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Abstract

This dissertation documents methods for automatic detection and classification of epilep-

tiform transients, which are important clinical issues. There are two main topics: (1) Detection of

paroxysmal activities in EEG; and (2) Classification of paroxysmal activities. This machine learn-

ing algorithms were trained on expert opinion which was provided as annotations in clinical EEG

recordings, which are called “yellow boxes” (YBs).

The dissertation describes improved wavelet-based features which are used in machine learn-

ing algorithms to detect events in clinical EEG. It also reveals the influence of electrode positions and

cardinality of datasets on the outcome. Furthermore, it studies the utility of using fuzzy strategies

to obtain better performance than using crisp decision strategies.

In the yellow-box detection study, this dissertation makes use of threshold strategies and

implementation of ANNs. It develops two types of features, wavelet and morphology, for comparison.

It also explores the possibility to reduce input vector dimension by pruning. A full-scale real-time

simulation of YB detection is performed. The simulation results are demonstrated using a web-based

EEG viewing system designed in the School of Computing at Clemson, called EEGnet. Results are

compared to expert marked YBs.
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Chapter 1

Introduction

1.1 Problem Background

Epilepsy is characterized by sudden recurrent and transient disturbances of mental function

or movements of the body that result from paroxysmal and abnormal discharge of groups of brain cells

[37] [45]. It is the second most common neurological disorder (after stroke) [65]. Approximately one

percent of the world population has epilepsy [28]. The most common clinical procedure in epilepsy

related diagnosis is the routine scalp electroencephalogram (rsEEG) recording, which is a summation

of electrical activities generated by cortical neurons along the scalp [66] [27]. Epileptiform transients

(ETs) are brief bursts of activity (usually lasting less than one second which occur intermittently

throughout the day and night in patients with epilepsy). ETs appear in the EEG in the form of

spikes (last 20-70 ms) or sharp waves (last 70-200 ms) with pointed peaks. Some ETs have a more

complex form: a spike followed by a slow wave (lasts 150-350 ms), together called spike-and-slow-

wave-complex [34]. For a patient who is having seizure-like events, the presence of ETs is a sign the

patient may have one or more seizures in the future [60]. Therefore detection of ETs is very useful

in the diagnosis of epilepsy [20].

ETs are usually detected by visual inspection by experienced physicians. This process

is notoriously time consuming, especially in the case of long term EEG recordings, e.g. 24-hour

continuous ambulatory monitoring studies. In addition, there is considerable variability in the

detection of ETs in EEG by physicians [40] [30], which can lead to EEG misinterpretation and

then misdiagnosis. Approximately 20%-30% of patients referred to specialized epilepsy centers are
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misdiagnosed [13]. Therefore it is necessary to develop efficient and reliable automatic techniques

for ETs detection and classification to help physcians with less experience interpret EEGs.

Methods for automatic detection and classification of ETs have been studied for 40 years

since the rise of automatic analysis of EEG in 1970s [19]. Unfortunately, technologies developed so

far are still not as reliable as experienced human interpreters. Automated EEG detection is difficult

due to several reasons: (1) The morphologies of both ETs and background signals vary widely

between patients; and (2) The waveforms of ETs are similar to some normal background activities

(i.e. wicket spikes, exaggerated alpha activity, small sharp spikes, and sleep related activities) and

also to artifacts (i.e. extracerebral potentials from eye blink, eye movement, muscle, heart, electrode,

etc.), which contribute to a large number of false positive detection [26] [21] [22]. Meanwhile, the

textbook definitions of ETs supplied by experts are overly simplistic. Development of training and

testing datasets to develop ET detection algorithms is also expensive and time consuming due to

the insufficient quantity and quality of ET exemplars, which is because obtaining expert opinion

from EEG physician experts is expensive and there is disagreement among the experts about the

classification of some EEG waveforms [62].

1.2 Previous Related Work

Many approaches aiming to improve the performance of automatic ET detection and clas-

sification have been implemented and published since 1970s. Most of them focused on strategies of

detection of ETs in the raw EEG signal. Template matching was initially used. It calculates the

cross-correlation between a EEG segment and a model ET waveform; and then the decision is made

by a pre-selected threshold [57] [18].

Many morphology-based detection strategies were developed later due to their intuitiveness.

Gotman et al. [24] interpreted the background context in which a spike occurs and decomposed

the waveform by finding segments between amplitude extrema. In order to describe the spike, they

introduced the following concepts: (1) the relative height; (2) pseudo-duration (The pseudo-duration

is graphically determined by extending a line from the start of a sequence, point A, through the half-

way point of the actual EEG wave and extending it so its end, point B, equals the amplitude level

of the ending point of the sequence; The horizontal distance from A to B is the pseudo-duration.)

of the two half-waves; (3) the relative sharpness at the apex; and (4) the total duration. Guedes
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de Oliveira et al. [14] used a normalized standard deviations of the amplitude of the EEG signal;

and then they applied a threshold to distinguish spikes from non-spikes. Faure et al. [16] introduced

the idea of using duration, amplitude and slope features of half-wave (one side of the triangular

shape of a spike). Wilson [62] suggested using background context of a spike to normalize the spike

parameters. Wilson [63] used curvature and angles. Many of these algorithms yielded low selectivity

since all normal transients, abnormal transients and artifacts fit the same morphologic definition

[26].

More sophisticated methods have been proposed. Sankar et al. [52] used an autoregressive

model to isolate transients in each 5-second window of EEG and then to classify them as spikes if

they match pre-selected templates. Background EEG signals were considered to be stationary in

this method. The disadvantage of autoregressive method is that it is sensitive to the number of

poles [62].

Features in frequency spectrum were also proposed. Pietila et al. [58] applied an adaptive

segmentation on EEG waveform and used the spectral power in a number of frequency bands as

features. Other researchers attempted to use spectral analysis methods such as the Fourier Transform

[4], the Hilbert Transform [17] and the Walsh transform [3] to interpret EEG signal. These methods

have the fixed time-frequency resolution limitation, which means that the increment of resolution in

the time domain causes decrease of that in the frequency domain [26].

Wavelet analysis is a relatively new and promising method to extract features [2]. The

Wavelet Transform (WT) has the advantage of multiple time/frequency resolution decomposition.

Particular characters of signals, such as non-stationary transient events, can be represented in various

scales [43]. The WT provides general techniques for ET detection. Senhadji et al. [55] applied the

discrete wavelet transform (DWT) to 10-second EEG segments to separate background and artifacts

from ET events. For training purpose, Park et al. [48] obtained wavelet coefficients by applying the

Daubechies wavelet of order 4 (DB4) on 1-second segments sampled at 256Hz. Goelz et al. [23]

applied the continuous wavelet transform (CWT) to generate a detailed spectrum of frequency

versus time for background signals; it then searched for events whose spectrum show statistical

deviations; these events were considered as ET candidates. Wavelet analysis has been frequently

used in recent ET detection methods [19].

The artificial neural network (ANN), a supervised learning machine, has been widely im-

plemented in EEG research, including detection and classification of ETs. Many types of features
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have been proposed as input and many structures of ANNs have been developed. Webber et al. [61]

used multi-layer perceptron (MLP) networks to test two sets of features. Ozdamar et al. [47] used

raw signals as input to a neural net, aiming to seek the best input signal length for MLP. Park et

al. [49] used wavelet coefficients in selected subbands as features.

1.3 Purpose of the Research and Overview of the Disserta-

tion

This research intends to make improvements and innovations based on several previous algo-

rithms. Both new and old algorithms are tested on real world rsEEG datasets 1. Their performances

are compared.

As illustrated in Figure 1.1, there are two stages in this research: the detection stage and

the classification stage. Both stages process the expert-marked annotations in the EEG recordings,

a.k.a. yellow boxes (YBs). The Wavelet Transform is the principal strategy to preprocess the raw

data before feature extraction. Both stages adopt features yielded from wavelet subbands. The

detection stage also considers a group of pure morphology-based features for comparison.

    Signals on
Desired Montage

ETs Annotations    Stage 1:
YB Detector

    Stage 2:
YB Classifier

YBs

Figure 1.1: The flow chart of the desired ETs detection system

In the detection stage, as illustrated in Figure 1.2, the ET detector identifies a set of can-

didate events that include abnormal brain activities. Two detection methods are implemented: (1)

Apply a threshold; and (2) Train with a neural net. The detection results are compared with a set

of yellow-boxes marked by experts.

In the classification stage, as illustrated in Figure 1.3, the classifier goes a step further to

determine whether the yellow-box candidates marked by experts are ETs. The major classification

algorithm in this research is the k-nearest-neighbor rule. Fuzzy classification attempts are explored

1http://eegnet.clemson.edu/
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Signals on 
  Desired 
 Montage

 Signal on 1st channel

 Signal on 2nd channel

 Signal on kth channel

 Wavelet
Transform

Feature Extraction
  from Coefficients

Subband Decision
      Combiner

YB Detector

YB Detector

YB Detector

YBs on 1st channel

YBs on 2nd channel

YBs on kth channel

Redundancy YB
      Screener

YBs

Figure 1.2: The flow chart of the detection module

 Wavelet
Transform

Feature Extraction
  from Coefficients

Traing and Test

Classification
    Results

YB Classifier
Expert−marked
        YBs

Figure 1.3: The flow chart of the classification module

as well as the crisp strategies. Referential classification results created by experts are compared with

the machine classification results.

In this dissertation, Chapter 2 shows the general methodology of electrode placement in EEG

recording system, data collection, and wavelet analysis. Chapter 3 shows the specific methodology

of classification, including design of the experiments, evaluation method, results and conclusions.

Chapter 4 shows the specific methodology of detection, including algorithms adopted by each module

of the detectors, results and evaluations. Chapter 5 discusses the implication of the results in Chapter

3 and Chapter 4, and summarizes the dissertation based on the presentations in previous chapters.
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Chapter 2

Data Acquisition and Research

Methods

2.1 Routine Scalp EEG and the International 10-20 System

An EEG signal is a measurement of currents that flow during synaptic excitation of the

dendrites pyramidal neurons in the cerebral cortex. When neurons are activated, the synaptic

currents are produced within the dendrites. The summation of the electrical potentials from these

dendrites produce an electrical field over the scalp, which can be measured by equipment. The

routine scalp EEG recording (rsEEG), the most common type of EEG recording, is mainly used to

distinguish epileptic seizures from other brain events. rsEEG is a non-invasive recording and thus is

preferred, yet there are disadvantages. The human head consists of several layers: scalp, skull, brain,

and other thin layers in between. During the routine EEG recording, the cerebrospinal fluid, skull

and scalp will attenuate the EEG signals; moreover, both internal noise from brain and external noise

from system is generated in company with the desired signal. Therefore, only electrical potentials

generated by a large number of neurons discharging synchronously can generate enough potential

that can be recorded by the scalp electrodes [51].

A typical rsEEG lasts for 20-30 minutes. The measurable amplitude range of rsEEG signals

is from 10 µV to 100µV. A piece of recording is obtained by placing a set of electrodes on the

scalp, where conductive gel is applied between electrodes and scalp. Each of the active electrodes
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Figure 2.1: 21-electrode International 10-20 system

Figure 2.2: Lobes in hemisphere
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Figure 2.3: Electrode distance

is connected to one input of an individual differential amplifier; a reference electrode is connected

to the other input of the amplifier. All the amplifiers are followed by the filter banks, which consist

of high-pass filter (usually 0.5 to 1 Hz), low-pass filter (usually 35 to 70 Hz) and notch filter (60
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Hz) in routine EEG research. The high-pass and low-pass filters screen out low and high frequency

artifacts respectively, while the notch filter removes the noise from electrical power lines. The

voltage between the active electrode and the reference is amplified and then filtered. The output is

digitized and stored in computerized systems. The effective bandwidth for EEG signals is limited to

approximately 100 Hz. Therefore, a minimum sampling rate at 200Hz is often enough to satisfy the

Nyquist criterion. Typical sampling rates range from 256 to 512Hz. In some applications, a higher

resolution is required for representation of all the brain activities in the frequency domain [51].

Electrode locations are specified by the International 10-20 system for most clinical and

research uses. The International 10-20 system is a standardized method to specify the location of

the scalp electrodes in EEG recordings for the convenience of comparison between subjects. In most

clinical applications, 19 recording electrodes (plus ground and system reference) are required by

this standard [56]. In this research, a 21-electrode placement is used as shown in Figure 2.1 1.

Additional electrodes can be added in between the existing electrodes in the 10-20 system when a

higher spatial resolution for a particular area of the brain is required 2.

In the standard 10-20 system, certain electrodes are placed to be near certain areas of the

cerebral cortex. An electrode location 3 is identified with a letter representing the relevant lobe

(‘F’ - frontal lobe, ‘T’ - temporal lobe, ‘P’ - parietal lobe, ‘O’ - occipital lobe, ‘C’ - central 4)

and a number or another letter representing the hemisphere location ( ‘z’ refers to the position of

electrodes on the midline; even numbers - 2,4,6,8, refer to those on the right hemisphere; and odd

numbers - 1,3,5,7, refer to those on the left hemisphere). The phrase ‘10-20’ refers to the fact that

the distances between adjacent electrodes are either 10% or 20% of the total front-back or right-left

distance of the skull. Figure 2.3 5 illustrates how the electrodes in a commonly used ‘10-20’ system

are arranged using the above rules [45].

Since each channel of an EEG recording is the difference of electrical potential between two

electrodes, it can be represented in several formats, which is also referred to as “montage”. There

are three different types of montages [10]:

1. Bipolar montage: the data in each channel are the differences of the output between two

1http://upload.wikimedia.org/wikipedia/commons/7/70/21 electrodes of International 10-
20 system for EEG.svg

2http://www.brainmaster.com/generalinfo/electrodeuse/eegbands/1020/1020.html
3The location of each lobe on the brain hemisphere is shown in Figure 2.2 from rele-

vant://www.epilepsyfoundation.org/about/types/syndromes/temporallobe.cfm
4‘C’ for identification of central since there is no central lobe in the cerebral cortex
5http://www.bem.fi/book/13/13.htm#03
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adjacent electrodes; the entire montage consists of the differential data of a series of bipolar

electrode pairs;

2. Referential montage: the data in each channel are the differences of the output between an

active electrode and a designated reference; and

3. Average reference montage: the data in each channel are the differences of the output between

an active electrode and the average reference, which is calculated using the average of the

outputs of all the active electrodes.

2.2 Data Acquisition

2.2.1 Dataset Based on Crisp Scoring

A selected dataset (‘best-7’), created by retrospective review of approximately 1000 rsEEG

recordings, was provided by MUSC Neurophysiology Laboratory for clinical purposes and for this

research. The dataset contains one hundred 30-second rsEEG segments collected from 100 different

rsEEG studies, which were performed on 100 different patients. Fifty of these segments contain

ETs from patients with known epilepsy and the other fifty contain benign paroxysmal activity

(exaggerated alpha activity, wicket spikes, and small sharp spikes) which can easily be misinterpreted

as epileptiform. The rsEEG were recorded referentially (with a digital reference electrode placed

between Fz and Cz) at a sampling rate of 256 Hz from 21 channels. The 21 electrodes were placed

using the 10-20 system. The EEG data was high-pass filtered (1 Hz), low-pass filtered (70 Hz),

and notch filtered (60 Hz). Every twenty 30-second rsEEG segments from all 21 channels were

concatenated into a 10-min EEG file. In total, five 10-min EEG files were yielded. The segments

with epileptiform activity and those without epileptiform were arranged in a random sequence [27].

The supporting software system of the dataset, EEGNet6, is hosted at the School of Com-

puting of Clemson University, as shown in Figure 2.4. EEGnet displays consecutive 10-second rsEEG

segment from the 10-min file in a montage at a time with labels on all channel pairs, as shown in Fig-

ure 2.5. The software allows users to view the EEG data in several conventional montages, including

AP bipolar, transverse bipolar, hatband bipolar, average reference, Cz reference, and ipsilateral ear

reference. The users can mark a segment of EEG as an annotation on any channels by placing a

6http://eegnet.clemson.edu
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‘yellow box’ (YB) around it on available montages and classify YB as either (1) an abnormal ET,

(2) an artifact, or (3) a burst of electrocortical activity which is not an ET. YBs can be created on

multiple montages even if they are representing the same events.

Figure 2.4: Interface of EEGNet

Figure 2.5: 10-second rsEEG data segment in EEGNet

The generation of annotations includes two phases. In the first phase, seven American Board

of Clinical Neurophysiology (ABCN) certified academic clinical neurophysiologists (EEGers) were

instructed to place YBs around all paroxysmal rsEEG events (PREs, including artifacts, benign

electrocortical and epileptiform electrocortical events) in the five 10-min rsEEG files. If several
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YBs on more than one rsEEG channel were marked and they were representing the same PRE, the

EEGers only kept a single YB that appeared to have the highest amplitude. The redundant YBs

were eliminated in three steps: (1) Cluster highly correlated YB candidates which have overlaps in

time; (2) Merge two YB candidates into the same cluster if their temporal overlap was at least 50%

of the length of the shortest YB candidates; and (3) Choose the YB segment with the maximum

sum of correlations to the others in its cluster as the representative YB for the cluster.

In the second phase, eleven EEGers (including the seven from the first phase) were instructed

to mark the representative YBs yielding in the first phase as one of the following paroxysmal types:

1. Artifact;

2. Abnormal epileptiform; and

3. Normal electrocortical activity.

Respectively, Figure 2.6 to Figure 2.8 show typical waveforms of the three paroxysmal categories.

Figure 2.6: Abnormal Epilepti-
form PED

Figure 2.7: Artifact PED Figure 2.8: Normal Electrocorti-
cal PED

The scoring results of eleven EEGers were output in a file as annotations for this research. The

annotations included the following information: annotation ID, start sequence number, end sequence

number, channel number, original channel name, notes, scale zoom, thumb nail, paroxysmal type,

montage ID, user ID, dataset ID, time stamp, classification ID, trial ID. The most crucial information

is listed below:

• annotation ID: identification number of the annotations;

• start sequence number: the sample number at which the annotation starts;

• end sequence number: the sample number at which the annotation ends;
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• original channel name: bipolar electrodes information of the annotation;

• paroxysmal type: paroxysmal type of the annotation with default value ’Unclassified’. The

“vote” information in an attached file will be used;

• dataset ID: identification number of dataset where the annotation comes from.

The purpose of this research is to distinguish ETs from other EEG events. The 3 paroxysmal

types can be merged into two classes:

1. ET class, containing ‘abnormal epileptiform’ paroxysmal type;

2. Non-ET class, containing ‘artifact’ and ‘normal electrocortical activity’ paroxysmal types.

To ensure the credibility of annotations in this study, we only use annotations scored by the

seven EEGers with the best inter-rater correlation in the second phase of the generation of annota-

tions. Each YB segment then has seven annotations scored by different EEGers. The only variation

of these seven annotations is the paroxysmal type. For research tractability reasons, each YB can

only be assigned to one paroxysmal type. The seven EEGers’ opinions about the paroxysmal type

on the same event need to be merged. We treated the seven EEGers’ opinions as seven votes and

counted votes respectively by paroxysmal type. The paroxysmal type that received most votes from

the seven EEGers was recorded in the annotation as the consensus decision for the event.

In total, we derived 83 ETs annotations and 2482 non-ETs annotations from the seven

EEGers’ scoring results. They are referred to as ‘best-7’ annotations. The ‘best-7’ annotations are

distributed in the following montages:

1. Bipolar AP Typical: F7-T3, T3-T5, P4-O2, T4-T6, Fp1-F7, C3-P3, C4-P4, Fp2-F8, F8-T4,

Fz-Cz, T5-O1, P3-O1, Fp1-F3, Cz-Pz, Fp2-F4, T6-O2, F4-C4, F3-C3;

2. Referential Average: F7-avg, C3-avg, Fz-avg, T3-avg, P3-avg, Fp1-avg, A1-avg; and

3. Referential Ipsi-Ear: Fp2-A2, Fp1-A1.

We were also provided with 2998 negative (non-paroxysmal events) annotations for training

purpose. A single feature vector was derived from each negative annotation.
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Table 2.1: Distribution of the ‘phase2’ confidence factor values by “votes” in paroxysmal types
# experts average of min of max of average of
“vote” #annotations confidence confidence confidence graded
AEP factors factors factors confidence factors
0 1568 0 0 0 0
1 125 0.250666667 0.166667 0.5 1.504
2 53 0.512578616 0.333333 1 1.537736
3 32 0.755208333 0.5 1.333333 1.510417
4 47 1.195035461 0.666667 2 1.792553
5 17 1.480392157 1 2.5 1.776471
6 20 2.066666667 1.166667 3 2.066667

total 1862 0.110275689 1.711111

Table 2.2: Distribution of the ‘phase2a’ confidence factor values by “votes” in paroxysmal types
# experts average of min of max of average of
“vote” #annotations confidence confidence confidence graded
AEP factors factors factors confidence factors
0 911 0 0 0 0
1 136 0.306372549 0.166667 0.5 1.838235294
2 40 0.633333333 0.333333 1.166667 1.9
3 23 0.927536232 0.5 1.333333 1.855072464
4 17 1.490196078 0.666667 2.5 2.235294118
5 25 2.206666667 1.166667 3 2.648
6 16 2.916666667 2.166667 3.666667 2.916666667

total 1168 0.184503425 2.25261324

2.2.2 Dataset Based on Fuzzy Scoring

The annotations discussed in this section for fuzzy classification purpose came from two

parts. The first part was derived from another dataset (‘phase2’) supported by EEGnet. This

dataset was collected and saved using the same indicator in Section 2.2.1. It also contains 100

patients’ rsEEG recordings (yet different patients from Section 2.2.1). In this dataset, six experts

(selected from the eleven experts in Section 2.2.1) were scoring the YBs. Instead of giving a precise

opinion about the paroxysmal type of a YB, each expert gave a confidence factor if he believed that

the YB contains ETs. The value of the confidence factor is ranging from ONE to FOUR based on

the expert’s judgment. FOUR indicates the expert is positive about the fact that the YB contains

ETs. ONE indicates it is weakly plausible that the YB contains ETs. If the expert believed there is

no ETs in the YB, he marked it as either ‘Artifact’ or ‘Normal electrocortical activity’ class. This

annotation set is named ‘phase2’. In total, there are 1862 annotations in this part. The distribution

of the confidence factors is listed in Table 2.1
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The second part of fuzzy annotation is a set of ‘best-7’ annotations in Section 2.2.1. In this

subset, the same six experts used the same rules to score the YBs. They were allowed to leave a

YB as ‘Unclassified’ if they believed it does not contain any ETs. This annotation set is named

‘phase2a’ and contains 1168 annotations. The distribution of the confidence factors of ‘phase2a’ is

listed in Table 2.2

Confidence factors reflect the membership of being ETs. They determine the feasibility of

fuzzy classification.

2.3 Multi-Resolution Analysis and Discrete Wavelet Trans-

form

In Fourier analysis, a segment truncated by a window on original signal is mapped into a

one-dimensional sequence of coefficients. The time and frequency resolutions are determined by the

fixed width of the analysis window during the entire process. Both time and frequency resolutions

are constant. This property makes Fourier analysis only appropriate for periodic signals or for signals

with time-invariant statistical characteristics [7]. However, EEG signals are non-stationary. There

are several spectral components in EEG signals. From the clinical viewpoint, these components of

EEG can be devided into the following bands: delta(0.1 to 3.5 Hz), theta(4 to 7.5 Hz), alpha(8 to

13 Hz), and beta (14 to 30 Hz). From the physiological viewpoint, the most important frequency

components are in the range of 0.1 to 30 Hz. EEG signals also contain components referred to as

gamma waves, whose frequencies are greater than 30Hz [46]. To decompose these EEG components

at different resolution levels, the discrete wavelet transform (DWT) using the strategy of multi-

resolution analysis (MRA) is applied.

The MRA analyzes signals at different frequency levels with different resolutions. MRA is

designed to give good time resolutions with poor frequency resolutions in high frequency levels and

good frequency resolutions with poor time resolutions in low frequency levels. This approach makes

sense since in real world, events with high-frequency components usually have short durations and

those with low frequency components have long durations.

A multi-resolution representation can be obtained by decomposing the signal using wavelet

basis functions. Wavelet means a “small wave” whose windowed function has a finite length (com-

pactly supported). It is used to define a set of basis functions for signal decomposition. It has both
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the oscillating characteristic like waves and the ability to allow simultaneous time and frequency

analyses. The energy of a wavelet is concentrated in a finite period of time. Wavelet transform is

similar to Fourier transform yet much more flexible and informative. It can be made periodic to

efficiently represent periodic signals like a Fourier series, moreover, it can be used directly on non-

periodic transient signals and yield excellent results. A wavelet expansion maps a one-dimensional

signal into a two-dimensional array of coefficients. The two-dimensional representation allows local-

izing the signal in both time and frequency domains. It is the localizing property of wavelets that is

suitable for the analysis of transient, non-stationary or time-varying signal events.

Four properties make wavelet analysis effective [7]:

1. The size of the wavelet expansion coefficients drop off rapidly with expansion level j and most

energy of the signal can be represented by a few expansion coefficients;

2. The wavelet expansion allows a more accurate local description and separation of signal char-

acteristics;

3. Wavelets are adjustable and adaptable to fit various applications; and

4. The calculation of DWT only includes multiplications and additions, both of which are basic

operations to a digital computer.

