102,486 research outputs found

    ANTI-MOSQUITO BEHAVIOR OF ADULT AND JUVENILE WHITE-FOOTED MICE (PEROMYSCUS LEUCOPUS) (TREEHOLE MOSQUITO, AEDES TRISERIATUS, EPIDEMIOLOGY)

    Get PDF
    Rodents seldom are identified as hosts for mosquitoes, based on serological analysis of bloodmeals. However, due to limited survey and lack of sensitivity in most bloodmeal analyses, host species can be misrepresented or undetected. Knowledge of behavior of a potential host species can complement results of bloodmeal analysis, because active vertebrates may prevent mosquito feeding and thus rarely serve as hosts. The objectives of this study were to characterize anti-mosquito behavior in the white-footed mouse (Peromyscus leucopus noveboracensis) and to examine effectiveness of such behavior in mice based on age, prior exposure to mosquitoes, and immediate environment. I used wild-stock Aedes triseriatus mosquitoes, reared in lab, in experiments with four groups of mice: (1) wild-caught adult males in a barren enclosure; (2) wild-caught adult males in an enclosure with seeds and nest material that could be manipulated, simulating natural activity; (3) adult males from a lab colony of P. leucopus; and (4) wild-stock, lab-reared juveniles with or without practice (prior exposure to mosquitoes). I used an electronic event recorder to monitor grooming, exploring, resting, and anti-mosquito actions. I observed each mouse without and then with mosquitoes. I then anesthetized each mouse to verify that lack of mosquito feeding success on the non-anesthetized (active) mouse was due to mouse behavior. Results indicated that the role of prior exposure to mosquitoes was minimal. Wild adult mice maintained defense while handling and eating seeds, implying that anti-mosquito behavior probably is an integral part of their activity in nature. Certain actions, such as ear-flick, occurred almost exclusively when mosquitoes were present. Juveniles usually caught, killed, and ate more mosquitoes than did adults. Individuality of mouse behavior affected the outcome of mouse-mosquito interactions. All mice, except one, had highly effective defense against mosquitoes. Therefore, P. leucopus probably rarely serves as host for mosquitoes in nature and, thus, as host or reservoir for mosquito-borne diseases

    Automating the Surveillance of Mosquito Vectors from Trapped Specimens Using Computer Vision Techniques

    Full text link
    Among all animals, mosquitoes are responsible for the most deaths worldwide. Interestingly, not all types of mosquitoes spread diseases, but rather, a select few alone are competent enough to do so. In the case of any disease outbreak, an important first step is surveillance of vectors (i.e., those mosquitoes capable of spreading diseases). To do this today, public health workers lay several mosquito traps in the area of interest. Hundreds of mosquitoes will get trapped. Naturally, among these hundreds, taxonomists have to identify only the vectors to gauge their density. This process today is manual, requires complex expertise/ training, and is based on visual inspection of each trapped specimen under a microscope. It is long, stressful and self-limiting. This paper presents an innovative solution to this problem. Our technique assumes the presence of an embedded camera (similar to those in smart-phones) that can take pictures of trapped mosquitoes. Our techniques proposed here will then process these images to automatically classify the genus and species type. Our CNN model based on Inception-ResNet V2 and Transfer Learning yielded an overall accuracy of 80% in classifying mosquitoes when trained on 25,867 images of 250 trapped mosquito vector specimens captured via many smart-phone cameras. In particular, the accuracy of our model in classifying Aedes aegypti and Anopheles stephensi mosquitoes (both of which are deadly vectors) is amongst the highest. We present important lessons learned and practical impact of our techniques towards the end of the paper

    Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes

    Get PDF
    Background: The full-scale impact of odour-baited technology on the surveillance, sampling and control of vectors of infectious diseases is partly limited by the lack of methods for the efficient and sustainable dispensing of attractants. In this study we investigated whether locally-available and commonly used textiles are efficient substrates for the release of synthetic odorant blends attracting malaria mosquitoes. Methods: The relative efficacy of (a) polyester, (b) cotton, (c) cellulose + polyacrylate, and (d) nylon textiles as substrates for dispensing a synthetic odour blend (Ifakara blend 1(IB1)) that attracts malaria mosquitoes was evaluated in western Kenya. The study was conducted through completely randomized Latin square experimental designs under semi-field and field conditions. Results: Traps charged with IB1-impregnated polyester, cotton and cellulose + polyacrylate materials caught significantly more female Anopheles gambiae sensu stricto (semi-field conditions) and An. gambiae sensu lato (field conditions) mosquitoes than IB1-treated nylon (P = 0.001). The IB1-impregnated cellulose + polyacrylate material was the most attractive to female An. funestus mosquitoes compared to all other dispensing textile substrates (P < 0.001). The responses of female An. funestus mosquitoes to IB1-treated cotton and polyester were equal (P = 0.45). Significantly more female Culex mosquitoes were attracted to IB1-treated cotton than to the other treatments (P < 0.001). Whereas IB1-impregnated cotton and cellulose + polyacrylate material attracted equal numbers of female Mansonia mosquitoes (P = 0.44), the catches due to these two substrates were significantly higher than those associated with the other substrates (P < 0.001). Conclusion: The number and species of mosquitoes attracted to a synthetic odour blend is influenced by the type of odour-dispensing material used. Thus, surveillance and intervention programmes for malaria and other mosquito vectors using attractive odour baits should select an odour-release material that optimizes the odour blend

    New Distribution Records for Mosquitoes in Michigan (Diptera: Culicidae)

    Get PDF
    (excerpt) Since the late 1940\u27s very little information has appeared in the literature dealing with the geographical distribution of mosquitoes in Michigan. The earliest attempt at establish- ing a comprehensive list of species was made by Irwin (1941) who catalogued 43 species by county. A survey by Pederson (1947) resulted in the collection of 48 species and provided the most extensive distribution list of mosquitoes in Michigan. Recent studies by Newson et al. (1975), McGroarty et al. (1976) and Grimstad (1977) have contributed several new distribution and state records. Prompted by the 1975 St. Louis encephalitis outbreak in Michigan, and a lack of current information on the species of mosquitoes in Isabella County, a survey of mosquitoes was conducted in the Mount Pleasant area

    Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    Get PDF
    Background: Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009. Methods: The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes. Results: Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable. Conclusions: Although there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising

    Advantages and Limitations of Commercially Available Electrocuting Grids for Studying Mosquito Behaviour.

    Get PDF
    Mosquito feeding behaviour plays a major role in determining malaria transmission intensity and the impact of specific prevention measures. Human Landing Catch (HLC) is currently the only method that can directly and consistently measure the biting rates of anthropophagic mosquitoes, both indoors and outdoors. However, this method exposes the participant to mosquito-borne pathogens, therefore new exposure-free methods are needed to replace it. Commercially available electrocuting grids (EGs) were evaluated as an alternative to HLC using a Latin Square experimental design in Dar es Salaam, Tanzania. Both HLC and EGs were used to estimate the proportion of human exposure to mosquitoes occurring indoors (πi), as well as its two underlying parameters: the proportion of mosquitoes caught indoors (Pi) and the proportion of mosquitoes caught between the first and last hour when most people are indoors (Pfl). HLC and EGs methods accounted for 69% and 31% of the total number of female mosquitoes caught respectively and both methods caught more mosquitoes outdoors than indoors. Results from the gold standard HLC suggest that An. gambiae s.s. in Dar es Salaam is neither exophagic nor endophagic (Pi ≈ 0.5), whereas An. arabiensis is exophagic (Pi < < 0.5). Both species prefer to feed after 10 pm when most people are indoors (Pfl > >0.5). EGs yielded estimates of Pi for An. gambiae s.s., An. arabiensis and An. coustani, that were approximately equivalent to those with HLC but significantly underestimated Pfl for An. gambiae s.s. and An. coustani. The relative sampling sensitivity of EGs declined over the course of the night (p ≤ 0.001) for all mosquito taxa except An. arabiensis. Commercial EGs sample human-seeking mosquitoes with high sensitivity both indoors and outdoors and accurately measure the propensity of Anopheles malaria vectors to bite indoors rather than outdoors. However, further modifications are needed to stabilize sampling sensitivity over a full nocturnal cycle so that they can be used to survey patterns of human exposure to mosquitoes

    The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa.

    Get PDF
    BACKGROUND: Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. METHODS: The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. RESULTS: In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. CONCLUSIONS: This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new mosquito control tool effective at reducing disease transmission, although further field work in areas with filariasis transmission should be carried out to verify this. In addition, work targeting malaria vector mosquitoes should be carried out to see if these mosquitoes manifest the same behaviour modification after infection with B. bassiana conidia
    • …
    corecore