185 research outputs found

    A Study of Automatic Detection and Classification of EEG Epileptiform Transients

    Get PDF
    This Dissertation documents methods for automatic detection and classification of epileptiform transients, which are important clinical issues. There are two main topics: (1) Detection of paroxysmal activities in EEG; and (2) Classification of paroxysmal activities. This machine learning algorithms were trained on expert opinion which was provided as annotations in clinical EEG recordings, which are called \u27yellow boxes\u27 (YBs). The Dissertation describes improved wavelet-based features which are used in machine learning algorithms to detect events in clinical EEG. It also reveals the influence of electrode positions and cardinality of datasets on the outcome. Furthermore, it studies the utility of using fuzzy strategies to obtain better performance than using crisp decision strategies. In the yellow-box detection study, this Dissertation makes use of threshold strategies and implementation of ANNs. It develops two types of features, wavelet and morphology, for comparison. It also explores the possibility to reduce input vector dimension by pruning. A full-scale real-time simulation of YB detection is performed. The simulation results are demonstrated using a web-based EEG viewing system designed in the School of Computing at Clemson, called EEGnet. Results are compared to expert marked YBs

    Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG

    Get PDF
    Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features which utilised specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this work, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight towards the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilised as opposed to binary IED and non-IED labels. The resulting model achieves state of the art classification performance and is also invariant to time differences between the IEDs. This study suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the dat

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    Machine Learning for Understanding Focal Epilepsy

    Get PDF
    The study of neural dysfunctions requires strong prior knowledge on brain physiology combined with expertise on data analysis, signal processing, and machine learning. One of the unsolved issues regarding epilepsy consists in the localization of pathological brain areas causing seizures. Nowadays the analysis of neural activity conducted with this goal still relies on visual inspection by clinicians and is therefore subjected to human error, possibly leading to negative surgical outcome. In absence of any evidence from standard clinical tests, medical experts resort to invasive electrophysiological recordings, such as stereoelectroencephalography to assess the pathological areas. This data is high dimensional, it could suffer from spatial and temporal correlation, as well as be affected by high variability across the population. These aspects make the automatization attempt extremely challenging. In this context, this thesis tackles the problem of characterizing drug resistant focal epilepsy. This work proposes methods to analyze the intracranial electrophysiological recordings during the interictal state, leveraging on the presurgical assessment of the pathological areas. The first contribution of the thesis consists in the design of a support tool for the identification of epileptic zones. This method relies on the multi-decomposition of the signal and similarity metrics. We built personalized models which share common usage of features across patients. The second main contribution aims at understanding if there are particular frequency bands related to the epileptic areas and if it is worthy to focus on shorter periods of time. Here we leverage on the post-surgical outcome deriving from the Engel classification. The last contribution focuses on the characterization of short patterns of activity at specific frequencies. We argue that this effort could be helpful in the clinical routine and at the same time provides useful insight for the understanding of focal epilepsy

    Patient-specific seizure onset detection

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 121-124).Approximately one percent of the world's population exhibits symptoms of epilepsy, a serious disorder of the central nervous system that predisposes those affected to experiencing recurrent seizures. The risk of injury associated with epileptic seizures might be mitigated by the use of a device that can reliably detect or predict the onset of seizure episodes and then warn caregivers of the event. In a hospital this device could also be used to initiate time-sensitive clinical procedures necessary for characterizing epileptic syndromes. This thesis discusses the design of a real-time, patient-specific method that can be used to detect the onset of epileptic seizures in non-invasive EEG, and then initiate time-sensitive clinical procedures like ictal SPECT. We adopt a patient-specific approach because of the clinically observed consistency of seizure and non-seizure EEG characteristics within patients, and their great heterogeneity across patients. We also treat patient-specific seizure onset detection as a binary classification problem. Our observation is a multi-channel EEG signal; its features include amplitude, fundamental frequency, morphology, and spatial localization on the scalp; and it is classified as an instance of non-seizure or seizure EEG based on the learned features of training examples from a single patient. We use a multi-level wavelet decomposition to extract features that capture the amplitude, fundamental frequency, and morphology of EEG waveforms. These features are then classified using a support vector machine or maximum-likelihood classifier trained on a patient's seizure and non-seizure EEG; non-seizure EEG includes normal and artifact contaminated EEG from various states of consciousness.(cont.) The outcome of the classification is examined in the context of automatically extracted spatial and temporal constraints before the onset of seizure activity is declared. During validation tests our method exhibited an average latency of 8.0[plus-minus]3.2 seconds while correctly identifying 131 of 139 seizure events from thirty-six, de-identified test subjects; and only 11 false-detections over 49 hours of randomly selected non-seizure EEG from these subjects. The validation tests also highlight the high learning rate of the detector; a property that allows it to exhibit excellent performance even when trained on as few as two seizure events from the test subject. We also demonstrate through a comparative study that our patient-specific detector outperforms a nonpatient-specific, or generic detector in terms of a lower average detection latency; a lower total number of false-detections; and a higher total number of true-detections. Our study also underscores the likely event of a generic detector performing very poorly when the seizure EEG of a subject in its training set matches the non-seizure EEG of the test subject.by Ali Hossam Shoeb.M.Eng

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance

    Seizure Detection Using Deep Learning, Information Theoretic Measures and Factor Graphs

    Get PDF
    Epilepsy is a common neurological disorder that disrupts normal electrical activity in the brain causing severe impact on patients’ daily lives. Accurate seizure detection based on long-term time-series electroencephalogram (EEG) signals has gained vital importance for epileptic seizure diagnosis. However, visual analysis of these recordings is a time-consuming task for neurologists. Therefore, the purpose of this thesis is to propose an automatic hybrid model-based /data-driven algorithm that exploits inter-channel and temporal correlations. Hence, we use mutual information (MI) estimator to compute correlation between EEG channels as spatial features and employ a carefully designed 1D convolutional neural network (CNN) to extract additional information from raw EEGs. Then, seizure probabilities from combined features of MI estimator and CNN are applied to factor graphs to learn factor nodes. The performance of the algorithm is evaluated through measuring different parameters as well as comparing with previous studies. On CHB-MIT dataset, our generalized algorithm achieves state-of-the-art performance
    • …
    corecore