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Abstract

Approximately one percent of the world's population exhibits symptoms of epilepsy,
a serious disorder of the central nervous system that predisposes those affected to
experiencing recurrent seizures. The risk of injury associated with epileptic seizures
might be mitigated by the use of a device that can reliably detect or predict the
onset of seizure episodes and then warn caregivers of the event. In a hospital this
device could also be used to initiate time-sensitive clinical procedures necessary for
characterizing epileptic syndromes. This thesis discusses the design of a real-time,
patient-specific method that can be used to detect the onset of epileptic seizures
in non-invasive EEG, and then initiate time-sensitive clinical procedures like ictal
SPECT.

We adopt a patient-specific approach because of the clinically observed consis-
tency of seizure and non-seizure EEG characteristics within patients, and their great
heterogeneity across patients. We also treat patient-specific seizure onset detection
as a binary classification problem. Our observation is a multi-channel EEG signal;
its features include amplitude, fundamental frequency, morphology, and spatial local-
ization on the scalp; and it is classified as an instance of non-seizure or seizure EEG
based on the learned features of training examples from a single patient.

We use a multi-level wavelet decomposition to extract features that capture the
amplitude, fundamental frequency, and morphology of EEG waveforms. These fea-
tures are then classified using a support vector machine or maximum-likelihood clas-
sifier trained on a patient's seizure and non-seizure EEG; non-seizure EEG includes
normal and artifact contaminated EEG from various states of consciousness. The
outcome of the classification is examined in the context of automatically extracted
spatial and temporal constraints before the onset of seizure activity is declared.

During validation tests our method exhibited an average latency of 8.0± 3.2 sec-
onds while correctly identifying 131 of 139 seizure events from thirty-six, de-identified
test subjects; and only 11 false-detections over 49 hours of randomly selected non-
seizure EEG from these subjects. The validation tests also highlight the high learning
rate of the detector; a property that allows it to exhibit excellent performance even
when trained on as few as two seizure events from the test subject.
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We also demonstrate through a comparative study that our patient-specific detec-
tor outperforms a nonpatient-specific, or generic detector in terms of a lower average
detection latency; a lower total number of false-detections; and a higher total number
of true-detections. Our study also underscores the likely event of a generic detector
performing very poorly when the seizure EEG of a subject in its training set matches
the non-seizure EEG of the test subject.

Thesis Supervisor: John V. Guttag
Title: Professor, Computer Science and Engineering
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Chapter 1

Introduction

1.1 Motivation

Approximately one percent of the world's population exhibits symptoms of epilepsy,

a serious disorder of the central nervous system that predisposes those affected to

experiencing recurrent seizures. The underlying genetic and molecular mechanisms

that give rise to epilepsy are not clearly understood, but the disorder is most common

among people in whom the brain has been compromised by some sort of disturbance.

In children and young adults, genetic disorders, congenital abnormalities, and birth

trauma affecting the brain are most often blamed for the onset of epilepsy; while in

middle-aged adults and the elderly, strokes, tumors, and cerebrovascular disease are

more frequent explanations [12].

A seizure is a sudden breakdown of the neuronal activity of the brain that precip-

itates an involuntary alteration in behavior, movement, sensation, or consciousness.

Seizures are triggered by a combination of physiological and environmental factors,

and can occur sporadically over the course of a week or frequently over the course

of a day. The confusion, loss of consciousness, and lack of muscle control that ac-

companies certain types of seizures can lead to serious injuries that include fractures,

head injuries, and burns. These injuries, rather than the seizure events, account for

a significant component of the risk associated with epilepsy [28].
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The risk of injury associated with epilepsy might be mitigated by the use of a

device that can quickly and reliably detect or predict the onset of seizure episodes. For

instance the device can abort or prevent the onset of seizures by selective stimulation

of brain regions or infusion of anti-epileptic drugs; alert a nearby or remote caregiver

of the event; or stimulate patients following the conclusion of a seizure to restart

breathing impaired by the seizure episode [28].

Within a hospital a device that detects or predicts seizures would also have nu-

merous applications. The device can potentially be used to identify epileptic events

in long-term, non-invasive recordings of brain electrical activity known as electroen-

cephalographic (EEG) recordings, so that the amount of data that must be visually

inspected to make a diagnosis is reduced [7]; it may also be used to initiate time-

sensitive clinical procedures necessary for the accurate characterization of epileptic

syndromes. This final application is the primary motivator for our investigation of

quick, reliable and automated seizure onset detection.

The clinical procedure motivating our work is called an ictal SPECT. Its aim is to

accurately localize each patient's epileptogenic focus, the brain region that gives rise

to seizure activity. An ictal SPECT localizes the epileptogenic focus by highlighting

its altered cerebral blood flow at the onset of a seizure. The accuracy of the local-

ization critically depends on minimizing the delay between starting the ictal SPECT

procedure and the electrographic onset of a seizure, which is the beginning of sus-

tained abnormal brain electrical activity. This is in contrast to the clinical onset of a

seizure, which coincides with the beginning of observable abnormal motor or sensory

behavior and typically lags the electrographic onset by several seconds.

In today's hospital environment minimizing this delay would require an experi-

enced electroencephalographer to continuously monitor and detect seizure activity in

streaming EEG over extended periods of time; such a task is costly, difficult, and

mentally taxing and is therefore rarely done. The adopted alternative is to initiate

ictal SPECTs following the clinical onset of a seizure, and to accept an inherent delay

of several seconds. Unfortunately, this delay is very often greatly prolonged as a result

of the subtlety of clinical onsets and the physical proximity of nurses carrying out

16
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the ictal SPECT procedure. On average ictal SPECTs are started 30-45 seconds [5]

after the clinical onset of a seizure, which usually leads to very poor localization of

the epileptogenic focus and downgrading of the clinical value of the procedure.

With an automated seizure onset detector, the delay between electrographic onsets

and initiation of ictal SPECTs can be consistently minimized without the costly

resort to continuous monitoring by an experienced electroencephalographer. This

consistency will bolster confidence and increase reliance on ictal SPECTs as a tool

for seizure focus localization.

1.2 Goal

The goal of this research is to design, implement, and evaluate a real-time method

that can be used to detect electrographic seizure onsets in non-invasive EEG for the

purpose of initiating time-sensitive clinical procedures such as ictal SPECT. More

generally, the algorithm can serve as the heart of a seizure detection device designed

to support epilepsy patients outside of the hospital by alerting nearby or remote

caregivers of seizure events; or aborting the onset of seizures via selective stimulation

of brain regions or infusion of anti-epileptic drugs.

The detector's performance requirements are defined by the nature of clinical

settings and the ictal SPECT procedure. The hectic clinical environment necessitates

that the detector require minimal direction from experienced hospital staff. The

detector should also initiate all necessary protocols within a maximum of ten seconds

of electrographic onset to improve upon the current ability to localize epileptogenic

foci using ictal SPECTs. Finally, the detector should exhibit a low false-positive rate,

or be easily adjusted to tradeoff more false-negatives for fewer false-positives. This

tradeoff is acceptable since incorrect detections lead to costly repeats of the procedure,

but misses result in performing ictal SPECTs using existing hospital protocols.

17



1.3 Approach

We chose to design a patient-specific seizure onset detector because of the clinically ob-

served consistency of seizure and non-seizure EEG characteristics within patients, and

their great heterogeneity across patients. Furthermore, we decided to treat patient-

specific seizure onset detection as a binary classification problem. In such a problem

one determines to which of two classes an observation most likely belongs based on

a comparison of its features with the learned features of training examples from each

of the two classes. In our case the observation is a multi-channel EEG signal; its

features include amplitude, fundamental frequency, morphology, and spatial localiza-

tion on the scalp; and it is classified as an instance of non-seizure or seizure EEG

based on the learned features of training examples from a single patient. The process

of measuring the features of an observation is known as feature extraction, and the

computational element responsible for determining its class membership is known as

a classifier.

Training:
Seizure EEG Non-Seizure EEG

Training Examples Training Examples

Detection:

Amplitude

Multi-Channel EEG Signal Feature Extractor MFrquncy Trained Classifier Seizure or Non-Seizure EEG

Localization

Figure 1-1: Seizure Onset Detection Approach

Figure 1-1 illustrates the problem of patient-specific seizure onset detection in the

binary classification framework. The first step in this framework involves a classifier

18



learning to differentiate between the features of a patient's seizure and non-seizure

EEG observations based on training examples. The next step involves using the

trained classifier to classify new observations of EEG from the same patient as seizure

or non-seizure.

In this thesis we used a multi-level wavelet decomposition to extract features sensi-

tive to the amplitude, fundamental frequency, and morphology of the input EEG sig-

nal. We also developed automatic methods to extract spatial localization constraints;

and experimented with both support vector machine and maximum-likelihood classi-

fiers.

1.4 Thesis Contributions and Organization

Our research into automatic seizure onset detection makes the following contributions:

* Provides an Effective Clinical Tool

Our detector exhibits the properties of an effective clinical tool. In particular

the detector is simple to operate; broadly applicable; and has a high sensitivity

and specificity.

- Simple To Operate: To use the detector an electroencephalographer

only needs to mark seizure onsets in EEG training records that are ap-

proximately thirty-minutes in duration; the number of records maybe as

small as one and need not exceed three. The detector automatically com-

bines sections of the training records not marked as seizure with both

artifact and generic EEG from various states of consciousness to form a

representation of non-seizure activity, and to extract channels to which the

seizure onset localizes.

- Broadly Applicable: The detector's use of multi-scale, wavelet-based

features allows it to detect seizure onsets with diverse electrographic man-

ifestations. These manifestations include bursts of sharp waves, spike-and-

19



slow-wave complexes, polymorphic waves, and rhythmic hypersynchrony

of variable amplitude and frequency.

- Highly Sensitive and Specific: When tested on the seizures of thirty-six

de-indentified test subjects, the detector exhibited an average delay of 8.0+

3.2 seconds in correctly declaring 131 of 139 seizure events. Furthermore,

the detector only declared 11 false-detections during 49 hours of randomly

selected non-seizure EEG from these subjects.

* Demonstrates Utility of Patient-Specificity in Seizure Detection.