DWT analyzes signal at different frequency bands with different resolutions by decomposing

the signal into an approximation subband and several detail subbands. DWT employs two closely

related sets of functions: scaling function ϕ(t) and wavelet function ψ(t). They are associated with

lowpass and highpass filters respectively. The scaling functions and wavelet functions are required

to be orthogonal. According to Parseval’s theorem, orthogonal basis functions allow a partitioning

of the signal energy in the wavelet transform domain. Daubechies showed that it is possible for the

scaling function and the wavelet function to have compact support and to be orthonormal, which

makes the time localization possible [11] [12]. A basic scaling function is defined as

ϕk(t) = ϕ(t− k) k ∈ Z ϕ ∈ L2. (2.1)

Define subspace V0 as

V0 = Span
k

{ϕk(t)} k ∈ Z ϕ ∈ L2. (2.2)
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A series of scaling functions at different scales can be generated from the basic scaling function by

scaling and translation as

ϕj,k(t) = 2j/2ϕ(2jt− k) k ∈ Z (2.3)

the span over k is defined as

Vj = Span
k

{ϕk(2jt)}

= Span
k

{ϕj,k(t)} k ∈ Z.

(2.4)

For j > 0, ϕj,k(t) is translated in smaller steps and therefore represents finer detail; for j < 0, ϕj,k(t)

is translated in larger steps and represents coarse information. The span is larger for j > 0 and

smaller for j < 0.

The MRA requires the spanned spaces of scaling functions at different levels have a nesting

relation as

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...Vj ⊂ Vj+1... ⊂ L2 for all j ∈ Z (2.5)

with

V−∞ = {0}, V∞ = L2. (2.6)

If ϕ(t) is in V0, it is also in V1, which is spanned by ϕ(2t). Then ϕ(t) can be expressed as

ϕ(t) =
∑

n

h′(n)
√
2ϕ(2t− n) n ∈ Z. (2.7)

The orthogonal complement of Vj in Vj+1 is defined as Wj . The basis of Wj is the wavelet functions,

defined as ψj,k(t). ψj,k(t) span the differences between the various scaling spaces. In general

L2 = V0 ⊕W0 ⊕W1 ⊕ ... (2.8)

where V0 is the initial space spanned by the scaling function ϕ(t − k). Since W0 ⊂ V1, ψ(t) can be

represented as

ψ(t) =
∑

n

g′(n)
√
2ϕ(2t− n) n ∈ Z. (2.9)
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As the scaling functions, wavelet functions at different scales are generated by

ψj,k(t) = 2j/2ψ(2jt− k). (2.10)

In MRA, any signal function f(t) ∈ L2(R) can be represented by a combination of the

scaling functions and wavelet functions as

f(t) =
∑

k

cj0(k)ϕj0,k(t) +
∑

k

∞∑

j=j0

dj(k)ψj,k(t) (2.11)

where

ϕj0,k(t) = 2j0/2ϕ(2j0t− k) ψj,k(t) = 2j/2ψ(2jt− k) (2.12)

with coarsest scale j0. cj is the approximation coefficient at scale j and dj is the detail coefficient

at scale j.

In Equation 2.11, the first summation gives a low resolution or coarse approximation of f(t),

while each increasing index j in the second summation adds a higher or finer resolution component,

which is comparable with the high frequency terms containing signal details in the Fourier series.

The coefficients in this wavelet expansion are called the discrete wavelet transform of the signal f(t).

In orthogonal system, the approximation coefficients at scale j can be calculated by inner products

cj(k) =< f(t), ϕj,k(t) >=

∫
f(t)ϕj,k(t)dt (2.13)

and similarly, the detail coefficients at scale j are

dj(k) =< f(t), ψj,k(t) >=

∫
f(t)ψj,k(t)dt. (2.14)

For multi-stage DWT, Mallat developed a pyramidal algorithm to derive the wavelet coef-

ficients at a lower scale from those at a higher scale [43]. Start from the basic recursion equation

ϕ(t) =
∑

n

h′(n)
√
2ϕ(2t− n) (2.15)
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by scaling and translating the time variable

ϕ(2jt− k) =
∑

n

h′(n)
√
2ϕ(2(2jt− k)− n)

=
∑

m

h′(m− 2k)
√
2ϕ(2j+1t−m)

(2.16)

where m = 2k + n. Substitute Equation 2.16 into Equation 2.13

cj(k) =
∑

m

h′(m− 2k)

∫
f(t)2(j+1)/2ϕ(2j+1t−m)dt (2.17)

the integral in Equation 2.17 gives the approximation coefficients at scale j+1. Let h(n) = h′(−n),

there is

cj(k) =
∑

m

h(2k −m)cj+1(m) (2.18)

using Equation 2.14, 2.9, 2.10 and denoting g(n) = g′(−n) , we can derive the detail coefficients at

scale j as

dj(k) =
∑

m

g(2k −m)cj+1(m). (2.19)

The Equation 2.18 and 2.19 show that the approximation and detail coefficients at j level can be

obtained in two steps: (1) Convolve the scaling coefficients at j + 1 level by the time-reversed

recursion coefficients h(n) and g(n); then (2) Down-sample by 2 [42] [43]. The scaling function

coefficients h(n) and the wavelet function coefficients g(n) are required by orthogonality. They are

related by

g(n) = (−1)nh(1− n) (2.20)

for h(n) and g(n) with a finite length N

g(n) = (−1)nh(N − 1− n). (2.21)

The procedure is equivalent to passing the signal through a half band lowpass FIR filter

with impulse response h[n] and a highpass FIR filter with impulse response g[n]. The original signal

is then decomposed into two subbands. The scale of the signal is doubled after down-sampling.

Filtering only removes certain frequency components but leaves the scale unchanged. Resolution is

a measure of the amount of detail information in the signal and therefore is affected by the filtering
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Figure 2.9: Wavelet decomposition tree

operations. The resolution is halved after the filtering operation removing half of the frequency

components while the down-sampling operation does not affect the resolution.

In a multi-stage case, the decomposition of the signal can be fulfilled by successive highpass

and lowpass filtering of the approximation subband at current scale and decimating the coefficients

by 2, as illustrated in Figure 2.9 [43]. The detail and approximation coefficients at the highest

scale (level 1 decomposition) are denoted as D1 and A1, respectively. In each level, the index of

the coefficients in the successive decompositions will be increased by 1. The frequency resolution is

halved after the decomposition in each level. Eventually, the input signal f(x) is decomposed into

subbands that correspond to frequency ranges [0, fm], [fm, 2fm], [2fm, 2
2fm], ... [2l−1fm, 2

lfm]. The

frequency ranges of the subbands are directly related to the sampling rate fs of the input signal,

given by

fm =
fs
2l+1

(2.22)

where l is the level of decomposition. No information has been lost and the original signal can

completely be recovered. Those prominent frequency components in the original signal will appear

as high amplitude events in the subbands that include part or all of their frequency range. Time

localization of these frequencies will also be reflected in the subbands. The time localization also

has a resolution depending on which scale these frequencies appear. If the primary information of

the signal lies in high frequency range, the time localization of these frequencies will be more precise

since they are characterized by more number of coefficients. If the primary information lies in very

20



low frequency range, the time localization will not be very precise since few coefficients are used

to express the signal at these levels. In effect, this procedure offers better time resolution at high

frequencies and better frequency resolution at low frequencies. Certain high frequency component

can be located better in time domain than a low frequency component; on the contrary, a low

frequency component can be located better in frequency domain compared to a high frequency

component [50].

Matlab adopts Mallat’s algorithm in the calculation of DWT. The DWT of the original

signal is obtained by concatenating all coefficients starting from the last level of decomposition. At

each level, if the length of the input is N and the length of the filter is 2L, then the length of the

output after downsampling is

floor(
N − 1

2
) + L

which is also the number of wavelet coefficients yielded at current level [29].

2.4 Energy Distribution of EEG Signal by Wavelet Trans-

form

Based on Parseval’s theorem, if the scaling and wavelet functions form an orthonormal basis,

the energy of the EEG signal can be partitioned at different resolution levels. The energy of the

signal f(t) in Equation 2.11 and the energy in each of the components and their wavelet coefficients

have the following relation [7]

∫
|f(t)|2dt =

∞∑

l=−∞

|c(l)|2 +
∞∑

j=0

∞∑

k=−∞

|dj(k)|2. (2.23)

At each decomposition level, the energy of a subband can be presented mathematically as [46]

EDi = ΣN
j=1|Dij |2, i = 1, 2, ...l (2.24)

EAl = ΣN
j=1|Alj |2 (2.25)
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where i = 1, 2, ...l is the wavelet decomposition level. N is the number of coefficients in detail or

approximate subband at each decomposition level. EDi is the energy of the detail subband at

decomposition level i, and EAl is the energy of the approximate subband at decomposition level l.

22



Chapter 3

Classification of Expert-Marked

Yellow-Boxes

3.1 Crisp Classification

3.1.1 Methodology for Design of Classification of Expert-Marked Yellow-

Boxes

Wavelet analysis considers the EEG signal as a superposition of different spectra occurring in

different time scales at different times and intends to separate them. This procedure is accomplished

by the DWT. Two crucial factors that affect the outcome of DWT analysis are: (1) The selection

of appropriate mother wavelet; and (2) The number of decomposition levels.

A proper number of decomposition levels is chosen to retain the dominant frequency com-

ponents of the signal in the wavelet coefficients. In this study, the sampling frequency of the EEG

signals is 256 Hz and a 128-sample (500 ms) rectangular window, whose length is long enough to

cover a paroxysmal event, is applied on the montages to truncate signals to segments for analysis.

Under these circumstances, we choose a 4-level wavelet decomposition. The 128-sample EEG seg-

ment was decomposed into 5 subbands (four detail subbands D1-D4 and one approximation subband

A4). Table 3.1 lists the corresponding frequency range of each subband in the 4-level decomposition.

Different mother wavelets are selected for particular applications to achieve maximum ef-
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Table 3.1: Corresponding frequency range of each subband in classification
Subband Frequency Range

D1 64Hz ∼ 128Hz
D2 32Hz ∼ 64Hz
D3 16Hz ∼ 32Hz
D4 8Hz ∼ 16Hz
A4 0Hz ∼ 8Hz

ficiency. In general, DB4 yields the highest correlation coefficients with the epileptic spike among

the available wavelet bases in the Matlab toolbox [32], while DB2 possesses smoothing feature that

makes it suitable to detect changes of the EEG signals [25]. Figure 3.1 illustrates the similarities

between the scaling and wavelet function of DB4 and the shape of an epileptic spike. In this study,

six mother wavelets suggested by previous studies are selected and their performances are compared.

Figure 3.1: Comparison between wavelet functions and epileptic wave form: (A)scaling function of
Daubechies 4 (DB4), (B)wavelet function of DB4, and (C)the shape of an epileptic spike [32]

3.1.1.1 Benchmark Wavelet Feature Set

Guler suggested a feature set based on statistics over the wavelet coefficients. First, the

signal was truncated using a rectangular window; then the truncated segment is decomposed into 4

levels. Since the WT retains the entire information of the original signal in different subbands, the

total length of the wavelet coefficients are no less than that of the segment of the original signal. In

this case, a rectangular window with 128 temporal samples is used to obtain EEG segments. Then

the signal segment is decomposed into 4 levels, yielding 5 subbands (4 detail subbands D1-D4 and

one approximation subband A4). If the mother wavelet used for decomposition is DB2, as suggested

by Guler, there are 65, 34, 18 and 10 wavelet coefficients in the first, second, third and fourth

level of detail subband, respectively, and 10 wavelet coefficients in the fourth level of approximation
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subband; if the mother wavelet choice is DB4, there are 67, 37, 22 and 14 wavelet coefficients in the

first, second, third and fourth level detail subband respectively, and 14 wavelet coefficients in the

fourth approximation subband. If all the coefficients are used as input in either case, it will create

a high dimension vector with its size over 128.

To reduce the dimension of the feature set, Guler suggested the following statistical features

as a substitution [25]:

1. Maximum of the wavelet coefficients in each of the 5 subbands (D1, D2, D3, D4 and A4);

2. Minimum of the wavelet coefficients in each of the 5 subbands;

3. Mean of the wavelet coefficients in each of the 5 subbands; and

4. Standard deviation of the wavelet coefficients in each of the 5 subbands

Thereupon, in total we have 20 features in the wavelet-based feature set [25]. This feature set of

20-dimension vectors derived using DB2 is the benchmark of our classification research.

3.1.1.2 Feature Selection

The derivation of the wavelet-based features is an open problem, requiring considerable judg-

ment, computational resources and trial-and-error1 [5]. Following Guler’s methods and elaborating

on them, we have developed the following features in each subband:

• Feature #1: the highest peak (local maxima) of the wavelet coefficients;

• Feature #2: the lowest valley (local minima) of the wavelet coefficients;

• Feature #3: the mean of the peaks of the wavelet coefficients;

• Feature #4: the mean of the valleys of the wavelet coefficients;

• Feature #5: the variance of the peaks and the valleys of the wavelet coefficients;

• Feature #6: the variance of the peaks of the wavelet coefficients; and

• Feature #7: the variance of the valleys of the wavelet coefficients;

1This typifies many pattern recognition applications.
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In order to achieve high performances with relatively low vector dimensions, we assembled

5 combinations. Their choices of features and dimensions are shown in Table 3.2. Set#1 to Set#5

are basically different combinations of the seven features proposed in the previous paragraph. In

our previous study, we found that when using only one of the seven features in the classification,

Feature #4 (the mean of the valleys) yields the worst classification result and Feature #5 (the mean

of the peaks) yields the second worst result. Thus we discarded the worst in Set#4 and discarded

both of them in Set#5.

Table 3.2: Feature choices and dimensions of new feature sets
P
P
P
P
P
P
P
P
PP

Set

Selected

Features #1 #2 #3 #4 #5 #6 #7 dimension

Set#1 × × × × × 25
Set#2 × × × × × × 30
Set#3 × × × × × × × 35
Set#4 × × × × 20
Set#5 × × × 15

3.1.1.3 Employment of Multiple Mother Wavelets

When using either DB2 or DB4 to decompose, the plots of coefficients ofD1 and D2 subband

indicate signs of respondents to the ET event in the corresponding x-coordinates range where ET

occurs in time domain (at x-coordinate 30 in ‘original spike signal’ plot) in Figure 3.2, while the

peak values of the respondents using DB2 is twice of that of DB4. This is an example of how a

feature can be more evident when implementing WT with different mother wavelets. We have the

hypothesis that by combining features yielding from several pre-selected wavelets for the classifier,

the performance can be improved. We name this combination ‘multiple mother wavelets strategy’

and we will confirm it in Section 3.1.2. In this research, we combined features yielded by DB4 and

DB2. The vector dimension is then doubled when this dual-mother-wavelet strategy is implemented.

3.1.1.4 Scalp Spatial Features

Experts have noticed that the ETs usually occur in the temporal lobe, indicating the spatial

information of the electrodes through which the signal is recorded on the scalp could be features.

Our previous research showed that attachment of the spatial features to wavelet feature vectors help

improve the classification performance in some cases [68].
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Figure 3.2: Sample EEG wavelet decomposition results using DB4 and DB2
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In this research, we employed a 2D-coordinate system to locate each electrode in the inter-

national 10-20 system. The X, Y coordinates of 21 electrodes are computed using the distribution

of electrodes described in Figure 2.1 and Figure 2.3. The X, Y coordinates of the midpoint of each

bipolar electrode pair are used as the spatial features. The coordinate values are shown in Table

3.3.

3.1.1.5 Methodology of Classification and Performance Evaluation

To test the classification ability of different features and different mother wavelets, 18

datasets are built using the 6 feature sets in Section 3.1.1.2 with 3 choices of mother wavelets:
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Table 3.3: Coordinate information of electrode channels
Channel Number Channel Name X Coordinate Value Y Coordinate Value

Channel 1 Fp1 -12.3607 38.0423
Channel 2 F7 -32.3607 23.5114
Channel 3 T3 -40 0
Channel 4 T5 -32.3607 -23.5114
Channel 5 O1 -12.3607 -38.0423
Channel 6 F3 -15.6429 21.6974
Channel 7 C3 -20 0
Channel 8 P3 -15.6429 -21.6974
Channel 9 A1 -50 0
Channel 10 Fz 0 20
Channel 11 Cz 0 0
Channel 12 Fp2 12.3607 38.0423
Channel 13 F8 32.3607 23.5114
Channel 14 T4 40 0
Channel 15 T6 32.3607 -23.5114
Channel 16 O2 12.3607 -38.0423
Channel 17 F4 15.6429 21.6974
Channel 18 C4 20 0
Channel 19 P4 15.6429 -21.6974
Channel 20 A2 50 0
Channel 21 Pz 0 -20

DB2, DB4 and DB4+DB2.

3.1.1.5.1 Balance of the Dataset

In normal EEG recordings, non-ET events occur more frequently than ET events. In our

dataset, there are 83 ET feature vectors and 2482 non-ET feature vectors derived from the anno-

tations in total. The ratio of ET/non-ET approximates to 1:30. The annotations also indicated

that all 100 patients provided non-ET events while only 31 patients provided ET events. To avoid

prejudice in classification, we chose to balance the training set (H); we kept the 1:30 ET/non-ET

ratio in the test set ST to imitate the unbalanced situation in real world.

Within a single trial, 80 ET vectors and 2400 non-ET vectors were randomly selected from

the available data. These vectors were divided using the 10-fold cross-validation strategy. The

classification is accomplished by implementing the algorithm k-NNR with k=3.
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3.1.1.5.2 k-Nearest Neighbor Rule

The k-nearest neighbor rule (k-NNR) is a straightforward, non-parametric classification

method based on the idea of determining k closest training vectors to the test vector in the feature

vector space. It is the simplest machine learning algorithm: a sample is classified by the majority

votes of its k nearest neighbors (k is a positive integer, typically a small odd number) [53]. Since

k-NNR requires no assumptions about the distribution of the data or the parameters of the classifier,

the classification result reflects the properties of the feature data rather than those of the classifiers.

The disadvantage of k-NNR is its high computational complexity, which is extremely time-

consuming for large datasets. In this research, there are 2565 feature vectors in total (83 ET vectors

and 2482 non-ET vectors). It is a relatively small dataset and k-NNR will satisfy the real-time

classification condition.

Ordinary k-NNR measures the Euclidean distance between 2 vectors. In practice, however,

the entry values in one vector could be different by several orders of magnitude due to the distribution

of the features and the range of the data they represented. To normalize the entry values in a single

vector, we computed the distance as following

d(~v1, ~v2) =
√
(~v1 − ~v2)TD−1(~v1 − ~v2) (3.1)

where D is the diagonal of the covariance matrix of the randomly selected single-trial dataset2.

3.1.1.5.3 k-Fold Cross-Validation

The size of the training set should be large enough so the classifier can ‘see’ sufficient

exemplars. Due to the various morphologies of ETs, it is difficult to determine a reasonable size for

a dataset.

A k-fold cross-validation method will satisfy the population of the training set and leave the

training and test sets mutually independent. In k-fold cross-validation, the dataset is randomly split

into k mutually exclusive subsets, D1, D2 ... Dk of approximately equal size. Then train and test k

times, while each time training on D\Dt and testing on Dt with t = 1, 2, ...k [39]. To evaluate the

performance of the k-NNR classifier on small datasets, a stratified k-fold cross-validation is usually

used. The folds are stratified so that they contain (approximately) the same proportions of labels

2Preliminary tests indicate using the diagonal of the covariance matrix is superior to using the covariance matrix
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as the original dataset [39].

10-fold cross-validation is a recommended method for less bias and variance [39] and thus

is used in this research. The dataset is randomly split into 10 mutually exclusive subsets of equal

size. Each time the classifier is trained on D\Dt and tested on Dt with t = 1, 2, ...10. The overall

number of correct classification is used for estimation.

Considering the uncertainty and variation of the random selection of the data in a single

trial, 20 trials were performed when using each feature set/wavelet choice. In each trial, the dataset

is re-partitioned using 10-fold cross-validation. The mean of the 20 trials is used for evaluation.

3.1.1.5.4 Performance Evaluation

The test performance is assessed by sensitivity and specificity, defined as:

Sensitivity = TP /(TP + FN), capacity to recognize positive events;

Specificity = TN /(TN + FP), capacity to recognize negative activity.

where

TP refers to the data vectors who are classified into the AEP class by both machine and

experts;

TN refers to the data vectors who are classified into the nonAEP class by both machine and

experts;

FP refers to the data vectors who are classified into the AEP class by machine yet are classified

into the nonAEP class by experts;

FN refers to the data vectors who are classified into the nonAEP class by machine yet are

classified into the AEP class by experts.

To achieve a single numerical measure that combines sensitivity and specificity, we introduce the

measurement of the distance between the result and the coordinate (0,1) in the Receiver Operating

Characteristic (ROC) space:

distance =
√
(1− sensitivity)2 + (1− specificity)2. (3.2)
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A small distance-to-(0,1) indicates good overall performance. In an ideal case with 100% TP and

0% FP, the distance-to-(0,1) is 0.

3.1.2 Results and Evaluation of Yellow-Box Classification

In this section, to ensure mutual independency of the training set and the test set, 10-fold

cross-validation is used to split the dataset; to reduce the effect of the occurrence of outliers, each

strategy has been performed 20 times with different data choices, whose average performance is used

for evaluation.

3.1.2.1 Comparison of Performances on Selected Feature Set

The results of k-NNR (k = 1, 3, 5) are summarized in Figure 3.3. When k = 3, the aver-

age performance of various feature sets are listed in Figure 3.4 and Table 3.4. We considered the

benchmark to be Guler’s feature set using this mother wavelet DB2, which showed 79.88% in sensi-

tivity , 69.53% in specificity and 0.3652 in distance. Compared to this benchmark, the sensitivity is

improved to 82.06% (+2.18%) and the specificity is improved to 73.41% (+3.88%) by using Set#1

with DB2; the sensitivity is improved to 81.56% (+1.68%) and the specificity is improved to 73.58%

(+4.05%) by using Set#2 with DB2; by using dual-wavelet (DB4+DB2) and Guler-features, the

sensitivity is improved to 83.50% (+3.62%) and the specificity is improved to 72.05% (+2.52%);

assisted by dual-wavelet, Set#1 reached 84.69% (+4.81%) in sensitivity and 76.29% (+6.76%) in

specificity while Set#3 reached 85.63% (+5.75%) in sensitivity and 75.64% (+6.11%) in specificity.

Inside each feature set, the sensitivity of our dual-wavelet method is better than that of

either single-wavelet method (using either DB4 or DB2) except in Set#5, where the sensitivity of

DB4 is the best; the specificity and the distance-to-(0,1) of dual-wavelet are always better than

those of either single-wavelet. The specificity of dual-wavelet is more than 2% better than the

corresponding result of DB4 (which performed better than DB2), except in Guler Set (+1.58%).

