959 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Video TFRC

    Get PDF
    TCP-friendly rate control (TFRC) is a congestion control technique that trade-offs responsiveness to the network conditions for a smoother throughput variation. We take advantage of this trade-off by calculating the rate gap between the theoretical TCP throughput and the smoothed TFRC throughput. Any rate gain from this rate gap is then opportunistically used for video coding. We define a frame complexity measure to determine the additional rate to be used from the rate gap and then perform a rate negotiation to determine the target rate for the encoder and the final sending rate. Results show that although this method has a more aggressive sending rate compared to TFRC, it is still TCP friendly, does not contribute too much to network congestion and achieves a reasonable video quality gain over the conventional method

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    Distributed Coding/Decoding Complexity in Video Sensor Networks

    Get PDF
    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality

    Novel VLSI Architecture for Quantization and Variable Length Coding for H-264/AVC Video Compression Standard

    Get PDF
    Integrated multimedia systems process text, graphics, and other discrete media such as digital audio and video streams. In an uncompressed state, graphics, audio and video data, especially moving pictures, require large transmission and storage capacities which can be very expensive. Hence video compression has become a key component of any multimedia system or application. The ITU (International Telecommunications Union) and MPEG (Moving Picture Experts Group) have combined efforts to put together the next generation of video compression standard, the H.264/MPEG-4 PartlO/AVC, which was finalized in 2003. The H.264/AVC uses significantly improved and computationally intensive compression techniques to maximize performance. H.264/AVC compliant encoders achieve the same reproduction quality as encoders that are compliant with the previous standards while requiring 60% or less of the bit rate [2]. This thesis aims at designing two basic blocks of an ASIC capable of performing the H.264 video compression. These two blocks, the Quantizer, and Entropy Encoder implement the Baseline Profile of the H.264/AVC standard. The architecture is implemented in Register Transfer Level HDL and synthesized with Synopsys Design Compiler using TSMC 0.25(xm technology, giving us an estimate of the hardware requirements in real-time implementation. The quantizer block is capable of running at 309MHz and has a total area of 785K gates with a power requirement of 88.59mW. The entropy encoder unit is capable of running at 250 MHz and has a total area of 49K gates with a power requirement of 2.68mW. The high speed that is achieved in this thesis simply indicates that the two blocks Quantizer and Entropy Encoder can be used as IP embedded in the HDTV systems

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Motion correlation based low complexity and low power schemes for video codec

    Get PDF
    制度:新 ; 報告番号:甲3750号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6121Waseda Universit

    MPEG Reconfigurable Video Coding

    Get PDF
    WOS - ISBN: 978-1-4419-6344-4The currentmonolithic and lengthy scheme behind the standardization and the design of new video coding standards is becoming inappropriate to satisfy the dynamism and changing needs of the video coding community. Such a scheme and specification formalism do not enable designers to exploit the clear commonalities between the different codecs, neither at the level of the specification nor at the level of the implementation. Such a problem is one of the main reasons for the typical long time interval elapsing between the time a new idea is validated until it is implemented in consumer products as part of a worldwide standard. The analysis of this problem originated a new standard initiative within the ISO/IEC MPEG committee, called Reconfigurable Video Coding (RVC). The main idea is to develop a video coding standard that overcomes many shortcomings of the current standardization and specification process by updating and progressively incrementing a modular library of components. As the name implies, flexibility and reconfigurability are new attractive features of the RVC standard. The RVC framework is based on the usage of a new actor/dataflow oriented language called CAL for the specification of the standard library and the instantiation of the RVC decoder model. CAL dataflow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. This chapter gives an overview of the concepts and technologies building the standard RVC framework and the non standard tools supporting the RVC model from the instantiation and simulation of the CAL model to the software and/or hardware code synthesis
    corecore