We demonstrate through a comparative study the improved performance of a

patient-specific seizure detector over a generic detector. The patient-specific

detector exhibits a lower average detection latency; a lower total number of

false-detections; and a higher total number of true-detections. Our study also

underscores the likely event of a generic detector performing very poorly when

the seizure EEG of a subject in its training set matches the non-seizure EEG

of the test subject. These results argue that future research on seizure onset

detection should exploit patient-specificity.

* Provides a Novel Perspective on Artifact Rejection.

We include various classes of EEG artifacts as part of the detector's non-seizure

training set so that they can be identified and avoided through a learning

methodology. This is in contrast to the more common approach of remov-

ing artifacts using traditional linear, nonlinear, or adaptive signal processing

techniques.

* Compares Alternative Approaches to Seizure Onset Detection

We designed and compared the performance of two different detector archi-

tectures that differ in how they capture and enforce the spatial localization

constraints of seizure and non-seizure EEG. We also compared the efficacy of

different classification schemes within each architecture; specifically, we experi-

mented with both support vector machine and a maximum-likelihood classifiers.

20



The thesis begins by presenting background on the disorder of epilepsy and the

characteristics of normal, abnormal, seizure, and artifact contaminated EEG in Chap-

ter 2 and Chapter 3 respectively. This is followed by a discussion of previous work in

the detection and prediction of seizure events in Chapter 4. Chapter 5 examines in

detail the computational stages of the detector, and Chapter 6 delves into the results

of performance tests. Chapter 7 demonstrates the high learning rate of our patient-

specific detector and compares its performance with that of a nonpatient-specific, or

generic detector. Finally, Chapter 8 concludes the thesis and outlines directions for

future work.
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Chapter 2

Epilepsy

2.1 Epilepsy

For centuries epilepsy was considered a damning curse from the gods or a strange

type of insanity. Today epilepsy is known to be a neurological disorder of the central

nervous system that predisposes individuals to experiencing recurrent seizures. The

underlying genetic and molecular mechanisms that give rise to epilepsy remains un-

known, but the disorder is most common among people in whom the brain has been

compromised by some sort of disturbance. Specifically, in children and young adults,

genetic disorders, congenital abnormalities, and birth trauma affecting the brain are

most often blamed for the onset of epileptic symptoms; in middle-aged adults and the

elderly, strokes, tumors, and cerebrovascular disease are more frequent explanations.

People affected by epilepsy do not suffer from an increasingly worsening disorder

and are capable of leading normal career and family lives. At the same time, they

cannot engage in activities during which a seizure episode could lead to death; for

example, driving an automobile. Furthermore, the side-effects of anti-epileptic drugs;

episodes of loss of consciousness and motor control; and the public's misconception of

the disorder force patients to deal with challenging clinical and psychosocial issues.

'Material in this chapter is adapted primarily from [12]
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Seizures

Partial Seizures Generalized Seizures

Simple Partial Seizures Complex Partial Seizures Nonconvulsive Convulsive

Somatosensory Motor Absence Atonic Myoclonic Clonic Tonic Tonic-Clonic

Figure 2-1: Classification of Seizures

2.2 Seizures

A seizure is an involuntary alteration in behavior, movement, sensation, or conscious-

ness resulting from abnormal neuronal activity in the brain. In the case of epilepsy,

a malfunctioning region of the brain or the dysfunction of a biochemical mechanism

causes the abnormal neuronal activity. This is in contrast to nonepileptic seizures,

which are a response to a disturbance external to the central nervous system such as

alcohol withdrawal, drug abuse, acute illness, or sleep deprivation.

There are several different types of seizures as shown in Figure 2-1, and the abil-

ity to differentiate between them is crucial since each requires a different treatment

regiment. The two major seizure types are parital seizures and generalized seizres.

In a partial seizure epileptic activity begins and remains localized in one part of the

brain, while in a generalized seizure epileptic activity involves the entire brain from

the onset. The sections that follow describe further the clinical and electrographic

characteristics of the different seizure types.

24
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2.2.1 Partial Seizures

In a partial seizure epileptic activity begins and remains localized in one part of the

brain. Partial seizures that do not affect consciousness are classified as simple partial

seizures, while those that do are classified as complex partial seizures. In the context

of epilepsy, impairment or loss of consciousness does not refer to a coma, but rather

an individual's lack of understanding and memory of events occurring during seizure

episodes.

Simple Partial Seizures

Simple partial seizures do not alter consciousness, but temporarily impair an indi-

vidual's sensory or motor systems. A simple partial seizure that originates in the

somatosensory area of the brain is called a simple partial sensory seizure, while one

that originates from the motor cortex is called a simple partial motor seizure. Indi-

viduals typically experience simple partial seizures for less than a minute, and are

able to recall events that occurred during the episode.

During simple partial sensory seizures an individual may experience somatosen-

sory, autonomic, or psychic symptoms. Somatosensory symptoms include hallucina-

tions affecting vision, audition, or olfaction; autonomic symptoms include sweating

and papillary dilation; and psychic symptoms include sudden sensations of fear, anger,

dreamy states, and dja vu. These clinical manifestations can be very subtle, and

are sometimes difficult to distinguish from psychological phenomena. Simple partial

motor seizures have clearer clinical manifestations that include rapid muscular jerks

and postural movements.

Complex Partial Seizures

Complex partial seizures result in the impairment of consciousness. They are often

preceded by auras that include an unusual smell or sensory illusion and are typi-

cally accompanied by an automatism such as snapping fingers, picking at clothes,

walking aimlessly, mumbling, or lip smacking. After the conclusion of a complex par-
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tial seizure, which lasts between 1-3 minutes, individuals will experience a period of

confusion lasting several minutes.

2.2.2 Generalized Seizures

In a generalized seizure epileptic activity involves the entire brain from the onset.

Generalized seizures whose clinical manifestations include spastic muscle activity are

classified as generalized convulsive seizures, while those that don't are classified as

generalized nonconvulsive seizures.

Generalized Convulsive Seizures

The nature of involuntary muscular activity and the individual's state of consciousness

during generalized convulsive seizures allows for the further subdivision of this class

of seizures into the myoclonic, clonic, tonic, and tonic-clonic types.

A myoclonic seizure result in unilateral or bilateral rapid alteration of muscular

contraction and relaxation, but does not typically alter an individual's state of con-

sciousness. Myoclonic activity is also associated with other neurological disorders,

which complicates the classification of this type of seizure.

Clonic seizures exhibit muscular activity similar to that of myoclonic seizures, but

with slower cycles of contraction and relaxation. Furthermore, clonic seizures result

in the loss of consciousness.

Tonic seizures consist of sudden contraction of truncal and facial muscles accompa-

nied by flexion of upper extremities and extension of lower extremities. These seizures

are most common in childhood and may result in serious injuries due to dangerous

falls.

Tonic-Clonic seizures combine the clinical manifestation of both the tonic and

clonic seizures. These seizures begin without warning with a generalized contraction

of muscle groups interrupted by short periods of relaxation. Gradually, these periods

become more frequent ultimately leading to rapid muscular contraction and relax-

ation. Tonic-clonic seizures last between one and two minutes, but individuals may
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not regain consciousness until ten to fifteen minutes later and may exhibit symptoms

of fatigue for hours or days.

Partial seizures, both simple and complex, that progress to become generalized

tonic-clonic seizures are classified as secondarily generalized seizures. Sensory or motor

auras distinguish between a generalized and secondarily generalized seizures since they

are associated only with partial seizures.

Generalized Nonconvulsive Seizures

Absence seizures are generalized nonconclusive seizures that result in the loss of con-

sciousness, eye blinking, staring, and other minor facial movements. These seizures

last between a few seconds and a minute and can occur very frequently over the course

of a day. Absence seizures are most common in childhood.

Atonic seizures are generalized nonconclusive seizures that do not lead to a loss of

consciousness. However, the sudden loss of tone in postural muscles that accompanies

atonic seizures leads to dangerous falls that result in serious fractures and injuries to

the head.

2.3 Status Epilepticus

Any of the above mentioned types of epileptic seizures may lead to status epilepticus,

which is an emergency condition characterized by an epileptic seizure that is so fre-

quently repeated that it is virtually continuous. The condition of status epilepticus

can exhibit either convulsive or nonconclusive activity. In nonconclusive status epilep-

ticus an individual appears to be in a coma, while in convulsive status epilepticus an

individual experiences repeated generalized tonic-clonic seizures without recovering

consciousness.
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2.4 Treatment of Epilepsy

Epilepsy affects individuals with variable degrees of severity. Between 70-80% of

epilepsy patients suffer from seizures whose severity and frequency can be limited

with the use of antiepileptic drugs, each of which essentially limits the capacity of

neurons to fire at excessive rates. The correct classification of these patient's seizures

is crucial since different seizure types require specific drug regiments. In fact, the use

of the wrong antiepileptic drug may exacerbate certain types of seizures.

The remaining 20-30% of epilepsy patients suffer from seizures that are refractory

to medication. These patients seek alternative treatment options that include surgery,

vagus nerve stimulation, and ketogenic diets.

Surgery

Surgery becomes a viable option for epilepsy patients once a team of epileptologists

can accurately identify the region of the brain from which seizures originate. This is

accomplished by combining clinical and electrographic evidence from long-term ses-

sions of video and EEG monitoring; anatomical evidence from magnetic resonance

imaging; functional evidence from neuropsychological testing; and metabolic evidence

from both positron emission tomography (PET) scans and single photon emission to-

mography (SPECT) scans . The four types of surgery available are removal of a

temporal lobe through a temporal lobectomy; removal of cortex through a topec-

tomy; removal of a hemisphere through a hemispherectomy; and separation of the

two hemispheres by severing the corpus callosum.

Vagus Nerve Stimulation

Patients that are not surgical candidates may be treated using a vagus nerve stim-

ulator. This implantable, electronic device periodically stimulates the vagus nerve

on the left side of the neck. Although the optimal setting for the periodicity and

strength of stimulation has not been determined, vagus nerve stimulators can be as

effective as antiepileptic drugs in reducing seizure frequency and severity. One of the
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major applications envisioned for seizure onset detection and prediction algorithms

is the modulation of the periodicity and strength of stimulation produced by these

devices according to the state of a patient's EEG.

