4,705 research outputs found

    Method and apparatus for configuration control of redundant robots

    Get PDF
    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space

    Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level

    Get PDF
    The problem of minimizing the transfer time along a given Cartesian path for redundant robots can be approached in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parameterized joint path. In this framework, multiple suboptimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. We propose a solution method that works at the acceleration level, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. Several numerical results obtained on different robot systems demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with our method is reasonably close to the global time-optimal solution along same Cartesian path. Experimental results on a KUKA LWR IV are also reported, showing the tracking control performance on the executed motions

    Folding Assembly by Means of Dual-Arm Robotic Manipulation

    Full text link
    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.Comment: 7 pages, accepted for ICRA 201

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly

    A randomized kinodynamic planner for closed-chain robotic systems

    Get PDF
    Kinodynamic RRT planners are effective tools for finding feasible trajectories in many classes of robotic systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots, cooperating arms manipulating an object, or legged robots keeping their feet in contact with the environ- ment. The state space of such systems is an implicitly-defined manifold, which complicates the design of the sampling and steering procedures, and leads to trajectories that drift away from the manifold when standard integration methods are used. To address these issues, this report presents a kinodynamic RRT planner that constructs an atlas of the state space incrementally, and uses this atlas to both generate ran- dom states, and to dynamically steer the system towards such states. The steering method is based on computing linear quadratic regulators from the atlas charts, which greatly increases the planner efficiency in comparison to the standard method that simulates random actions. The atlas also allows the integration of the equations of motion as a differential equation on the state space manifold, which eliminates any drift from such manifold and thus results in accurate trajectories. To the best of our knowledge, this is the first kinodynamic planner that explicitly takes closed kinematic chains into account. We illustrate the performance of the approach in significantly complex tasks, including planar and spatial robots that have to lift or throw a load at a given velocity using torque-limited actuators.Peer ReviewedPreprin

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    Numerical approach of collision avoidance and optimal control on robotic manipulators

    Get PDF
    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured
    • …
    corecore