-set element of a gRA to a guard that satisfies
the axioms

εxx 	 x , (33)
g � ε(gx) and (34)

ε(xy) 	 ε(xεy). (35)

We will call a gRA with an enabledness operator a gRAe.
The probabilistic program intuition of εx is that it returns a guard that skips in those states from which x is

not miraculous with probability one. That is to say, εx checks whether the program is certainly disabled or not.
The first axiom, (33), thus says that a program is equal to the same program preceded by a guard that checks if it
is not certainly disabled: if the program is not certainly disabled, the guard skips and then executes the program,
if the program is certainly disabled (that is, it is will perform a miracle with probability one), the guard will not
hold and thus the whole program will do magic. The other axioms can be interpreted similarly.

The definition of enabledness is the same as that used to describe the domain operator in Kleene algebra
with domain [DMS06], and the enabledness operator in the demonic refinement algebra [SvW06]. A stronger
enabledness operator satisfying also the axiom

Refinement algebra for probabilistic programs 11

εx⊥ 	 x⊥, (36)

has also been considered in demonic refinement algebra [SvW06] and other places [Ehm03]. Axiom (36) does not
hold in our probabilistic context (cf. Appendix A, Example A.2). Let us consider why this is the case. Property
(36) states that the least element ⊥ is able to right-annihilate any part of an element x which is enabled. This is
not valid in our probabilistic interpretation of the enabledness operator, since an “enabled” program may still
be miraculous with some probability greater than zero, and ⊥ may not annihilate this miraculous part of the
program. (The interested reader may wish to refer to Sect. 8.1 for an example of how this algebraic difference
affects a practical program transformation rule.)

The properties

ε(x � y) 	 εx � εy and (37)

x � y ⇒ εx � εy (38)

can be shown to hold by similar proofs as for the domain operator in [DMS06], taking into consideration that
guards are conjunctive.

Given the assumption that the state space is finite, enabledness operators which satisfy axioms (33–35) may
be defined in both our motivating expectation-transformer models. Interestingly however, for the case when the
state space is infinite, satisfaction of axiom (35) is lost for the class of dually nondeterministic transformers
(cf. Appendix A, Example A.1).

We show how the enabledness operator may be used to express and reason about probabilistic action systems
in Sect. 8.

5.2. Termination

We define the termination operator τ to be a unary operator that maps a carrier-set element of gRA to an assertion
that satisfies

x 	 τxx , (39)

τ (g◦x) � g◦, (40)

τ (xτy) 	 τ (xy) and (41)

τ (x � y) 	 τx � τy . (42)

We call a gRA with termination gRAt, and a gRA with enabledness and termination gRAet.
The intuition behind the probabilistic interpretation of the termination operator is similar to that for

enabledness. For an element x , τx denotes an assertion which checks whether a program does not certainly
abort—that is, it has some non-zero chance of not aborting. Let us look at the first property. It says that any
program x is equal to a program consisting of an assertion that first checks that x will not certainly fail (will not
abort) and then executes x : if x certainly fails, then the assertion fails so the composite program aborts, whereas
if x does not certainly fail, then the assertion skips and x gets executed.

We use the same definition of termination as is taken in demonic refinement algebra [SvW06]. Similar to the
enabledness operator, the additional axiom

τx� 	 x� (43)

has also been included in definitions of termination in demonic refinement algebra [SvW06]. This axiom is so
strong that the other termination axioms may indeed be derived from it [SvW06]. Property (43) is not valid in
our motivating models for a similar reason to why enabledness property (36) is not suitable.

Given the assumption that the state space is finite, termination operators which satisfy axioms (39–42) may
be defined in both our motivating expectation-transformer models. For the case when the state space is infinite,
satisfaction of axiom (41) is lost (cf. Appendix A, Example A.3).

12 L. Meinicke, K. Solin

Property

xωτx 	 xω (44)

may be verified in gRAt by

xω � xωτx
⇐ {induction (15)}

xxωτx � 1 � xωτx
⇔ {unfolding (14), left distributivity (11)}

xxωτx � 1 � xxωτx � τx
⇔ {termination axiom (39) and assertion property g◦x � y 	 g◦x � g◦y}

xxωτx � τx � xxωτx � τx
⇔ true,

and is used in the proof of a data refinement theorem in Sect. 8.

6. Limitations of the algebra

We have chosen to work with the general refinement algebra because of its simplicity and generality. However, with
generality comes some limitations. In this section we attempt to give an brief overview of some of these constraints.

First, it is evident that we cannot perform explicit reasoning about probabilistic choices. Although, as identi-
fied in the introduction, many fundamental transformation theorems only require implicit reasoning about this
operator. Further investigations into probabilistic extensions to gRA may be found [MH08a]. The work here is
foundational to such extensions.

Another more subtle point is that since the algebra allows us to capture similarities between probabilistic
program models that both may, and may not, contain angelic choices, algebraic properties that are specific to
the more restrictive model can certainly not be verified in the algebra. So, what are some of these important
differences that can be expressed in the algebra, and what impact do they have on our ability to reason about
probabilistic program transformations?

The algebraic differences between our two motivating probabilistic models—which can be expressed with-
out the use of the probabilistic choice operator—tend to be rather subtle. For instance, consider the following
implication,

(� 	 px q̄) ⇒ (pxq 	 px), (45)

where x and guards p and q are elements from the carrier set. Condition � 	 px q̄ describes a total correctness
assertion which has equivalent formulations

(p̄x � x q̄) ⇔ (p̄x q̄ � x q̄) ⇔ (p̄⊥ � x q̄)

and pxq 	 px embodies what we refer to as a weak correctness assertion, which may be expressed equivalently as

(xq � px) ⇔ (p◦xq◦ 	 p◦x) ⇔ (p◦x � xq◦)

in gRA.8 Given a program interpretation, the total correctness assertion can be taken to mean that from an initial
state in which p holds, program x can be guaranteed to terminate in a state satisfying q ; while the weak correctness
assertion states that from an initial state in which p holds, x may either fail to terminate or it must reach a state
in which q holds.

In the nondeterministic expectation-transformer model property (45) holds, but in the dually nondetermin-
istic model, it does not—see Appendix A.3. This means that (45) cannot be derived in gRA, and may be used as
evidence that gRA is not complete for our non-angelic motivating model.

Another important difference between the angelic and non-angelic probabilistic models is that, for the
non-angelic model, certain termination of a strong iteration statement xω, guarantees that xω can be equated
with x ∗. In the algebra this may be expressed by

(xω� 	 �) ⇒ (xω 	 x ∗). (46)

This property also does not hold in general in the angelic model [MH08b].

8 These equivalences may be justified using the same arguments as those employed by von Wright in dRA [vW02].

Refinement algebra for probabilistic programs 13

Interestingly, these algebraic differences are rarely required to verify transformation rules for non-angelic
probabilistic programs, and so we prefer to take them as assumptions where required, rather than to jeopardise
the generality of the algebra—and therefore our results—by specialising it further. (For interest, we demonstrate
a place where (45) may be useful in Sect. 8.1. Property (46) could, for example, be used in practice to simplify
assumptions to the propositions that appear later in Sect. 8.2.3.) This incompleteness result does not undermine
the usefulness of the algebra: the general refinement algebra provides a simple and clear way to explain key
features of probabilistic programs and to reduce the verification of complex theorems down to simpler properties
which may then, if necessary, be verified in a chosen model itself.

7. Basic algebraic properties

In this section we summarise some basic properties of the algebra which will be used in subsequent proofs.
Many of these results have been employed by Meinicke and Hayes [MH06, MH08b] in a concrete-algebraic
setting.