Ketogenic Diet

The ketogenic diet is a high fat, low protein carbohydrate diet that has proven effective

in controlling seizures resulting from intractable epilepsy. The diet forces the body to

enter ketosis, a state in which the brain uses ketones rather than glucose for energy.

In this state seizure frequency and severity have been clinically shown to decrease,

but the exact mechanism remains unknown.

2.5 Summary

Epilepsy is a neurological disorder of the central nervous system that predisposes

individuals to experiencing recurrent seizures. A seizure is an involuntary alteration

in behavior, movement, sensation, or consciousness resulting from abnormal neuronal

activity in the brain. The two major seizure classes are parital seizures and generalized

seizres. In a partial seizure epileptic activity begins and remains localized in one part

of the brain, while in a generalized seizure epileptic activity involves the entire brain

from the onset.

Between 70-80% of epilepsy patients suffer from seizures whose severity and fre-

quency can be limited with the use of antiepileptic drugs, each of which essentially

limits the capacity of neurons to fire at excessive rates. The remaining 20-30% of

epilepsy patients suffer from seizures that are refractory to medication, and seek alter-

native treatment options that include surgery, vagus nerve stimulation, and ketogenic

diets.
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Chapter 3

Electroencephalogram

This chapter provides background on the recording methodology used to acquire

the electroencephalogram (EEG) signal as well as the quantitative variables used to

characterize it. Furthermore, this chapter discusses the salient properties of normal,

abnormal, seizure, and artifact-contaminated EEG1.

3.1 Electroencephalogram

The electroencephalogram (EEG) is a non-invasive, multi-electrode recording of time-

varying potentials generated by the millions of cortical neurons. The electrodes are

distributed symmetrically around the scalp as shown in Figure 3-1 to provide a tem-

poral and spatial summary of brain surface activity; each electrode responds to the

aggregate potential generated by many neurons in the area beneath it. EEG activity

of clinical relevance is roughly limited to the frequency band 0.5-50 Hz, and that of

seizure activity is further limited to the frequency band 0.5-25 Hz. An invasive EEG

recording made with electrodes directly in contact with the brain surface is called

electrocorticogram (ECoG). ECoGs are not plagued by artifacts and signal atten-

uation due to the skull as is the case with EEGs, and also provide higher spatial

resolution since electrodes responds to the activity of a far smaller number of cortical

neurons.

1The material in this chapter is adapted from [8] and [6]. All images are from [8]
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Figure 3-1: 10-20 System of EEG Electrodes Placement

The earliest electroencephalographic recordings were completed and visually char-

acterized in terms of amplitude and frequency content by the Austrian psychiatrist

Hans Berger between 1929-1932. Ever since then, the electroencephalogram has been

studied and relied on as a clinical tool for the diagnosis of various neurological disor-

ders such as epilepsy.

3.2 Recording EEG

Referential as well as bipolar recordings are used for visually reviewing EEG. In a

referential recording the potential at each electrode is recorded relative to the potential

at either one of the reference electrodes Al and A2 shown in Figure 3-1. Typically,

the electrodes from the left-side of the head are cross-referenced to A2, while those

from the right-side of the head are cross-referenced to Al. This scheme ensures that

electrodes from each side of the head measure activity relative to a reference that is

not greatly affected by cerebral activity within their areas of coverage.

In a bipolar recording the difference between pairs of adjacent electrodes, which

are otherwise known as as a derivation, is the quantity that is recorded. The longi-

tudinal derivations most commonly viewed by electroencephalographers are shown in

Figure 3-2. The electrode at the tip of an arrow is subtracted from that at the tail.
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Figure 3-2: Derivations of a Bipolar Recording

An advantage of referential recordings is that a change or abnormality is always

clearly observed since the absolute potentials of electrodes, rather than their differ-

ences, are the quantities recorded. The disadvantage of referential recordings is that

they are very susceptible to common-mode noise as well as contamination of the ref-

erence electrode by artifact activity. Once the reference electrode is contaminated it

becomes difficult to interpret the activity on electrodes measured against it.

Bipolar recordings overcome common-mode noise by subtracting potentials on

contiguous electrodes. The consequence of this operation is a slight attenuation of

changes or abnormalities observed in the EEG. An extreme case occurs when a deriva-

tions records a zero signal due to cerebral activity that equally affects its electrodes.

Nevertheless, we chose to process bipolar EEG signals in our seizure onset detector

since a higher resilience to artifacts outweighed the often slight attenuation of activity.

3.3 Characterizing EEG

EEG activity is characterized in terms of several quantitative and qualitative variables

that must be considered in the context of a patient's age and state of consciousness.
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These variables are fundamental frequency, amplitude, morphology, localization, and

reactivity.

Fundamental Frequency

The fundamental frequency of an EEG waveform, measured in Hz, refers to the rate

at which the waveform is repeated over a period of a second. The waveform can

have an arbitrary shape and any number of subcomponents, all that matters is rate

at which the unit as a whole repeats in the span of a second. For instance, the

multi-component waveform in Figure 3-6 has a fundamental frequency of 3 Hz. An

EEG waveform with a constant, stable fundamental frequency is called rhythmic,

otherwise it is called arrhythmic. Figures 3-3 and 3-4 illustrate examples of these

types of waveforms.

F3-C 3

50,uV I

I sec

Figure 3-3: Rhythmic EEG Waveform

I sec

Figure 3-4: Arrhythmic EEG Waveform

Amplitude

The amplitude of a waveform in an EEG trace refers to its peak voltage, which is

typically on the order of microvolts. For example, the the waveforms in the EEG trace
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of Figure 3-3 have amplitudes smaller than 75/,V, and those in the trace of Figure 3-

6 have an amplitude of approximately 100,uV. An EEG waveform demonstrating a

sudden or gradual reduction in amplitude, such as that illustrated in Figure 3-8, is

said to exhibit suppression or depression.

Morphology

The morphology of an EEG waveform describes its observed shape, which is a function

of the amplitude and fundamental frequency of its constituent components. An EEG

waveform that is composed of a single component is called monomorphic, and one

that is composed of several different components is called polymorphic. Examples of

these two different morphologies are shown in top and bottom panels of Figure 3-5.

T5 - Of

I sec

Ft

A,

Figure 3-5: Monomorphic (Top) and Polymorphic EEG Waveforms (Bottom)

EEG waveforms consisting of two or more waveforms each with possibly different

morphologies are called complexes. An example of a commonly observed abnormal

complex is the spike-and-slow-wave complex shown in Figure 3-6. As its name implies,

a spike-and-slow-wave complex is composed of a broad, slow wave and a transient

spike.
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Figure 3-6: Spike-And-Slow-Wave Complex

Localization

The localization of EEG activity refers to the distribution of the activity over the head.

EEG activity observed only in a limited region of the head is called focal, while activity

observed in all regions is called generalized. Furthermore, EEG activity exhibiting

equal fundamental frequency, amplitude, and morphology on the left and right sides

of the head is symmetric, otherwise it is asymmetric. The clinical designations for

different regions of the head are shown in Figure 3-7.

)

Figure 3-7: Regions of the Head
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Reactivity

The reactivity of EEG waveforms refers to the degree of change in anyone of the

preceding variables as a result of a stimulus. For instance, Figure 3-8 shows the

suppression of 10 Hz occipital activity upon opening of the eyes.

F3 -o_01 5t II sec j - Eyes open t I 5pV

Eyes closed Eyes closed

Figure 3-8: Reactivity of EEG Waveforms

3.4 Normal EEG

Normal EEG activity is any activity that qualitatively and quantitatively appears

mostly in the EEG of subjects not affected by any disease. The following is a descrip-

tion of well-documented normal EEG activity in adults and children.

Alpha Rhythm

The alpha rhythm is EEG activity with frequency between 8-13 Hz that is prominent

in the occipital regions of normal, relaxed adults whose eyes are closed. Alpha activity

is attenuated by opening of the eyes, increased vigilance, or heightened awareness as

shown in Figure 3-8. The mixture of the alpha rhythm with other rhythms results

in alpha variants, which have different morphology but otherwise exhibit the same

reactivity and localization.

The frequency of alpha rhythms in children gradually increases towards the rate

observed in adults over the course of their development. The alpha rhythm may be

as slow as 3 Hz at the age of two months and as fast as 7 Hz at the age of one year.

Furthermore, the amplitude of alpha rhythms in children steadily increases until the

age of one year and then declines towards the 10uV level observed in adults.
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Beta Rhythm

The beta rhythm is EEG activity with frequency exceeding 13 Hz that is most promi-

nently observed in the frontal and central regions in adults, but may also be gener-

alized. Alertness and vigilance promotes the onset of beta activity, while voluntary

movement results in its suppression. Figure 3-3 illustrates rhythmic beta activity

recorded from the F3 - C3 central derivation. The beta rhythm also shows a gradual,

age-related increase in frequency for children.

Theta Rhythm

The theta rhythm is EEG activity with frequency between 4-7 Hz. This activity is

abnormal in awake adults, but commonly observed in sleep and children below the

age of 13 years. Theta activity is asymmetric since it is predominantly observed in

the central, temporal, and parietal regions of the left side of the head. Figure 3-9

shows the theta rhythm artificially placed in context of other normal EEG rhythms.

Delta Rhythm

The delta rhythm exhibits a frequency below 3 Hz and amplitudes that exceed those

of all other rhythms. It is most prominent frontally in adults and posteriorly in

children in the third and fourth stages of sleep. Figure 3-9 shows the delta rhythm

artificially placed in context of other normal EEG rhythms.

alpha beta theta delta

I sec

Figure 3-9: Normal EEG Rhythms
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Mu Rhythm

The mu rhythm refers to EEG activity with frequency between 7-11 Hz that is most

prominently observed in the central region. Mu activity is suppressed by movement

(fist clenching), imagined movement, or tactile stimulation; in contrast, it is enhanced

by immobility and heightened attention. While the frequency range of mu and al-

pha rhythms overlap, mu rhythms are differentiated by their localization, arch-like

morphology, and reactivity. The suppression of mu activity following fist-clenching is

shown in Figure 3-10.