3.1.2.2 Max vs All

In Guler’s method, 5 subbands result from the 4-level wavelet decomposition while 4 features

are extracted from each subband. Adding two spatial features, there are 22 features in total. The

vector size increases to 42 while using the dual mother wavelet cooperation strategy (20 wavelet

derived by DB4 and DB2 respectively plus X & Y coordinates). To reduce the computational
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Figure 3.3: Composite summary of feature set evaluations
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Table 3.4: k-NNR (k=3) comparative classification results of new feature sets
Sensitivity Specificity Distance to (0,1)

DB4 80.38% 70.47% 0.3546
Guler DB2 79.88% 69.53% 0.3652

DB4+DB2 83.50% 72.05% 0.3246
DB4 82.50% 74.23% 0.3115

Set#1 DB2 82.06% 73.41% 0.3207
DB4+DB2 84.69% 76.29% 0.2823

DB4 82.69% 73.92% 0.3130
Set#2 DB2 81.56% 73.58% 0.3222

DB4+DB2 83.19% 75.94% 0.2935
DB4 82.19% 73.61% 0.3184

Set#3 DB2 79.38% 73.48% 0.3360
DB4+DB2 85.63% 75.64% 0.2828

DB4 82.13% 73.68% 0.3182
Set#4 DB2 79.44% 73.03% 0.3392

DB4+DB2 83.88% 75.90% 0.2899
DB4 82.63% 72.82% 0.3226

Set#5 DB2 79.13% 72.09% 0.3485
DB4+DB2 81.13% 74.84% 0.3145

Table 3.5: k-NNR (k=3) classification results of using overall features based on Guler’s features vs.
using only maxima

Sensitivity Specificity Distance to (0,1)
DB2 All 79.88% 69.53% 0.3652

Max 75.00% 68.25% 0.4041
DB4 All 80.38% 70.47% 0.3546

Max 78.00% 68.14% 0.3872
DB5 All 73.00% 69.98% 0.4037

Max 72.94% 69.71% 0.4062
DB20 All 76.81% 68.83% 0.3885

Max 77.13% 67.51% 0.3974
bior1.3 All 76.69% 67.38% 0.4009

Max 75.13% 68.55% 0.4009
bior1.5 All 77.81% 69.63% 0.3761

Max 72.00% 66.79% 0.4344
DB4+DB2 All 83.50% 72.05% 0.3246

Max 77.56% 71.26% 0.3646
DB4+DB2 All 82.19% 72.13% 0.3308
+bior1.5 Max 76.63% 71.36% 0.3696
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Table 3.6: k-NNR (k=3) classification results with/without location features based on Guler’s fea-
tures

Sensitivity Specificity Distance to (0,1)
DB2 with XY 79.88% 69.53% 0.3652

no XY 81.31% 67.49% 0.3750
DB4 with XY 80.38% 70.47% 0.3546

no XY 81.06% 69.53% 0.3588
DB5 with XY 73.00% 69.98% 0.4037

no XY 77.38% 69.49% 0.3799
DB20 with XY 76.81% 68.83% 0.3885

no XY 72.50% 69.36% 0.4117
bior1.3 with XY 76.69% 67.38% 0.4009

no XY 76.25% 67.01% 0.4065
bior1.5 with XY 77.81% 69.63% 0.3761

no XY 75.50% 68.40% 0.3998
DB4+DB2 with XY 83.50% 72.05% 0.3246

no XY 82.31% 70.54% 0.3437
DB4+DB2 with XY 82.19% 72.13% 0.3308
+bior1.5 no XY 78.63% 70.68% 0.3628

Table 3.7: k-NNR (k=3) classification results with datasets of different size
DS size Sensitivity Specificity Distance to (0,1)

DB2 1240 74.63% 65.69% 0.4268
1860 78.25% 67.37% 0.3922
2480 79.88% 69.53% 0.3652

DB4 1240 77.63% 65.78% 0.4088
1860 78.75% 68.16% 0.3828
2480 80.38% 70.47% 0.3546

DB5 1240 71.50% 65.71% 0.4459
1860 73.58% 68.08% 0.4144
2480 73.00% 69.98% 0.4037

DB20 1240 73.38% 63.65% 0.4506
1860 77.58% 66.83% 0.4004
2480 76.81% 68.83% 0.3885

bior1.3 1240 71.25% 63.87% 0.4617
1860 74.67% 66.44% 0.4205
2480 76.69% 67.38% 0.4009

bior1.5 1240 73.25% 65.27% 0.4384
1860 75.08% 67.65% 0.4083
2480 77.81% 69.63% 0.3761

DB4+DB2 1240 81.13% 67.32% 0.3774
1860 83.58% 69.83% 0.3434
2480 83.50% 72.05% 0.3246

DB4+DB2 1240 75.75% 68.58% 0.3969
+bior1.5 1860 79.92% 70.34% 0.3582

2480 82.19% 72.13% 0.3308
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complexity and to increase the efficiency, we tried using only the maximum of the coefficients in each

subband (since a spike usually creates higher coefficients than the background signal at corresponding

time). This scheme results in a 7-dimension feature vector. The average results are listed in Table

3.5 by mother wavelet. Note the performance of 22-dimension feature vectors is superior to the 7-

dimension case in sensitivity, specificity and distance-to-(0,1), except when using the mother wavelet

of DB20 and bior1.3.

3.1.2.3 Effects of Electrode Pair Scalp Location Features

Incorporating the spatial information in the feature vector generally helps to improve clas-

sification performance. The average results are listed in Table 3.6 by mother wavelet. By adopting

the distance-to-(0,1) in the ROC, we observe that those results with incorporation of the spatial

information are closer to the point (0,1), except in the case of mother wavelet of DB5. However, the

trend of the changes in sensitivity and specificity shows a more complex situation. The sensitivity

improves while the specificity decreases when using the mother wavelet of DB20. The specificity

improves while the sensitivity decreases when using the mother wavelet of DB2, DB4 and DB5. Both

the sensitivity and the specificity improve when using the mother wavelet of bior1.3, bior1.5 and

multiple-wavelet combined feature sets (DB4+DB2 set and DB4+DB2+bior1.5 set). By evaluating

the sensitivity only, the best case is that the sensitivity is improved by 4.31% after adding location

features when using DB20 feature set. By evaluating the specificity only, the best case is that the

specificity is improved by 2.04% after adding location features when using DB2 feature set.

3.1.2.4 Effects of the Size of the Dataset

The dataset used in this study provides a limited number of spike events (83 samples total).

It is suggested that increasing the size of the dataset would achieve better results. The effect of the

size of the dataset was studied. Three subsets of the available data were used:

1. 2480-set: 80 ET and 2400 non-ET samples.

2. 1860-set: 60 ET and 1800 non-ET samples.

3. 1240-set: 40 ET and 1200 non-ET samples.

The three subsets are formed on the principle that the ratio of ET/non-ET is 1:30, same as in the

original dataset. The average classification results are listed in Table 3.7.
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Table 3.7 shows that the performance (measurement of distance-to-(0,1) in the ROC) in-

creases with increasing in the size of the dataset. The specificity is definitely improved as the dataset

gets larger. However, the sensitivities do not monotonically increase in all cases. The exceptions oc-

cur when the features are derived using DB5, DB20 or DB4+DB2, where the sensitivity of 1860-set

is the highest in each case respectively. By evaluating the sensitivity only, the best case is that the

sensitivity is improved by 6.44% from the 1240-set to the 2480-set when using DB4+DB2+bior1.5

feature set. By evaluating the specificity only, the best case is that the specificity is improved by

4.73% from the 1240-set to the 2480-set when using DB4+DB2 feature set.

3.1.2.5 Statistic Significance of Detection Improvement

3.1.2.5.1 One-Tailed t-Test

To assess statistical significance, a one tailed t-test is used to check whether the mean of the

results performed by two different feature sets are statistically different. First, we test if the mean

of sensitivities/specificities of a feature set/wavelet combination, is higher than that of benchmark

Guler-suggested feature set/wavelet choice, with a significance level α (weakly significant: α=0.1;

significant level: α=0.05; highly significant: α=0.01) and 20 observations. The hypotheses are:

H0 : µg = µ,

H1 : µg < µ,

where µ (µg) is the mean of the observations of a feature set/wavelet choice (Guler-suggested feature

set/wavelet choice) and neither of the variances σ2 (σ2
g) of the data is known. The standard deviations

of the observations in each set are unequal. With unknown and unequal variances, the t-value is

computed by

t =
x̄g − x̄√

s2/n+ s2g/ng

(3.3)

and the degree of freedom of the test is

υ =
(s2/n+ s2g/ng)

2

(s2/n)2

n−1 +
(s2g/ng)2

ng−1

(3.4)

where s (sg) is the standard deviation of the observations and n (ng) is the number of observations

(20 in our case). The critical region to reject H0 is t < −tα [21].
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To test if the distance-to-(0,1) decreased significantly, we change the hypotheses:

H0 : µg = µ,

H1 : µg > µ,

and the critical region to reject H0 is t > tα.

Table 3.8: The highest level at which H0 can be rejected with different feature set/wavelet choices
Comparison between Different Feature Sets with Same Wavelet Choice

H
H
H

HH
xg

x
Set#1 Set#2 Set#3 Set#4 Set#5 mother wavelet

0.05 0.05 0.1 0.1 0.05 DB4
Sensitivity0.05 0.05 fail fail fail DB2

fail fail 0.05 fail fail DB4+DB2
Guler 0.01 0.01 0.01 0.01 0.01 DB4

SpecificityFeatures 0.01 0.01 0.01 0.01 0.01 DB2
0.01 0.01 0.01 0.01 0.01 DB4+DB2
0.01 0.01 0.01 0.01 0.01 DB4

Distance to (0,1)0.01 0.01 0.01 0.01 0.05 DB2
0.01 0.01 0.01 0.01 0.05 DB4+DB2

Comparison between Benchmark and Different Feature Sets/Wavelet Choice

Benchmark 3

0.05 0.05 0.05 0.05 0.01 DB4
Sensitivity

0.01 0.01 0.01 0.01 0.1 DB4+DB2
0.01 0.01 0.01 0.01 0.01 DB4

Specificity
0.01 0.01 0.01 0.01 0.01 DB4+DB2
0.01 0.01 0.01 0.01 0.01 DB4

Distance to (0,1)
0.01 0.01 0.01 0.01 0.01 DB4+DB2

Table 3.9: The highest level at which H0 can be rejected of single vs. double mother wavelets
Comparison between Dual-Wavelet and Single-Wavelet within Feature Set

H
H
H
HH

xs

xd Guler Set#1 Set#2 Set#3 Set#4 Set#5
DB4+DB2

DB4 0.01 0.05 fail 0.01 0.05 fail
Sensitivity

DB2 0.01 0.01 0.1 0.01 0.01 0.05

DB4 0.01 0.01 0.01 0.01 0.01 0.01
Specificity

DB2 0.01 0.01 0.01 0.01 0.01 0.01

DB4 0.01 0.01 0.01 0.01 0.01 0.1
Distance to (0,1)

DB2 0.01 0.01 0.01 0.01 0.01 0.01

Comparison between Dual-Wavelet and Guler’s Single-Wavelet

Guler

DB4 0.01 0.01 0.01 0.01 fail
Sensitivity

DB2 0.01 0.01 0.01 0.01 0.1
DB4 0.01 0.01 0.01 0.01 0.01

Specificity
DB2 0.01 0.01 0.01 0.01 0.01
DB4 0.01 0.01 0.01 0.01 0.01

Distance to (0,1)
DB2 0.01 0.01 0.01 0.01 0.01

Table 3.8 and Table 3.9 shows the highest level at which H0 can be rejected. From Table

3.8, comparing the results that uses the same wavelet choice, we observed: (1) For sensitivity,

H0 is rejected at a significant level (α = 0.05) in 2 cases (DB4 and DB2) of Set#1 & Set#2,

1 case (DB4+DB2) of Set#3 and 1 case (DB4) of Set#5; H0 is rejected at a weakly significant
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level (α = 0.1) in 1 cases (DB4) of Set#3 & Set#4; (2) For specificity, H0 is rejected at a highly

significant level (α = 0.01) in all cases, indicating that the improvement in specificity is both

universal and tremendous; (3) Influenced by specificity, H0 is also rejected at a highly significant

level in distance-to-(0,1) except in 2 cases (DB2 and DB4+DB2) of Set#5, where the H0 is still

rejected at a significant level. Comparing the results with benchmark feature set/wavelet choice, we

observed: (1) By simply using DB4 instead of DB2,, the sensitivity can be significantly improved

and the specificity and distance-to-(0,1) can be highly significantly improved; (2) By employing

the dual-wavelet strategy, sensitivities are highly increased; There is an exception in Set#5, where

dual-wavelet degrades the sensitivity.

Table 3.9 compares the performances of single-wavelet versus dual-wavelet within feature

set. In Table 3.9, we observed H0 is rejected at a highly significant level (α = 0.01) in most cases,

especially in half of the sensitivities, indicating that dual-wavelet is a powerful strategy, since Table

3.8 has shown that it is difficult to make improvement in sensitivity. Only two cases failed to reject

H0 at a weakly significant level. Comparing to the benchmark feature set using single-wavelet, all

cases of feature sets using dual-wavelet reject H0 at a highly significant level except the sensitivities

of Set#5.

3.1.2.5.2 Power of the Test

The power of a test is the probability of rejecting H0 given that a specific alternative is true.

The power of a test can be computed as 1 − β, where β is the probability of type II error. To find

the power at level α, compute the critical region

X̄L = µg + tα ∗ σg√
ng

(3.5)

the Z-value corresponding to µ when H1 is true are

Z =
X̄L − µ

σ/
√
n

(3.6)

and the power of the test [21] is

1− β = 1− P (X < Z). (3.7)
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Table 3.10: Power with a level of significance of 0.05 (different wavelet choices)
Comparison between Different Feature Sets with Same Wavelet Choice

H
H
H
HH

xg

x
Set#1 Set#2 Set#3 Set#4 Set#5

Guler

82.19% 83.37% 71.41% 71.14% 85.59% DB4
Sensitivity91.73% 74.40% 0.20% 3.56% 0.88% DB2

21.35% 1.06% 75.30% 5.85% ≈ 0 DB4+DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4

Specificity≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4+DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4

Distance to (0,1)≈ 1 ≈ 1 ≈ 1 99.72% 94.99% DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 81.44% DB4+DB2

Comparison between Benchmark and Different Feature Sets/Wavelet Choice

Guler DB2

95.28% 94.49% 91.38% 93.05% 96.39% DB4
Sensitivity

≈ 1 99.31% ≈ 1 99.95% 49.81% DB4+DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4

Specificity
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4+DB2
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4

Distance to (0,1)
≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 DB4+DB2

Table 3.11: Power with a level of significance of 0.05 (single vs. double mother wavelets)
Comparison between Dual-Wavelet and Single-Wavelet Inside Feature Set

H
H
H
HH

xs

xd Guler Set#1 Set#2 Set#3 Set#4 Set#5
DB4+DB2

DB4 96.25% 93.52% 8.70% 99.68% 79.30% ≈ 0
Sensitivity

DB2 99.12% 99.61% 73.75% ≈ 1 99.97% 86.58%

DB4 99.99% ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
Specificity

DB2 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

DB4 99.98% ≈ 1 98.08% ≈ 1 99.99% 66.42%
Distance to (0,1)

DB2 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Comparison between Dual-Wavelet and Guler’s Single-Wavelet

Guler

DB4 ≈ 1 96.00% ≈ 1 99.56% 13.62%
Sensitivity

DB2 ≈ 1 99.31% ≈ 1 99.95% 49.81%
DB4 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Specificity
DB2 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
DB4 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Distance to (0,1)
DB2 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Table 3.10 and Table 3.11 show the corresponding power of the tests in Table 3.8 and

Table 3.9 at a significant level (α = 0.05). In an ideal situation, the power should be over 95%

when α = 0.05. In Table 3.10 and Table 3.11, all power values of specificity tests reach the ideal

standard of 95% and all power values of distance-to-(0,1) reach 95% except Set#5/DB4+DB2 vs.

Guler/DB4+DB2 in Table 3.10 and Set#5/DB4+DB2 vs. Set#5/DB4 in Table 3.11.

None of the power values of sensitivity tests using the same wavelet choice in Table 3.10

reaches 95%. This result is in expectation, considering the rejection level in Section 3.1.2.5.1.

However, when the tests are against benchmark, the power of 6 out of 10 cases reaches 95% and in
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another 3 cases it reaches 90%. In Table 3.11, most values are over 95%. When the tests are within

feature sets, the power of sensitivity of 6 cases fails to reach 95%. When the tests are against Guler’s

feature set, the power of sensitivity fails to reach 95% in only 2 cases.

3.2 Fuzzy Classification

In a crisp classification problem, once a data vector is assigned to a class, there is no indica-

tion that if it is atypical or representative in that class. In real world, however, many classification

problems are based on data that are not fully representative of the class. In order to describe the

membership of a data vector in certain class, a fuzzy set is implemented.

Fuzzy set, or class, is characterized by a membership function which associates a data vector

with a value in the interval [0, 1], which represents the grade of membership of the data vector in this

class. A value of ONE indicates full membership while ZERO means not a member. The nearer the

value is to 1, the higher the grade of the membership is in the class. In a crisp case, the membership

function takes only two values, 0 and 1. Notice that although there are some resemblances, the

membership function is not a probability function. The membership function is nonstatistical in

nature. [67] In a fuzzy classification problem, the summation of a vector’s membership values in all

classes must be 1.0 for mathematical tractability [36].

3.2.1 Fuzzy k-Nearest-Neighbor Algorithm

In the crisp k-nn algorithm, each neighbor is considered equally important when labeling

the input vector. The performance is likely to be deteriorated when there are overlaps between the

two classes in vector space.

The fuzzy k-nn algorithm assigns a fuzzy membership value in each class to the test vector.

It is associated with the membership values of its k nearest neighbors, which will be weighted by

their distance (Euclidean, Mahalanobis, etc.) to the test vector in the space.

For a problem with training set H = {x1, x2, ...xn} and c potential classes, the fuzzy k-nn

is accomplished in the following steps [36]:

1. Set 1 ≤ k ≤ n;

2. Find the k nearest neighbors by computing and measuring the distance from vtest to xi;
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3. Assign a membership value associated with the ith class to vtest as:

ui(vtest) =

∑k
j=1 uij

(
1/ ‖x− xj‖2/(m−1)

)

∑k
j=1

(
1/ ‖x− xj‖2/(m−1)

) (3.8)

where uij is the membership value in the ith class of the jth nearest neighbor and
∑c

i=1 uij =

1; the variable m determines how heavily the distance is weighted when calculating each

neighbor’s contribution to the membership value. As m increases, the neighbors are more

evenly weighted. As m approaches to one, the neighbors closer to vtest are weighted more

heavily. In a conventional case, m is set to two.

3.2.2 Fuzzy c-Means

Clustering is an unsupervised learning strategy. It groups the unlabeled vectors into clusters

by maximizing the intraclass similarity and minimizing the interclass similarity, usually through a

distance measure. C-means is one of the most widely used clustering algorithms. [64] Following is

the fuzzy c-means algorithm [8]:

1. Determine the number of clusters c, 2 ≤ c < n where n is the number of total data vectors;

Determine the constant value m, 1 < m <∞; Determine the measurement ||X−V||2;

2. Initialize the membership function U ;

3. At each iteration b, calculate the ith center v
(b)
i of the c clusters with U (b); it is expressed in

formula

vil =

∑n
k=1(uik)

mxkl∑n
k=1(uik)

m
, l = 1, 2, ..., p;

4. Update the membership U (b) to U (b+1) as follows: For k = 1,2,..., n,

(a) calculate Ik and Ĩk:

Ik = {i|1 ≤ i ≤ c, dik = ||xk − vi|| = 0},

Ĩk = {1, 2, ..., c} − Ik;

(b) for the kth data vector, compute new membership values as:
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i. if Ik = φ,

uik =
1

∑c
j=1

(
dik

djk

)2/(m−1)

ii. else uik = 0 for all i ∈ Ĩk and
∑

i∈Ik
uik = 1;

next k;

5. Compare U (b) and U (b+1) in a convenient matrix norm; if ||U (b)−U (b+1)|| < ǫ, stop; otherwise,

set iteration b = b+ 1, and go to step 3.

3.2.3 Initialization of the Membership Function

There are two crucial issues in fuzzy classification: (1) establishing the ground truth; and

(2) de-fuzzification of the outcomes after updating the membership values of the test data. The de-

fuzzification can be simply accomplished by applying a threshold on the derived membership values

in this specific two-class problem, where the threshold value is set to 0.5 as convention; the test

data with membership values above 0.5 are classified as AEP; the test data with membership values

below 0.5 are classified as nonAEP. Both issues involve initialization of the membership function.

The quality of the membership function will significantly affect the final outcomes. It is worthwhile

to note that there are many factors related to the membership function, which leaves the developing

of membership function an open issue.

The following sections aim to develop membership functions not only adapting to the dataset

but also based on appropriate information. There is no standard procedure to quantify the mem-

bership of a given data vector. In a particular case, we are provided with two pieces of information:

(1) the confidence factor, and (2) the paroxysmal type ‘voted’ by six experts. Confidence factor is

the score that an expert evaluates the likelihood of an event being an ET. It ranges from 0 to 4

while the value 1 to 4 are assigned to the suspected ET events, as mentioned in Section 2.2.2, and

the value 0 is assigned to the suspected non-ET events.

An obvious and straightforward way is to adopt the arithmetic mean of the six confidence

factors as the membership value. Yet based on the distribution information revealed in Table 2.1

and Table 2.2, we believe the values of the confidence factors in this dataset have been underrated,

which is very likely to undermine the performance of classifiers.

To reduce the influence of the underrated confidence factors, the following strategies are
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proposed and expected to develop a membership function that can truly represent the quality of the

data.

3.2.3.1 Means

3.2.3.1.1 Arithmetic Mean

The membership function values are initialized using the arithmetic mean of the confidence

factors. In this case, it is

Mem V al =
1

6

6∑

i=1

Confidence Factori. (3.9)

Then the membership values are normalized by its superior limit:

Mem V al =Mem V al/4. (3.10)

3.2.3.1.2 Geometric Mean

The membership function values are initialized using the geometric mean of the confidence

factors. In this case, it is

Mem V al =

√√√√1

6

6∑

i=1

Confidence Factor2i . (3.11)

The membership values are normalized by Equation 3.10.

3.2.3.1.3 Cube Root of the Cubes’ Mean

The membership function values are initialized using the cube root of the mean of the cubes

of the confidence factors. In this case, it is

Mem V al = 3

√√√√1

6

6∑

i=1

Confidence Factor3i . (3.12)

The membership values are normalized by Equation 3.10.
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3.2.3.1.4 Nth Root of the Nth Powers’ Mean

The membership function values are initialized using the nth root of the mean of the nth

powers of the confidence factors. In this case, it is

Mem V al = n

√√√√1

6

6∑

i=1

Confidence Factorni . (3.13)

The membership values are normalized by Equation 3.10.

3.2.3.2 Histogram Equalization

Histogram equalization is commonly used to adjust image intensity. It can be used to

adjust the probability density function (pdf) of any signal. In an image, when both background and

foreground are bright or dark, this technique enhances the global contrast and then highlights the

details by spreading the most frequent intensity values.

The algorithm of histogram equalization is straightforward and invertible. It is accomplished

in the following steps:

1. Compute the PDF of the dataset

pdf [x = i] =
num[x = i]

n
(3.14)

where num[x = i] is the number of occurrences of data i and n is the cardinality of the dataset;

2. Compute the CDF of the dataset

cdf [x = i] = Σi
x=inf{x}pdf [x = i]; (3.15)

3. Transform into the new values

pdf ′[x = i] = sup{x} ∗ cdf [x = i]. (3.16)

In this case, the original confidence factors can take a integer value between zero to four,

while the majority of the values are zero. If all the zero values are taken into consideration, the
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equalization results will be severely overrated. To avoid overrating, the following five strategies are

implemented and the distribution of data before and after equalization is illustrated in Figure 3.5:

1. Equalization based on all individual confidence factors. As mentioned before, due to the large

cardinality of the zero values, the new confidence factor values after equalization are pushed

to high score zone and are overrated. The distributions before and after equalization are

demonstrated in plot ‘1.all scores’ in Figure 3.5;

2. Equalization based on individual confidence factors belonging to the events whose arithmetic

means of the six confidence factors are non-zero. If an event receives zero scores from all

six experts, then the six scores will be exclude from the calculation, otherwise all of them

will be retained. The distributions before and after equalization are demonstrated in plot

‘2.non-zero-avg-annotation scores’ in Figure 3.5;

3. Equalization based on non-zero individual confidence factors. All the zero individual scores

are excluded from the calculation, irrespective of the non-zero scores graded by other experts

on the same event. The distributions before and after equalization are demonstrated in plot

‘3.non-zero scores’ in Figure 3.5;

4. Equalization based on the average of six experts’ confidence factors. First, compute the arith-

metic mean of the six confidence factors of each event; then apply the histogram equalization

on all the means. The distributions before and after equalization are demonstrated in plot

‘4.average scores’ in Figure 3.5;

5. Equalization based on the non-zeros average of six experts’ confidence factors. First, compute

the arithmetic mean of the six confidence factors of each event. Second, exclude all the zero

mean. Then apply the histogram equalization on the rest means. The distributions before and

after equalization are demonstrated in plot ‘5.non-zero average scores’ in Figure 3.5.

Figure 3.6 illustrates the relation between the renewed confidence factor values by equaliza-

tion and the original values. Based on the information in Figure 3.6, three strategies (equalizing all

scores, non-zero-average-annotation scores, and all average scores) severely overrated the confidence

factors, leaving only two choices (equalizing non-zero scores and non-zero average scores).
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Figure 3.5: Histogram of the 200-patient dataset before and after equalization
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Figure 3.6: Relation between the renewed confidence factor values and their original counterpart
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3.2.3.3 Interpolation and Polynomial Fitting

3.2.3.3.1 Interpolation

Among the two selected strategies in the end of Section 3.2.3.2, equalization of non-zero

individual confidence factors is a promising method. Since there are six experts scoring each event,

their arithmetic mean is a fraction with denominor of 6, and which ranges from zero to four (0, 1/6,

2/6, ... 24/6). Yet in this case, all the confidence factors are integers before equalization. The new

values corresponding to these fractions cannot be derived directly by equalization. To estimate the

equalization results of the fractions, interpolation is applied to the ‘equalization of non-zero scores’

curve in Figure 3.6.

There are many interpolation strategies. The two most commonly used strategies are spline

interpolation and piecewise cubic hermite interpolating polynomial (pchip) interpolation. Spline
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Figure 3.7: Spline interpolation and pchip interpolation with determined/undetermined value at
zero terminal
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interpolation uses low-degree polynomials in each interval and ensures a smooth transition at each

knot by specifying the second derivatives. It avoids the problem of Runge’s phenomenon caused

by high degree polynomials. Hermite interpolation constructs a function that fits both the given

data’s values and their first derivative through the nth derivative. Sometimes the cubic hermite is

less smooth [33].