For any x and y , and guard g in the carrier set of a gRA

(x � y)ω 	 xω(yxω)ω, (47)

x (yx)ω � (xy)ωx , (48)

x (yx)ω 	 (xy)ωx , provided x is conjunctive, (49)

x ∗ 	 x ∗x ∗, (50)

xω 	 xωxω, (51)

(x � y)ω 	 yω(x � y)ω, (52)

(x � y)ω 	 (x � y)ωyω, (53)

(gx 	 gxg) ⇒ gxω 	 g(gx)ω 	 gxωg and (54)

g(gx)ω 	 g (55)

hold. Decomposition (47) and leapfrog property (48) have already been verified in gRA [vW04], and the others
are simple to derive.

7.0.1. Commutativity properties

For any x and y in the carrier set of a gRA the following commutativity properties hold:

xy∗ � zx ⇒ xy∗ � z ∗x , (56)

xy � zx ⇒ xyω � zωx , provided x is continuous, and (57)

yx � zy ⇒ yωx � zyω, provided x is conjunctive. (58)

Assuming continuity of x we can for example see that (57) holds since, for any n,

x (yn � 1)
� {right sub-distributivity (10), 1 is unit (8)}

xyn � x
� {assumptions xy � zx , isotony, 1 is unit (8)}

zxn � 1x .

14 L. Meinicke, K. Solin

The commutativity property

y∗x � x (z � 1) ⇒ y∗x � xz ∗ (59)

holds only if the new scc. gRA induction axiom (20) may be assumed. It may be verified as follows:
y∗x � x (z � 1)

⇒ {isotony}
y∗y∗x � y∗x (z � 1)

⇔ {basic property y∗y∗ 	 y∗ (50)}
y∗x � y∗x (z � 1)

⇔ {y∗x (z � 1) � x follows from unfolding (12), isotony, 1 is unit (8)}
y∗x � y∗x (z � 1) � x

⇒ {new weak iteration induction axiom (20)}
y∗x � xz ∗.

Note that since (59) is a generalisation of (22), property (59) and (20) are actually equivalent in gRA.

7.0.2. Basic separation and reduction theorem

The derivation of more complex separation and reduction theorems for probabilistic action systems, requires us
to understand the situations under which we can decompose an iteration (x �y)ω to a simpler form xωyω, in which
element x and y are iterated without interference from each other. As in probabilistic Kleene algebra [MW05],
the equivalent theorem for weak iteration,

(x � 1)y∗ � y(x � 1) ⇒ x ∗y∗ 	 (x � y)∗ (60)

is derivable in scc. gRA. The corresponding theorem for strong iteration [MH08b] requires the use of control
variables. Here we simplify the proof from [MH08b], replaying it in an abstract algebraic setting. First we explain
how we reason about control variables in the abstract algebra, and then we present and verify the basic separation
and reduction theorem for strong iteration.

Control variables in the abstract algebra. When reasoning about program transformations it is often necessary to
introduce and reason about control variables (see for example [Koz97, PK00, vW02]). In our context, a control
variable may be manipulated using three elements of the carrier set: a guard g , which checks to see if the control
variable is set or unset, and elements n and m, which are used, respectively, to set and unset the control variable.
Formally, we say that (g,n,m) are control elements if g is a guard, n and m are continuous and conjunctive and

n 	 ng, (61)
m 	 mḡ and (62)
m 	 mm. (63)

Intuitively, the first two conditions describe the fact that n switches on the control variable, and m switches it off.
The third equivalence then says that repeatedly switching off the variable has the same effect as performing the
statement once.

Such control elements are to be used in the context of a program that is comprised of a number of elements
xi , for i in some finite set I , which do not refer directly to the control variable. We say that control elements
(g,n,m) do not interfere with elements {i ∈ I • xi } if for all i ∈ I

gxi 	 gxig, (64)
ḡxi 	 ḡxi ḡ, (65)
xin 	 nxi and (66)
xim 	 mxi . (67)

In the following theorems we implicitly make the extra assumption that given control statements (g,n,m),
which do not interfere with the elements in x and y , nxm 	 nym implies that x 	 y . This is reasonable for
program models in which m and n manipulate variables which do not occur free in x and y .

The basic theorem. The following theorem is phrased in a similar way to (60), although—since we are reasoning
about possibly infinite iterations—we must replace the occurrence of 1 in (x � 1) with an element m, whose
behaviour is disjoint from x . This is required in order to disallow y from possibly enabling a behaviour of x which
is equivalent to 1. This extra constraint is necessary since infinite iterations of 1 are synonymous with ⊥.

Refinement algebra for probabilistic programs 15

Proposition 7.1 If x and y are elements of the carrier set, there exist control elements (g,n,m) that do not interfere
with x and y , and either

1. (x � m) is continuous and (x � m)y � y(x � m), or
2. yω 	 y∗ and (x � m)y∗ � y(x � m),

then we have that xωyω 	 (x � y)ω.

Proof. We have that (x � y)ω � xωyω follows from rule xω 	 xωxω (51) and isotony. For the proof in the other
direction we use the fact that the control statement assumptions together with (58), (57), (54) can be used to show
that

yωm 	 myωm, (68)
gyω 	 gyωg, (69)

g(x � y)ω 	 g(gx � y)ω and (70)
ḡyω 	 ḡ(gx � y)ω. (71)

The proof proceeds as follows:

xωyω � (x � y)ω

⇔ {assumptions on elements for manipulating control variables}
nxωyωm � ng(x � y)ωm

⇐ {isotony}
xωyωm � g(x � y)ωm

⇐ {induction (15)}
xg(x � y)ωm � yωm � g(x � y)ωm

⇔ {(x � y)ω 	 (x � y)ωyω (53), decomposition (47)}
xg(x � y)ωm � yωm � gyω(xyω)ωyωm

⇔ {unfolding (14)}
xg(x � y)ωm � yωm � gyω(xyω(xyω)ωyωm � yωm)

⇔ {decomposition (47) and (x � y)ω 	 (x � y)ωyω (53)}
xg(x � y)ωm � yωm � gyω(x (x � y)ωm � yωm)

⇔ {(68) and (69), conjunctivity of guards and control statement assumptions}
xg(x � y)ωm � myωm � gyω(xg(x � y)ωm � myωm)

⇔ {(70) and (71)}
xg(gx � y)ωm � m(gx � y)ωm � gyω(xg(gx � y)ωm � m(gx � y)ωm)

⇔ {left distributivity (11) and (x � y)ω 	 yω(x � y)ω (52)}
(xg � m)yω(gx � y)ωm � gyω(xg � m)(gx � y)ωm

⇐ {isotony, guards refine 1 (31)}
g(xg � m)yω � gyω(xg � m)

⇔ {(69), conjunctivity of guards, control statement assumptions}
g(x � m)yω � gyω(x � m).

Using commutativity properties (56) and (57), we then have that this last refinement holds if either the first or
second set of hypotheses are assumed. �

8. Probabilistic action systems

This section comprises an application of the refinement algebra to probabilistic action systems. Action systems
can be used for reasoning about parallel or distributed systems in which concurrent behaviour is modelled by
interleaving atomic actions [BKS83]. Probabilistic action systems extend action systems to account also for
probabilistic behaviour, in that the actions are allowed to be probabilistic programs [ST96]. An action system

do x1[] . . . []xn od

is an iteration of a set of actions x1, ..., xn that terminates when none of the actions are enabled, that is to say,
the iteration continues as long as any action is enabled. In the abstract algebra, we encode an action system as a

16 L. Meinicke, K. Solin

strong iteration of a demonic choice between n actions and we express the termination condition with the aid of
the enabledness operator [SvW06, BvW99, MH06]:

do x1[] . . . []xn od 	df (x1 � · · · � xn)ωεx1 . . . εxn .

The strong-iteration operator allows us to model action systems in tune with our urge for total-correctness: we
allow infinite iterations to be expressed.