50.uV Clenched fist
Isec

Figure 3-10: Mu Rhythm

Lambda Waves

Lambda waves are transient sharp waves lasting for a duration of approximately 0.25

seconds that occur in the occipital region whenever an adult scans a visual field with

horizontal eye movement. Lambda waves are not seen when the eyes are closed, or

opened in dark settings. Lambda waves exhibit the same localization and reactivity

in children as in adults. Figure 3-11 illustrates several examples of occipital lambda

waves.

50!V I _
isec

Figure 3-11: Lambda Waves
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Sleep-Spindles, K-Complexes, and Vertex Waves

Sleep-spindles, K-complexes, and vertex waves are unique waveforms observed only

during the four different stages of sleep. The salient characteristics of these waveforms

and the four stages of sleep in both adult and children are discussed below.

In the first stage of adult sleep, alpha activity is typically attenuated; theta activity

becomes more prominent in the temporal regions; and a series of positive occipital

sharp transients may be observed. Deeper into the first stage of sleep vertex waves,

which are the sharp waves shown in Figure 3-12, begin to appear centrally. For

children between the ages of 6 months and 6 years, the first stage of sleep also exhibits

high-amplitude bursts of 3-5 Hz waveforms over the central and frontal regions that

can last anywhere between several seconds or several minutes. This activity, which is

illustrated in Figure 3-13, can be easily mistaken for a seizure without knowledge of

the child's state of consciousness.

100pV
I sec

Figure 3-12: Vertex Waves

I sec

Figure 3-13: High-Amplitude 5 Hz Bursts in First Stage of Child Sleep

In the second stage, of adult sleep alpha activity is virtually absent; theta activity

and vertex waves are more prominent; and rhythmic bursts called sleep-spindles with

frequencies around 14 Hz appear centrally. Also common in the second stages of

sleep are k-complexes, which are sharp, slow transients immediately followed by sleep-

spindles. Examples of these waveforms are shown in Figure 3-14.
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Figure 3-14: Sleep Spindles (Left) and K-Complexes (Right)

Sleep-spindles are absent from the EEG of children until sometime between 6

weeks and 2 months of age. When they first begin to appear in the second stage of

sleep, the sleep-spindles of young children will exhibit sharper negative peaks than

those of adults. K-complexes remain absent from the second stage of sleep in children

until sometime between 3-4 months of age.

In the third stage of sleep, delta activity and slow frontal transients becomes

increasingly prominent, while sleep-spindles and K-complexes are observed to a lesser

degree. The fourth stage of sleep extends the activity of the third stage with sleep

spindles slowing down to a frequency of 10 Hz.

3.5 Abnormal EEG

Abnormal EEG activity is any activity that is prevalent in the EEG of groups of

people with neurological or other disease complaints, and absent from that of normal

individuals. Abnormal EEG may be an unusual waveform as well as the absence

or deviation of normal EEG from well-documented limits on frequency, amplitude,

morphology, localization, and reactivity. For instance, an EEG recording exhibiting

an absence or change in the nominal frequency and amplitude of sleep-spindles is con-

sidered abnormal. The following sections discuss several abnormal EEG waveforms

that are commonly observed in the EEG of patient groups. For patients affected by

epilepsy, these abnormalities are routinely observed during interictal periods, mean-

ing between seizure episodes; however, they do not necessarily result in the clinical

behavior observed during a seizure or match its electrographic signature. The char-

acteristics of EEG in ictal periods, during seizure episodes, is reserved to section 3.6.
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Spike and Sharp Waves

Spike waves are transients with pointed peaks exhibiting durations between 20-70

milliseconds. Sharp waves are similar to spike waves, but exhibit longer durations

typically between 70-200 milliseconds as shown in Figure 3-15.

F3 -C3

sOvVj 200 VI
Isec I sec

Figure 3-15: Spike Waves (Top) and Sharp Waves (Bottom)

A spike-and-slow-wave complex is a spike followed by a longer duration wave

as shown in Figure 3-6. Multiple spikes may precede the slower wave and the entire

complex may be repeated at a rates of 2.5-6 Hz with intervening periods of quiescence

of various durations. A sharp-and-slow-wave complex is identical to the spike-and-

slow-wave complex except that a sharp wave precedes the slower, broader wave and

the complex is repeated at rates between 1-2 Hz.

Periodic Discharges

Periodic discharges refer to time-limited bursts that are repeated at a certain rate.

These bursts may exhibit a variety of durations, frequencies, amplitudes, morpholo-

gies, and localizations. An example of a periodic discharge is burst-suppression ac-

tivity, which is a discharge of theta or delta frequency waveforms with long interven-

ing periods of very low-amplitude waves. Figure 3-16 shows and instance of burst-

suppression activity.

F3 -C 3

50 pV
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Figure 3-16: Burst-Suppression Activity
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Rhythmic Hypersynchrony

Rhythmic hypersynchrony refers to rhythmic activity emerging from a quiescent back-

ground and exhibiting unusual frequency, amplitude, morphology and localization of

any degree. The rhythmic activity may either be continuous or intermittent. Fig-

ure 3-17 shows an example of abnormal, high-amplitude, intermittent 2-3 Hz rhythmic

activity on a frontal derivation.

50PV AL

Figure 3-17: High-Amplitude Intermittent 2-3 Hz Activity

Electrocerebral Inactivity

Electrocerebral inactivity refers to a variable length period not caused by instrumental

or physiological artifacts that exhibits extreme attenuation of the EEG relative to a

patient-specific baseline as shown in Figure 3-18. To appreciate the reduced amplitude

of this trace, note that a 10[uV scale, rather than a 50/zV scale, is being used for

display. Furthermore, the transients in Figure 3-18 are not of cerebral origin, they

are the result of electrocardiographic artifact.

P.· 1 . , -. _pV 
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Figure 3-18: Electrocerebral Inactivity
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3.6 Seizure EEG

Seizures are abnormal, continuous neuronal discharges with clinical correlates that

include an involuntary alteration in behavior, movement, sensation, or consciousness.

Seizures without clinincal correlates are called subclinical seizures. The electrographic

signature of a seizure is composed of a continuous discharge of variable amplitude

and frequency polymorphic waveforms; spike and sharp wave complexes; rhythmic

hypersynchrony; or electrocerebral inactivity observed over a duration longer than

the average duration of these abnormalities during interictal periods. Furthermore,

the abnormalities observed during interictal periods need not be those that compose

the seizure's electrographic signature.

The electrographic signature of a seizure for a given patient is stereotypical and

distinguishable from their non-seizure activity. A patient can exhibit more than

one type of seizure, however each type will have a stereotypical electrographic and

clinical manifestation. The seizures of two different patients can exhibit very distinct

morphology and localization; moreover, the characteristics of one patient's non-seizure

activity can resemble the seizure activity of another. These clinical observations

motivated us to design a patient-specific seizure onset detector, and suggested that

the main risk associated with a nonpatient-specific, or generic detector is a high false

positive-rate resulting from the similarity of seizure and non-seizure EEG across some

patients.

Figure 3-19 illustrates the degree of similarity between two seizure onsets from

the same subject. The first seizure onset, shown in the top panel after the dashed

line, is characterized by a paroxysmal 10 Hz burst of sharp and monomorphic waves

localizing primarily to the central derivations {Fz - Cz Cz - Pz}; the right fronto-

central derivations {FP2 - F4 F4 - C4}, and the right frontal derivations {FP2 -

F8 F8 - T8 T8 - P8}s. The second seizure onset, shown in the bottom panel, matches

the activity of the first except for less prominent discharges on the frontal derivations

{FP1- F7 FP1 - F3 FP2 - F4 FP2 - F8 }.
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Figure 3-19: Comparing Seizure Onsets From the Same Patient. Dashed line marks
electrographic onset of seizure

45

hCIJ�l�cJcHUH*hy�y·*IWII�YI��



1 second
I

FP1-F7 I

F7-T7

T7-P7

P7-01

FP1-F3

F3-C3

C3-P3

P3-01

FP2-F4

F4-C4

C4-P4

P4-02

FP2-F8

F8-T8

T8-P8

P8-02 _
FZ-CZ

CZ-PZ

1 second

FP1-

F7-T 
T7-P

P7-0 I

FP1-=~ _
F3-C

C3-P

P3-0 O r_ h C

Figure 3-20: Comparing Seizure Onsets From Two Different Patients. Dashed line

marks electrographic onset of seizure
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Figure 3-20 illustrates the variability in morphology of seizure onsets for two dif-

ferent subjects. The seizure onset in the top panel is characterized by a paroxysmal 10

Hz burst of sharp and monomorphic waves, while the one in the bottom panel exhibits

a higher-amplitude, paroxysmal 2 Hz burst of monomorphic waves. Coincidentally,

the seizure onsets from both subjects localize to the same derivations.

3.7 Artifacts in EEG

Any electrical activity in EEG that is not of cerebral origin is labelled as an artifact.

Artifacts of physiological origin may result from muscle potentials, electrocardiographic

potentials, eye movement potentials, glossokinetic potentials, and skin potentials. Ar-

tifacts of nonphysiological origin result primarily from malfunctioning electrodes and

electromagnetic interference. Learning the characteristics of these artifacts is crucial

for both an electroencephalographer and an automated seizure detector, since arti-

facts are prevalent in EEG and can be easily confused with both abnormal and seizure

activity.

3.7.1 Physiological Artifacts

Muscle Potentials

Artifacts caused by muscle potentials are very common in EEG recordings. They

appear as high-frequency bursts in the frontal and temporal electrodes of a bipolar

recording, and in all electrodes of a referential recording that uses the ear, chin, or

mandible as a reference. Although muscle artifacts can never be completely elimi-

nated, they can be attenuated with the use of a high frequency filter that limits the

EEG bandwidth to 35 Hz activity. The risk associated with this strategy is that

highly filtered muscle activity may be mistaken for normal beta activity. Figure 3-21

illustrates the high frequency activity associated with muscle artifacts.
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Figure 3-21: Muscle Artifact

Electrocardiographic Potentials

Electrocardographic artifacts are those produced by the electrical activity of the heart.