In Figure 3.6, notice that when the equalization is based on non-zero individual confidence

factors, the PDF value at zero is vacant. In the following interpolation step, there are two proposals

to fill this blank: (1) Fill the vacancy with zero before interpolation (determined value at zero

terminal); and (2) Leave the vacancy open, extend the interpolation curve (The ‘equalization of

non-zero scores’ curve in Figure 3.6) to zero based on current equalization results from integer point

‘one’ to ‘four’ and the curve will terminate at some value t0 (undetermined value at zero terminal);
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normalize every equalized interpolation result xi by

xi = 4 ∗ xi − t0
4− t0

(3.17)

4 is the superior limit of xi.

Figure 3.7 illustrates the result of spline interpolation and pchip interpolation with either

determined or undetermined value at zero terminal. They are extremely close in this case due to

the simplicity of the trend of the curve. In order to determine which curve should be adopted in

this research, total deviation from the original piecewise equalization curve is measured. Spline is

determined as the preferred interpolation strategy. Interpolation with undetermined value at zero

terminal is also adopted for it retains the trend of the curve derived from interval [1,4].

3.2.3.3.2 Polynomial Fitting

Interpolation strategy introduces additional data for analysis. However, there is also a

concern about its introducing the information of the test data into the training set, which damages

the credibility of the outcomes. A remedy is to create a polynomial function that fits the curve

instead of direct use of the interpolation result after equalization. This research inspects 2nd to 5th

degree of polynomial function by measuring the total deviation from the interpolated curve to the

polynomial function. Preliminary tests indicated a 3rd degree polynomial function has the capability

to fit the curve with total deviation less than 1e-3, and three is the smallest order that the deviation

can be kept less than 1e-3. The 3rd degree polynomial function is then adopted.

3.2.3.4 Function Based Initialization

3.2.3.4.1 Linear Normalization of the “Votes” on the paroxysmal Type

The arithmetic mean also applies to the number of the experts’ opinions on the paroxysmal

type of the annotation (a.k.a. “votes”). Six experts in total “voted” on the paroxysmal type of each

annotation. The membership function value of ETs class is initialized as:

Mem V al = V otes(AEP )/6. (3.18)
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3.2.3.4.2 Sigmoid Initialization

Sigmoid function is often used to squash unbounded values in pattern recognition problems,

e.g., neural net [53]. Employ a tangent sigmoid transfer function to convert a value x (x ≥ 0):

f(x) =
2

1 + exp(−2αx)
− 1 (3.19)

where

α = − 1

2x
ln(

2

f(x) + 1
− 1) (3.20)

where x can be an expert-assigned confidence factor value or a vote and f(x) corresponds to its

converted membership value. We can choose desired confidence factor or vote as classification

boundaries and their corresponding α value can be inversely derived from x and f(x). In the

relevant tests in Section 3.2.4.1.2, pre-set a boundary xb and its output yb; if x >= xb, it yields

f(x) >= yb.

3.2.3.4.3 Synthetic Function Based on Confidence Factor and “vote”

Considering a situation that the distribution of the “votes” is inconsistent with that of the

confidence factors, a compromise between decision of the “votes” and that of the confidence factors

has to be made in the membership function. For instance, membership functions Mem Func1 from

Equation 3.19 and Mem Func2 from Equation 3.18 can be combined with a parameter β:

Mem Fun = β ∗Mem Func1 + (1 − β) ∗Mem Func2. (3.21)

There is no evidence regarding which decision, “votes” or confidence factors, is more accurate. We

choose three β based on experience: (1) 0.5, equal weight; (2) 0.618; and (3) 0.382.

3.2.3.4.4 Multi-Dimension Function Application

In Section 3.2.3.4.3, the two functions respectively derived from “votes” and confidence

factor can be considered as a two-dimension function, with the variables “vote” and confidence

factor. In fact, the dimension can be expanded to six using the six confidence factors scored by

different experts, or even to seven when including the additional variable “vote”. The following

functions are implemented:
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1. Sigmoid function:

f(x) =
2

1 + 1
6

∑6
i=1 exp(−2αxi)

− 1 (3.22)

where

α = − 1

2x
ln(

2

f(x) + 1
− 1) (3.23)

2. Piecewise sigmoid function with fluctuant coefficients:

f(x) =
1

1 + 1
6

∑6
i=1 exp(−2αkxi)

(3.24)

with

αk =





− 1
u1−1 ln(

1
y1

− 1), x > Cf

− 1
u2−1 ln(

1
y2

− 1), x ≤ Cf
(3.25)

where u1, u2 are superior and inferior limits of the confidence factors and y1, y2 are their

desired outputs respectively; Cf is a predetermined boundary, forcing the confidence factors

on either side to adopt different coefficient αk.

3. polynomial function: the polynomial function related to Section 3.2.3.2 and 3.2.3.3 can also

be converted into a multi-dimension case; employ the derived polynomial coefficients and use

the original individual confidence factors as input variables of the polynomial function; then

compute the arithmetic means of the outputs of the function.

3.2.3.5 Biased Confidence Factor

The significance of the confidence factor’s value can vary in different cases. For instance,

assume there are two events ‘A’ and ‘B’ in our case, where the confidence factors assigned to ‘A’ by

the six experts are [2 2 3 3 3 1] and those to ‘B’ are [3 0 0 0 0 1]. Obviously, the confidence factor

value 3 assigned to ‘A’ has a higher credibility than it does in ‘B’ where it deviates from the average.

When deriving a membership function value from a set of confidence factors, it is more reasonable

to attach heavier weights to those confidence factors with high credibility. The following strategy

allows the confidence factors to distinguish their significances autonomously: For a set of confidence

factors cf1, cf2, ... cfn (n=6 in our case), assign a coefficient bi, i =1, 2, ... n, to each of them; the
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Table 3.12: Customization of the coefficient of a confidence factor based on votes
P
P
P
P
P
P
PP

cfi

vote
0 1 2 3 4 5 6

0 b00 b01 b02 b03 b04 b05 b06
1 b10 b11 b12 b13 b14 b15 b16
2 b20 b21 b22 b23 b24 b25 b26
3 b30 b31 b32 b33 b34 b35 b36
4 b40 b41 b42 b43 b44 b45 b46

membership function value is computed by

Mem V al =

∑n
i=1 cfi ∗ bi∑n

i=1 bi
. (3.26)

When the coefficient bi is an integer, the strategy can be regarded as replication of significant

confidence factors in different degrees.

This strategy can be extended to two-parameter situation by customizing Table 3.12 in this

particular case, where we assume both the confidence factor and the “vote” about paroxysmal type

have effect on the coefficients.

How to fill the coefficients in Table 3.12 is an open issue. The following methods are

considered:

1. Since the ETs is sensitive to both confidence factor and vote, and since there are 6 times 4

possibilities in total, use scale 1 to 24 to fill the table and fill the entries to zero while either

“vote” or confidence factor is zero;

2. Stratify the table empirically, fill each part with an integer, starting from 0 or 1;

3. Based on empirical observation, implement appropriate functions to compute a decimal in

each entry; Section 3.2.3.4.1 shows the use of linearized “votes” and Section 3.2.3.2 and 3.2.3.3

shows the application of equalization related strategies; it is reasonable to reach the speculation

that the coefficients will grow linearly along the row of “vote” and also grow proportional to

the equalization curve function along the column of confidence factor; there are two models to

imitate this trend:

(a) Fill the column bi0 or bi1 (in this case all bi0 are zero) with values on the equalization

curve; the rest entries of the table can be filled with the value of their left neighbor plus

1; in the end normalize the table with its maximum entry;
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(b) Fill the column bi0 or bi1 (in this case all bi0 are zero) with values on a curve created

by equalization; the range of bin (n =0, 1) is from 0 to 4; extend the range to [0 5] and

increase all the values proportionally; enter them in column n+ 1; repeat the extension

process in next columns; in the end normalize the table by its maximum entry.

3.2.3.6 Optimization of the Coefficients Using Gradient Descent

Section 3.2.3.5 suggests an algorithm to derive coefficients for the confidence factors based

on the knowledge of the distributions of the confidence factors and the “votes”. Thus the coefficients

in Table 3.12 are empirical in Section 3.2.3.5. In this section, we explore an approach to optimize the

weights by gradient descent, which is commonly used to find a local minimum in pattern recognition.

Assume the six experts score the nth vector of xn1 , x
n
2 , x

n
3 , x

n
4 , x

n
5 and xn6 . The coefficients

assigned to the six scores are from Table 3.12. Then the membership value of AEP class for the nth

vector is

mbnnew = f(xn1 , x
n
2 , x

n
3 , x

n
4 , x

n
5 , x

n
6 )

=
1

4

(bni1jx
n
1 + bni2jx

n
2 + ...+ bni6jx

n
6 )

(bni1j + bni2j + ...+ bni6j)

=
1

4

∑6
r=1 b

n
irj
xnr∑6

r=1 b
n
irj

(3.27)

where j refers to the “votes” of the nth vector and ir = xnr . The derivative ∂mbpnew/∂bij is

∂mbnnew
∂bij

=
1

4

(
∑ir=i;vote=j xnr )(

∑6
r=1 b

n
irj

)− (
∑ir=i;vote=j 1)(

∑6
r=1 b

n
irj
xnr )

(
∑6

r=1 b
n
irj

)2
. (3.28)

Substitute dj for ||x − xj ||1/(m−1) in Equation 3.8. After implementing fuzzy k-nearest-neighbor,

the membership value of AEP class for the nth vector is

mbnfuzzy =

∑k
p=1 up

(
1/d2p

)
∑k

p=1

(
1/d2p

)

=

∑k
p=1mb

p
new

(
1/d2p

)
∑k

p=1

(
1/d2p

) .

(3.29)
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The error energy between mbnnew and mbnfuzzy is

En = (mbnfuzzy −mbnnew)
2

=

(∑k
p=1mb

p
new/d

2
j∑k

p=1 1/d
2
j

−mbnnew

)2

.

(3.30)

The derivative of the error energy is

∂En

∂bij
= 2

(∑k
p=1mb

p
new/d

2
j∑k

p=1 1/d
2
j

−mbnnew

)

∑k

p=1
1
d2

j

∂mbpnew

∂bij
∑k

p=1
1
d2

j

− ∂mbnnew
∂bij




= 2
(
mbnfuzzy −mbnnew

)



∑k

p=1
1
d2

j

∂mbpnew

∂bij
∑k

p=1
1
d2

j

− ∂mbnnew
∂bij





(3.31)

where k is the number of the nearest neighbors. k is not fixed and we can adjust it under multiple

circumstances. The total error energy of the test data is

E =

n∑
En (3.32)

and its derivative is

∂E

∂bij
=

n∑ ∂En

∂bij
. (3.33)

The correction of the coefficient is

∆bij = −η ∂E
∂bij

. (3.34)

In this case, we adopt η = 1/cardinality(ST ), where ST is the test set. Iterate the correction

process and the coefficients will gradually be adjusted to fit the situation. To avoid stopping at a

local minimum, a momentum can be added to the correction:

∆bij(t) = −η ∂E(t)

∂bij(t)
+ α∆bij(t− 1). (3.35)

It is worthwhile to note that this algorithm intends to achieve optimization by minimizing

the error energy between the membership values before and after classification. Neither sensitivity

nor specificity is involved because to evaluate these two targets, the algorithm must go through a de-

fuzzification process. Gradient descent requires the function to be differentiable so the function must
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be continuous. The error energy function fits this condition. By minimizing the error energy between

the membership values before and after classification, the system achieves better consistency, which

consequently contributes to higher sensitivity and specificity.

3.2.4 Performance on Fuzzy Set

3.2.4.1 Fuzzy k-Nearest-Neighbor

3.2.4.1.1 Benchmark of Crisp k-NNR

To assess the performance of fuzzy k-NNR, a reference yielded by crisp counterpart is nec-

essary. The crisp k-NNR is implemented respectively on dataset ‘phase2’, ‘phase2a’ in Section 2.2.2

and the combined 200-patient dataset. In a classification problem, the first step is to establish the

ground truth for the dataset. The ground truth of dataset ‘best-7’ in Section 2.2.1 is established by

adopting the paroxysmal type that receives the majority “votes”. The dataset ‘phase2a’ is a subset

of ‘best-7’ and could inherit its existing ground truth. However, it does not apply to ‘phase2’ or

200-patient dataset. A new criterion need to be established. A conventional strategy is to apply a

threshold on the “votes” of AEP and then to assign data vectors with enough “votes” to AEP class,

as illustrated in the upper flowchart in Figure 3.8.

The dataset generated for fuzzy tests includes controversial samples that might degrade the

performance of a crisp classifier. A reference performance developed with a better quality dataset

will be helpful to observe the influence of the quality of data in experiments. In this research, the

quality of dataset is upgraded by discarding annotation samples with relatively small “votes”. This

is illustrated in the lower flowchart in Figure 3.8. It is an open issue regarding how many “votes”

are enough to guarantee the quality of AEP class. The threshold can vary from one to five “votes”.

Preliminary work shows that by setting the threshold at four, the 200-patient dataset can yield the

best result. Table 3.13 provides an overview on crisp performance with different datasets and ground

truth. The best crisp result yielded using the 200-patient dataset shows 77.03% sensitivity, 70.20%

specificity and 0.3763 in distance-to-(0,1), which is also the benchmark for the following fuzzy tests.

3.2.4.1.2 Results of the Fuzzy k-NNR

Section 3.2.3 showed multiple possibilities to initialize the membership function. Most

strategies have to employ adjustable parameters, which leads to a massive amount of tests. This
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Table 3.13: Crisp classification result on 200-patient dataset and selected subset

sensitivity specificity dist-(0,1) |Ds|
benchmark

best7 decision

best7 annot 84.69% 76.29% 0.2823 2565

phase2a annot 82.30% 71.26% 0.337530288 1168

threshold strategy

AEP vote>=3

phase2a annot 82.74% 71.10% 0.3366 1168
phase2 annot 71.81% 68.62% 0.4219 1862
200 annot 74.75% 70.71% 0.3867 3030

AEP vote>=4

phase2a annot 79.68% 70.32% 0.3597 1168
phase2 annot 72.70% 67.80% 0.4222 1862
200 annot 77.03% 70.20% 0.3763 3030

discard strategy

AEP vote>=3

phase2a annot 83.64% 73.77% 0.3091 992
phase2 annot 73.05% 70.92% 0.3965 1684
200 annot 76.45% 73.33% 0.3558 2676

AEP vote>=4

phase2a annot 81.86% 73.84% 0.3184 969
phase2 annot 75.18% 70.62% 0.3846 1652
200 annot 78.90% 73.46% 0.3390 2621

57



Figure 3.8: Strategies to determine ground truth for the 200-patient dataset
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section only selected some representative tests whose parameter choices help yield relatively decent

results. The strategies employed in these selected tests cover the whole list in Section 3.2.3.

As the membership function is created, the ground truth is established by applying a thresh-

old of 0.5, and the data vectors with membership value larger than 0.5 form the AEP class, leaving

the rest in nonAEP class. Then the membership values of the test data are computed by fuzzy

k-NNR. All the details of the algorithms are described in Section 3.2.1. The classification results are

determined by de-fuzzification of the outcome membership values of the test data, where the same

threshold criterion to establish the ground truth is used. For a test data vector, if it is assigned

to the same class before and after classification based on its original and new membership values

respectively, it is a TP/TN; otherwise it is a FP/FN. The same cross-validation and evaluation

method is also used here as it is in Section 3.1.2.1.

Table 3.20 shows the results of the fuzzy k-NNR tests. Specific conditions (strategies,

parameters, etc.) corresponding to each test are listed as follows:

Condition1: The membership function is initialized using the linear normalization of the “votes”

for AEP class of each data vector;

Condition2: The membership function is initialized using the arithmetic mean of the six confidence
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factors of each data vector;

Condition3: The membership function is initialized using the geometric mean of the six confidence

factors of each data vector;

Condition4: The membership function is initialized using the cube root of the mean of the cubes

of the six confidence factors of each data vector;

Condition5: The membership function is initialized using the 4th root of the mean of the 4th

powers of the six confidence factors of each data vector;

Condition6: The membership function is initialized using the histogram equalization and interpo-

lation strategy; first, implement the histogram equalization based on all non-zero individual

confidence factors; then use spline interpolation to insert values from zero to four with a step

length of 1/6; finally, compute the arithmetic mean of the six confidence factors of each data

vector and project it to its equalized and interpolated counterpart, which is used as the mem-

bership value of this vector. The confidence factor values before and after equalization and

interpolation is listed in Table 3.14;

Table 3.14: Confidence factor values before and after equalization and interpolation in Condition6
original projection original projection original projection original projection

0 0
0.167 0.376 1.167 2.139 2.167 3.201 3.167 3.764
0.333 0.727 1.333 2.359 2.333 3.324 3.333 3.824
0.500 1.054 1.500 2.561 2.500 3.434 3.500 3.876
0.667 1.358 1.667 2.745 2.667 3.532 3.667 3.923
0.833 1.640 1.833 2.912 2.833 3.619 3.833 3.964
1.000 1.900 2.000 3.064 3.000 3.696 4.000 4.000

Condition7: The membership function is initialized using the polynomial fitting strategy; model

the projection function as a 3rd order polynomial (preliminary work has confirmed that an

3rd order polynomial is capable of a perfect fitting in Condition7); adopt the original data and

projection data in Table 3.14 as input and output of the polynomial function:

projection = α3 · original3 + α2 · original2 + α1 · original+ α0. (3.36)

Derive the coefficients of the polynomial function and list them in Table 3.15:

the scoring calibration strategy;
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Table 3.15: The coefficients of the 3rd order polynomial in Condition7
α3 α2 α1 α0

0.0339213026 -0.4694708277 2.3351424695 -2.3292694053e-15

Condition8: The membership function is initialized using a tangent sigmoid function defined by

Equation 3.19 to transfer “vote” to a membership value; the parameter α computed by Equa-

tion 3.20 satisfying the condition that when vote >= 4, the function yields f(vote) >= 0.79;

Condition9: The membership function is initialized using a tangent sigmoid function defined by

Equation 3.19 to transfer “vote” to a membership value; the parameter α computed by Equa-

tion 3.20 satisfying the condition that when confidence factor >= 0.5, the function yields

f(confidence factor) >= 0.5;

Condition10: The membership function is initialized using a synthetic function defined by Equa-

tion 3.21 with β = 0.382;

Condition11: The membership function is initialized using a six-variable tangent sigmoid function

defined by Equation 3.22; the parameter α computed by Equation 3.20 satisfying the condition

that when confidence factor >= 1 (the minimum value of an individual confidence factor

assigned for AEP is one), the function yields f(confidence factor) >= 0.5;

Condition12: The membership function is initialized using a two-piece sigmoid function defined by

Equation 3.24; the indefinite parameter αk satisfying the condition that when confidence factor >=

4, the function yields f(confidence factor) >= 0.95, and when confidence factor <= 0, the

function yields f(confidence factor) <= 0.05;

Condition13: The membership function is initialized using a six-variable polynomial function

whose coefficients are one sixth of their counterpart in Condition7;

Condition14: The membership function is initialized using the biased confidence factor strategy;

the membership value of each data vector is derived by Equation 3.26 and the adopted values

for coefficient bij are integers and listed in Table 3.16;

The integer coefficients are created based on the idea of doubling the weights of the larger-

than-zero confidence factors;
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Table 3.16: The coefficients of vote-based confidence factor in Condition14
P
P
P
P
P
P
PP

cfi

vote
0 1 2 3 4 5 6

0 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2
2 1 2 2 2 2 2 2
3 1 2 2 2 2 2 2
4 1 2 2 2 2 2 2

Condition15: The membership function is initialized using the biased confidence factor strategy;

the membership value of each data vector is derived by Equation 3.26 and the adopted values

for coefficient bij are integers and listed in Table 3.17;

Table 3.17: The coefficients of vote-based confidence factor in Condition15
P
P
P
P
P
P
PP

cfi

vote
0 1 2 3 4 5 6

0 1 1 1 1 1 1 1
1 1 2 2 2 2 3 3
2 1 2 2 2 3 3 3
3 1 2 2 3 3 3 3
4 1 2 2 3 3 3 3

The integer coefficients are selected based on empirical observations;

Condition16: The membership function is initialized using the biased confidence factor strategy;

the membership value of each data vector is derived by Equation 3.26 and the adopted values

for coefficients bij are decimals and listed in Table 3.18;

Table 3.18: The coefficients of vote-based confidence factor in Condition16
P
P
P
P
P
P
PP

cfi

vote
0 1 2 3 4 5 6

0 1 1 1.122222222 1.244444 1.366666667 1.488889 1.611111
1 1 1.232172 1.354394693 1.476617 1.598839138 1.721061 1.843284
2 1 1.374461 1.49668325 1.618905 1.741127695 1.86335 1.985572
3 1 1.451741 1.573963516 1.696186 1.81840796 1.94063 2.062852
4 1 1.488889 1.611111111 1.733333 1.855555556 1.977778 2.1

The decimal coefficients are created based on the information provided by Equation 3.18

and Section 3.2.3.3; at each “vote” point, the weights increase along the curve created by the

polynomial function in Condition7 in interval [0,4]; at each confidence factor point, the weights

increase linearly when the number of “vote” goes up; the region of these decimal weights can

be adjusted by experiment for optimization purpose; the trend of the biased coefficients is
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shown in Figure 3.9.

Figure 3.9: The trend of the biased coefficients in Condition16
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Condition17: The membership function is initialized using gradient descent optimization strategy;

choose k = 5 nearest neighbor when optimizing the coefficients; choose η = 1/cardinality(ST )

and α = 0.5 for Equation 3.35; the initial coefficients are all 1; after optimization, the coeffi-

cients bij are updated and listed in Table 3.19:

Table 3.19: The coefficients of gradient descent optimization in Condition17
P
P
P
P
P
P
PP

cfi

vote
0 1 2 3 4 5 6

0 1 5.735385 1 1.484381 1 0.336674 1
1 1 1.778316 1 0.707368 1 1.163804 1.51228
2 1 0.814442 1 0.545908 1 0.484242 1.660539
3 1 1 1 1 1 0.00074 0.002741
4 1 1 1 1 1 1.821498 0.00552