8.1. Program refinement

Two transformation rules that have been discussed in the literature on algebraic reasoning about program refine-
ment are action-system leapfrog and decomposition. In this section we consider these rules from our current
probabilistic abstract-algebraic perspective. We begin with the leapfrog rule.

Proposition 8.1 For elements x and y in the carrier set of a gRAe, if

xε(yx) � ε(xy)x , (72)

then

x do y x od � do x y od x

holds.

This can be verified in the abstract algebra by the action system definition, isotony, the assumption, and leapfrog
(48).

IndRAe, condition (72) may be shown to always hold [SvW06], but this does not hold true ingRAe (see [MH08b]
for a counter example). Condition (72) can be proved in gRAe just like in dRAe [SvW06] if conjunctivity (27) of
x is assumed. However, it is not necessary to assume conjunctivity: it is enough to assume that, for all guards p
and q , x satisfies

(� 	 pxq) ⇒ (pxq 	 px),

i.e. (45), which is valid in our non-angelic motivating model. Indeed, the proposition then holds since with the
assumption the proof from [SvW06] can be followed in detail.

We now turn to the decomposition of action systems.

Proposition 8.2 For elements x and y in the carrier set of a gRAe, if εxεy 	 � and εx 	 ε(x do y od), then

do x � y od 	 do y od; do x ; do y od od

holds.

This may be proved just like in [SvW06]. The condition εx 	 ε(x do y od) is true if ε(do y od) 	 1, as shown by

ε(x do y od)
	 {enabledness axiom (35)}
ε(xε(do y od))

	 {assumption ε(do y od) 	 1}
ε(x1)

	 {1 is unit (axiom 8)}
εx .

If the property

εx⊥ 	 x⊥,
i.e. the enabledness axiom that we exclude from out definition (36), is able to be assumed for y , then the condition
ε(do y od) 	 1 can always be shown to hold [SvW06]. Interestingly, ε(do y od) 	 1 may not be derived using only
the gRA axioms and the restricted definition of enabledness. Consider the following example from our motivating
model:

do (skip 1
2
⊕ magic) od

	 (skip 1
2
⊕ magic)ω; magic

	 magic

Refinement algebra for probabilistic programs 17

The action body is always enabled and so it must always continue execution. Each time the action body skip 1
2
⊕

magic executes it has a non-zero probability of performing magic, and so if it iterates forever, it eventually executes
magic with probability one.

8.2. Data refinement

During the derivation of a program, the process of refining a so-called abstract program by a so-called concrete
program that uses a different data representation is called data refinement. For probabilistic programs y , z and
x , the program y is said to be data refined by z through x if either

xy � zx or yx � xz .

In the first instance, the probabilistic program x can be seen to represent a (probabilistic) mapping from the con-
crete state of z to the abstract state of y , and in the second x can be seen to represent a (probabilistic) mapping
from the abstract state of y to the concrete state of z . We refer to data refinement in the first instance as upward
simulation, and downward simulation in the second instance.

8.2.1. Downward simulation

Probabilistic action systems have a downward simulation data-refinement rule, given by

do y od; x � x ; do z od

provided

(εy)◦yx � x (εz)◦z and
xεz � εyx

hold, that is, provided (εy)◦y is downwards data refined by (εz)◦z through x , and provided εz is upwards data
refined by εy through x . To prove this, we first establish a general commutativity property.

Proposition 8.3 For any x , y and z in the carrier set and g1 and g2 in the guard set of a gRA we have that

(g1y)ωg1x � x (g2z)ωg2 (73)

provided

g1
◦yx � xg2

◦z and (74)
xg2 � g1x . (75)

Proof. This property was first proved in the concrete expectation-transformer algebra by Meinicke and Hayes
[MH06]. We here show how their proof can be given as a smooth and transparent derivation in gRA: first, we
have that

(g1y)ωg1x � x (g2z)ωg2
⇐ {induction (15)}

g1yx (g2z)ωg2 � g1x � x (g2z)ωg2

holds.

18 L. Meinicke, K. Solin

That the antecedent follows from the assumptions is settled by

g1yx (g2z)ωg2 � g1x
	 {(32)}

g1g1
◦yx (g2z)ωg2 � g1x

� {assumption (74), isotony}
g1xg2

◦z (g2z)ωg2 � g1x
	 {assertion definition (30)}

g1x (g2⊥ � g2)z (g2z)ωg2 � g1x
	 {distributivity (11) and ⊥ is left-annihilating (17)}

g1x (g2⊥ � g2z (g2z)ωg2) � g1x
� {⊥ � 1, commutativity (4)}

g1x (g2z (g2z)ωg2 � g2) � g1x
	 {distributivity (11)}

g1x (g2z (g2z)ω � 1)g2 � g1x
	 {folding (14)}

g1x (g2z)ωg2 � g1x
� {1 is unit (8), guards refine 1 (31)}

g1x (g2z)ωg2 � g1xg2
	 {guards form a Boolean algebra, axioms (9) and (5)}

g1x (g2z)ωg2 � g1x (g2g2z (g2z)ω � g2)
	 {guards are conjunctive}

g1x (g2z)ωg2 � g1xg2(g2z (g2z)ω � 1)
� {folding (14), 1 is unit (8), guards refine 1 (31)}

g1x (g2z)ωg2 � g1xg2(g2z)ωg2
� {assumption (75), guards form a Boolean algebra}

g1x (g2z)ωg2 � g1x (g2z)ωg2
	 {distributivity (11)}

(g1 � g1)x (g2z)ωg2
	 {definition of guards}

x (g2z)ωg2.

�
The data refinement rule then follows in gRAe by setting g1 to be εy , setting g2 to be εz , and taking the first
enabledness axiom (33) into account.

8.2.2. Upward simulation

An upward simulation data-refinement rule for probabilistic action systems

x ; do y od � do z od; x

can be shown to hold in gRAet assuming that x is continuous, and that

xy � zx and
x (τy)εy � εzx

hold, that is, assuming that y is upwards data refined by z through x , and assuming that (τy)εy is upwards
data refined by εz through x . The first condition constrains the loop body y to be data refined by z , the second
constrains the termination of the loops: it states that z may only be disabled when y either aborts or is disabled:

x ; do y od
	 {action system encoding and Property (44)}

xyω(τy)εy
� {assumptions x continuous, xy � zx and (57)}

zωx (τy)εy
� {assumption x (τy)εy � εzx and action system definition}

do z od; x .

Refinement algebra for probabilistic programs 19

8.2.3. General simulation

Unlike both the upward and downward simulation rules that have been presented, the following simulation rules
allows data refinements to be verified between action systems in which finite sequences of stuttering steps have
been added or removed—so a direct correspondence between the actions is not required. Since the sequences of
stuttering steps are assumed to be finite, the verification of these rules requires reasoning about both weak and
strong iterations. For the downward simulation rule, the finite-iteration assumption allows us to use the weak
iteration axiom (20) from scc. gRA, for which there is no counterpart for strong iteration. Axiom (20) is actually
required to prove this rule, and so it is valid in scc. gRAe, but not gRAe.

The general downward simulation rule (from [MH08b]) states that

do y od; x � x ; do z od

provided y 	 y� � y�, z 	 z� � z�, y�ω 	 y�∗, z�ω 	 z�∗, and

y�∗x � x (z� � 1), (76)
(εy)◦y�y�∗x � x (εz)◦z� and (77)

xεz � εyx . (78)

We refer to y� and z� as the stuttering actions, and y� and z� as the nonstuttering actions. The proof of Meinicke
and Hayes [MH08b] may then be expressed as a derivation in gRAe.