They resemble attenuated periodic sharp waves in both referential and bipolar record-

ings. Electrocardiographic artifacts cannot be easily removed through filtering, but

can be distinguished from EEG activity by noting that their period perfectly matches

the period of an accompanying EKG signal. Figure 3-22 shows the sharp waves asso-

ciated with electrocardiographic potentials.

* +. + * * * .
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Figure 3-22: Electrocardiographic Artifact

Eye Movement Potentials

Eye movement, eye blinking, and eyelid fluttering gives rise to artifacts resembling

transient or rhythmic EEG slow waves. These artifacts appear most prominently in

the frontal channels of both bipolar and referential recordings, and can possibly be

distinguished from EEG activity of frontal cerebral origin by the addition of elec-

trodes around each eye. However, the extra electrodes are not often used in clinical

practice and were not available to our detector. The mixture of eye movement and

electrocardiographic artifacts results in rhythmic frontal activity with sharp and slow
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components. Figure 3-23 illustrates the low frequency activity associated with eye

blinking and the higher frequency activity associated with eye fluttering.

FJLj~ / -/PvVA jJ
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Figure 3-23: Eye Movement Artifact

Glossokinetic Potentials

Artifacts generated by glossokinetic potentials refer to artifacts generated by move-

ment of the tongue. These artifacts appear as single rhythmic slow waves in the

temporal regions and can be recognized by the addition of electrodes near the mouth.

Chewing and sucking movements mix artifacts generated by muscle potentials and

glossokinetic potentials, and can be identified by the addition of electrodes near the

jaw. Finally, hiccups and sobbing can generate glossokinetic potentials that may ap-

pear in EEG as abnormal spike-and-wave discharges. Figure 3-24 shows the mixture

of slow, fast, and spike activity resulting from glossokinetic and muscle potentials

caused by chewing.
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Figure 3-24: Chewing Artifact
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Skin Potentials

Changes in skin potential produce low frequency baseline changes in the EEG. The

potential of skin may change as a result of the electrical potential generated by active

sweat glands, or because of sweat-related changes in electrolyte concentration between

the skin and the EEG electrodes. Figure 3-25 shows a less than 1 Hz baseline variation

in the referential recording of an F7 electrode displayed on a 2 second, 501 V scale.

Figure 3-25: Low Frequency Baseline Change Caused by Sweat

3.7.2 Nonphysiological Artifacts

Electrodes that are poorly coupled mechanically or electrically to the skin can produce

artifacts resembling EEG sharp waves, spike waves, or slow waves. Movement of the

wires connecting electrodes to the EEG instrument simulates slow, rhythmic EEG

activity with a frequency matching the movement of the wires.

Electromagnetic interference that is coupled electrostatically or inductively to

recording electrodes can mask the underlying EEG activity. An example of this type

of interference is 60 Hz and high frequency radiation from surrounding electronic and

radio equipment. Furthermore, the movement of personnel around the wires of EEG

electrodes generates electrostatically coupled artifacts that appear as high amplitude

rhythmic waves as shown in 3-26.

F8-Q as ' \i A . Movement near the patient
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Figure 3-26: Artifact Caused by Movement Around Subject
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3.8 Summary

The electroencephalogram (EEG) is a non-invasive, multi-electrode recording of time-

varying potentials generated by the millions of cortical neurons. The electrodes are

distributed symmetrically around the scalp to provide a temporal and spatial sum-

mary of brain surface activity. EEG activity is characterized by its fundamental

frequency, amplitude, morphology, localization, and reactivity.

The alpha, beta, theta, delta, mu, and lambda rhythms are types of EEG activ-

ity observed in the normal EEG of adults and children; they are differentiated by

their unique frequency, morphology, localization, or reactivity. Abnormal EEG is an

unusual waveform as well as the absence or deviation of normal EEG activity from

well-documented limits.

During interictal periods, or between seizure episodes, the EEG of patients affected

by epilepsy will exhibit abnormalities like spike and sharp waves; periodic discharges,

rhythmic hypersynchrony; or electrocerebral inactivity. In ictal periods, or during

seizures, the EEG is composed of a continuous discharge of one of these abnormalities,

but extended over a longer duration and typically accompanied by a clinical correlate.

The electrographic signature of a seizure for a given patient is stereotypical and

distinguishable from their non-seizure activity. On the other hand, the seizures of two

different patients can exhibit very distinct morphology and localization; moreover,

the characteristics of the first patient's non-seizure activity can resemble those of

the second patient's seizure activity. These clinical observations motivated us to

design a patient-specific seizure onset detector; they also suggested that the main risk

associated with a nonpatient-specific, or generic detector is a high false positive-rate

resulting from the similarity of seizure and non-seizure EEG across some patients.

EEG is plagued by artifacts and signal attenuation due to the skull. Artifacts

of physiological origin may result from muscle potentials, electrocardiographic poten-

tials, eye movement potentials, glossokinetic potentials, and skin potentials. Artifacts

of nonphysiological origin result primarily from malfunctioning electrodes and elec-

tromagnetic interference. Learning the characteristics of these artifacts is crucial for
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both an electroencephalographer and an automated seizure detector, since can be

easily confused with both abnormal and seizure activity.
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Chapter 4

Related Work

The accurate diagnosis and characterization of epileptic syndromes involves clini-

cal studies that require instant as well as extended interaction with a patient. For

instance, electroencephalographic and video recordings lasting days or weeks are cru-

cial for capturing physical and electrographic evidence of epilepsy, while ictal imaging

studies require attending to the patient prior to, or immediately following the seizure's

electrographic onset. These different clinical constraints have lead to the development

of two types of EEG signal processing algorithms: those aimed at off-line detection

and characterization of abnormal EEG activity in long-term recordings, and those

aimed at on-line seizure detection and prediction.

4.1 Off-Line Detection of Seizures and Transients

Locating epileptiform activity in the form of seizures or transient abnormalities in

EEG recordings lasting days or weeks is an arduous, time-consuming task because

this activity constitutes a small percentage of the entire recording. This difficulty

has motivated the development of automated systems that scan, identify, and then

present to an electroencephalographer epochs containing epileptic events.

Gotman and Gloor [16] designed and implemented one of the earliest automated

systems for the identification of epileptic activity in long-term EEG recordings. Their

system detected epileptiform spikes and sharp waves on sixteen bipolar channels by
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applying empirically determined thresholds to time-domain features. These features

include the EEG wave duration, sharpness, and amplitude relative to a dynami-

cally updated baseline. Gotman and Gloors system also rejected artifacts due to

muscle activity and rapid eye blinks by noting the frequency, duration, and deriva-

tions characterizing these artifacts. The authors presented many anecdotal examples

demonstrating detection of epileptic transients and rejection of artifacts, but did not

perform a systematic evaluation of the method. Furthermore, the authors did not

statistically justify the chosen detection thresholds. Nevertheless, the features and

artifact rejection schemes proposed by Gotman and Gloor have proven to be well

suited for the detection of epileptiform transients, and have been included in many

later systems.

To bypass manually determining detection thresholds, Tarassenko et al. [20] trained

a neural network classifier to detect epileptic spike and sharp waves using both time-

domain and frequency-domain features. The time-domain features were similar to

those used in [16], while the frequency domain features captured the dominant fre-

quencies of the EEG signal. Tarassenko reported a sensitivity between 83-97% and

a specificity between 85-95% when their classifier was trained and tested on various

patient-specific data sets. The classifier exhibited similar sensitivity when trained

and tested on data sets that combine many patients, but a much greater number

of false-detections due to muscle bursts, sleep spindles, and vertex waves. The au-

thors argued that increasingly sophisticated processing would not lower false positives

significantly, rather the integration of contextual information (patient-awake, asleep,

or moving), spatial information (comparison of different channels), and training sets

that combine both wakeful and asleep EEG would be a more effective strategy.

Glover et al. [13] demonstrated that false-positives could be reduced by integrat-

ing contextual information into an automated system for the detection of epileptiform

transients. The authors implemented a system that examines cardiac activity using

the electrocardiogram (EKG); muscular activity using the electromyogram (EMG);

and ocular activity using the electrooculogram (EOG) signals before confirming the

presence of an epileptiform transient in any of twelve available EEG channels. The
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rules used to interpret relations between these signals were drawn from an electroen-

cephalographer and encapsulated into a rule-based decision system. The automated

system was tested on two patients and demonstrated successful rejection of a large

number of epileptiform-like transients caused by sleep spindles, muscle movement,

eye-blinks, and electrocardiographic artifacts.

Gotman [14] also developed one of the earliest systems for the automatic de-

tection and recording of seizure events in long-term EEG recordings. The system

was designed to identify seizures with paroxysmal rhythmic activity at any point in

their evolution. No attempt was made to detect seizures consisting of several mixed

frequencies, low amplitude fast activity, or spike-and-slow-wave bursts. Gotman's sys-

tem declared the presences of a seizure when time-domain features from a minimum

of two EEG channels exceeded empirically determined thresholds. The time-domain

features were EEG wave rhythmicity as well as amplitude relative to a dynamically

updated baseline. The system rejected artifacts due to muscle activity and move-

ment using techniques similar to those in [16]. Gotman's system was tested on 16

recordings with an average length of 12.4 hours, and exhibited considerable variabil-

ity in performance across patients. Gotman reported that 22% of all detections were

caused by epileptiform discharges, 58% were due to non-epileptiform discharges, and

20% were due to artifacts. He also noted that tailoring the detection thresholds to

suite the EEG of each patient resulted in improved performance.

4.2 On-Line Detection and Prediction of Seizures

Interacting with a patient just prior to, or immediately following the onset of a seizure

requires continuous monitoring of the patient as well as the EEG in order to capture

the earliest clinical and electrographic signs of a seizure's actual or imminent onset.