The membership value of each data vector is then derived by Equation 3.26 using the updated

coefficients.
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Table 3.20: Results of the fuzzy k-NNR based tests on the 200-

patient dataset

neighbor k=1 k=3 k=5 k=7 k=9

sensitivity 72.82% 67.79% 65.00% 64.57% 63.54%

DB4specificity 66.27% 74.34% 76.73% 77.59% 78.27%

distance-to-(0,1) 0.4332 0.4119 0.4203 0.4192 0.4245

sensitivity 74.50% 70.50% 68.43% 66.93% 65.07%

DB2Condition1 specificity 68.13% 75.50% 77.44% 78.23% 78.80%

distance-to-(0,1) 0.4082 0.3835 0.3880 0.3959 0.4086

sensitivity 74.57% 69.25% 67.04% 66.68% 63.39%

DB4+DB2specificity 70.63% 77.90% 80.06% 80.72% 81.18%

distance-to-(0,1) 0.3885 0.3787 0.3853 0.3850 0.4116

sensitivity 70.38% 54.88% 53.00% 51.63% 48.25%

DB4specificity 69.22% 87.29% 89.51% 91.00% 91.86%

distance-to-(0,1) 0.4272 0.4688 0.4816 0.4921 0.5239

sensitivity 71.38% 55.13% 52.88% 49.88% 46.00%

DB2Condition2 specificity 69.40% 86.91% 89.09% 90.79% 91.99%

distance-to-(0,1) 0.4190 0.4674 0.4837 0.5096 0.5459

sensitivity 74.13% 54.13% 52.38% 50.00% 48.13%

DB4+DB2specificity 71.94% 88.72% 90.84% 92.66% 93.70%

distance-to-(0,1) 0.3817 0.4724 0.4850 0.5054 0.5226

sensitivity 72.71% 49.21% 42.79% 39.43% 35.50%

DB4specificity 68.69% 87.13% 90.07% 91.62% 92.74%

distance-to-(0,1) 0.4153 0.5239 0.5807 0.6115 0.6491

sensitivity 76.21% 50.00% 46.21% 42.50% 40.07%

DB2Condition3 specificity 70.17% 87.01% 89.64% 90.84% 91.95%

distance-to-(0,1) 0.3815 0.5166 0.5477 0.5823 0.6047

sensitivity 74.21% 50.93% 43.64% 40.00% 38.07%

DB4+DB2specificity 72.36% 88.73% 91.32% 92.69% 93.59%
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distance-to-(0,1) 0.3780 0.5035 0.5702 0.6044 0.6226

sensitivity 71.72% 53.06% 48.50% 45.67% 42.50%

DB4specificity 68.69% 84.89% 87.56% 89.05% 90.39%

distance-to-(0,1) 0.4219 0.4932 0.5298 0.5543 0.5830

sensitivity 75.67% 55.67% 52.67% 50.11% 45.39%

DB2Condition4 specificity 70.37% 85.02% 87.48% 88.58% 89.60%

distance-to-(0,1) 0.3834 0.4680 0.4896 0.5118 0.5559

sensitivity 76.44% 55.50% 50.94% 46.50% 43.67%

DB4+DB2specificity 73.75% 87.28% 89.43% 90.55% 91.79%

distance-to-(0,1) 0.3527 0.4628 0.5018 0.5433 0.5693

sensitivity 69.19% 49.92% 43.35% 40.08% 35.96%

DB4specificity 66.79% 84.94% 88.26% 90.04% 91.25%

distance-to-(0,1) 0.4530 0.5229 0.5786 0.6074 0.6463

sensitivity 76.12% 52.62% 45.88% 42.35% 38.23%

DB2Condition5 specificity 69.63% 85.77% 88.24% 89.78% 90.87%

distance-to-(0,1) 0.3863 0.4948 0.5538 0.5855 0.6244

sensitivity 72.19% 51.27% 44.12% 40.69% 36.15%

DB4+DB2specificity 71.48% 87.94% 90.11% 91.42% 92.74%

distance-to-(0,1) 0.3983 0.5020 0.5675 0.5993 0.6426

sensitivity 73.67% 57.79% 53.13% 51.13% 47.67%

DB4specificity 67.89% 81.99% 84.23% 85.90% 87.05%

distance-to-(0,1) 0.4153 0.4589 0.4946 0.5087 0.5391

sensitivity 76.21% 60.46% 54.63% 53.21% 49.92%

DB2Condition6 specificity 69.79% 82.35% 84.08% 85.33% 86.45%

distance-to-(0,1) 0.3846 0.4330 0.4809 0.4904 0.5188

sensitivity 75.63% 58.08% 55.25% 51.83% 47.79%

DB4+DB2specificity 72.42% 85.29% 87.09% 88.18% 89.31%

distance-to-(0,1) 0.3681 0.4442 0.4657 0.4960 0.5329

sensitivity 72.54% 54.96% 50.63% 47.96% 45.33%

DB4specificity 67.44% 81.64% 84.36% 85.94% 87.13%
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distance-to-(0,1) 0.4259 0.4864 0.5179 0.5391 0.5616

sensitivity 77.50% 60.67% 56.63% 53.46% 51.00%

DB2Condition7 specificity 70.01% 82.99% 84.96% 86.13% 87.15%

distance-to-(0,1) 0.3749 0.4285 0.4591 0.4857 0.5066

sensitivity 75.71% 58.88% 56.21% 51.04% 46.75%

DB4+DB2specificity 72.42% 85.33% 87.12% 88.25% 89.36%

distance-to-(0,1) 0.3675 0.4366 0.4565 0.5035 0.5430

sensitivity 72.66% 67.50% 64.11% 63.34% 62.61%

DB4specificity 67.25% 74.15% 77.16% 77.94% 78.41%

distance-to-(0,1) 0.4266 0.4153 0.4254 0.4279 0.4318

sensitivity 72.32% 68.03% 65.87% 65.08% 64.63%

DB2Condition8 specificity 67.66% 75.15% 78.05% 78.58% 79.00%

distance-to-(0,1) 0.4257 0.4049 0.4058 0.4097 0.4113

sensitivity 72.37% 69.21% 66.39% 64.71% 63.76%

DB4+DB2specificity 69.92% 77.36% 80.52% 80.90% 81.31%

distance-to-(0,1) 0.4085 0.3822 0.3884 0.4013 0.4077

sensitivity 71.38% 57.85% 56.43% 54.82% 53.83%

DB4specificity 66.78% 79.82% 82.25% 83.44% 84.10%

distance-to-(0,1) 0.4385 0.4673 0.4704 0.4812 0.4883

sensitivity 71.78% 60.68% 57.95% 56.20% 55.92%

DB2Condition9 specificity 67.88% 80.83% 83.09% 83.93% 84.68%

distance-to-(0,1) 0.4276 0.4374 0.4532 0.4665 0.4667

sensitivity 71.62% 58.58% 56.47% 53.80% 53.00%

DB4+DB2specificity 69.37% 82.61% 85.16% 86.07% 86.70%

distance-to-(0,1) 0.4176 0.4492 0.4599 0.4825 0.4885

sensitivity 72.18% 62.10% 60.00% 59.58% 57.65%

DB4specificity 67.35% 78.08% 79.85% 80.96% 81.85%

distance-to-(0,1) 0.4289 0.4378 0.4479 0.4468 0.4608

sensitivity 73.25% 61.73% 61.33% 60.40% 59.35%

DB2Condition10 specificity 67.99% 79.17% 81.00% 81.92% 82.49%
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distance-to-(0,1) 0.4171 0.4357 0.4309 0.4353 0.4426

sensitivity 72.95% 62.65% 60.83% 59.83% 57.63%

DB4+DB2specificity 69.99% 81.30% 83.19% 84.20% 84.82%

distance-to-(0,1) 0.4040 0.4177 0.4263 0.4317 0.4501

sensitivity 70.86% 65.43% 62.57% 62.57% 61.21%

DB4specificity 64.36% 70.96% 74.22% 75.39% 76.29%

distance-to-(0,1) 0.4603 0.4515 0.4545 0.4479 0.4546

sensitivity 74.43% 69.00% 64.86% 64.07% 63.36%

DB2Condition11 specificity 65.93% 72.20% 74.39% 75.40% 76.08%

distance-to-(0,1) 0.4260 0.4164 0.4348 0.4354 0.4376

sensitivity 75.57% 66.86% 63.71% 61.21% 60.86%

DB4+DB2specificity 67.57% 74.45% 76.89% 77.95% 78.76%

distance-to-(0,1) 0.4060 0.4185 0.4302 0.4462 0.4454

sensitivity 67.83% 49.50% 41.83% 41.00% 39.17%

DB4specificity 61.52% 77.13% 80.43% 82.15% 83.56%

distance-to-(0,1) 0.5015 0.5544 0.6137 0.6164 0.6302

sensitivity 66.17% 49.83% 44.00% 40.00% 34.50%

DB2Condition12 specificity 60.73% 76.61% 80.03% 82.79% 84.91%

distance-to-(0,1) 0.5183 0.5535 0.5945 0.6242 0.6722

sensitivity 69.83% 52.17% 47.17% 44.83% 42.50%

DB4+DB2specificity 64.31% 78.38% 81.37% 83.33% 84.83%

distance-to-(0,1) 0.4673 0.5249 0.5602 0.5763 0.5947

sensitivity 70.25% 50.69% 47.75% 45.00% 42.88%

DB4specificity 66.69% 83.20% 85.66% 87.29% 88.65%

distance-to-(0,1) 0.4466 0.5210 0.5418 0.5645 0.5824

sensitivity 76.56% 54.81% 50.56% 47.56% 45.31%

DB2Condition13 specificity 68.79% 83.57% 85.20% 86.65% 87.93%

distance-to-(0,1) 0.3903 0.4808 0.5161 0.5411 0.5600

sensitivity 73.69% 51.44% 49.19% 45.50% 43.13%

DB4+DB2specificity 70.59% 85.97% 87.65% 89.59% 91.10%
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distance-to-(0,1) 0.3946 0.5055 0.5229 0.5549 0.5757

sensitivity 71.92% 48.00% 43.17% 40.42% 38.67%

DB4specificity 69.56% 87.84% 91.07% 92.61% 93.57%

distance-to-(0,1) 0.4142 0.5340 0.5753 0.6004 0.6167

sensitivity 74.25% 48.25% 45.50% 41.83% 39.67%

DB2Condition14 specificity 70.66% 88.05% 90.69% 92.26% 93.41%

distance-to-(0,1) 0.3904 0.5311 0.5529 0.5868 0.6069

sensitivity 76.67% 49.75% 43.17% 42.42% 40.17%

DB4+DB2specificity 73.18% 89.56% 92.31% 93.79% 94.65%

distance-to-(0,1) 0.3555 0.5132 0.5735 0.5792 0.6007

sensitivity 71.43% 46.86% 40.57% 37.79% 34.00%

DB4specificity 69.57% 87.47% 91.10% 92.72% 94.00%

distance-to-(0,1) 0.4174 0.5460 0.6009 0.6264 0.6627

sensitivity 72.57% 48.36% 42.14% 37.79% 32.79%

DB2Condition15 specificity 70.33% 87.55% 90.50% 92.06% 93.43%

distance-to-(0,1) 0.4041 0.5312 0.5863 0.6272 0.6753

sensitivity 76.93% 51.36% 41.36% 37.14% 34.71%

DB4+DB2specificity 73.71% 89.54% 92.44% 94.20% 95.07%

distance-to-(0,1) 0.3498 0.4975 0.5913 0.6312 0.6547

sensitivity 72.20% 50.60% 46.70% 45.20% 41.40%

DB4specificity 68.59% 87.07% 89.97% 91.40% 92.40%

distance-to-(0,1) 0.4194 0.5106 0.5424 0.5547 0.5909

sensitivity 74.40% 51.30% 48.00% 44.50% 42.10%

DB2Condition16 specificity 69.57% 87.63% 89.97% 91.58% 92.68%

distance-to-(0,1) 0.3976 0.5025 0.5296 0.5613 0.5836

sensitivity 79.70% 52.90% 51.00% 48.00% 44.90%

DB4+DB2specificity 72.49% 89.59% 92.03% 93.49% 94.36%

distance-to-(0,1) 0.3419 0.4824 0.4964 0.5241 0.5539

sensitivity 66.25% 49.38% 46.75% 45.25% 42.50%

DB4specificity 67.87% 87.11% 90.01% 91.71% 92.65%
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distance-to-(0,1) 0.4660 0.5224 0.5418 0.5537 0.5797

sensitivity 72.42% 48.83% 45.50% 41.83% 38.08%

DB2Condition17 specificity 70.22% 87.79% 90.27% 92.02% 93.31%

distance-to-(0,1) 0.4059 0.5260 0.5536 0.5871 0.6228

sensitivity 76.80% 51.20% 48.30% 44.20% 42.90%

DB4+DB2specificity 72.97% 89.85% 92.52% 94.01% 94.83%

distance-to-(0,1) 0.3562 0.4984 0.5224 0.5612 0.5733

Table 3.20 reveals a lot of information. Huge disparity of performance exists between some

cases. Sensitivities and specificities vary from 30% to 95%. There is an obvious trend affected by

the choice of number ‘k’ of the nearest neighbor: when ‘k’ increases, the sensitivity drops while the

specificity rises. There is no clear evidence how ‘k’ affects the measurement distance-to-(0,1). Yet

we can still observe that under fourteen conditions, the smallest distance-to-(0,1) values occur when

‘k’ equals to one; under two conditions (‘conditon1 & 9’), the smallest distance-to-(0,1) values occur

when ‘k’ equals to three; under one condition (‘conditon8’), the smallest distance-to-(0,1) occurs

when ‘k’ equals to nine. The tests also confirmed that employing the dual-wavelet features can still

benefit the classification, even in fuzzy cases, except in ‘conditon5, 8 & 14’, where using features

from DB2 yields the best performance.

If distance-to-(0,1) is used as the criterion to evaluate the performance, the best result

overall is yielded by Condition16 with dual-wavelet feature plus 1-nearest-neighbor choice. The

distance-to-(0,1) of Condition16 is 0.3419, while the the sensitivity reaches 79.7% and the specificity

is 72.49%. Condition4, 6, 7, 14 & 15 with the same choice also yield decent results.

Table 3.21 compares the top fuzzy results with the crisp results listed in Section 3.2.4.1.1.

When the test is performed on all data, the results yielded by Condition1 and Condition2 are similar

to the crisp result. With appropriate initialization of the membership function, the sensitivity of

the fuzzy test Condition16 is 2.67% higher than the benchmark crisp result; the specificity is 2.29%

higher. Condition4 and Condition15 also show certain degree of improvement. When the quality

of the test data is improved by removing controversial data, Condition4 yielded the best result of

79.57% sensitivity and 75.80% specificity, which is respectively 0.67% and 2.34% higher than those
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in the benchmark crisp test. The increase of sensitivity is not high when the “controversial” data

are removed .

Table 3.21: Comparison between selected crisp and fuzzy results
based on all data discard controversial data

(retained vote: 0, 4, 5, 6)
sensitivity 77.03% 78.90%

benchmark crisp case specificity 70.20% 73.46%
(k=3) dist. 0.3763 0.3390

sensitivity 74.13% 75.88%
Condition2 specificity 71.94% 74.07%
(k=1) dist. 0.3817 0.3542

sensitivity 69.25% 69.36%
Condition1 specificity 77.90% 81.91%
(k=3) dist. 0.3787 0.3558

sensitivity 79.70% 79.00%
Condition16 specificity 72.49% 74.29%
(k=1) dist. 0.3419 0.3319

sensitivity 76.93% 79.25%
Condition15 specificity 73.71% 75.62%
(k=1) dist. 0.3498 0.3201

sensitivity 76.44% 79.57%
Condition4 specificity 73.75% 75.80%
(k=1) dist. 0.3527 0.3167

3.2.4.2 Fuzzy c-Means

3.2.4.2.1 Clustering Results of Fuzzy c-means

Using fuzzy c-means, a clustering method, some of the membership function initializa-

tion strategies proposed in Section 3.2.3 yield identical clusters when performing on annotation set

‘phase2’, as shown in Table 3.22 and 3.23.

Clearly, the distribution of the data does not show any correlation between the clusters and

the paroxysmal types. Moreover, the distribution indicates that there is a main cluster that includes

most of the data, with sparse data in another small clusters.

Table 3.24 shows an additional test on the 200-patient set.
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Table 3.22: Number of data vectors related with the cth mean in the 2-mean case on ‘phase2’
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean1 Mean2 Mean1 Mean2
AEP:6 0 20 20 0 20 0
AEP:5 0 17 17 0 17 0
AEP:4 0 47 47 0 47 0
AEP:3 0 32 32 0 32 0
AEP:2 0 53 53 0 53 0
AEP:1 0 125 125 0 125 0
AP 15 796 790 21 788 23
NEP 0 757 757 0 757 0

Table 3.23: Number of data vectors related with the cth mean in the 3-mean case on ‘phase2’
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean3 Mean1 Mean2 Mean3 Mean1 Mean2 Mean3
AEP:6 2 0 18 1 0 19 1 0 19
AEP:5 1 0 16 0 0 17 0 0 17
AEP:4 3 0 44 0 0 47 0 0 47
AEP:3 4 0 28 0 0 32 0 0 32
AEP:2 4 0 49 0 0 53 0 0 53
AEP:1 6 0 119 0 0 125 0 0 125
AP 56 10 745 30 5 776 33 4 774
NEP 26 0 731 3 0 754 3 0 754

Table 3.24: Number of data vectors related with the cth mean in the 2-mean case on 200-p set
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean1 Mean2 Mean1 Mean2
AEP:6 0 36 0 36 0 36
AEP:5 1 41 2 40 2 40
AEP:4 0 64 0 64 0 64
AEP:3 0 55 0 55 0 55
AEP:2 0 93 0 93 0 93
AEP:1 1 260 2 259 2 259
AP 17 1129 25 1121 22 1124
NEP 7 1326 6 1327 7 1326

Table 3.25: Number of data vectors related with the cth mean in the crisp 2-mean case on ‘phase2’
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean1 Mean2 Mean1 Mean2
AEP:6 20 0 0 20 0 20
AEP:5 17 0 0 17 0 17
AEP:4 47 0 0 47 0 47
AEP:3 32 0 0 32 0 32
AEP:2 53 0 0 53 0 53
AEP:1 125 0 0 125 0 125
AP 797 14 21 790 21 790
NEP 757 0 0 757 0 757
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Table 3.26: Number of data vectors related with the cth mean in the crisp 3-mean case on ‘phase2’
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean3 Mean1 Mean2 Mean3 Mean1 Mean2 Mean3
AEP:6 0 1 19 0 1 19 0 1 19
AEP:5 0 1 16 0 0 17 0 0 17
AEP:4 0 1 46 0 0 47 0 0 47
AEP:3 0 1 31 0 0 32 0 0 32
AEP:2 0 1 52 0 0 53 0 0 53
AEP:1 0 3 122 0 0 125 0 0 125
AP 10 38 763 5 29 777 4 28 779
NEP 0 8 749 0 2 755 0 2 755

Table 3.27: Number of data vectors related with the cth mean in the 2-mean case on 200-p set
DB4 DB2 DB4+DB2

Mean1 Mean2 Mean1 Mean2 Mean1 Mean2
AEP:6 36 0 36 0 36 0
AEP:5 41 1 40 2 41 1
AEP:4 64 0 64 0 64 0
AEP:3 55 0 55 0 55 0
AEP:2 93 0 93 0 93 0
AEP:1 260 1 259 2 259 2
AP 1129 17 1124 22 1125 21
NEP 1326 7 1327 6 1327 6

3.2.4.2.2 Comparison to Crisp c-Means

To confirm the fuzzy clustering result, the crisp c-means is applied. Table 3.25 and Table

3.26 show the results of crisp c-means.

The results of 2-means clustering of crisp cases and fuzzy cases are exactly the same. There

are slightly differences between the results of 3-means clustering. However, this does not undermine

the fact that with the current features, there is no cluster that can represent a certain paroxysmal

type.

Table 3.27 is the result of an additional test on the 200-patient set, where the same trend

of clustering behavior as the fuzzy c-means is observed.

71



Chapter 4

Yellow-Box Detection

4.1 Methodology for Design of Detection of Yellow-Box

Section 2.2 explains the acquisition procedures of the data for training and testing. One of

the most time-consuming procedures in obtaining YBs is visual inspection by experts. It is desirable

to develop a reliable automatic YB detector to increase the efficiency of the research. In this chapter,

we intend to imitate the entire YB production procedure by human experts. This YB detector is

essentially a preliminary spike detector. It aims to detect candidate paroxysmal events and generate

corresponding annotations for following ETs classification.

The YB detector includes five modules as shown in Figure 4.1.

Figure 4.1: Module of the spike detector

  Wavelet

Transform

  Feature

Extraction
CombinationInput Annotation

The input data in the first module are 30-second EEG segments. The segments are derived

from the 100-patient dataset in Section 2.2. The following two montages are adopted:

1. 21-channel Referential Average;

2. 18-channel-pair Bipolar AP Typical.

There are 2100 30-second segments if the data of referential average montage is used for test and

evaluation, and there are 1800 30-second segments if the data of bipolar AP typical montage is used
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for test and evaluation.

In our previous study we found that the Daubechies wavelet of order 4 (DB4) and order 2

(DB2) mother wavelets yielded features with better performance for paroxysmal classification than

other commonly used mother wavelets (DB 5, DB 20, bior1.3, bior 1.5) in ET detection research

[68]. Indiradevi’s study suggested that the DB4 is particularly useful for ET detection research since

it obtains the highest correlation coefficients with the epileptic spike signal among the available

wavelet bases in the Matlab toolbox [32]. Guler suggested that for a particular application, tests

should be performed in advance with different types of wavelets, and the one which gives maximum

efficiency should be selected. In his opinion, the smoothing feature of DB2 is more suitable to detect

changes of the EEG signals [25]. In this study, we decided to employ only DB2 and DB4 mother

wavelets to perform WT in the second module of the YB detector.

4.1.1 Plain Detection

After wavelet decomposition, proper features need to be extracted from raw wavelet coeffi-

cients to reduce the computational complexity. A variety of features related to epilepsy have been

suggested by previous studies. Three mostly used types of feature are

1. Raw/normalized wavelet coefficients;

2. Square of the wavelet coefficients; and

3. Entropy.

In our study, we found that most of the entropy features are used in epilepsy seizure detection.

Epilepsy seizures are long-lasting signals and can be viewed as stationary at some point. Epilepsy

seizures are not suitable for transient signal like ET. We employed entropy features in our preliminary

studies yet they yielded low performance. The square of the wavelet coefficient is used since it only

concerns the spikiness of the signal. It fits the description of the ET components scattering in

different decomposition subbands.

The detection result yielded by a single feature is less reliable. Combination of individual

(subband/bipolar) decisions is necessary in order to achieve better results. There are two basic types

of combination:

1. Linear combination;
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2. Nonlinear combination.

The commonly used strategies in combination are listed as follows [38]:

1. Product rule;

2. Sum rule;

3. Max rule;

4. Min rule;

5. Medium rule; and

6. Voting, this is a flexible strategy. Three forms of voting are implemented in Section 4.1.1.1:

(a) AND decision by detail subband D4 and D5 (Indiradevi’s suggestion) [31];

(b) Majority vote decision by all detail subbands (votes>= 3 out of 5 votes); and

(c) Weighted vote decision by all detail subbands (votes >= a preselected threshold). To

accomplish the combination of weighted decisions, besides conventional weights (e.g.,

equal weights), optimization of weights is required. There are several methods of weights

determination and optimization:

• Use the standard deviations of the errors [38];

• Density-based weighting (require knowledge of prior probability) [59];

• Unified approach: correlated errors and general coupling [59]; and

• Belief integration using belief value [9].

Belief integration suggested by Chen is a practical and straightforward method. Further

details are discussed in Section 4.1.1.2.

4.1.1.1 Synopsis of Indiradevi’s Algorithm (2007)

Indiradevi suggested a spike detection scheme using wavelet coefficients in the long-term

EEG recording [31]. In this scheme, the individual signals (sampling rate 256Hz) are decomposed

into k (k = 6 in Indiradevi’s case) scales using a proper mother wavelet (DB4 in Indiradevi’s

case). In our study, the sampling frequency of the EEG signals is 256 Hz. The highest frequency
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component that the signal could contain, according to Nyquist theorem, would be 128 Hz. A five-

level decomposition will satisfy the requirement that the dominant frequency components of the

signal are retained in the wavelet coefficients. The corresponding frequency ranges of the subbands

with a 256Hz sampling rate are listed in Table 4.1:

Table 4.1: Corresponding frequency range of each subband in detection
Subband Frequency Range

D1 64Hz ∼ 128Hz
D2 32Hz ∼ 64Hz
D3 16Hz ∼ 32Hz
D4 8Hz ∼ 16Hz
D5 4Hz ∼ 8Hz
A5 0Hz ∼ 4Hz

The optimal resolution to analyze the epileptiform activities corresponds to the frequency

band 4 to 32 Hz [31]. To minimize contamination by non-epileptiform high frequency signals like

muscle artifacts, Indiradevi focused on sub-bands 4 and 5 (4-8Hz & 8-16Hz).

Indiradevi did not suggest any sophisticated features. Instead they used the square of

wavelet coefficients in subband D4 and D5 (d2j,k, j = 4, 5). If the square of wavelet coefficient at

one time is above a pre-determined threshold level, this point is marked as a spike [31].

The pre-determined threshold is computed as:

Tj = C × std(Dj)Sj (4.1)

where

• Sj = 2j/∆ψj;

• ∆ψj = maxψj,k(t)−minψj,k(t), ψ(t) is the wavelet function;

• Dj is the reconstructed detail coefficients; and

• Constant C is derived from the average value of standard deviations of the whole dataset.

In fact the components of ET are distributed in all subbands and the contribution of wavelet

coefficients in different subbands needs to be quantified and proper weights need to be assigned to

each subband, respectively. Section 4.1.1.2 introduces a belief value based optimization method.
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4.1.1.2 Subband Weight Optimization by Belief Value

A confusion matrix is defined as [9]:

CMk =




nk
11 nk

12 ... nk
1m

nk
21 nk

22 ... nk
2m

... ... ... ...

nk
m1 nk

m2 ... nk
mm




.

The element nk
ij means that nk

ij samples of class i are classified as class j by the kth classifier. The

number of samples in class i is: nk
i = Σm

j=1n
k
ij .

In our case, notice that the number nk
ij can be either number of annotations or number of

samples in total annotations. Belief value is defined as [9]:

bijk = bk(x ∈ class i | classification decision is class j) =
nk
ij/n

k
i

Σm
t=1n

k
tj/n

k
t

. (4.2)

In our case, we use Indiradevi’s method to detect spikes with features from single subband.

Each subband can be viewed as one detector (classifier). Then we can compute the belief value bk

of the kth detector (k =D1,D2,D3,D4,D5). The belief value which reflects the capability of spike

detection is b11k . Normalize the vector [b11D1 b
11
D2 b

11
D3 b

11
D4 b

11
D5]

T . This vector will be an optimal weight

combination.

If we maximize detected number of annotations, the weight combination is:

db4 = [0.2062, 0.3186, 0.2493, 0.1501, 0.0759]T

db2 = [0.2568, 0.3010, 0.2281, 0.1365, 0.0776]T

db4+db2 = [0.1936, 0.2991, 0.2340, 0.1409, 0.0712, 0.2725, 0.3194, 0.2420, 0.1449, 0.0823]T/2.

4.1.1.3 Methodology of Performance Evaluation of Plain Detection

Three types of parameters are used to evaluate the performance of the YB detector:

1. The number of true positive (TP), false negative (FN), false positive (FP), sensitivity (#TP/#all-

marked-paroxysmal-event) and selectivity (#TP/(#TP+#FP)) for 2565 positive paroxysmal
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annotations (83 ETs and 2482 non-ETs); specificity (#TN/#all-negative) for 2998 negative

annotations;

2. Length of overlap/non-overlap of an automatic detected annotation with the nearest expert-

marked annotation; and

3. Cost of transform between a detected annotation and a corresponding expert-marked anno-

tation. In this case we use the sum of distances of expert-marked-annotation-start-point to

detected-annotation-start-point and expert-marked-annotation-end-point to detected-annotation-

end-point; If a detected annotation did not have overlap with any expert-marked annota-

tion, the cost is the distance between the detected-annotation-start-point and the detected-

annotation-end-point to make this annotation disappear, which equals to the length of this

annotation.