It is sufficient to show that the conditions

y�∗x � xz�∗, (79)
(εy)◦y�y�∗x � x (εz)◦z�z�∗ and (80)

xεz � εyx (81)

hold, since then we can derive

do y od; x
	 {action system encoding and assumption y 	 y� � y�}

(y� � y�)ωεyx
� {decomposition (47) and guards refine 1 (31)}

yω� (εyy�yω�)ωεyx
� {assumptions (80), (81) and yω� 	 y∗

� , (73)}
yω� x (εzz�zω�)ωεz

	 {assumption yω� 	 y∗
� }

y∗
� x (εzz�zω�)ωεz

� {assumption (79)}
xz ∗
� (εzz�zω�)ωεz

	 {assumption zω� 	 z ∗
� }

xzω� (εzz�zω�)ωεz
� {assumption z 	 z� � z�, isotony}

xzω� (εz�z�zω�)ωεz
	 {axiom (33)}

xzω� (z�zω�)ωεz
	 {decomposition (47), assumption z 	 z� � z�, encoding}

x ; do z od.

Condition (79) may be shown to hold given (76) and (59).

20 L. Meinicke, K. Solin

Assuming (79) and (77), (80) can be shown to hold by

(εy)◦y�y�∗x
	 {(50)}

(εy)◦y�y�∗y�∗x
� {assumption (79)}

(εy)◦y�y�∗xz�∗
� {assumption (77)}

x (εz)◦z�z�∗.

Conditions (81) and (78) are equal.
Similarly it is possible to verify the following general upward simulation property. We have that in gRAet

x ; do y od � do z od; x

holds if x is continuous, y 	 y� � y�, z 	 z� � z�, y�ω 	 y�∗, z�ω 	 z�∗, and conditions

xy�∗ � z�x , (82)
xy�y�∗ � z�x , and (83)

x (τy)εy � εzx , (84)

hold.

8.3. Atomicity refinement

Separation and reduction theorems, or atomicity refinement theorems may be used to simplify the development
and analysis of concurrent or distributed systems by describing the conditions under which it is safe to assume
that certain sequences of operations are executed without interference from other actions.

In this section we derive a new version of Back’s atomicity refinement theorem [Bac89, BvW99], which is valid
for probabilistic action systems.

First we present two new general purpose theorems, and then we show how they may be applied to verify more
specific atomicity refinement theorems for probabilistic action systems. The first theorem is presented in a similar
way to the non-probabilistic generalisation of Back’s atomicity refinement theorem which appears in [Coh00].

8.3.1. General purpose theorems

The first theorem we present may be used to describe when an iteration

p̄(py � p̄y � p̄l � p̄r p̄)ωp̄

in which action y is not interrupted by actions l and r when it is in its critical section p, may be replaced by an
iteration

p̄(y � l � r)ωp̄

in which executions of y when it is in its critical section, p, may be interleaved with the other actions l and r .9

The first two assumptions in this theorem state that action l cannot enable p (85), and that r cannot disable it
(86). Commutativity assumptions (87–91) then specify that l must be able to commute to the left over the other
actions, and that r must be able to commute to the right over y when it is in its critical section. The additional
constraints (91) and (92) are also needed in order to verify that l and r can be shifted to the left and right,
respectively, when y is in its critical section.

The main difference to the non-probabilistic versions of this theorem [BvW99, Coh00] is that we do not make
conjunctivity assumptions on the actions, so as not to exclude the possibility that these actions may include
probabilistic choices. As a result, the commutativity assumptions are expressed in a way which is compatible with
the basic separation and reduction Proposition 7.1.

9 Note that we could, in the spirit of Cohen’s work [Coh00], attempt to generalise this theorem further by allowing the iteration to start and
finish in its critical section.

Refinement algebra for probabilistic programs 21

Proposition 8.4 Using assumptions that there exist control elements (n,m, g) that are independent of elements y ,
l , r and guard p, we have that if

p̄l 	 p̄l p̄ (85)

p̄r � r p̄ (86)

(l � m)py � py(l � m) (87)

(l � m)p̄y � p̄y(l � m) (88)

(l � m)r � r (l � m) (89)

(py � m)r � r (py � m) (90)

(l � m) is continuous (91)

rω 	 r∗ (92)

then

p̄(y � l � r)ωp̄ 	 p̄(py � p̄y � p̄l � p̄r p̄)ωp̄.

Proof. Proof of refinement in one direction (�) is trivial, so we show

p̄(y � l � r)ωp̄
	 {Proposition 7.1 using assumptions (87–89) and (91). Note that (l � m)(y � r) � (y � r)(l � m)

follows from assumptions (87–89) and (93) below.}
p̄lω(y � r)ωp̄

	 {decomposition (47)}
p̄lω(py � r)ω(p̄y(py � r)ω)ωp̄

	 {commutativity assumption (90), rω 	 r∗ (92) and Proposition 7.1}
p̄lω(py)ωrω(p̄y(py)ωrω)ωp̄

	 {guards are conjunctive and satisfy g 	 gg , leapfrog (48)}
p̄lω(py)ωrωp̄(p̄y(py)ωrωp̄)ωp̄

� {assumptions rω 	 r∗ (92), p̄r � r p̄ (86) and induction (13)}
p̄lω(py)ωp̄(r p̄)ω(p̄y(py)ωp̄(r p̄)ω)ωp̄

	 {assumption p̄l 	 p̄l p̄ (85) and (54)}
p̄lωp̄(py)ωp̄(r p̄)ω(p̄y(py)ωp̄(r p̄)ω)ωp̄

	 {(55), assumption p̄l 	 p̄l p̄ (85) and (54)}
p̄lω(r p̄)ω(p̄y(py)ωp̄(r p̄)ω)ωp̄

	 {decomposition (47)}
p̄lω(p̄y(py)ωp̄ � r p̄)ωp̄

	 {Property 7.1 using property (94) below and assumptions (87–89) and (91) on (l � m)}
p̄(p̄y(py)ωp̄ � l � r p̄)ωp̄

	 {(54) using assumptions (85) and (86), left distributivity (11), and (55) }
p̄(py)ω((p̄y � p̄l � p̄r p̄)(py)ωp̄)p̄

	 {guards conjunctive and leapfrog (48)}
p̄(py)ω((p̄y � p̄l � p̄r p̄)(py)ω)p̄

	 {decomposition (47)}
p̄(p̄y � py � p̄l � p̄r p̄)p̄.

The following results are referred to in the above proof. First we have that for any finite set of elements
{i : 0..N • yi },

(∀i : 0..N • xyi � yix) ⇒ x (y0 � ... � yN) � (y0 � .. � yN)x . (93)

This follows from right subdistributivity (10), the assumption (∀ i : 0..N • xyi � yix), isotony and left
distributivity (11).

22 L. Meinicke, K. Solin

Using the assumptions of the theorem we also have that

(l � m)(y(py)ωp̄ � r p̄) � (y(py)ωp̄ � r p̄)(l � m) (94)

may be verified by

(l � m)(y(py)ωp̄ � r p̄)
� {right subdistributivity (10)}

(l � m)y(py)ωp̄ � (l � m)r p̄
� {assumptions on (l � m) (87–89) and (91), (56) and (57)}

y(py)ω(l � m)p̄ � r (l � m)p̄
� {guards conjunctive and refine 1 (31), l does not enable p (85), and neither does m}

y(py)ωp̄(l � m) � r p̄(l � m)
	 {left distributivity (11)}

(y(py)ωp̄ � r p̄)(l � m). �
The previous theorem may be generalised further to deal with a scenario where we have an extra action e, an

environment action, which excludes the critical section of y (95), in addition to not being able to enable the critical
section of y (96).

Proposition 8.5 Using the same assumptions as Proposition 8.4, if we also have an environment action e satisfying

e 	 p̄e and (95)
p̄e 	 p̄ep̄ (96)

then we also have that

p̄(e � y � l � r)ωp̄ 	 p̄(p̄e � py � p̄y � p̄l � p̄r p̄)ωp̄.