This difficult task has encouraged the development of automated systems that can

quickly and reliably alert the patient, caregiver, or clinician of ongoing or future

electrographic events.
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4.2.1 Noninvasive Methods

Qu and Gotman [11] designed one of the earliest patient-specific seizure onset de-

tection algorithms. The algorithm used a nearest-neighbor classifier to differentiate

between a patient's normal and abnormal EEG on a manually-selected list of EEG

derivations. The EEG signal was described using a total of six weighted time and

frequency domain features extracted from 2.56 sec epochs. These features included

average EEG wave amplitude and duration, as well as the frequency and width of the

dominant spectral peak. Qu and Gotman reported a 100% onset detection rate with

an average detection delay of 9.35 seconds and a false positive rate of 0.02 alarms/hr

on a dataset that included 12 patients and 47 seizures. For each patient the detec-

tor was trained on the first twenty seconds of a seizure and 40 minutes of normal

EEG sampled over a 24-hour period; then the trained algorithm was tested on 2-6

seizures from the same patient and 160 minutes of normal EEG sampled over another

24 hour period. The authors demonstrated worse performance when their algorithm

was made semi-patient-specific (ie. trained on seizure EEG from the test patient and

normal EEG from several other patients) as well as generic (i.e. trained on seizure

and normal EEG from many different patients). Finally, Gotman showed in an earlier

publication [10] with a different version of the algorithm the possibility of reducing

false-positive rates at the expense of a higher number of missed seizures by including

patient-specific, seizure-like interictal activity in the classifiers training set.

Boashash el al. [3] developed an algorithm for the detection of seizures in new-

born EEG that is based on a computational model of cortical brain activity derived

from histological and biophysical principles. In particular, the algorithm dynamically

estimates the parameters of the model from 10 second epochs of EEG, and then uses

the updated model to estimate the energy contribution of seizure and normal activ-

ity in the observed EEG epoch. If the ratio of the energy in the seizure component

to the energy in the normal component exceeds a certain threshold a seizure is de-

tected. When this approach was evaluated on two channels of EEG data from two

newborn babies, a 76% detection rate and 15.6% false-positive rate was observed,
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but there was no mention of the average detection latency. Since this method does

not detect seizures by thresholding the values of extracted features, no training on

patient-specific or generic data sets is required. The computations used by this ap-

proach are very intensive, which limits the algorithm to processing one EEG channel

and forgoing the use of spatial information from other channels.

Hively and Protopopescu [17] designed an algorithm that predicts seizure onsets

by inferring from nonlinear dynamical indicators of the spatio-temporal evolution of

EEG relative to a patient-specific baseline, the eventual transition of the brain from

an interictal to an ictal state. The nonlinear dynamical indicators used by Hively

and Protopopescu are called phase-space dissimilarity measures. The algorithm suc-

cessfully predicted the onset of 87.5% of seizures at some point in a window that

precedes the electrographic onset by 60 minutes, and exhibited a false-prediction rate

of 0.021 false-predictions/hour on a dataset of 260 hours of EEG from 41 patients.

The authors recognize that only limited conclusions can be drawn from their results

since their data was not partitioned into independent sets for the purposes of testing

and selection of generic prediction parameters.

4.2.2 Invasive Methods

Meng et al. [19] designed and implemented a seizure onset detection algorithm that

processes one manually-selected channel of an ECoG (electrocorticogram, or invasive

EEG) recording. The algorithm used a maximum-likelihood classifier with gaussian

mixture model conditional densities to differentiate between a patient's normal and

abnormal ECoG. The ECoG was described using 24 features extracted from the sub-

band signals of a three-level wavelet decomposition. The features include various

measures of the energy in the subband signals; for instance, the percentage and gra-

dient of the energy. For a 0% false-positive rate, the detector exhibited slightly less

than a 60% detection rate and an onset detection latency of 5 seconds. Also, when

the algorithm was made patient-specific a 0% false-positive rate resulted in a 80%

detection rate and an average prediction of seizure onset by 5 seconds. The algorithm

was trained on 19 patients and tested on another 18 patients.
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D'Alessandro et al. [22] designed a patient-specific algorithm that automatically

selects both the optimal features and channels for the prediction of seizure episodes 10

minutes prior to the electrographic onset. The features include lower-level features

from the time-domain, frequency-domain, wavelet-domain, and fractal dimension;

and higher-level features that capture the statistical properties of those at lower-

levels. The optimization over the selection of features and channels was accomplished

using a genetic algorithm and an objective function over the training error. When

tested on intracranial recordings from four patients, the algorithm correctly predicted

the onset of 62.5% of seizures at a false-prediction rate 0.27 false-predictions/hour.

Iasemidis et al. [18] developed an algorithm that predicts seizure onsets by char-

acterizing the level of entrainment observed in spatially related channels using the

Lyapunov exponent nonlinear dynamical indicator. Specifically, the algorithm relies

on the observation that long before seizure onset channels surrounding the epilepto-

genic focus behave independently, but as the brain gradually transitions towards the

ictal state the degree of entrainment of these channels increases. When the algorithm

was tested on intracranial recordings from five patients using fixed prediction param-

eter settings, it correctly predicted 82.5% of seizures with an average prediction time

of 71.7 minutes and an average false-prediction rate of 0.16 false-predictions/hour.

4.3 Comparison

Our non-invasive, patient-specific seizure onset detector differs from that presented

by Qu and Gotman [11] in several important respects. Our detector does not re-

quire that an experienced electroencephalographer identify EEG derivations relevant

to detecting a patient's seizure onset; instead, derivations are selected automati-

cally. Furthermore, our detector uses wavelet-based features to capture the detailed

morphology of seizure and non-seizure EEG rather than general features like EEG

waveform amplitude, duration, and dominant frequency. Finally we preserve the spa-

tial properties of the EEG signal either through classifying activity on derivations

independently and then imposing spatial constraints, or by simultaneously classify-
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ing activity from all derivation in a single context that is sensitive to their spatial

relations. This contrasts with Qu and Gotman's detector which classifies activity on

derivations independently and in a context blind to their spatial relations.

4.4 Summary

An impressive array of signal processing and pattern recognition techniques have been

used in algorithms meant to process EEG and ECoG signals. Furthermore, extensive

research has gone into the design of two types of EEG signal processing algorithms:

those aimed at off-line detection and characterization of abnormal EEG activity in

long-term recordings, and those aimed at on-line seizure detection and prediction.
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Chapter 5

Seizure Onset Detection

5.1 Overview

We chose to design a patient-specific seizure onset detector because of the clinically ob-

served consistency of seizure and non-seizure EEG characteristics within patients, and

their great heterogeneity across patients. Furthermore, we decided to treat patient-

specific seizure onset detection as a binary classification problem. In such a problem

one determines to which of two classes an observation most likely belongs based on

a comparison of its features with the learned features of training examples from each

of the two classes. In our case the observation is a multi-channel EEG signal; its fea-

tures include amplitude, fundamental frequency, morphology, and spatial localization

on the scalp; and it is classified as an instance of non-seizure or seizure EEG based

on the learned features of training examples from a single patient.

The block diagrams in Figure 5-1 present two different processing architectures

for the patient-specific seizure onset detector. Under both architectures, a two-second

epoch from each of twenty-one bipolar derivations is individually passed through a

feature extractor in order to compute four features characterizing the amplitude, fun-

damental frequency, and morphology of its waveforms. In the Spatially Independent

Processing (SIP) architecture, the four features extracted from each derivation are

assembled into a distinct feature vector and assigned to the seizure or non-seizure

class independently of other derivations. This is accomplished by way of a classifier
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trained only on the EEG of the feature vector's source derivation. A final decision

regarding the onset of a seizure is declared after all classifications are examined in

the context of temporal and patient-specific spatial localization constraints as dis-

cussed in section 5.4. In the Spatially Dependant Processing (SDP) architecture, the

features extracted from all derivations are grouped into a large feature vector that

captures whatever interdependencies exist between derivations. This feature vector is

then assigned to either the seizure or non-seizure class by way of a classifier trained on

EEG from all the derivations. Finally, seizure onset is declared once the classification

result satisfies the temporal constraint discussed in section 5.4.
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Spatially Independent Processing (SIP) Architecture Spatially Dependant Processing (SDP) Architecture

Figure 5-1: Seizure Onset Detector Architectures

The SIP and SDP architectures differ primarily in the stage in which patient-

specific spatial localization constraints are captured or enforced. In the case of the

SIP architecture, localization constraints are imposed using explicit rules in the final

element of the detector. This allows for the independent classification of activity on

each derivation in a low dimensional feature space. In contrast, the SDP architecture

expresses spatial constraints through the elements of a large feature vector summa-

rizing interrelations between derivations. While this obviates the need to explicitly

enforce localization constraints, it hides from the user which derivations are being

used for detection; and causes classification to take place in a higher dimensional

feature space.

The following sections explore the computational elements of the seizure onset

detector. Specifically section 5.2 discusses how EEG waveforms are analyzed in or-
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der to extract features characterizing their amplitude, fundamental frequency, and

morphology, while section 5.3 discusses how the class membership of feature vectors

under both architectures is determined using patient-specific seizure and non-seizure

training examples. Section 5.4 outlines the temporal and patient-specific localization

constraints used in the SIP architecture to determine whether or not classified fea-

ture vectors are indicative of seizure onset. The patient-specific training examples are

discussed in section 5.5, and detection case studies are presented in section 5.6. A

discussion and comparison of the performance of both architectures is in Chapter 6.

5.2 Feature Extraction

An electroencephalographer relies on alterations in amplitude, fundamental frequency,

and morphology to discriminate between normal and seizure EEG activity on a single

derivation. This naturally suggests that features capable of expressing these quan-

tities with a high-degree of fidelity, and which are efficient to compute are crucial

for accurate, real-time seizure onset detection. These requirements are to a great

extent satisfied by features produced using a multi-level wavelet decomposition [9] of

the EEG signal. Section 5.2.1 discusses the wavelet decomposition scheme while sec-

tion 5.2.2 outlines how the results of the decomposition are used to construct feature

vectors.