4.1.2 Implementation of Artificial Neural Network with a Pruning Pro-

cedure

Indiradevi’s algorithm is based on a pre-determined threshold, which is a simple straight-

forward decision rule. To pursue possible improvement in performance, a more complex decision

boundary is developed.

Artificial Neural Networks are known to facilitate better design and implementation of ma-

chine learning. ANNs can learn from experience and implement complex decision surfaces, although

the training period can be time consuming [54]. The multilayer feedforward (MLFF) network is

one of the most commonly used ANN structures and is adopted to accomplish our detection task.

The Backpropagation (BP) weights-updating algorithm is used to update the status of the network.

Figure 4.2 1 illustrates a simple MLFF net using BP algorithm.

The output of each unit is a linear or non-linear function f(x) of the units in the previ-

ous layer. To avoid shortcomings yielded by a linear output function, a non-linear differentiable

activation function (logarithm sigmoid, tangent sigmoid, etc) is used:

opj = f(netj) (4.3)

1From http://www.geoneurale.com/MultilayerPerceptrons.htm
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Figure 4.2: Multilayer feedforward network using back-propagation algorithm

where

netj = Σiwjio
p
i (4.4)

is the weighted linear combination of the outputs of all the units in previous layer.

The BP algorithm uses gradient descent to derive weights that minimizes the output error

Ep =
1

2
Σj(t

p
j − opj )

2. (4.5)

For a case training by epoch, the formulation is

E = ΣpE
p. (4.6)

When updating the weights, the algorithm starts from the output layer and then traces to

the hidden layer. Calculate the partial derivative of the output error with respect to weight wji

(weight between output unit j and hidden layer unit i)

∂Ep

∂wji
=
∂Ep

∂opj

∂opj
∂netj

∂netj
∂wji

. (4.7)
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where

∂Ep

∂opj
= −(tpj − opj ) (4.8)

∂opj
∂netj

= f ′(netj) (4.9)

∂netj
∂wji

= opi . (4.10)

According to general delta rule, the weight correction is

∆pwji = ǫδpj o
p
i (4.11)

where

δpj = −∂E
p

∂opj

∂opj
∂netj

(4.12)

and ǫ is the learning rate.

When the unit j is in the hidden layer, Equation 4.8 becomes

∂Ep

∂opj
=Σk

∂Ep

∂netk

∂netk
∂opj

=− Σkδ
p
kwkj

(4.13)

where k is the index of units in the output layer. The correction then is

∆pwji = ǫδpj o
p
i (4.14)

where

δpj = (Σkδ
p
kwkj)f

′(netj). (4.15)

A proper learning rate is essential. Result divergence can be caused by a too high learning

rate or undertraining caused by a too small learning rate, especially in our case where the boundaries

between different types of EEG signal can be extremely complex in vector space [27]. However, there

is no single, evident learning rate choice. Instead of fixing the learning rate in the entire training
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process, we implement an adaptive learning rate that guarantees convergence theoretically [6]:

ηa = µ
‖ỹ‖2

∥∥∥JP
T ỹ
∥∥∥
2 (4.16)

where ỹ = ypd − yp and JP
T = (∂yp/∂W) (yd is the desired output; y is the actual output; W is the

weight vector) [6].

4.1.2.1 Calculation of Sij , the Sensitivity of the Error Function

When the wavelet decomposition coefficients are selected as features for implementation of

ANN, the issue of high-dimensional input vector emerges. The desired DWT decomposition level for

YBs detection varies from four to six, where five to seven subbands will be produced. Researchers

are seeking more than one feature in each subband to characterize ETs [25][32]. The incorporation

of multiple features from multiple subbands eventually produces a high dimensional input vector,

which is computationally expensive. On the other hand, the contributions of the subbands to YB

detection are nonequivalent. They are affected by the relevance of the corresponding frequency

bands. In sequence, the most important frequency bands are: (1) 14.3-50 Hz, related with spikes;

(2) 5-14.3 Hz, related with sharp waves; and (3) 2.8-6.7 Hz, related with slow wave. The type

of features also contributes to the performance in varying degrees. To reduce the computational

complexity, evaluation of the influence of various candidate subbands and feature types is necessary.

Instead of brute-force determination of the performance of individual features and/or sub-

bands, we conduct small-scale experiments (instead of testing on the real-time recording data, test

only on the existing YBs while each of them yielding only one data vector) via a feedforward neural

network and train it with features of Set #1 in Section 3.1.1.2. A strategy typically used for network

unit pruning is applied here: Estimate the sensitivity of the network mapping error function to each

network weight (Sij) associated with the input layer. By focusing on the weights of the input units,

the contributions of the corresponding input features are indirectly determined .

The idea of estimating the sensitivity of the ANN mapping error function (during training)

to weight elimination was proposed by Mozer and Smolensky [44] as a weight-centric network pruning

procedure. The sensitivity of the mapping error with respect to any network weight wij is defined

as

Sij = E(wij = 0)− E(wij = wf
ij) (4.17)
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where the mapping error is defined as E =
∑

p

∑
k(o

p
k − tpk)

2 for output k and training set pattern p

and wf
ij is the final value yielded by training process. Karnin [35] reformulated the Sij in Equation

4.17 as:

Sij = −
E(wf

ij)− E(0)

wf
ij − 0

wf
ij . (4.18)

Considering that a typical learning process starts with each weight initialized to some random small

values rather than zero to avoid premature saturation (also because initialization of all weights to

zero is a suboptimal training strategy [54]), Equation 4.17 can be approximated by the initial state

Sij ≈ −
E(wf

ij)− E(wi
ij)

wf
ij − wi

ij

wf
ij . (4.19)

For a network with d weights u1 ... ud−1 and wij , consider only wij changes from the zero

state (A) to the final state (F ) while the other weights remain in their final states. The value of the

error function will decrease along the gradient from wij = 0 to wij = wf
ij as

E(wij = wf
ij)− E(wij = 0) =

∫ F

A

∂E(uf1 ..., wij)

∂wij
dwij . (4.20)

Using the initial state approximation (I instead of A), Equation 4.20 yields:

E(wij = wf
ij)− E(wij = 0) ≈

∫ F

I

∂E(uf1 ..., wij)

∂wij
dwij . (4.21)

In practice, the integral operation in Equation 4.21 can be approximated by the summation

of the correction of weights in each epoch. Substituting the numerator of Equation 4.19 with the

approximation of Equation 4.21 yields:

S̃ij = −
N−1∑

0

∂E

∂wij
(n)∆wij(n)

wf
ij

wf
ij − wi

ij

(4.22)

where N is the number of training epoch and ∆wij is the weight correction in each step.

In a network trained with backpropagation algorithm, ∂E/∂wij in each step can be obtained

81



directly using the generalized delta rule [54]:

∂E

∂wij
=− δpi o

p
j

=





−(tpi − opi )f
′
j(net

p
i )o

p
j , outputlayer

−(Σn(−δpnwni))f
′
j(net

p
i )o

p
j , hiddenlayer.

(4.23)

If a weight has a relatively small estimated Sij , the mapping error of the net will not decrease

significantly if this weight is removed. Furthermore, if all the weights linked to one node (unit) have

small Sij , this node is less likely to contribute to the classification performance of the neural net and

thus can be pruned. The significance is that if a to-be-pruned node is an input node, it indicates

that the feature related to this input node is less essential.

4.1.2.2 Dingle’s Feature Choice: Morphology and Background

Dingle [15] believed that the only way to separate epileptiform from nonepileptiform waves

is to make use of a wide spatial and temporal context. He then proposed a set of features capable of

detecting a high proportion of epileptiform transients and providing context information. All these

features are based on morphological traits of target waves or background waves. Acir [1] and Liu [41]

also suggested other morphology based features.

Collecting up their proposals, the characteristics of a wave is usually depicted by the fol-

lowing parameters:

1. Duration:

(a) first half wave (apex to apex) duration (FHWD) [1];

(b) second half wave (apex to apex) duration (SHWD) [1];

(c) wave duration (sum of two half wave durations) [41]; and

(d) duration between turning points (turning point is defined as the point where the slope

has the maximum amplitude on the half wave) [15] [41]

2. Amplitude:

(a) first half wave amplitude (FHWA) [1];
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(b) second half wave amplitude (SHWA) [1];

(c) amplitude from peak to the first turning point [41];

(d) amplitude from peak to the second turning point [41]; and

(e) amplitude over a floating mean (the average EEG value over 75ms centered on the

peak) [15]

3. Slope:

(a) first half wave slope (FHWS) [1];

(b) second half wave slope (SHWS) [1];

(c) slope at point k [41]

sl(k) = (w(k + 1)− w(k − 1))/2; and

(d) consecutive slope at point k [15]

sl(k) = w(k) − w(k − 1);

4. Sharpness:

(a) sharpness at point k (changing rate of the slope at the peak point) [41]

sh(k) = (sl(k + 1)− sl(k − 1))/2;

(b) sharpness of the spike [15]

SH = SHWS − FHWS.

In total, we selected ten features based on the above proposals and the knowledge of EEG

data, including five spike-related features and five background-related features.

• The following five features are selected to depict the spikes:

1. Wave duration;

2. Duration between turning points;

3. Amplitude over a floating mean;
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4. Sharpness at point k; and

5. Sharpness of the spike

• Theoretically, ETs are defined to be clearly distinguished from background activity. The

following five measures of the background activity are calculated as a compensation [15]:

6. Background amplitude (the average difference between the EEG and the floating mean);

7. Background slope (the average magnitude of the consecutive slope);

8. Background duration (the average peak-to-peak duration of the halfwaves); and

9. Background rhythmicity, defined by two parameters:

(9a) the coefficient of variation (standard deviation/mean) of halfwave durations;

(9b) the coefficient of variation of halfwave amplitudes

4.1.3 Clustering of Yellow-Boxes

4.1.3.1 Grouping

According to experts’ opinion, when an event occurs during a temporal interval, its activity

can emerge in several channels on one or even more montages, which will yield multiple YB candi-

dates. Under this circumstance, only one candidate with the maximum amplitude will be selected

through experts’ visual inspection on the amplitude of the candidates appeared in relevant channels.

In a real-time simulation, the machine also has to screen redundant candidates produced by

the detector, as shown in Figure 1.2. The function is fulfilled by the following algorithm:

Algorithm 1:

BEGIN

Input all the YB candidates from all channels, {Yi}, i =1,2,...m.

Initialize group#1.

Let Y1 be a member of group#1.

Initialize n =1, i =2, k =1.

Initialize desired overlap percentage as share = 50%.

DO UNTIL ( i >m )

Set the status of Yi as ‘free’.
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DO UNTIL ( Yi query all the n current existing groups )

Compute the temporal overlap of Yi with each member Xkj , j =1,2,...p in group#k.

IF ( the temporal overlap of Yi and every Xkj is over ‘share’ of both the length of Yi and

Xkj ) THEN

Let Yi be a member of group#k.

Set the status of Yi as ‘member’.

END IF

END DO UNTIL

IF ( the status of Yi stays at ‘free’ ) THEN

Set n = n+ 1.

Build group#n.

Let Yi be a member of group#n.

END IF

Set i = i+ 1.

END DO UNTIL

END

Through the implementation of Algorithm 1, annotation candidates are grouped into clus-

ters, in which every two annotations share at least 50% (this percentage can be adjusted as needed)

of their temporal intervals. Notice that one annotation can join several groups depending on the

complexity of the distribution of candidates.

After grouping, the machine rules out redundant annotations by examining their amplitude.

The following algorithm is implemented to realize this process:

Algorithm 2:

BEGIN

Input all the groups: {group#k}, k =1,2,...p.

Initialize k =1.

DO UNTIL ( k >p )

Determine the maximum temporal interval lenk that all members, Xkj , j =1,2,...l, share in

group#k.
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Compute the energy Ej = ||Xkj(lenk)||2, j =1,2,...l.

Determine q that Eq = maxEj , j =1,2,...l.

Set the status of Xkq as ‘Yellow Box’.

Set k = k + 1.

END DO UNTIL

END

By implementing Algorithm 2, the candidate whose amplitude energy is the highest in the

mutually overlapped temporal interval within the group, is selected as YB.

4.1.3.2 Merging and Discarding

When annotating YBs, human experts are able to see and understand the context, and thus

they tend to mark related events. Machine tends to find temporal points at which typical features

are yielded. These temporal points are not necessary to be consecutive. It is also possible that not

all the traits of a event fit the ET standard. One event is likely to be annotated as several YBs.

Therefore, YBs belonging to the same event are needed to be merged while very short outliers should

be screened. A practical way is to set two thresholds, one for merging close YBs and the other for

discarding short outliers. Notice three values given by Section 1.1 are important: (1) 20ms, the

inferior limit of lasting time of ET; (2) 70ms, the superior limit of lasting time of ET and also the

inferior limit of lasting time of slow wave; and (3) 200ms, the superior limit of lasting time of slow

wave). With 256Hz sampling rate, these three values respectively correspond to: (1) 5 temporal

points; (2) 18 temporal points; and (3) 52 temporal points. We adopt the inferior limit of lasting

time of ET, 5 points, as the threshold of discarding outliers. Both choices 18 and 52 are tested as

the threshold of merging in the final simulation.

4.1.4 Full-scale Real-time Simulation

In the real world, detector’s performance much be generalizable. The ultimate purpose of

Chapter 4 is to complete simulations on consecutive EEG data with mutually independent training

and test populations, as it is in the real world.

The simulation is designed as follows:
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1. Split the 100-patient dataset by patient, using 10-fold cross-validation strategy; due to the

unbalanced distribution of AEP annotations (AEPs only exist in 31 patients while nonAEPs

exist in all 100 patients), a restriction that every fold must include at least one patient who

can provide AEP annotations is applied;

2. Choose desired features and ratio of AEP:nonAEP:negative data;

3. Initialize ANN and choose training parameters;

4. Train the ANN for every fold;

5. In each fold, input the EEG of test population; Record the outcome YB candidates;

6. Choose merging and discarding threshold for the candidates;

7. Choose the overlap rate to group;

8. Yield the final YBs.

The simulation will be measured by sensitivity, specificity and selectivity. The definitions

of sensitivity and specificity are given in Section 3.1.1.5.4. The implication of TP, FP, TN, FN and

selectivity is defined as:

TP: expert marked YB that has effective overlap with any machine created YBs; a effective

overlap happens when two YBs share a certain temporal interval and they are on the same

channel at the same time;

FP: machine created YB that does not have any effective overlap with either expert marked

YB;

TN: expert marked negative annotation that does not have any effective overlap with either

machine created YB;

FN: expert marked negative annotation that has effective overlap with any machine created

YBs;

Selectivity = TP /(TP + FP);
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4.2 Results and Evaluation of Yellow-Box Detection

4.2.1 Implementation of Indiradevi’s Algorithm

In this section, 16 parameters are used to evaluate performance of the YB detector. Each

parameter measures a specific aspect, listed as below:

Eva#1 average length of expert-marked annotations overlapped with machine-detected YBs;

Eva#2 average length of expert-marked annotations missed by detector;

Eva#3 average length of total expert-marked annotations;

Eva#4 average length of overlaps between TP and expert-marked annotations;

Eva#5 average length of overlaps between all detected annotations and expert-marked annotations;

Eva#6 average of the rate of overlap-length/corresponding-expert-marked-annotation-length of the

TP among the machine-detected YBs;

Eva#7 average length of non-overlaps of the TP among the machine-detected YBs;

Eva#8 average length of the FP, which refers to the machine-detected YBs having no overlap with

any expert-marked annotations;

Eva#9 average length of the FN, which refers to the expert-marked annotations having no overlap

with any machine-detected YBs;

Eva#10 average length of non-overlap of all the machine-detected YBs;

Eva#11 average of the rate of non-overlap-length/expert-marked-annotation-length of the TP

among the machine-detected YBs;

Eva#12 average cost of transform of the TP among the machine-detected YBs;

Eva#13 average cost of transform of the FP among the machine-detected YBs;

Eva#14 average cost of transform of the FN among the expert-marked annotations;

Eva#15 average cost of transform of all the annotations;
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Eva#16 average of the rate of cost-of-transform/corresponding-expert-marked-annotation-length

of the TP among the machine-detected YBs.

Respectively, Table 4.2, Table 4.3, Table 4.4 and Table 4.5 list specific results of YB detector

based on Indiradevi’s algorithm (shown in Section 4.1.1.1) with four weight choices. In Indiradevi’s

algorithm, the wavelet coefficients are transformed into binary signal after applying the threshold

computed by Equation 4.1. The entries ofWTcoeff below are either 0 (wavelet coefficient is smaller

than the threshold) or 1 (wavelet coefficient is larger than the threshold)

WTcoeff = [D1 D2 D3 D4 D5 A5]. (4.24)

For a 5-level wavelet decomposition using DB2 or DB4, the weight vector is:

weightDB4 = [WD1DB4 WD2DB4 WD3DB4 WD4DB4 WD5DB4 WA5DB4] (4.25)

weightDB2 = [WD1DB2 WD2DB2 WD3DB2 WD4DB2 WD5DB2 WA5DB2]. (4.26)

Decision is made by

WTcoeff ⊙ weight >= Th. (4.27)

The weights of the entries in the vector are assigned as follows:

• equal weights for all subbands except approximation subband:

weightDB4 = [0.2 0.2 0.2 0.2 0.2 0];

weightDB2 = [0.2 0.2 0.2 0.2 0.2 0];

Th = 0.201;

• AND decision of subband D4 and D5:

weightDB4 = [0 0 0 0.2 0.2 0];

weightDB2 = [0 0 0 0.2 0.2 0];

Th = 0.201;

• optimal weight #1:

weightDB4 = [0.1491 0.2824 0.2321 0.1952 0.1412 0];
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weightDB2 = [0.1660 0.2570 0.2242 0.1875 0.1653 0];

Th = 0.201;

• optimal weight #2:

weightDB4 = [0.2062 0.3186 0.2493 0.1501 0.0759 0];

weightDB2 = [0.2568 0.3010 0.2281 0.1365 0.0776 0];

Th = 0.201.

The weight of A5 is set to zero since the principal components of A5 are DC and low

frequency noise.

We noticed that in Table 4.2, Table 4.3, Table 4.4 and Table 4.5, none of the sensitivities is

above 80%. By separating the ETs’ sensitivity from the non-ETs’, we observed that the sensitivity

values of ETs are 30% higher than those of the overall performance, while the sensitivity values

of non-ETs are slightly (5% or lower) below those of the overall performance. The D4-D5-AND

weight yields the lowest result. The two optimized weights yield relatively good sensitivity, while

the equal weight and D4-D5-AND weight yield 6% higher selectivity than the optimized weights

do. The average overlap of D4-D5-AND weight is 10 samples less than the other three cases and its

non-overlap length is less than a third of others. The cost of transform of D4-D5-AND is around

half of others’. Two optimized weights yield the longest non-overlap length and the highest costs of

transform, yet their overlap length values are the same as that of the equal weight.

The detector is also applied on data with negative annotations. The specificities of negative

annotations are also computed. Table 4.6 summarizes the sensitivity on paroxysmal annotations

and the specificity on negative annotations.

There is a general trend that the values of specificity are inversely proportional to those of

sensitivity. We can observe that in most cases in Table 4.6. For example, using the DB2 mother

wavelet, when the sensitivity of the average referential is 41.61%, the specificity is 94.30%; when

the sensitivity increases to 55.43%, the specificity is 86.99%. The sensitivity is increased by 13.82%

with a 7.31% decrease in specificity. Table 4.6 also indicates when using Indiradevi’s algorithm in

YB detection, the mother wavelet DB2 yields better sensitivity results than DB4 does. When using

the same weight choice, the sensitivities of DB2 are 1% to 9% better than those of DB4, while the

specificities of DB2 are less than 2% worse than those of DB4.
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Table 4.2: Detector results using equal weight
RefAvg BPAP

total AEP nonAEP total AEP nonAEP

DB4

Eva#1 143.7384 90.66972 147.2377 135.6721 91.75 138.011
Eva#2 118.5428 93.93103 118.9659 122.3696 88.57143 122.75
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 60.71453 56.06422 61.02117 65.66468 53.60294 66.30697
Eva#5 2.606701 - - 3.237144 - -
Eva#6 0.503194 0.651606 0.493408 0.569487 0.612501 0.567197
Eva#7 107.084 74.94495 109.2033 156.9383 54.86765 162.3735
Eva#8 81.56776 - - 97.51155 - -
Eva#9 118.5428 93.93103 118.9659 122.3696 88.57143 122.75

Eva#10 85.75534 - - 101.5874 - -
Eva#11 1.532589 1.153019 1.557618 2.091251 0.873616 2.15609
Eva#12 190.1078 109.5505 195.4198 226.9457 93.01471 234.0775
Eva#13 81.56776 - - 97.51155 - -
Eva#14 118.5428 93.93103 118.9659 122.3696 88.57143 122.75
Eva#15 89.31986 - - 105.0386 - -
Eva#16 2.029394 1.501413 2.06421 2.521764 1.261115 2.588894

sensitivity 34.52% 65.06% 31.67% 52.83% 82.93% 49.51%
selectivity 19.30% - - 15.86% - -

DB2

Eva#1 147.1954 90.3871 150.7175 139.1347 89.80822 141.4866
Eva#2 117.7898 93.7619 118.1191 122.1468 102.5556 122.3208
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 61.79849 60 61.91 66.23504 57.61644 66.64598
Eva#5 2.594635 - - 3.177063 - -
Eva#6 0.517122 0.695745 0.506047 0.576178 0.670468 0.571682
Eva#7 107.2137 65.57258 109.7955 205.1191 55.06849 212.2737
Eva#8 80.88505 - - 93.4005 - -
Eva#9 117.7898 93.7619 118.1191 122.1468 102.5556 122.3208

Eva#10 84.25703 - - 99.6378 - -
Eva#11 1.562746 1.037837 1.59529 2.770931 0.896764 2.860293
Eva#12 192.6106 95.95968 198.603 278.0187 87.26027 287.1143
Eva#13 80.88505 - - 93.4005 - -
Eva#14 117.7898 93.7619 118.1191 122.1468 102.5556 122.3208
Eva#15 87.84246 - - 103.1345 - -
Eva#16 2.045624 1.342092 2.089243 3.194752 1.226297 3.288611

sensitivity 41.61% 74.70% 37.93% 63.00% 89.02% 58.89%
selectivity 17.42% - - 14.58% - -
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Table 4.3: Detector results of AND decision by D4 & D5
RefAvg BPAP

total AEP nonAEP total AEP nonAEP

DB4

Eva#1 142.5756 92.8 154.9371 137.3716 95.07895 143.6008
Eva#2 122.1857 89.95604 122.8174 122.3734 87.86364 123.0602
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 49.91512 50.28 49.8245 54.13851 56.13158 53.84496
Eva#5 1.753284 - - 2.569756 - -
Eva#6 0.425063 0.571405 0.38872 0.455413 0.598598 0.434324
Eva#7 27.92308 56.38667 20.8543 28.64527 62.28947 23.68992
Eva#8 62.32586 - - 65.44613 - -
Eva#9 122.1857 89.95604 122.8174 122.3734 87.86364 123.0602

Eva#10 87.5198 - - 84.2848 - -
Eva#11 0.359312 0.852532 0.236824 0.341465 0.984595 0.246741
Eva#12 120.5836 98.90667 125.9669 111.8784 101.2368 113.4457
Eva#13 62.32586 - - 65.44613 - -
Eva#14 122.1857 89.95604 122.8174 122.3734 87.86364 123.0602
Eva#15 90.77453 - - 88.23557 - -
Eva#16 0.934249 1.281127 0.848104 0.886052 1.385997 0.812417

sensitivity 7.39% 45.18% 5.97% 11.63% 46.34% 10.27%
selectivity 21.69% - - 20.27% - -

DB2

Eva#1 139.1663 89.05195 150.0056 142.2216 92 149.2491
Eva#2 122.3318 93.13483 122.898 121.6467 90.41463 122.2346
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 57.7552 58.54545 57.58427 58.25449 61.82927 57.75427
Eva#5 2.15884 - - 2.964199 - -
Eva#6 0.498639 0.678845 0.459661 0.501252 0.677255 0.476624
Eva#7 23.44573 47.4026 18.26404 26.32934 59.90244 21.6314
Eva#8 64.74726 - - 68.7285 - -
Eva#9 122.3318 93.13483 122.898 121.6467 90.41463 122.2346