Proof. We have that

p̄(e � y � l � r)ωp̄
	 {decomposition (47), assumptions (95,96), guards conjunctive and leapfrog (48)}

p̄(y � l � r)ωp̄(p̄ep̄(y � l � r)ωp̄)ωp̄
	 {Proposition 8.4 and atomicity refinement assumptions}

p̄(py � p̄y � p̄l � p̄r p̄)ωp̄(p̄ep̄(py � p̄y � p̄l � p̄r p̄)ωp̄)ωp̄
	 {assumptions (95,96), guards conjunctive and leapfrog (48)}

p̄(py � p̄y � p̄l � p̄r p̄)ω(e(py � p̄y � p̄l � p̄r p̄)ω)ωp̄
	 {decomposition (47)}

p̄(p̄e � py � p̄y � p̄l � p̄r p̄)ωp̄.

�
8.3.2. Atomicity refinement rules for action systems

Proposition 8.5 can then be used to justify atomicity refinement rules for probabilistic action systems. For example,
if we take elements ia and b such that

a 	 (εb)a and

i 	 i (εb)

and we instantiate p and y such that

p 	 εb and
y 	 a � b

then if the assumptions of Proposition 8.5 hold we can verify that

i do e � a � b � l � r od 	 i do e � (a do b od) � l � r od.

On the other hand if we define y 	 a � b such that

a 	 (εb)a, (97)
b 	 bp and (98)
a 	 ap̄, (99)

Refinement algebra for probabilistic programs 23

and introduce an initialisation element i 	 i p̄, then

i do e � a � b � l � r od 	 i do e � (do b od a) � l � r) od

follows from the assumptions of Proposition 8.5.

9. Concluding remarks and outlook

In this article we have investigated and developed the theory of a very general algebra which may be used to
identify commonalities between a range of program models. Importantly, the algebra contains operators for
reasoning about both finite and possibly infinite iterations, which means that it may be useful for reasoning
about reactive systems, as well as non-reactive programs with a total-correctness semantics. We have particularly
emphasised the role that the general refinement algebra can play in reasoning about probabilistic programs. The
algebra describes core features of probabilistic programs which may be used to explain and verify a range of
practical transformation theorems in a model-independent way.

This work may be seen as an extension of the earlier work of McIver et al. [MW05, MCM06] and Meinicke
and Hayes [MH06, MH08b]. In their work, McIver et al. [MW05, MCM06] used a similar algebra, probabilis-
tic Kleene algebra, for reasoning about a separation and reduction theorem for probabilistic programs. Unlike
our work, theirs only considers finite iterations. Meinicke and Hayes [MH06, MH08b] used algebraic methods
to reason about probabilistic program transformations using possibly infinite iterations, however they worked
within a chosen probabilistic model. In this work we have lifted some of the key findings of Meinicke and Hayes
to an abstract algebraic level: incorporating them into a more general theory, thereby demonstrating their validity
over a range of models. We have also derived new results in the algebra. In particular we have specified and verified
separation and reduction theorems which are applicable to probabilistic programs. As well as emphasising the
benefits of reasoning about probabilistic programs using such a simple algebra, we have explained its limitations.

Acknowledgments

The authors are grateful to R.J.R. Back, Jules Desharnais, Ian J. Hayes, E.C.R. Hehner, Bernhard Möller and
Graeme Smith for comments. This research was partially supported by the EU project DEPLOY.

Appendix A: Expectation transformers

Two expectation-transformer models for the general refinement algebra (and its specialisation scc. gRA) are given,
and guards and assertions, and the enabledness and termination operators are interpreted in terms of expecta-
tion transformers. Some additional properties of these models—that were referred to earlier in the text—are also
considered.

Appendix A.1. Expectation transformers and correctness reasoning

We use the one-bounded expectation-transformer theory of McIver and Morgan [MM01a, MM01b], which
generalises the original expectation-transformer theory which appears in [MMS96, MM05], so that miracu-
lous program behaviour—and hence guards—can be expressed. We first define expectations and expectation
transformers, and then consider healthiness conditions.

A.1.1. Expectations

Let � be a state space. Then a function

φ : � → R≥0

is an expectation.

24 L. Meinicke, K. Solin

A function

φ : � → [0, 1]

is a one-bounded expectation. Given a state space �, we denote the set of one-bounded expectations by E1�. A
function

p : � → {0, 1}
is called a predicate and we denote the set of predicates over a state space � by P�. We can use 1 to represent
the Boolean value true and 0 to represent false. We shall use φ and ψ to denote expectations, φ1 to denote a
one-bounded expectation and p and q to denote predicates—p is, however, sometimes overloaded to denote a
probability or a probability function. States will be refered to by σ .

We define eight operators on expectations, given by the following for any state σ ∈ � and any probability
p ∈ [0, 1]:

(φ � ψ).σ 	df min{φ.σ,ψ.σ },
(φ � ψ).σ 	df max{φ.σ,ψ.σ },
(φ + ψ).σ 	df φ.σ + ψ.σ,
(¬φ1).σ 	df 1 − φ1.σ,
(φ × ψ).σ 	df φ.σ × ψ.σ,
(c ∗ φ).σ 	df c × φ.σ,
(φ � c′).σ 	df max{φ.σ − c′, 0} and
(φ p⊕ ψ).σ 	df p × φ + (1 − p) × ψ,

where, when applied to reals, + denotes addition, − denotes subtraction, × denotes multiplication, and min and
max denote the minimum and the maximum, respectively. We also define an order on the expectations, given by

φ ≤ ψ ⇔df (∀ σ ∈ � • φ.σ ≤ ψ.σ).

The following notation for predicates,

p ∧ q 	df p � q,
p ∨ q 	df p � q,
True 	df (λ σ ∈ � • 1),
False 	df (λ σ ∈ � • 0) and
p ⇒ q ⇔df p ≤ q,

is introduced for familiarity.

A.1.2. Expectation transformers

A one-bounded expectation transformer (which we often refer to simply as an expectation transformer) is a function

S : E1� → E1�,

where� is any state space. One-bounded expectation transformers are the probabilistic counterpart to predicate
transformers [DS90, Dij76]. In a program intuition, S .φ then denotes the least expectation that S will produce
the expectation φ. More specifically, given an initial state σ , S .φ.σ denotes the least average value of φ that may
be observed by executing S from σ .

There are three named expectation transformers

abort 	df (λφ • False),
magic 	df (λφ • True) and

skip 	df (λφ • φ),

and an expectation transformer S is refined by T , written S � T , if

(∀φ ∈ E� • S .φ ≤ T .φ).

Refinement algebra for probabilistic programs 25

This paper deals with six operations on expectation transformers defined by

(S ; T).φ 	df S .(T .φ),
(S � T).φ 	df S .φ � T .φ,
(S � T).φ 	df S .φ � T .φ,

(S p⊕ T).φ 	df (λ σ ∈ � • S .φ p.σ⊕ T .φ),
S ∗ 	df ν.(λX • S ; X � skip) and
Sω 	df µ .(λX • S ; X � skip),

for any φ ∈ E� and p : � → [0, 1], where µ and ν denote the least and the greatest fixpoint with respect to �,
respectively.

The set of one-bounded expectation transformers forms a complete lattice with least element abort, and
greatest element magic.

A.1.3. Healthiness conditions

We use so called healthiness conditions to identify two main classes of one-bounded expectation transformers:
the deterministic and the dually nondeterministic expectation transformers. These may be seen as the probabilistic
counterpart to the classes of conjunctive and isotone predicate transformers, respectively. That is, the nonde-
terministic one-bounded expectation transformers are suitable for modelling probabilistic programs which may
include discrete probabilistic choices, in addition to demonic nondeterministic choices (in fact, for finite state
spaces, they characterise a relational model for such probabilistic programs, as shown in [MM01a]), whereas the
set of dually nondeterministic one-bounded expectation transformers is more general, also allowing for angelic
choices to be expressed. The healthiness conditions isotony, semi-sublinearity, and ⊕-subdistributivity are used
in the definition of these terms.