5.2.1 Multi-level Wavelet Decomposition of EEG Signals

A multi-level wavelet decomposition of an EEG waveform extracts subband signals

containing components contributing to the waveform morphology at specific time-

scales. For instance, a spike-and-slow-wave pattern can be decomposed into a sub-

band signal containing the short time-scale (high-frequency) "spike" component; and

another subband signal containing the long time-scale (low-frequency) "wave" com-

ponent as illustrated in Figure 5-2. Fourier analysis of the same pattern would not

be as sensitive to the short time-scale "spike" component because it provides a de-

scription of a signal's global regularities, rather than its local, singular irregularities

63



or non-stationarities'. More generally, the wavelet transform is better suited for an-

alyzing non-stationary signals like the EEG in comparison to the Fourier transform,

which assumes signal stationarity. Our detector demonstrated higher sensitivity and

specificity using wavelet-based features as opposed to fourier-based features.
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Figure 5-2: Wavelet Decomposition of Spike-And-Slow-Wave Signal

The subband signals of a multi-level wavelet decomposition are computed by pass-

ing the EEG signal through an iterated filterbank structure linked by downsampling

operations ( 2) as shown in Figure 5-3. The time-scale or frequency of activity cap-

tured by a particular subband signal is predetermined by the iteration level producing

it and the choice of analysis filters H1 (z) and Ho(z). Generally, the time-scale re-

solved by a subband signal increases the higher its iteration level, which is equivalent

to the frequency of the resolved activity decreasing.

In the case of the detection algorithm, Hi(z) and Ho(z) were chosen to be the fil-

ters associated with the fourth member of the Daubechies wavelet family since those

filters are only four taps long and exhibit a maximally flat response in their passband

as well as little spectral leakage in their stopbands. Furthermore, only the subband

signals {d4 d5 d6 d7} are computed because collectively these signal faithfully repre-

sents activity at time-scales corresponding to frequencies between 0.5-25 Hz; which is

a frequency band Gotman et al. [15] has shown captures seizure onsets of various elec-

trographic manifestations. The remaining subband signals primarily resolve activity
1 This argument can be further developed by noting that the basis functions used to compute

the coefficients of a Fourier transform are sinusoids with infinite temporal extent, as opposed to the
basis functions of the wavelet transform which are localized and limited in time. Basis functions
with localized and limited temporal extent are naturally more suited for representing short time-scale
non-stationarities.
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Figure 5-3: Multi-Level Wavelet Decomposition Filter Bank

of no clinical relevance. In particular, the subband signal {a7} captures slow baseline

variations like those caused by sweating, while the subband signals {dl d2 d3} capture

high frequency artifacts similar to those resulting from muscular contractions.

To better appreciate the time-scales or frequencies captured within the subband

signals {d4 d5 d6 d7}, one can examine the overall impulse or frequency response of the

cascade of filters between the input and each of the output subband signals. The

frequency response illustrates the frequencies that will pass through the cascade of

filters and appear in a given subband signal; while the the impulse response highlights

the time-scale, or duration of activity to which the cascade of filters is most sensitive,

and consequently appears in the output subband signal.

Figure 5-4 shows the overall impulse and frequency responses producing each of the

subband signals {d4 d5 d6 d7}. The impulse responses are progressively stretched for

higher level subband signals so that activity of longer time-scales can be represented.

This is equivalent to the observed decrease in center frequency and bandwidth of

frequency responses associated with filter cascades producing higher level subband

signals. Finally, the overall impulse responses are of interest because they simplify

the computation of the subband signals from a real-time stream by collapsing each

cascade of filters into a single filter that can be used with the overlap-add method of

convolution [2].
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Figure 5-4: Effective Impulse and Frequency Responses of Wavelet Filter Bank

5.2.2 Feature Vector Construction

The subband signals d4 d5 d6 d7 should not be used directly as the entries of a

feature vector since such an exact representation of the input EEG waveform would

be too sensitive to both noise, and the slight variations in electrographic morphology

commonly observed in the instances of a patient's seizures. Consequently it is useful

to introduce four statistics that more generally summarize the information about

waveform components within the four subband signals, and which can then be used

as the entries of a four-dimensional feature vector X.

The statistics used by the detector correspond to the absolute, rather than nor-

malized, log-energies in each of the subband signals {d4 d5 d6 d7}. These quantities are

attractive since they are sensitive to the amplitude of waveform components within

each subband signal, an important discriminating factor; and very effecient to com-

pute. Moreover, the nonlinear log operator used in computing these quantities ampli-

fies small differences separating feature vectors of the seizure and non-seizure classes.

An explicit representation of the feature vector produced by the feature extraction

stage is shown in equation 5.1.
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log( E Id4(n) )

log(E I d(n)) (5.1)
X = (5.1)

log(En , d6(n)l )

log( E. Id7(n) )

In summary, the feature extraction stage begins with a wavelet decomposition of

an EEG waveform to produce subband signals that capture components contributing

to the waveform morphology at specific time-scales or frequencies. Next the energy

in each of these subband signals is computed to form a statistic that summarizes

their activity while still being robust to noise and commonplace variations in the

electrographic morphology of a patient's seizure onset.

5.3 Classification

In the classification stage of the detection algorithm, feature vectors are assigned to

either the seizure or non-seizure class by way of a classifier. The classifier must reliably

make this binary assignment even though the feature vectors represent more than

two classes of activity. Specifically, the non-seizure class represents normal as well

as artifact-contaminated EEG observed in different states of consciousness; while the

seizure class represents EEG activity observed during seizure onset. A probabilistic

Maximum-Likelihood classifier (section 5.3.1) and a non-probabilistic Support-Vector

Machine (section 5.3.2) classifier were considered for the task of determining the class

membership of observed feature vectors under both the SIP and SDP architectures.

5.3.1 Maximum-Likelihood Classifiers

The maximum-likelihood classifier determines the class membership of a feature vec-

tor X by first computing the likelihood that the observation belongs to the seizure

or non-seizure class, and then assigning the observation to the class with the greater

likelihood [27]. This classification criterion can be modified so that the observation is

assigned to the class with a likelihood exceeding that of the other class by a specific
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factor as shown in equation 5.2. The conditional probability density p(Xlseizure) is

the likelihood that the observed feature vector X belongs to the seizure class, while

the conditional probability density p(Xlnon-seizure) is the likelihood that it belongs

to the non-seizure class.

If p(Xlseizure) > -y then X E seizure (5.2)
p(Xlnon-seizure) 

The multi-dimensional likelihood functions p(Xlseizure) and p(Xlnon-seizure) are

a priori unknown, so their values for any observed feature vector X is estimated by the

classifier using the associated class' training examples and the nonparametric method

of product-kernel density estimation [29]. In essence, this density estimation tech-

nique equates the likelihood of a feature vector X to a sum of kernel functions K(z)

that are stretched and shifted according to the spatial distribution of training samples

X as shown in equation 5.3, and graphically illustrated for the one-dimensional case

in Figure 5-5. The figure shows instances of a gaussian kernel centered over samples

drawn from a one-dimensional random variable with unknown distribution, as well as

the resulting bimodal density estimate that results from summing over the kernels.

The bimodal density estimate explains well the clustering of the samples. The advan-

tage of a nonparametric density estimate is that it makes no assumptions about the

form of the likelihood functions in terms of the number or volume of modes, instead

it extracts them from the training samples. Nevertheless, a nonparametric density

estimate can be computationally taxing when a large number of training examples

are used to generate the estimate.

p(X) = h h * E K ( Xj ) K(z) = exp(- ) (5.3)n hi * .. * hd i=1j=1 l 2

In the SIP architecture a value for the threshold -y is automatically chosen by

each classifier to limit its individual probability of false-positive classification to a

specified tolerance level ao. Specifically, each classifier searches for a -y that satisfies

equation 5.4 using nonparametric estimates of the likelihood functions.
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Probability Density Estimate of 1 -D Random Variable Using
Kernel Density Estimation

Figure 5-5: Probability Density Estimation using Kernels

Z X I p(Xlnon-seizure) >- PFP = p(Xlnon-seizure) dX < o (5.4)

Equation 5.4 states that any value of defines a decision region Z where the

classifier will assign all observed feature vectors X to the seizure class; the decision

region Z may be one region or the union of several disjoint regions. Furthermore, the

probability of a false-positive classification given a value y is given by an integral over

the region Z of the likelihood of X belonging to the non-seizure class. The value of y

must be chosen by the classifier so that this integral results in a probability of false-

positive classification that is less than a. Once the appropriate y is determined by

each classifier, their individual probabilities of true-positive classification is given by

equation 5.5. These probabilities are used in section 5.4 for the purpose of spatially

localizing a patient's seizure onset.

PTP = / p(Xlseizure) dX (5.5)

In the SDP architecture the high dimensional feature vectors prohibit the ap-

proximation of the integrals in equation 5.4. Consequently the value of value of -y is
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not set according to a specified tolerance on false-positive classification, instead it is

determined empirically and fixed across patients as explained in Chapter 6.

Maximum-Likelihood Classification Example

In this section the decision region computed by a maximum-likelihood classifier using

a sample training set is visualized in a two-dimensional space. The two-dimensional

feature vectors X' within this space are synthesized by projecting the four-dimensional

feature vectors X used by the SIP architecture onto the directions of greatest variance

q1 and q02 computed using principle components analysis [26].

x [ ]= [ X ] (5.6)X2 02r ]-[~2 'X (5.6)

The patient-specific training feature vectors used by the maximum-likelihood clas-

sifier to determine a decision region are illustrated in Figure 5-6. These feature vectors

were computed by passing seizure and non-seizure epochs from one derivation through

the feature extraction stage, and then transforming the resulting four-dimensional fea-

ture vectors X into lower-dimensional feature vectors X'. Note the greater number of

non-seizure training examples; this is typical of any training set since there is always

more non-seizure EEG to sample from a patient than seizure EEG.
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Figure 5-6: Training Seizure and Non-Seizure Feature Vectors
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The first step in determining the decision region Z involves using the training

feature vectors and kernel density estimation to construct estimates of the seizure and

non-seizure likelihoods as shown in the left panel of Figure 5-7. These estimates are

then used in equation 5.4 to compute the decision region Z that limits the probability

of a false-positive classification to a maximum value of ac; the region Z is outlined in

the right panel of Figure 5-7. Increasing the value of a will result in a decision region

with a greater radius, and consequently the correct classification of more seizure

examples at the expense of the incorrect classification more non-seizure examples.
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Figure 5-7: Likelihood Estimates (Left) and Decision Region (Right)

5.3.2 Support-Vector Machines

A support vector machine [23] determines the class membership of a feature vector

X based on which side of an optimal hyperplane the observation lies. In the case

of linearly separable classes this optimal hyperplane is the one that is maximally

distant from support-vectors. These are the training examples from both classes

corresponding to boundary cases, and consequently the ones carrying all relevant

information about the classification problem. If the classes are not linearly separable

the optimal hyperplane can be determined in a higher-dimensional feature space where

they are linearly separable; this translates to computing a nonlinear decision boundary

in the original space.
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A kernel is a function that allows support-vector machines to define the optimal

hyperplane in a kernel-specific, higher-dimensional space without the explicit con-

struction of high-dimensional feature vectors. In the seizure detection algorithm, the

Radial-Basis Kernel expressed in equation 5.7 was chosen since determination of the

optimal hyperplane in its associated high-dimensional feature space yields nonlinear

decision boundaries that may be discontinuous when necessary. This means that the

decision region of a Radial-Basis Kernel need not be one region, instead it can be the

union of several disjoint regions.