Eva#10 86.45796 - - 84.46039 - -
Eva#11 0.307839 0.778418 0.206056 0.330599 0.95286 0.243524
Eva#12 104.8568 77.90909 110.6854 110.2964 90.07317 113.1263
Eva#13 64.74726 - - 68.7285 - -
Eva#14 122.3318 93.13483 122.898 121.6467 90.41463 122.2346
Eva#15 89.50104 - - 88.73294 - -
Eva#16 0.8092 1.099573 0.746395 0.829347 1.275605 0.766901

sensitivity 8.48% 46.39% 7.07% 13.12% 50.00% 11.61%
selectivity 22.53% - - 20.59% - -
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Table 4.4: Detector results of optimal weight #1
RefAvg BPAP

total AEP nonAEP total AEP nonAEP

DB4

Eva#1 146.1692 90.87903 149.0402 140.234 90.30556 142.3905
Eva#2 116.5989 94.46512 116.9473 121.9826 97.7 122.2489
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 60.96815 56.01613 61.22529 68.18459 56.91667 68.67127
Eva#5 2.231593 - - 2.753222 - -
Eva#6 0.515109 0.65293 0.507952 0.597506 0.662158 0.594713
Eva#7 143.3352 79.70161 146.6394 283.5118 61.34722 293.1074
Eva#8 82.27167 - - 97.46335 - -
Eva#9 116.5989 94.46512 116.9473 121.9826 97.7 122.2489

Eva#10 85.89477 - - 105.5007 - -
Eva#11 1.967418 1.199278 2.007305 3.744229 0.984602 3.863421
Eva#12 228.5362 114.5645 234.4544 355.5612 94.73611 366.8266
Eva#13 82.27167 - - 97.46335 - -
Eva#14 116.5989 94.46512 116.9473 121.9826 97.7 122.2489
Eva#15 89.01335 - - 108.41 - -
Eva#16 2.45231 1.546348 2.499353 4.146723 1.322444 4.268708

sensitivity 49.22% 74.10% 44.67% 68.30% 87.80% 62.99%
selectivity 13.65% - - 10.48% - -

DB2

Eva#1 150.3565 90.77698 153.5162 144.0296 90.65333 146.2291
Eva#2 114.9676 93.62963 115.1949 119.7274 97.14286 119.9335
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 62.01232 59.52518 62.14422 68.73509 59.28 69.12473
Eva#5 2.267932 - - 2.775178 - -
Eva#6 0.517929 0.69151 0.508724 0.59336 0.689996 0.589378
Eva#7 128.4123 64.61151 131.7959 230.7995 61.89333 237.7599
Eva#8 79.68452 - - 93.819 - -
Eva#9 114.9676 93.62963 115.1949 119.7274 97.14286 119.9335

Eva#10 82.66395 - - 99.77684 - -
Eva#11 1.746226 1.021636 1.784654 3.111634 1.003158 3.198521
Eva#12 216.7565 95.86331 223.1679 306.0939 93.26667 314.8643
Eva#13 79.68452 - - 93.819 - -
Eva#14 114.9676 93.62963 115.1949 119.7274 97.14286 119.9335
Eva#15 85.89489 - - 102.8169 - -
Eva#16 2.228297 1.330126 2.27593 3.518274 1.313163 3.609144

sensitivity 54.08% 83.73% 48.68% 74.43% 91.46% 68.87%
selectivity 13.20% - - 10.28% - -
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Table 4.5: Detector results of optimal weight #2
RefAvg BPAP

total AEP nonAEP total AEP nonAEP

DB4

Eva#1 144.2023 90.87903 146.955 139.7237 90.41096 141.8678
Eva#2 116.8324 94.46512 117.1877 122.4253 97.66667 122.6726
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 63.07482 56.04032 63.43797 69.50457 56.56164 70.0673
Eva#5 2.351031 - - 2.888536 - -
Eva#6 0.533512 0.653097 0.527338 0.610646 0.657901 0.608592
Eva#7 170.2308 79.75 174.9017 341.2511 60.50685 353.4574
Eva#8 87.09047 - - 103.128 - -
Eva#9 116.8324 94.46512 117.1877 122.4253 97.66667 122.6726

Eva#10 91.39632 - - 113.4407 - -
Eva#11 2.323478 1.199743 2.381489 4.744983 0.971115 4.909065
Eva#12 251.3583 114.5887 258.4188 411.4703 94.35616 425.2579
Eva#13 87.09047 - - 103.128 - -
Eva#14 116.8324 94.46512 117.1877 122.4253 97.66667 122.6726
Eva#15 94.42024 - - 116.3589 - -
Eva#16 2.789966 1.546647 2.854151 5.134337 1.313213 5.300473

sensitivity 49.49% 74.10% 45.18% 68.81% 89.02% 63.43%
selectivity 13.67% - - 10.56% - -

DB2

Eva#1 147.5023 90.77698 150.4335 141.7035 90.65333 143.7833
Eva#2 115.499 93.62963 115.7398 121.3008 97.14286 121.5321
Eva#3 123.3557 91.24096 124.4311 123.6277 91.20732 124.7066
Eva#4 64.78685 59.68345 65.05056 72.16388 59.24 72.69039
Eva#5 2.454856 - - 3.010101 - -
Eva#6 0.544579 0.693032 0.536908 0.625277 0.689448 0.622662
Eva#7 184.9502 69.64029 190.9086 321.7323 64.77333 332.2004
Eva#8 87.30179 - - 103.4834 - -
Eva#9 115.499 93.62963 115.7398 121.3008 97.14286 121.5321

Eva#10 91.93805 - - 112.8733 - -
Eva#11 2.484295 1.073579 2.55719 4.543657 1.030328 4.686786
Eva#12 267.6656 100.7338 276.2914 391.2719 96.18667 403.2933
Eva#13 87.30179 - - 103.4834 - -
Eva#14 115.499 93.62963 115.7398 121.3008 97.14286 121.5321
Eva#15 95.07225 - - 115.7739 - -
Eva#16 2.939716 1.380547 3.020282 4.918381 1.340881 5.064123

sensitivity 55.43% 83.73% 50.34% 75.26% 91.46% 70.33%
selectivity 13.29% - - 10.27% - -
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Table 4.6: Summary of Indiradevi’s algorithm
sensitivity of AEP sensitivity specificity sensitivity of AEP sensitivity

(bipolar) (bipolar) (avg ref) (avg ref) (avg ref)

equal weights
DB4 82.93% 52.83% 95.96% 65.06% 34.52%
DB2 89.02% 63.00% 94.30% 74.70% 41.61%

D4-D5-AND
DB4 46.34% 11.63% 99.37% 45.18% 7.39%
DB2 50.00% 13.12% 99.53% 46.39% 8.48%

optimal#1
DB4 87.80% 68.30% 89.56% 74.10% 49.22%
DB2 91.46% 74.43% 87.79% 83.73% 54.08%

optimal#2
DB4 89.02% 68.81% 89.26% 74.10% 49.49%
DB2 91.46% 75.26% 86.99% 83.73% 55.43%

4.2.2 Implementation of ANN

Neural net is highly sensitive to its training parameters. In this section, a hidden layer

with 9 units is used; the maximum training epoch is set as 50; 5-level wavelet decomposition is

implemented using mother wavelet DB2; and the feature set choice is Set #1 in Section 3.1.1.2. The

evaluation method is the same as it is in Section 4.2.1.

Multiple tests were performed with different ratios of training data and different output

units. The details are listed below:

Test#1: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:10 (in this

case, the ratio of YB:negative is 2:10);

Test#2: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:8 (the ratio

of YB:negative is 2:8);

Test#3: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:6 (the ratio

of YB:negative is 2:6);

Test#4: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:4 (the ratio

of YB:negative is 2:4);

Test#5: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:2 (the ratio

of YB:negative is 2:2);

Test#6: The output layer unit number is 3; The ratio of AEP:nonAEP:negative is 1:1:1 (the ratio

of YB:negative is 2:1);
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Test#7: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:10 (the ratio

of YB:negative is 2:10);

Test#8: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:8 (the ratio

of YB:negative is 2:8);

Test#9: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:6 (the ratio

of YB:negative is 2:6);

Test#10: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:4 (the ratio

of YB:negative is 2:4);

Test#11: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:2 (the ratio

of YB:negative is 2:2);

Test#12: The output layer unit number is 2; The ratio of AEP:nonAEP:negative is 1:1:1 (the ratio

of YB:negative is 2:1); and

Test#13: The output layer unit number is 2; The ratio of YB:negative is 1:1 (bind AEP and

non-AEP).

Table 4.7 summarizes the performances of the 13 tests. We observed that the sensitivity of

AEP is still fine while the specificity drops rapidly when the proportion of negative data is reduced

in the training data. Figure 4.3 illustrates the trends of sensitivity and specificity when the ratio is

changing. According to Figure 4.3, the equal error rate of YB detection is 75% and that of ETs is

88% .

4.2.3 Interpretation of Sij and Implementation of ANN with Pruning

Strategy

4.2.3.1 Sij of Input Layer’s Weights

The test was performed on a small scale dataset, which includes feature vectors obtained

from both paroxysmal and negative YBs. As in classification stage, each YB yields a single vector

with selected wavelet (DB2 in this case). We train the net for 6000 epochs. The objective is to detect

all the ETs and as many non-ETs as possible with the minimal occurrence of false positives. To avoid
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Table 4.7: ANN performances in YB detection
ratio sensitivity sensitivity of AEP sensitivity of nonAEP specificity

Test#1 1:1:10 55.54% 86.08% 54.56% 88.29%

3 outputs

Test#2 1:1:8 56.37% 88.61% 55.33% 88.16%
Test#3 1:1:6 65.25% 92.41% 64.37% 83.57%
Test#4 1:1:4 71.95% 91.14% 71.34% 79.03%
Test#5 1:1:2 81.74% 100.00% 81.15% 67.33%
Test#6 1:1:1 90.93% 98.75% 90.68% 49.14%

Test#7 1:1:10 62.42% 92.50% 61.44% 85.16%

2 outputs

Test#8 1:1:8 67.65% 93.67% 66.82% 81.29%
Test#9 1:1:6 73.41% 97.47% 72.64% 75.32%
Test#10 1:1:4 80.36% 96.20% 79.85% 68.71%
Test#11 1:1:2 90.34% 98.73% 90.07% 52.14%
Test#12 1:1:1 96.53% 100.00% 96.42% 32.43%
Test13 1YB:1neg. 93.93% 100.00% 93.72% 50.29%

partiality to either paroxysmal or negative class during learning, we balance the training dataset as

paroxysmal/negative = 1 : 1, and ETs/non-ETs = 1 : 1 in paroxysmal class. The training data

are randomly selected. We set the initial learning rate as ηa = 1e-6 and µ = 0.001. The learning

rate is changed every 1000 epoch. All the weights are randomly initialized with numerical values

less than 1e-4. Bias and momentum are eliminated. The objective output of paroxysmal events is

set as [1 -1]T and that of negative events is [-1 1]T .

The learning rates developed and used respectively in the six intervals are 1e-6, 3.73e-08,

4.10e-07, 4.71e-08, 1.19e-07, and 3.34e-08. The Sij of each weight is computed using the algorithm

in Section 4.1.2.1. Every input feature is directly connected to each of the 51 hidden layer units.

Thus, there are 1275 total input weights and corresponding Sij estimates. Instead of inspecting

individual Sij values, we partition the Sij related to one feature or one set of features by their value

ranges in each decomposition level. Three ranges of Sij are used, as shown in the legend of Figure

4.4. Furthermore, three categories of inputs are considered:

1. Sij related to individual input (top section of Figure 4.4);

2. Sij related to individual subband (middle section of Figure 4.4); and

3. Sij related to individual feature type, independent of subband (bottom section of Figure 4.4).

From the middle section of Figure 4.4, we observe that 44.31% of the Sij related to the

input features of subband D1 (white region of the first column in the middle section of Figure 4.4)

are less than 0.001, indicating the removal of nearly half of the weights related to subband D1 would
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Figure 4.3: ANN performance with different ratio of training data
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hardly affect the output error. In subband D3, D4 and D5, the proportion of the Sij larger than 1

approximates to 20% (black region in the middle section of Figure 4.4). Notice that the frequency

ranges of these three subbands have overlaps with the frequency bands of spikes and sharp waves of

ETs. We also observe that 20% of the Sij related to two features, ‘mean of the peaks’ and ‘mean of

the valleys’ (white annotation of the fourth and fifth columns in the bottom section of Figure 4.4),

are less than 0.001. This suggests inputs related to the two ‘mean’ features are less significant than

those related to other features. It is especially noteworthy that all the Sij larger than 1 are related
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Figure 4.4: The proportion of values of Sij for selected input
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to the feature ‘the variance of the peaks and the valleys’, which indicates a strong relation between

this feature and the error function.

4.2.3.2 Confirmation of Results with Feature/Subband Pruning

The results in Section 4.2.3.1 show the estimated relation between subbands/features and

the ANN mapping error function. They serve as an indirect measure of the utility of the various

features and subbands. To verify the results experimentally, we use the same network and parameters

but remove low Sij inputs (subband or feature) from the input. We also reduce the training epoch to

3000. 10-fold cross validation is used to evaluate this mapping performance. The results are shown

in Table 4.8.

Table 4.8: Performance of ANN with restricted input
sensitivity of ETs sensitivity of non-ETs specificity

difference to (*) difference to (*) difference to (*)
all subband(*) 92.50% - 73.91% - 74.88% -
without D1 92.50% (0.00%) 73.91% (0.00%) 75.24% (0.37%)
without D2 92.50% (0.00%) 68.71% (-5.20%) 76.71% (1.83%)
without D3 93.75% (1.25%) 77.30% (3.39%) 69.27% (-5.61%)
without D4 87.50% (-5.00%) 74.64% (0.73%) 65.37% (-9.51%)
without D5 91.25% (-1.25%) 70.60% (-3.31%) 76.95% (2.07%)

without max{p} 91.25% (-1.25%) 71.57% (-2.34%) 77.68% (2.80%)
without min{v} 83.75% (-8.75%) 67.98% (-5.93%) 77.32% (2.44%)

without p 95.00% (2.50%) 76.33% (2.42%) 71.10% (-3.78%)
without v 83.75% (-8.75%) 68.47% (-5.44%) 79.15% (4.27%)

without var{p,v} 95.00% (2.50%) 63.55% (-10.36%) 84.88% (10.00%)

In Table 4.8, we notice that when the subband D1 is removed, the sensitivity of ETs and

the sensitivity of non-ETs remain unchanged while the change of the specificity is only 0.37%.

However, the removal of subband D4 results in 5% decrease in sensitivity of ETs and 9.51% decrease

in specificity. The removal of other subbands also leads to obvious changes in sensitivities and

specificities. When increase and decrease occur in sensitivity and specificity, respectively, in the

same case, the extent of decrease is larger than that of increase. Despite the fact that the two

features, ‘mean of the peaks’ and ‘mean of the valleys’, have a similar proportion of small Sij ,

their performances are quite different: when the feature ‘mean of the peaks’ is removed, the largest

absolute change in performance is only 3.78%; when the feature ‘mean of the valleys’ is removed,

the sensitivity of ETs drops 8.75% and the sensitivity of non-ETs drops 5.44%. The removal of

‘the variance’ causes 10% decrease in the sensitivity of non-ETs but same rate of increase in the
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specificity.

Comparing the results of proportions of Sij values with different feature/subband choices in

Section 4.2.3.1 and the performance in Section 4.2.3.2, we conclude that the subband D1, although

useful in paroxysmal classification [13], is insignificant in YBs detection. Although all the other four

detail subbands have overlaps with the frequency ranges of ETs, only subband D4 affects the overall

performances. D4 is thus considered as the most important subband. The removal of D2, D3 and

D5 causes significant decreases in either sensitivity or specificity.

There is no clear evidence, either from the estimated Sij or the experimental verification,

about any preferences for individual features. When either of the features ‘highest peak’, ‘lowest

valley’, ‘mean of the valleys’ or ‘the variance’ is removed, the neural net tended to favor the negative

YBs in some degree. Conversely, the removal of the feature ‘mean of the peaks’ favors paroxysmal

YBs. The coexistence of increase and decrease in performance indicates that the characteristics of

paroxysmal YBs and those of negative YBs do not distribute evenly in one type of features.

Since the removal of subband D1 barely affects the performance, we re-tested the data

with wavelet DB4 and the combination DB4+DB2 under the condition that features from D1 are

removed. Comparison of the performances are shown in Table 4.9. The performance of DB2 is

slightly better than that of DB4. Notice that the employment of dual mother wavelets improves the

performance significantly again: The sensitivity of ETs and specificity are over 95% with a relatively

high sensitivity of non-ETs at 88%.

Table 4.9: Comparison of the ANN performances with features from subband D1 eliminated
wavelet choice sensitivity sensitivity of ETs sensitivity of non-ETs specificity

DB2 74.49% 92.50% 73.91% 75.24%
DB4 73.87% 92.50% 73.27% 73.90%

DB4+DB2 88.13% 95.00% 87.90% 97.20%

4.2.3.3 Re-Test of ANN after Pruning

Section 4.2.3.1 discusses the possibility of reducing input data dimension by pruning and

Section 4.2.3.2 confirms it through small scale tests. To compare the performances with those in

Section 4.2.2, we test on the real-time recordings, using the three neural nets yielding the results in

Table 4.9. The output layer unit number is 2; the ratio of AEP:nonAEP:negative is 1:1:2 (the ratio

of YB:negative is 2:2). Below are details of each test:
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Test#14: The neural net is trained by features yielded from DB2 wavelet in Table 4.9;

Test#15: The neural net is trained by features yielded from DB4 wavelet in Table 4.9; and

Test#16: The neural net is trained by features yielded from DB4 and DB2 wavelet in Table 4.9.

Table 4.10: ANN performance in YB detections after pruning of input features
sensitivity sensitivity of AEP sensitivity of nonAEP specificity wavelet choice

Test#14 96.41% 100.00% 96.29% 31.10% DB2
Test#15 96.61% 100.00% 96.50% 31.10% DB4
Test#16 99.96% 100.00% 99.96% 1.28% DB4+DB2

The results are shown in Table 4.10. All the sensitivity results are outstanding in Table

4.10, though the specificity results are poor. All tests yield high sensitivities of AEP. Compared to

Test#11 in Table 4.7, the sensitivity of nonAEP is improved by 6% to 10%, while the specificity

drops 21% to 51%.

4.2.4 Implementation of ANN with Morphological Features

As mentioned in Section 4.1.2.2, ten morphology based features are tested with neural net

as reference. The features are extracted from raw EEG recordings. Below are details of each test:

Test#17: The ratio of AEP:AP:NEP:negative is 1:1:1:3 (the ratio of YB:negative is 3:3 while that

of ET:nonET is 1:2);

Test#18: The ratio of AEP:AP:NEP:negative is 2:1:1:4 (the ratio of YB:negative is 4:4 while that

of ET:nonET is 2:2).

Table 4.11: ANN performance in YB detections using morphological features
ratio sensitivity sensitivity of AEP sensitivity of nonAEP specificity

Test#17 1:1:1:3 46.07% 59.49% 45.63% 91.70%
4 outputs

Test#18 2:1:1:4 62.57% 88.61% 61.73% 79.63%

Test#18 achieves a moderate sensitivity of AEP and specificity, although the sensitivity of

nonAEP is not impressive. Judging from the values, Test#18 is close to Test#8 in Section 4.2.2,

with relatively lower sensitivity of AEP and specificity.
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4.2.5 Performance of Full-scale Real-time Simulation

The full-scale simulation is accomplished with ANN. The patients are randomly divided into

10 folds with the restriction in Section 4.1.4 satisfied. Train epoch number is 3000; initial learning

rate is 1e-6 and will be adjusted in every 300 epochs; number of hidden layer units is 41; number

of output layer units is 2 while the objective output of paroxysmal events is [1 -1]T and that of

negative events is [-1 1]T . All the weights are randomly initialized with numerical values less than

1e-4; momentum and bias are banned.

The threshold of outlier discarding is 5; in each trial, two output candidates are merged if

the interval between them is equal or less than threshold: (a) 0, (b) 18, and (c) 52; also two overlap

rates of grouping are chosen: 50% and 1e-3%; notice that since the length of EEG segment is 7680,

one sample is 1.3e-2% of the segment; the choice of 1e-3% is short enough to guarantee grouping as

long as there is overlap.

In the first round, wavelet features created by DB4 are used, with subband D1 ruled out.

The ratio of class in each simulation is listed below:

Simulation#1: The ratio of AEP:nonAEP:negative is 1:1:10 (the ratio of YB:negative is 2:10 while

that of ET:nonET is 1:1);

Simulation#2: The ratio of AEP:nonAEP:negative is 1:2:10 (the ratio of YB:negative is 3:10 while

that of ET:nonET is 1:2);

Simulation#3: The ratio of AEP:nonAEP:negative is 1:1:5 (the ratio of YB:negative is 2:5 while

that of ET:nonET is 1:1);

Simulation#4: The ratio of YB:negative is 1:1 while that of ET:nonET is unknown;

Simulation#5: The ratio of YB:negative is 1:5 while that of ET:nonET is unknown;

Simulation#6: The ratio of AEP:nonAEP:negative is 1:0:1 (the ratio of YB:negative is 1:1 while

that of ET:nonET is 1:0);

Simulation#7: The ratio of AEP:nonAEP:negative is 1:0:5 (the ratio of YB:negative is 1:5 while

that of ET:nonET is 1:0).

In Table 4.12, we notice that the sensitivity and specificity values stay the same when the

candidates are merged with different thresholds. However, the selectivity increases significantly when
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Table 4.12: Simulation results without grouping
trial sensitivity sensitivity of AEP sensitivity of nonAEP specificity selectivity
Simulation#1 (a) 25.26% 32.93% 25.00% 96.36% 4.67%

(b) 25.26% 32.93% 25.00% 96.36% 12.95%
(c) 25.26% 32.93% 25.00% 96.36% 16.89%

Simulation#2 (a) 47.37% 70.73% 46.59% 88.36% 3.73%
(b) 47.37% 70.73% 46.59% 88.36% 9.77%
(c) 47.45% 70.73% 46.67% 88.36% 13.05%

Simulation#3 (a) 25.41% 60.98% 24.23% 91.15% 3.57%
(b) 25.41% 60.98% 24.23% 91.15% 8.11%
(c) 25.41% 60.98% 24.23% 91.15% 10.43%

Simulation#4 (a) 88.92% 100.00% 88.56% 56.36% 1.99%
(b) 88.92% 100.00% 88.56% 56.36% 5.89%
(c) 88.96% 100.00% 88.60% 56.36% 9.34%

Simulation#5 (a) 27.10% 21.95% 27.27% 96.73% 5.14%
(b) 27.10% 21.95% 27.27% 96.73% 12.05%
(c) 27.18% 21.95% 27.35% 96.73% 17.00%

Simulation#6 (a) 48.27% 92.68% 46.79% 77.82% 2.66%
(b) 48.27% 92.68% 46.79% 77.82% 5.90%
(c) 48.27% 92.68% 46.79% 77.82% 8.15%

Simulation#7 (a) 21.29% 41.46% 20.62% 93.45% 3.01%
(b) 21.29% 41.46% 20.62% 93.45% 6.91%
(c) 21.29% 41.46% 20.62% 93.45% 9.33%

Table 4.13: Simulation results grouped with overlap rates of 50%
sensitivity sensitivity of AEP sensitivity of nonAEP specificity selectivity

Simulation#1 (a) 21.45% 28.05% 21.23% 96.97% 6.72%
(b) 18.97% 23.17% 18.83% 96.97% 13.93%
(c) 19.29% 21.95% 19.20% 96.85% 18.93%

Simulation#2 (a) 40.10% 56.10% 39.57% 90.42% 5.26%
(b) 35.74% 43.90% 35.47% 90.55% 10.76%
(c) 34.41% 51.22% 33.85% 92.48% 14.12%

Simulation#3 (a) 22.07% 46.34% 21.27% 92.85% 4.98%
(b) 20.19% 36.59% 19.64% 93.82% 9.34%
(c) 19.84% 37.80% 19.24% 94.42% 11.98%

Simulation#4 (a) 69.56% 57.32% 69.97% 63.64% 2.95%
(b) 61.31% 47.56% 61.77% 67.03% 6.25%
(c) 58.25% 48.78% 58.56% 70.91% 9.61%

Simulation#5 (a) 24.23% 17.07% 24.47% 97.09% 6.56%
(b) 21.41% 12.20% 21.71% 97.21% 12.67%
(c) 20.31% 10.98% 20.62% 97.45% 17.59%

Simulation#6 (a) 40.77% 62.20% 40.06% 80.48% 3.66%
(b) 36.61% 51.22% 36.12% 83.52% 6.84%
(c) 36.53% 47.56% 36.16% 85.33% 9.38%

Simulation#7 (a) 18.54% 28.05% 18.22% 94.42% 4.51%
(b) 17.01% 26.83% 16.68% 95.03% 8.18%
(c) 16.42% 21.95% 16.23% 95.52% 10.70%
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Table 4.14: Simulation results grouped with overlap rates of 1e-3%
sensitivity sensitivity of AEP sensitivity of nonAEP specificity selectivity

Simulation#1 (a) 20.03% 20.73% 20.01% 97.45% 10.05%
(b) 16.61% 17.07% 16.60% 97.70% 21.59%
(c) 17.01% 13.41% 17.13% 97.58% 29.58%

Simulation#2 (a) 37.63% 53.66% 37.09% 92.37% 8.56%
(b) 30.32% 42.68% 29.91% 93.70% 17.01%
(c) 28.00% 39.02% 27.64% 94.91% 22.09%

Simulation#3 (a) 20.42% 41.46% 19.72% 93.94% 7.16%
(b) 16.54% 30.49% 16.07% 95.76% 13.18%
(c) 15.51% 32.93% 14.94% 96.61% 16.55%

Simulation#4 (a) 68.66% 51.22% 69.24% 72.24% 6.47%
(b) 56.05% 46.34% 56.37% 76.73% 13.11%
(c) 51.30% 35.37% 51.83% 80.00% 19.30%

Simulation#5 (a) 22.23% 9.76% 22.65% 97.45% 9.54%
(b) 18.66% 8.54% 18.99% 97.33% 18.40%
(c) 16.54% 8.54% 16.80% 97.94% 24.24%

Simulation#6 (a) 37.35% 54.88% 36.77% 85.33% 6.27%
(b) 30.75% 41.46% 30.40% 89.33% 11.19%
(c) 28.40% 32.93% 28.25% 89.82% 14.54%

Simulation#7 (a) 16.85% 26.83% 16.52% 95.52% 6.66%
(b) 13.79% 17.07% 13.68% 96.48% 11.90%
(c) 12.77% 17.07% 12.62% 97.09% 15.36%

Table 4.15: Morphology feature based simulation results without grouping
sensitivity sensitivity of AEP sensitivity of nonAEP specificity selectivity

Simulation#8 (a) 1.96% 9.76% 1.70% 100.00% 58.14%
(b) 1.96% 9.76% 1.70% 100.00% 58.82%
(c) 1.96% 9.76% 1.70% 100.00% 59.52%

Simulation9 (a) 17.99% 53.66% 16.80% 96.97% 14.43%
(b) 17.99% 53.66% 16.80% 96.97% 14.71%
(c) 17.99% 53.66% 16.80% 96.97% 15.29%

Table 4.16: Morphology feature based simulation results grouped with overlap rates of group50%
sensitivity sensitivity of AEP sensitivity of nonAEP specificity selectivity

Simulation#8 (a) 1.85% 7.32% 1.66% 100.00% 63.51%
(b) 1.85% 7.32% 1.66% 100.00% 63.51%
(c) 1.85% 7.32% 1.66% 100.00% 64.38%

Simulation9 (a) 15.12% 42.68% 14.20% 97.82% 17.57%
(b) 15.24% 43.90% 14.29% 97.82% 17.77%
(c) 15.40% 43.90% 14.45% 97.82% 18.30%

the merging threshold goes up. In all cases, after merging with threshold 18, selectivity is more than

twice of that before merging; after merging with threshold 52, selectivity is about three times of

that before merging.