One-bounded expectation transformer S is isotone if for all one-bounded expectations φ and ψ ,

φ ≤ ψ ⇒ S .φ ≤ S .ψ.

It is semi-sublinear if

c ∗ S .φ � c′ ≤ S .(c ∗ φ � c′),

for all φ, ψ , and non-negative constants c and c′ such that c − c′ ≤ 1, and it is ⊕-subdistributive if

S .φ p⊕ S .ψ ≤ S .(φ p⊕ ψ)

holds for all φ, ψ and probability p ∈ [0..1].
A one-bounded expectation transformer that is isotone, and semi-sublinear will be called dually nondeter-

ministic, and a dually nondeterministic expectation transformer which is also ⊕-subdistributive will be called
nondeterministic. Also, we have that an expectation transformer is (finitely) conjunctive if for all one-bounded
expectations φ and ψ ,

S .(φ � ψ) 	 S .φ � S .ψ

holds, and it is continuous if for all directed sets of one-bounded expectations B,

S .(�β:B • β) 	 (�β:B • S .β),

where a set B of expectations is directed if (∀α, β : B • (∃γ : B • α � γ ∧ β � γ)).

Appendix A.2. Soundness

Let NTran� and DNTran� be, respectively, the set of nondeterministic and dually nondeterministic expectation
transformers over a state space �. From the model-based work of Meinicke and Hayes [MH08b], we readily
have that both (NTran�,�, ; , ω, ∗,magic, skip) and (DNTran�,�, ; , ω, ∗,magic, skip) are gRA, and that these
algebras are also scc. gRA for the case where � is finite. In this section we show how the healthiness conditions,
guards and assertions, and the enabledness and termination operators from the abstract algebra can be given an
expectation-transformer interpretation.

26 L. Meinicke, K. Solin

A.2.1. Healthiness conditions

The expectation-transformer healthiness condition conjunctivity, readily implies the abstract-algebraic expres-
sion of the property (27), but even more specifically, it can be shown that (27) uniquely characterises the set of
conjunctive expectation transformers. We can also show that a continuous, nondeterministic expectation trans-
former satisfies the continuity condition (28). To verify this we require the following proposition

Sω; U 	 (µX • S ; X � U) (100)

which has been verified in [MH08b]. Assume then that S ,T ,U and V are nondeterministic (and thus isotone)
and that R is nondeterministic and continuous. Then (λX • R; X) is also continuous and we can derive:

R; Sω; U � Tω; V ; R
⇔ {Property (100)}

R; (µ .(λX • S ; X � U)) � µ .(λX • T ; X � V ; R)
⇐ {fusion}

(λX • R; X) ◦ (λX • S ; X � U) � (λX • T ; X � V ; R) ◦ (λX • R; X)
⇔ {function composition}

(λX • R; (S ; X � U)) � (λX • T ; R; X � V ; R)
⇔ {refinement defined pointwise over functions}

(∀X • R; (S ; X � U) � T ; R; X � V ; R).

We have not yet been able to answer the question whether or not the continuity condition uniquely characterises
continuity (in the sense that a nondeterministic expectation transformer is continuous if and only if it satisfies
the condition).

A.2.2. Guards and assertions

Consider the function [·] : P� → (E1� → E1�) such that when p ∈ P� and φ ∈ E1�

[p].φ 	df p × φ + ¬p × True 	 p × φ + ¬p.

These expectation transformers are called guards. There is also a dual, an assertion, and it is defined by

{p}.φ 	df p × φ + ¬p × False 	 p × φ.

Complement ¯ is defined on guards and assertions by [p] 	 [¬p] and {p} 	 {¬p}. It follows directly from the
definitions that guards are conjunctive, and it is easily established that

(EGrd�,�, ; , ¯, skip,magic)

is a Boolean algebra, where � is meet, ; is join, and ¯ is complement, and EGrd� is the set of (expectation trans-
former) guards over a state space�. For example, if g ∈ EGrd� , then g � ḡ 	 skip as the following shows: Let [p]
be any guard and φ ∈ E1�. Then

([p] � [¬p]).φ
	 {definition of �}

[p].φ � [¬p].φ
	 {definition of guards, double negation}

(p × φ + ¬p) � (¬p × φ + p)
	 {p predicate}
φ

	 {definition of skip}
skip.φ.

The rest of the axioms for Boolean algebra are verified similarly and guards are easily seen to be closed under ¯,�
and ; . Moreover, guards are a subset of the nondeterministic one-bounded expectation transformers (and hence
a subset of the dually nondeterministic transformers).

It is also easy to argue that the assertions in the predicate-transformer sense are a model for assertions in the
abstract-algebraic sense.

Refinement algebra for probabilistic programs 27

A.2.3. Enabledness and termination

Enabledness. The miracle guard, gd, is defined as a mapping from a one-bounded expectation transformer to a
predicate by

gd.S 	df (λσ ∈ � • S .False.σ �	 1)

in [MH08b]. Intuitively, gd.S is a predicate that specifies those start states from which S does not certainly behave
miraculously. For any dually nondeterministic S , we interpret εS as [gd.S]. This definition satisfies the proba-
bilistic enabledness axioms (33) and (34). For the case where the underlying state space is finite, it additionally
satisfies enabledness axiom (35).

The first enabledness axiom (εxx 	 x) has been verified in [MH08b]. To see that the second (g � ε(gx)) is
valid, first note that

[p] � [gd.([p]; S)]
⇔ {basic property of guards: [p] � [q] iff q ⇒ p}

gd.([p]; S) ⇒ p
⇔ {definition of gd}

(λ σ • ([p]; S).False.σ �	 1) ⇒ p
⇔ {definition of [·] and ;}

(λ σ • p.σ × S .False.σ + ¬p.σ �	 1) ⇒ p
⇔ {functions defined pointwise}

(λ σ • (p.σ × S .False.σ + ¬p.σ �	 1) ⇒ p.σ)

and then consider the two cases p.σ 	 1 and p.σ 	 0. In the case p.σ 	 1 the implication trivially holds, since
true is implied by anything. In the case p.σ 	 0 the left-hand side of the implication becomes false (1 �	 1), and
so the implication holds by the fact that false implies anything.

The validity of the third axiom (ε(xy) 	 ε(xεy)), which is dependent on the finite state space assumption,
needs a more elaborate argument. First note that

[gd.(S ; T)] 	 [gd.(S ; [gd.T])]
⇔ {basic guard properties}

gd.(S ; T) 	 gd.(S ; [gd.T])
⇔ {definition of gd}

(λ σ • (S ; T).False.σ �	 1) 	 (λ σ • (S ; [gd.T]).False.σ �	 1)
⇔ {definition of sequential composition and guard}

(λ σ • S .(T .False).σ �	 1) 	 (λ σ • S .(gd.T × False + ¬gd.T).σ �	 1)
⇔ {definition of gd}

(λ σ • S .(gd.T × T .False + ¬gd.T).σ �	 1) 	
(λ σ • S .(gd.T × False + ¬gd.T).σ �	 1).

The equation immediately above may then be verified as follows. Let

φ 	 (gd.T × T .False + ¬gd.T),
ψ 	 (gd.T × False + ¬gd.T) and
β 	 (x ∗ gd.T + ¬gd.T),

where x 	df (�σ ∈ gd.T • T .False.σ). Since� is finite, from the definition of gd we have that 0 ≤ x < 1. We also
have that ψ ≤ φ ≤ β.

Sinceψ ≤ φ, from isotony, and the fact that expectations are bounded above by 1 we have that (∀ σ • (S .φ.σ �	
1) ⇒ (S .ψ.σ �	 1)). Verifying implication in the other direction is more complex. By definition φ ≤ β, so, from
isotony and bounds on expectations, we have that it is sufficient to show that

(∀ σ • (S .β.σ �	 1) ⇐ (S .ψ.σ �	 1)).

28 L. Meinicke, K. Solin

Let c 	 1
1−x

, c ′ 	 x
1−x

. Since 0 ≤ x < 1, these constants are well defined and satisfy c ≥ 0, c′ ≥ 0, and
c − c′ 	 1 ≤ 1. We then have that c ∗ β � c′ 	 ψ , hence for any σ

S .ψ.σ �	 1
⇔ {definition of constants c and c′}

S .(c ∗ β � c′).σ �	 1
⇒ {semi-sublinearity, isotony, bounds on expectations}

c ∗ S .β.σ � c′ �	 1.

In order to show that this implies that S .β.σ �	 1, we can perform a proof by contradiction. Assume that
c ∗ S .β.σ � c �	 1, and S .β.σ 	 1. We would then have that

c ∗ S .β.σ � c′ �	 1
⇔ {assumption S .β.σ 	 1}

c ∗ 1 � c′ �	 1
⇔ {definition of c and c′}

1 �	 1
⇔ {logic}

false.

For infinite state spaces, it is possible to show that, for the set of dually nondeterministic one-bounded expec-
tation transformers, the third enabledness axiom (35) does not hold:

Example A.1 Take an infinite state space � in which a variable x is defined and has type N, and let S and T be
of type DNTran� where

S 	df µ .(λX • x :	 x + 1; X � 1) and
T 	df (abort (1

x+1)⊕ magic).

If we define σ0 to be of type � such that σ0.x 	 0, then

(S ; T).False.σ0
	 {definition of T , magic and abort}

S .(1 − 1
x+1).σ0

	 {definition of S and σ0}
(�i ∈ N>0 • 1 − 1

i
)

	 1.

However, since (∀σ ∈ � • T .False.σ �	 1),

(S ; [gd.T]).False.σ0
	 {definition of T and gd}

S ; [True].False.σ0
	 {definition of skip}

S .False.σ0
	 {definition of S}

(�i ∈ N • (x :	 x + i).False.σ0)
	 (�i ∈ N • 0)
	 0,

and so [gd.(S ; T)] is not equal to [gd.(S ; [gd.T])].

It is unknown if a counter example exists for the smaller class of nondeterministic expectation transformers
when the state space is infinite.

The following counterexample demonstrates that property εx⊥ 	 x⊥ (enabledness axiom (36) in the non-
probabilistic case), does not necessarily hold.

Example A.2 Consider the program (x :	 1)1
2
⊕ magic, which is always enabled. Then

((x :	 1)1
2
⊕ magic); abort 	 (abort 1

2
⊕ magic),

Refinement algebra for probabilistic programs 29

whereas

[gd.((x :	 1) 1
2
⊕ magic)]; abort 	 [True]; abort 	 abort,

and programs (abort 1
2
⊕ magic) and abort are not equal.

Termination. The termination guard of a one-bounded expectation transformer S , term.S , is defined as

(λσ ∈ � • S .True.σ �	 0).

The termination guard of an expectation transformer S is a standard predicate which specifies those states from
which S will not certainly abort. For any dually nondeterministic transformer S , we interpret τS as {term.S }. This
definition satisfies the termination axioms (39), (40), and (42). For example, the following proof demonstrates
that (40) is sound:

{term.({p}; S)} � {p}
⇔ {basic assertion properties}

term.({p}; S) ⇒ p
⇔ {definition of termination guard}

(λ σ • ({p}; S).True.σ �	 0) ⇒ p
⇔ {definition of sequential composition, assertion}

(λ σ • p.σ × (S .True.σ �	 0) + ¬p.σ × (0 �	 0)) ⇒ p
⇔ {ordering on expectations defined pointwise}

(∀ σ • p.σ × (S .True.σ �	 0) ⇒ p.σ)
⇔ {logic}

true.

For the case where the state space is finite, termination axiom (41) is also satisfied. (This may be verified in a similar
fashion to the corresponding enabledness axiom (35).) The following example (cf. Example A.1) demonstrates
the dependence of termination axiom (41) on the finite state space assumption.

Example A.3 Let � be an infinite state space containing variable x of type N, and S ,T ∈ NTran� , where

S 	df (x :	 x + 1)∗ and
T 	df (magic 1

x+1)⊕ abort).

We have that {term.(S ; T)} is not equal to {term.(S ; {term.T })}.

A.3. Total and weak correctness assertions

In this section we verify that the property (45)

(magic 	 [p]; S ; [¬q]) ⇒ ([p]; S ; [q] 	 [p]; S).

holds for any nondeterministic one-bounded expectation transformer S , and predicates p and q , and we explain
why it does not necessarily hold if S is dually nondeterministic.

First we observe that, for the nondeterministic expectation transformers, the algebraic total and weak cor-
rectness properties magic 	 [p]; S ; [¬q] and [p]; S ; [q] 	 [p]; S may be related to expectation transformers in
the following way.

Proposition A.4 For nondeterministic expectation transformer S and predicates p and q ,

[p]; S ; [q] 	 [p]; S ⇐ p ≤ S .q and (101)
[p]; S ; [¬q] 	 magic ⇔ p ≤ S .q . (102)

Proof. This proof uses the property (recall the equivalences from Sect. 6)

[p]; S ; [q] 	 [p]; S ⇔ {p}; S ; {q} 	 {p}; S . (103)

30 L. Meinicke, K. Solin

Assume that S is a nondeterministic expectation transformer. First, to prove (101) it can be seen that

[p];S ; [q] 	 [p];S
⇔ {(103), refinement ordering}

(∀φ • ({p}; S ; {q}).φ 	 ({p}; S).φ)
⇔ {definition of sequential composition, assertion}

(∀φ • p × S .(q × φ) 	 p × S .φ)
⇔ {isotony}

(∀φ • p × S .(q × φ) ≥ p × S .φ).

If we assume that p ≤ S .q then this property may be verified as follows. For any expectation φ and state σ such
that p.σ

S .(q × φ).σ
	 {expectations are one-bounded}

S .(q + q × φ + (¬q) × φ � 1).σ
	 S .(1 ∗ q + 1 ∗ φ � 1).σ
≥ {from the assumption that s is an nondeterministic one-bounded

expectation transformer we have that for all non-negative constants
c1, c2, c, if c1 + c2 − c ≤ 1 and one-bounded expectations φ and ψ ,
c1 ∗ S .φ + c2 ∗ S .ψ � c ≤ S .(c1 ∗ φ + c2 ∗ ψ � c) }
S .q .σ + S .φ.σ � 1

	 {S .q .σ 	 1 follows from assumption p ≤ S .q}
S .φ.σ.

To prove property (102) we show the more general result that for any expectation transformer S and expectations
φ and ψ , we have that

[¬ψ]; abort � S ; [¬φ] ⇔ ψ ≤ S .φ, (104)

where [¬ψ] and [¬φ] are probabilistic guards magic ψ ⊕ skip and magic φ⊕ skip, respectively. This is shown
simply by

[¬ψ]; abort � S ; [¬φ]
⇔ {isotony of sequential composition and transitivity of �}

[¬ψ]; abort � S ; [¬φ]; abort
⇔ {refinement ordering definition}

(∀ θ • ([¬ψ]; abort).θ ≤ (S ; [¬φ]; abort).θ)
⇔ {definition of sequential composition and abort}

[¬ψ].False ≤ S .([¬φ].False)
⇔ {definition of probabilistic guard}
ψ ≤ S .φ.

Since, for expectation transformer S and predicates p and q , ([p]; S ; [¬q] 	 magic) and ([¬p]; abort � S ; [¬q])
are equivalent (see Sect. 6), this proves our result. �

Property (45)—which is also satisfied by the conjunctive predicate transformers [vW02]—is an immediate
consequence of this result.