In Table 4.13 and Table 4.14, sensitivity drops in some degree while the selectivity does
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not goes up as fast as in cases without grouping. Notice that the merging process is ahead of the

grouping process. Merging changes the length of the candidates and thus leads to different grouping

outcomes. Corresponding sensitivity values are also changed. Notice that in ‘Simulation#2(c)’, the

sensitivity is 70.73% before grouping; it is reduced to 39.02% after grouping. This phenomenon

indicates during the grouping process of TP, only 55.17% of the machine decisions are the same as

the experts’.

In the second round, morphology features in Section 4.1.2.2 are used. The ratio of class in

each simulation is listed below:

Simulation#8: with implementation of morphology feature set in Section 4.1.2.2, the ratio of

AEP:nonAEP:negative is 1:2:10 (the ratio of YB:negative is 3:10 while that of ET:nonET is

1:2);

Simulation#9: with implementation of morphology feature set in Section 4.1.2.2, the ratio of

AEP:nonAEP:negative is 1:1:5 (the ratio of YB:negative is 2:5 while that of ET:nonET is 1:1);

The same trend in Table 4.12, Table 4.13 and Table 4.14 also appears in Table 4.15 and

4.16. As compared to wavelet features, morphology features yielded high specificity and selectivity

values. The sensitivity, on the other hand, is not impressive.

Figure 4.5 to Figure 4.14 demonstrate how the expert and the machine annotated YBs on

EEGnet. Detectors based on wavelet features (Figure 4.6, Figure 4.7, Figure 4.11 and Figure 4.12)

are very sensitive to different kinds of spikes and bursts. They also tend to annotate an entire event.

Detectors based on wavelet features (Figure 4.8, Figure 4.9, Figure 4.13 and Figure 4.14)

tend to mark single spikes and show less interest in bursts.

Detectors based on both features missed the smoothly events of patient#5.

Comparing to experts’ marked YBs, the machine tends to favor paroxysmal events contain-

ing high frequency components. The machine cannot determine whether two close events are related

while experts can determine it by reading context. The machine marks every signal pieces that fits

the description while experts do the job selectively. In the grouping procedure, the machine makes

the decision based on all the values in the YB, while experts focus on representative events in the

YB.
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Figure 4.5: Yellow boxes annotated by expert on Patient#1
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Figure 4.6: Raw yellow box candidates annotated by Simulation#2 on Patient#1
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Figure 4.7: Yellow box annotated by Simulation#2 on Patient#1 after grouping
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Figure 4.8: Raw yellow box candidates annotated by Simulation#9 on Patient#1
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Figure 4.9: Yellow box annotated by Simulation#9 on Patient#1 after grouping
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Figure 4.10: Yellow boxes annotated by expert on Patient#5
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Figure 4.11: Raw yellow box candidates annotated by Simulation#2 on Patient#5
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Figure 4.12: Yellow box annotated by Simulation#2 on Patient#5 after grouping

114



Figure 4.13: Raw yellow box candidates annotated by Simulation#9 on Patient#5
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Figure 4.14: Yellow box annotated by Simulation#9 on Patient#5 after grouping
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Chapter 5

Conclusions and Discussion

5.1 Yellow-Box Classification

5.1.1 Performance of crisp classification

In the crisp classification stage we designed and implemented new strategies to improve the

performance of machine classifiers. From a group of 7 potential wavelet features, we derived and

tested 5 distinct feature sets. We assessed classifier performance by combining features derived from

two different mother wavelets. We also ran tests to determine if any improvement leading by certain

strategy was statistically significant. Our results showed that our new wavelet features improve the

classification ability (in the best case, +5.75% in sensitivity and +6.76% in specificity at highly

significant level: α=0.01) Our results also showed that the use of two dual-mother-wavelets in a

classifier may be better than using a single-mother-wavelet under the condition that both wavelets

are able to detect the events of interest. The cooperation of the new features and the dual-wavelet

strategy provided a significant improvement. The classification results showed that Set#1 and Set#3

are the top 2 feature sets, while Set#1 has smaller dimension. We observed that the improvement

in specificity and distance-to-(0,1) is always significant and this was confirmed by a small type II

error in the power test. It is difficult to improve the sensitivity at a significant level using only one

strategy. The improvement of sensitivity is higher when both strategies are used, but it is still inferior

to that of specificity. Many factors contributed to this result. We think the various morphologies

of ETs make it difficult to represent these signal patterns within a single feature set. The situation
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might be improved if ETs are subdivided into multiple classes since there are at least 3 forms of

ETs (spike, sharp wave, spike followed by slow wave). The small population of ET also had negative

effect. Our previous study showed that with a large dataset, the performance of classification was

improved. We think that the dual mother wavelet strategy improves performance of the machine

learning classifiers because it may be difficult to fully represent these various ET signal patterns

only using features from a single mother wavelet.

Many factors were observed to have positive effects on YB classification performance. Be-

sides new wavelet features and multiple mother wavelets strategy, the inclusion of the spatial features

is also contributed to a better performance: The addition of spatial features improved the classi-

fication results in all but one case. We also discussed the feasibility of reducing the dimension of

the feature vectors, the necessity of keeping wavelet features in the high frequency range and the

effect of increasing the cardinality of the dataset. Using only wavelet subband maxima as features

degraded the classification results in some degree. Finally, our results indicate a larger set of AEP

training samples improves classification performance. Since ETs have varying morphologies, a larger

dataset can provide more samples of ET for machine learning. We do not know how many training

datasets would be needed to provide optimal performance in this ET classification task, although

we suspect it would be much larger than the dataset we used here.

5.1.2 Performance of fuzzy classification

The classification results listed in Table 3.20 indicate significant influence that the initial

membership function values have on the outcomes. The fuzzy tests using membership functions

that are created by taking the distribution of the confidence factors and the effects of “votes” into

consideration achieved better performances than a benchmark crisp test did. It is plausible to

improve the performance by fuzzy strategy with this dataset. The improvement of the sensitivity of

the best fuzzy case versus the benchmark crisp case on all data (2.67%) was 2% higher than that on

a dataset without the controversial data (0.67%), while both improvements of the specificity were

roughly equal (2.29% and 2.34%). Notice that this is a balanced training test, while the majority

of the data is nonAEP. This characteristic of the dataset determines that the AEP class is more

sensitive to the quality of the training data than the nonAEP class. When the quality of the dataset

is low, the fuzzy strategy provides different ranks of membership values which allows an event to

analyze its neighbors with low membership values. The crisp strategy simply binarizes the data,
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while a real AEP could be mistaken due to its less representative AEP neighbors. The traits of the

two strategies determine that there was a large improvement of fuzzy strategy when the quality of the

dataset was poor. When the quality of the dataset improves, the influence of the less representative

AEP neighbors is weakened, which leads to a small improvement in sensitivity. The results of fuzzy

classification also confirmed the conclusion that dual-wavelet strategy can improve the performance.

Table 3.20 also indicates when the number of nearest neighbor, ‘k’, goes up, the specificity

increases and the sensitivity decreases. An explanation for this trend is that there are more nonAEP

data than AEP data in the vector space and thus the classifier tends to favor the nonAEP class

when more neighbors are involved in decision making. In most cases, the best performance occurs

when k = 1 under the same condition. Three cases are chosen here for reviewing: Condition16, in

which the best result occurs when k = 1; Condition8, in which the best result occurs when k = 3.

Figure 5.1 to Figure 5.5 illustrate the change of membership values in Condition16 before

and after classification. The energy of the error per annotation is defined as:

E =
1

N

n∑
(mbvnpre-classification −mbvnpost-classification)

2 (5.1)

where mbvn is the membership value of the nth annotation and N is the number of annotations;

N times E equals the energy of the error. When ‘k’ increases, the distribution of the membership

values show a trend of “stretching”, which means the post-classification membership values are

distributed more evenly in the interval [0,1] than the pre-classification membership values. The

stretching causes a significant reduction of the proportion of membership value greater than 0.5,

which is the source of true positive and false positive. This trend indicates when ‘k’ is growing,

the populations of both true positive and false positive are decreasing, which leads to a decrease in

sensitivity and an increase in specificity. However, due to the fact that the cardinality of nonAEP is

more than ten times larger than that of AEP, sensitivity decreases more than specificity increases,

thus distance-to-(0,1) measuring the overall performance is also decreasing. Figure 5.6 demonstrates

how the total energy evolves with ‘k’ in Condition16, while Figure 5.7 demonstrates the evolution of

average energy per vector. Although the algorithm yields the best result at ‘k=1’, the corresponding

error energy is still the highest for this ‘k’ value. The reduction of error energy at large ‘k’s is due

to the raise of specificity and the large cardinality of nonAEP. Notice that in Figure 5.7 the trend

of average error energy of nonAEP is almost overlapped with that of all data, which reflects the
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significance of the proportion of nonAEP population.

Figure 5.8 to Figure 5.12 illustrate the change of membership values in Condition8 before

and after classification. Figure 5.13 and Figure 5.14 illustrate the evolution of error energy. Condi-

tion8 shows a similar trend of evolution in the distribution of the values of membership and in the

error energy. Yet Condition8 achieves the best result when k = 3. Unlike the smooth distribution

in Condition16, Condition8 indicates the original membership values have a step-shape distribution.

The membership values yielded by 1-nnr retain the step-shape trend in distribution. After imple-

menting 1-nnr, for about one third of the nonAEP vector, the absolute differences between original

membership values and updated membership values are over 0.5. Under this circumstance, the

nonAEP vectors cannot become true negatives. After implementing 3 or higher nearest neighbor,

the distribution of membership values is stretched; the differences between the original membership

values and the updated membership values are reduced. Notice that in this condition, the overall

performances of k =3, 5, 7 and 9 are all better than that of k = 1 (listed in Table 3.20).

Notice that in Figure 5.7, the error energy per vector of Condition16 ranges from 0.065 to

0.115, where that of Condition8 in Figure 5.14 ranges from 0.09 to 0.17. This is another indication

that the membership function initialization strategy used in Condition16 is superior to others’.

Figure 5.1: Exemplar of biased weights (Condition16) with k = 1
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Figure 5.2: Exemplar of biased weights (Condition16) with k = 3
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Figure 5.3: Exemplar of biased weights (Condition16) with k = 5
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Figure 5.4: Exemplar of biased weights (Condition16) with k = 7
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Figure 5.5: Exemplar of biased weights (Condition16) with k = 9

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
distribution of confidence factors between before and after implementing fuzzy 9−NNR

sorted (by membership function value) sample number

m
em

be
rs

hi
p 

fu
nc

tio
n 

va
lu

e

 

 

original membership
fuzzy−knnr−developed membership

122



Figure 5.6: Energy of error of biased weights (Condition16) with different choice of ‘k’
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Figure 5.7: Energy of error per annotation of biased weights (Condition16) with different choice of
‘k’

1 2 3 4 5 6 7 8 9
0.06

0.07

0.08

0.09

0.1

0.11

0.12

choice of k of nearet neighbor

en
er

gy
 o

f e
rr

or
 p

er
 a

nn
ot

at
io

n

 

 
overall
AEP
nonAEP

123



Figure 5.8: Exemplar of sigmoid transfer (Condition8) with k = 1
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Figure 5.9: Exemplar of sigmoid transfer (Condition8) with k = 3

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
distribution of confidence factors between before and after implementing fuzzy 3−NNR

m
em

be
rs

hi
p 

fu
nc

tio
n 

va
lu

e

sorted (by membership function value) sample number

 

 

original membership
fuzzy−knnr−developed membership

124



Figure 5.10: Exemplar of sigmoid transfer (Condition8) with k = 5
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Figure 5.11: Exemplar of sigmoid transfer (Condition8) with k = 7
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Figure 5.12: Exemplar of sigmoid transfer (Condition8) with k = 9
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Figure 5.13: Energy of error of sigmoid transfer (Condition8) with different choice of ‘k’

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

choice of k of nearet neighbor

en
er

gy
 o

f e
rr

or

 

 
overall
AEP
nonAEP

126



Figure 5.14: Energy of error per annotation of sigmoid transfer (Condition8) with different choice
of ‘k’
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5.2 Yellow-Box Detection

In the YB detection part, we implemented Indiradevi’s algorithm with some modification in

weights. In Table 4.6 we concluded that the performance of the algorithm in detecting paroxysmal

events is improved by optimization of weights. Although the specificities are inversely proportional

to sensitivities, the absolute value of the decrease of specificity is not as large as the absolute value

of the increment of sensitivity, which indicates the optimization of subband weights improves the

overall performance. Yet optimized weights yield long length overlap, non-overlap and high cost of

transformation at the same time. An explanation is that the detected annotations are relatively

shorter than the expert-marked annotations and thus the former costs more to transform. The

reason that the sensitivities of ETs are 30% higher than those of overall data is due to the fact that

Indiradevi’s algorithm favors the ETs. It is designed to detect spiky events like ETs. Some non-ETs

have properties of wave rather than spike, which increase the difficulties in detection. The trade-off

of higher sensitivity is a slight decrease of specificity and a severely degraded selectivity. Many

factors cause the low selectivity. As mentioned in Section 2.2, the experts only place a single YB

on the channel that appears to have the highest amplitude even when the paroxysmal events also
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appear on other channels, which leads to many false “FP”. When the amplitudes in two channels

are close, it will be difficult for human experts/machine to reach an agreement due to diversity of

individual experience/algorithm.

Despite the fact that DB4 obtains the highest correlation coefficients with the epileptic spike

signal, DB2 achieves better paroxysmal events detection results when using Indiradevi’s algorithm.

In general, DB2 yields better sensitivity results than DB4 does while the specificities yielded by

DB2 are less than 2% worse than those yielded by DB4, which suggests DB2 can be more efficient in

paroxysmal events detection. We also observe that the sensitivities on bipolar AP typical montage

are 20% higher than those on average referential montage using equal or optimal subband weights.

The explanation is that an event having evident traits on one montage does not have to be the same

on another montage, based on the fact that the paroxysmal events (contained by YB) are marked on

bipolar AP typical montages and the negative events are marked on average referential montages.

Besides Indiradevi’s algorithm, we implemented neural net with two types of features. De-

spite the validation differences, the two types of features show certain consistency by marking similar

regions as YB on EEGnet, indicating rationality of the feature choices. Besides, the neural net yields

an equal error rate of 88% for the case of ET versus negative and that of 75% for the case of total

paroxysmal versus negative. After pruning, the sensitivity is even higher at the cost of a poor speci-

ficity, indicating that the subband D1 contains information favoring the negative data. Notice that

when the ratio of YB:negative is 2:10, the result of specificity is almost equal to that of sensitivity,

indicating that the proposed features might not be representative for negative data, or background

signals.

A severe problem with tests validated by focusing on data is that the similarity of data

within individual subject is ignored. These tests had a relatively high evaluation result, yet tended

to annotate excessively in real world EEG recordings. The full-scale real-time simulation takes this

problem into consideration and adopts high proportion of negative training data. Another problem

is caused by potential YBs remaining in the data. Since experts did not annotate all the events, extra

penalty is added in the evaluation of selectivity. The intra-class divergence also brings challenges,

especially in nonAEP class. The divergence is clearly observed in Figure 4.10, where the waveforms

in different blue YBs show completely different morphology traits.

The merging process reduces the cardinality of candidates while it keeps the machine an-

notated regions. Table 4.12, Table 4.13 and Table 4.14 reveal the fact that merging process barely
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has any influence on sensitivity and specificity yet it has a large impact on selectivity. The grouping

process, on the other hand, reduces the sensitivity to a large degree, leading a slight improvement in

specificity and a median improvement in selectivity. This change is caused by inconsistency between

the experts’ and the machine’s opinions about the highest amplitude. The machine takes the entire

energy in the overlap interval into consideration, while the experts focus on the amplitudes of partial

data with significant traits. In particular, when a burst occurs, it will be extremely challenging to

make decision by visualization.

5.3 Future Research

We have achieved significant improvement in the classification of YBs by finding suitable

mother wavelet choices and feature choices. We have also shown that with appropriate initialization

of membership functions, a fuzzy classification strategy can be superior to a crisp one. The signifi-

cance is that the fuzzy approach provides a formalism for incorporation of the rater uncertainty. One

downside is that when we adopt the gradient descent to optimize the coefficients of the confidence

factors, the performance did not beat that yielded by a set of empirical coefficients. The cause is

worth studying further. In the future, we will review the selections of initial values, learning rate,

and training data. We will explore more plus factors to benefit the optimization, hoping to yield

better results.

In order to increase the efficiency of the research, we have explored several strategies to

detect paroxysmal events in raw rsEEGs. We have simulated real world detections. In the future,

we hope to test our current detectors on new datasets and to evaluate the performance with human

experts’ assistance. It is also worth exploring the relationship between the wavelet-based features

and the morphology-based features.
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Appendix A Matlab Code Structure

In this research, the computational work is accomplished in Matlab. Figure A.1 and Figure

A.2 illustrate the most commonly used Matlab functions in this research. Table A.1 gives a brief

description of each code.

Figure A.1: Code Structure of Classification

kNearestNeighborsRd

Fuzzy_knnrrd

Fuzzy_knnrrd_gdu

script

For example:

. . . . . .

m=2;

d e s i r e k = [ 1 ; 3 ; 5 ; 7 ; 9 ] ;

. . . . . .

ds = to t a l t p ( s o r t ( [ sq1 ; sq2 ] ) , sn : en ) ;

MemFunlb = MemFun( s o r t ( [ sq1 ; sq2 ] ) , : ) ;

. . . . . .

t e Idx = CVO. t e s t ( loop ) ;

t r Idx11 = l o g i c a l ( t r Idx2 ) ;

t r i a l H i d ( ( loop−1)∗subn ∗2∗( kfd−1)+1: loop ∗ subn ∗2∗( kfd − 1 ) , . . .

loopv+1) = t r i a l t p ( tr Idx11 ) ;

t r i a l ST i d ( ( loop −1)∗( subn1+subn2 )+1: loop ∗( subn1+subn2 ) , . . .

loopv+1) = t r i a l t p ( te Idx ) ;

covt1 = cov ( ds ( tr Idx11 , : ) ) ;

[ ne ighbor s5 d i s t a n c e s 5 testLb5 ] = Fuzzy knnrrd ( ds ( tr Idx11 , : ) , . . .

MemFunlb( tr Idx11 , : ) , ds ( teIdx , : ) ,m, de s i r ek , covt1 ) ;

t e s t l b ( teIdx , : ) = testLb5 ( : , : , 1 ) ;
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Figure A.2: Code Structure of Detection

PruneANNtansig_cs_IntW_adpw1lmt1rcd1

training

ST_ANN_tansig_s

eegspike_ann_test

mergeannot

group

test

script

For example:

. . . . . .

sn=6;

en=25;

fn=en−sn+1;

Train epoch=3000;

l e a r n r a t e = 0 . 0 0 1 ;

momentum = 0 ;

b ia s = 0 ;

hid = 2∗ fn+1;

otpt =2;

I n t l r t = 1e−6;

Lchg = 300 ;

r cd lp = 100 ;

r to = [ 1 2 1 0 ] ;

. . . . . .

t r Idx11 = ismember ( ds ( : , 2 7 ) , r e c o r d t r a i n {1 , loop } ) ;
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te Idx = ismember ( ds ( : , 2 7 ) , r e c o r d t e s t {1 , loop } ) ;

Hdata = ds ( tr Idx11 , sn : en ) ’ ;

Tdata = ds ( teIdx , sn : en ) ’ ;

Hlabel = ones ( otpt , s i z e (Hdata , 2 ) ) ;

Hlabel (1 , r e c o r d t r a i n {2 , loop}+r e c o r d t r a i n {3 , loop }+1: . . .

r e c o r d t r a i n {2 , loop}+r e c o r d t r a i n {3 , loop}+ . . .

r e c o r d t r a i n {4 , loop }) = −1;

Hlabel ( 2 , 1 : r e c o r d t r a i n {2 , loop}+r e c o r d t r a i n {3 , loop }) = −1;

[ vdim vnum ] = s i z e (Hdata ) ;

[ tdim tnum ] = s i z e ( Hlabel ) ;

IntW = zero s ( ( vdim+1)∗hid+tdim ∗( hid+1) , 1 ) ;

for i =1: s i z e ( IntW , 1 )

IntW( i ,1)= rand (1)∗1 e−4∗(−1)ˆ randi (2 , 1 , 1 ) ;

end

[Nod InitWetr FinlWetr ErTgr S i j l r t r d Nodrcd Wetrcd S i j r c d ] = . . .

PruneANNtansig cs IntW adpw1lmt1rcd1 ( Hdata , Hlabel , hid , . . .

Train epoch , 0 .000000001 , l e a rnra te , bias , momentum, IntW , . . .

I n t l r t , Lchg , rcdlp , Date1 ) ;

. . . . . .

. . . . . .

DetSp = DTALLs( : , ( c o l i −1)∗25+sn : ( c o l i −1)∗25+en ) ;

[ DetSpSyn ] = e eg sp i k e ann t e s t ( DetSp , . . .

F in lWetr a l l 1 0 ( : , 1 , loop ) , hid , otpt , b i a s ) ;

save ( [ ’ . / rawant ’ num2str (Date ) ’ /RawAnt ’ w l s t r . . .

’ l e v e l 5 D i f f ’ num2str ( ptID ) ’ ’ num2str ( win wt ) . . .

’w BPAPT’ num2str ( bpid ) ’ . txt ’ ] , ’DetSpSyn ’ , ’−ASCII ’ )

DetSpSyn = mergeannot ( DetSpSyn , annotMR , annotDc ) ;

. . . . . .
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func t i on [ OLabel ] = e e g sp i k e ann t e s t ( IPn , FinlW , hdn , tdim , b ia s )

OLabel = ze ro s ( s i z e ( IPn , 1 ) , s i z e (FinlW , 2 ) ) ;

for j = 1 : s i z e (FinlW , 2 )

[ Label ] = ST ANN tansig s ( IPn ’ , FinlW ( : , j ) , hdn , tdim , b ia s ) ;

f o r i = 1 : s i z e ( IPn , 1 )

[ va l sqc ] = max( Label ( i , : ) ) ;

i f sqc˜=tdim && val>0

OLabel ( i , j )=1;

end

end

j

end

Table A.1: Selected Matlab Code
FILE NAME CONTENT TYPE

kNearestNeighborsRd.m
crisp k-NNR algorithm

using Mahalanobis distance
function

Fuzzy knnrrd.m
fuzzy k-NNR algorithm

using Mahalanobis distance
function

Fuzzy knnrrd gdu.m
optimization of coefficients

of confidence factor
using gradient descent strategy

function

PruneANNtansig cs IntW adpw1lmt1rcd1.m
training of ANN,

including computation of Sij

and adaptation of learning rate
function

eegspike ann test.m
YB detection

on multiple channels
function

ST ANN tansig s.m
YB detection

using trained ANN
function

mergeannot.m
merging and discarding

of YBs
function
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