Corollary A.5 For nondeterministic expectation transformer S and predicates p and q

[p]; S ; [¬q] 	 magic ⇒ [p]; S ; [q] 	 [p]; S

holds. �
As for the isotone predicate transformers [vW04], this property does not hold for the dually nondeterministic
expectation transformers: when S is dually nondeterministic, property (102) from Theorem A.4 continues to
hold but (101) is—in general—lost. Consider S 	df x :	 1 � x :	 2, p 	 True, q 	 (λ σ • σ.x 	 1). The
reason that this relationship is lost is that assertions of the form [p]; S ; [q] 	 [p]; S fail to accurately represent
weak-correctness assertions (involving predicates) in the angelic models.

Refinement algebra for probabilistic programs 31

References

[Bac89] Back RJR (1989) A method for refining atomicity in parallel algorithms. In: PARLE’89 conference on parallel architectures
and languages Europe. Lecture notes in computer science, vol 366, pp 199–216. Springer, Berlin

[BKS83] Back RJR, Kurki-Suonio R (1983) Decentralization of process nets with centralized control. In: Proceedings of the 2nd ACM
SIGACT-SIGOPS symposium on principles of distributed computing. ACM Press, New York, pp 131–142

[BvW98] Back RJR, von Wright J (1998) Refinement calculus: a systematic introduction. Springer, Berlin
[BvW99] Back RJR, von Wright J (1999) Reasoning algebraically about loops. Acta Inform 36(4):295–334
[Coh00] Cohen E (2000) Separation and reduction. In: Mathematics of program construction. Lecture notes in computer science,

vol 1837, pp 45–59. Springer, Berlin
[Dij76] Dijkstra EW (1976) A discipline of programming. Prentice-Hall, Englewood Cliffs
[DMS06] Desharnais J, Möller B, Struth G (2006) Kleene algebra with domain. ACM Trans Comput Logic 7(4):798–833
[Doe77] Doeppner TW (1977) Parallel program correctness through refinement. In: ACM symposium on principles of programming

languages. ACM, New York, pp 155–169
[DP90] Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge
[DS90] Dijkstra EW, Scholten CS (1990) Predicate calculus and program semantics. Springer, Berlin
[Ehm03] Ehm T (2003) The Kleene algebra of nested pointer structures: theory and applications. PhD thesis, University of Augsburg,

December 2003
[HS08] Höfner P, Struth G (2008) Can refinement be automated? Electron Notes Theor Comput Sci 201:197–222
[Koz90] Kozen D (1990) On Kleene algebras and closed semirings. In: MFCS ’90: proceedings on mathematical foundations of

computer science. Lecture notes in computer science, vol 452, pp 26–47. Springer, Berlin
[Koz94] Kozen D (1994) A completeness theorem for Kleene algebras and the algebra of regular events. Inform Comput 110(2):366–390
[Koz97] Kozen D (1997) Kleene algebra with tests. ACM Trans Program Lang Syst 19(3):427–443
[Lip75] Lipton RJ (1975) Reduction: a method of proving properties of parallel programs. Commun ACM 18(12):717–721
[LS89] Lamport L, Schneider FB (1989) Pretending atomicity. Technical report, Ithaca, NY, USA
[M0̈4] Möller B (2004) Lazy Kleene algebra. In: Mathematics of program construction. Lecture notes in computer science, vol 3125,

pp 252–273. Springer, Berlin
[MCM06] McIver AK, Cohen E, Morgan CC (2006) Using probabilistic Kleene algebra for protocol verification. In: Relations and

Kleene algebra in computer science. Lecture notes in computer science, vol 4136, pp 296–310
[Mei08] Meinicke LA (2008) Transformation rules for probabilistic programs: an algebraic approach. PhD thesis, The University of

Queensland, June 2008
[MH06] Meinicke LA, Hayes IJ (2006) Reasoning algebraically about probabilistic loops. In: Eighth internatinal conference on formal

engineering methods. Lecture notes in computer science, vol 4260.
[MH08a] Meinicke L, Hayes IJ (2008) Probabilistic choice in refinement algebra. In Audebaud P, Paulin-Mohring C (eds) Mathematics

of program construction. Lecture notes in computer science, vol 5133, pp 243–267. Springer, Berlin
[MH08b] Meinicke LA, Hayes IJ (2008) Algebraic reasoning for probabilistic action systems and while-loops. Acta Inform 45(5):321–382
[MM01a] Morgan C, McIver A (2001) Cost analysis of games, using program logic. In: APSEC ’01: proceedings of the eighth Asia-Pacific

on software engineering conference, p 351. IEEE Computer Society, Washington
[MM01b] Morgan C, McIver A (2001) Cost analysis of games using program logic. http://www.cse.unsw.edu.au/~carrollm/probs/

bibliography.html
[MM05] McIver A, Morgan C (2005) Abstraction, refinement and proof for probabilistic systems. Monographs in Computer Science.

Springer, Berlin
[MMS96] Morgan C, McIver A, Seidel K (1996) Probabilistic predicate transformers. ACM Trans Program Lang Syst 18(3):325–353
[MS08] Meinicke L, Solin K (2008) Reactive probabilistic programs and refinement algebra. In: Berghammer R, Möller B, Struth G

(eds) Relations and Kleene algebra in computer science. Lecture notes in computer science, vol 4988, pp 304–319. Springer,
Berlin

[MW05] McIver A, Weber T (2005) Towards automated proof support for probabilistic distributed systems. In: Sutcliffe G,
Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning, 12th international conference. Lecture notes
in computer science, vol 3835, pp 534–548. Springer, Berlin

[PK00] Patron MC, Kozen D (2000) Certification of compiler optimizations using Kleene algebra with tests. In: Lloyd J, Dahl V,
Furbach U, Kerber M, Lau K, Palamidessi C, Moniz Pereira L, Sagiv Y, Stuckey PJ (eds) Proceedings of the 1st international
conference in computational logic. Lecture notes in artificial intelligence, vol 186, pp 568–582. Springer, Berlin

[Sol06] Solin K (2006) On two dually nondeterministic refinement algebras. In: Relations and Kleene algebra in computer science.
Lecture notes in computer science, vol 4136, pp 373–387

[ST96] Sere K, Troubitsyna E (1996) Probabilities in action systems. In: Proceedings of the 8th Nordic workshop on programming
theory. Publishing Association, Helsinki

[SvW06] Solin K, von Wright J (2006) Refinement algebra with operators for enabledness and termination. In: Mathematics of program
construction. Lecture notes in computer science, vol 4014, pp 397–415. Springer, Berlin (revised version to appear in Science
of Computer Programming)

[TF06] Takai T, Furusawa H (2006) Monodic tree Kleene algebra. In: Relations and Kleene algebra in computer science. Lecture
notes in computer science, vol 4136, pp 402–416

[vW02] von Wright J (2002) From Kleene algebra to refinement algebra. In: Mathematics of program construction. Lecture notes in
computer science, vol 2386, pp 233–262. Springer, Berlin

[vW04] von Wright J (2004) Towards a refinement algebra. Sci Comput Program 51:23–45

Received 9 January 2008
Accepted in revised form 20 December 2008 by E.A. Boiten, M.J. Butler, J. Derrick and G. Smith
Published online 17 April 2009

http://www.cse.unsw.edu.au/~carrollm/probs/bibliography.html
http://www.cse.unsw.edu.au/~carrollm/probs/bibliography.html

	1 Introduction
	2 A very general refinement algebra
	3 Healthiness conditions
	4 Guards and assertions
	5 Enabledness and termination
	5.1 Enabledness
	5.2 Termination

	6 Limitations of the algebra
	7 Basic algebraic properties
	8 Probabilistic action systems
	8.1 Program refinement
	8.2 Data refinement
	8.3 Atomicity refinement

	9 Concluding remarks and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