Radial-Basis Kernel: K(Xi, Xj) = exp ( IX Xj12 a j ) =(O ) (5.7)

The ability of a support vector machine to discriminate between two classes is

influenced by their separability; the parameters of the chosen kernel; and the class-

specific penalty for determining a decision boundary that misclassifies a percentage of

training examples. In the case of the Radial-Basis Kernel, decreasing its parameter a

translates into increasingly sophisticated boundaries that correctly classify a higher

percentage of training examples. Similarly, increasing the penalty for misclassifying

the training examples of a given class encourages the determination of a decision

boundary that correctly classifies those examples; the penalties can be specified inde-

pendently for each class through the two entries of a vector parameter C2. Extreme

choices for both of these variables increases the risk of overfitting; that is creating a

classifier that correctly identifies a high percentage of the training set, but performs

poorly on an unseen test set. The risk of overfitting can be gauged by the percentage

of training examples considered as support vectors; the greater the percentage the

higher the risk of overfitting

Finally in the SIP architecture, as described in section 5.4, the probabilities of

true and false-positive classification of each classifier are used to localize a patient's

seizure onset. In the case of support vector machines, these probabilities are approx-

2The absolute value of the penalties, as opposed to their ratio, is important. This means that

the choice C=[20 10] is not equivalent to C=[40 20].
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imated using the equations 5.8. The quantity Ncorrect seizure is the number of correctly

classified seizure examples in a training set that includes a total number of seizure

examples Ntotal seizure; similarly Nincorrect normal is the number of incorrectly classified

normal examples in a training set that includes a total number of non-seizure exam-

ples Ntotal normal. The equations state that the probability of correctly classifying a

newly observed feature vector as a seizure is approximated by the percentage of seizure

training examples that are correctly classified, and the probability of incorrectly clas-

sifying the observed feature vector as seizure is approximated by the percentage of

non-seizure training examples incorrectly classified.

PTP PzNcorrect seizure Nincorrect normal (5.8)
Ntotal seizure Ntotal normal

Support Vector Machine Classification Example

In this section the decision region computed by a support vector machine classifier

using a sample training set is visualized in a two-dimensional space. As with the

previous classification example, we synthesize the two-dimensional feature vectors X'

within this space by projecting the four-dimensional feature vectors X used by the

SIP architecture onto the directions of greatest variance 01 and 0b2 computed using

principle components analysis [26].

11 X
f X2 ] [ 02 X ]

The patient-specific training feature vectors used by the support vector machine

to determine a decision region are illustrated in Figure 5-8; and are equivalent to

those used in the classification example of the maximum-likelihood classifier. The

feature vectors were computed by passing seizure and non-seizure epochs from one

derivation through the feature extraction stage, and then transforming the resulting

four-dimensional feature vectors X into lower-dimensional feature vectors X'.
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5.5
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Seizure and Non-sizure Feature Vectors
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Figure 5-8: Training Seizure and Non-Seizure Feature Vectors

The support-vector machine classifier uses the training feature vectors to compute

the coefficients parameterizing the optimal hyperplane in either the original or kernel-

induced feature space. Computing the hyperplane in the original feature space leads

to the linear decision boundary shown in the left panel of Figure 5-9, while computing

the hyperplane in the feature space induced by a radial basis kernel with parameter

a = 1 is shown in the right panel of the figure. The nonlinear decision boundary

computed by the support vector machine is very different from that determined by

the maximum-likelihood classifier, which is not unexpected given the vastly different

theoretical foundation of each classification scheme.
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Figure 5-9: Support-Vector Machine Linear and Non-linear Decision Boundaries

Figure 5-9: Support-Vector Machine Linear and Non-linear Decision Boundaries
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5.4 Spatial and Temporal Constraints

In the SIP architecture the assigned class memberships of the twenty-one feature

vectors are examined in the context of temporal and patient-specific localization con-

straints in order to make a final decision regarding seizure onset. Specifically, a

detector with the SIP architecture declares seizure onset only after K derivations are

assigned to the seizure class for a duration of T seconds. The K derivations must all

belong to one of the groups illustrated in Figure 5-10; which one depends on the na-

ture of each patient's seizures and is determined automatically by the detector. The

groups in Figure 5-10 were chosen because they provide coverage of possible centers

of focal seizure activity; moreover, in the case of generalized seizures any one of these

groups can be used for the purpose of detection since all derivations will be active at

the seizure's onset.
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Figure 5-10: Groups of Contiguous EEG Derivations
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For a given patient the detector chooses the group exhibiting the highest discrim-

inability between seizure and non-seizure activity on its constituent derivations. This

is accomplished by first assigning each derivation a weight based on the ability of its

classifier to differentiate between seizure and non-seizure activity, and then selecting

the group with the maximal total weight. The weight ai assigned to derivation i is

computed using its classifier's probability of true and false-positive classification as

expressed in equation 5.10, while the optimal group Gj is the one with the great-

est total weight wj shown in equation 5.11. This selection procedure is similar in

spirit to that used by an electroencephalographer, who identifies derivations active at

seizure onset by noting how visually distinct their waveforms are during seizure and

non-seizure periods.

ai = PTP,i- PFP,i i = 1,... ,21 (5.10)

wj = E ak j = 1,...,15 (5.11)
kEGj

5.5 Training

During training the detector's classifiers use a diverse set of examples from the seizure

and non-seizure classes to determine decision boundaries. The training examples are

patient-specific, non-overlapping sets Si i = 1,...,21 each containing two-second

epochs of labelled activity from a single EEG derivation. The epochs that correspond

to seizure activity are labelled as examples of the seizure class, while those corre-

sponding to both normal and artifact-contaminated activity from different states of

consciousness are labelled as examples of the non-seizure class.

The training procedure begins by converting the labelled sets Si into a collection

of feature vectors {X) by passing their epochs through the feature extraction stage.

The feature vectors are used by the classifiers for the purpose of estimating quanti-

ties necessary for defining a decision boundary. In the case of maximum-likelihood

classifiers, these quantities correspond to the conditional densities pi(Xiseizure) and
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pi(Xlnon-seizure); while for support-vector machines the quantities are the coeffi-

cients of the hyperplane in the kernel-induced feature space.

5.6 Case Studies

5.6.1 Case 1

This case study explores in detail the detector's training process as well as conse-

quences of our method for automatically determining spatial localization constraints.

Consider detecting the electrographic onset of the seizure illustrated in Figure

5-11 using a detector with the SIP architecture. This seizure's onset is characterized

by a paroxysmal, 10 Hz burst of sharp and monomorphic waves localizing to the

central derivations {Fz - Cz Cz - Pz}, the right fronto-central derivations {FP2 -

F4 F4 - C4}, and the right frontal derivations {FP 2 - F8 F8 - T8 T8 - P8}. With the

exception of {FP1 - F7 FP1 - F3 }, the derivations on the left side of the head, which

are odd-numbered, show no appreciable change in behavior after the onset. All of

this implies that the seizure originates from a region towards the front and right-side

of the head.

The first step in the detection process is to train the detector not only on 2-4

previous occurrences of seizure onsets similar to that illustrated in Figure 5-11, but

also on the non-seizure EEG separating these occurrences. Figure 5-12 shows one of

the training seizures presented to the detector; the training seizure is very similar to

the one we hope to detect except for less prominent activity on the frontal derivations

{FP1 - F7 FP1 - F3 FP2 - F4 FP2 - F8}. This difference illustrates the variability

between the instances of a seizure, and explains why the detector requires more than

one training seizure in order to discover the derivations that are consistently active

following the electrographic onset. The training seizure is not used as it is shown in

the figure, instead it is segmented into two-second epochs that are grouped into the

training sets Si i = 1,. . ..,21 according to their source derivation.
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Figure 5-11: Case 1: Electrographic Onset of Test Seizure Following Dotted Line
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Figure 5-12: Case 1: Electrographic Onset of Training Seizure Following Dotted Line
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The non-seizure EEG included as part of the detector's training consists of the

baseline EEG; rhythms from different states of consciousness such as the normal

alpha rhythm; physiological artifacts like those caused by eye flutter or chewing;

and nonphysiological artifacts like those introduced by movement of EEG electrodes.

Since nonphysiological artifacts are not necessarily limited to the derivations on which

they are observed, they are artificially introduced into the training set Si of each

classifier. In all other cases, the training sets Si only contain epochs of EEG from a

single derivation. Figure 5-13 shows various non-seizure EEG training epochs.
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Figure 5-13: Case 1: Non-seizure Training EEG
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After the epochs within the training sets Si are converted to sets of feature vec-

tors, the detector determines the decision boundary associated with each classifier.

For instance, the maximum-likelihood and support vector machine decision bound-

aries for the derivation {F4 - C4} are shown in Figures 5-7 and 5-9. The detector

uses the decision boundaries to compute the probabilities of true and false-positive

classifications PTP,i and PFP,i for the purpose of localizing the seizure's onset to one

of the groups in Figure 5-10. In this example, the detector selected the right-central

derivations shown in Figure 5-14. All the selected derivations exhibit a change in

their waveforms following seizure onset with the possible exception of {C4 - P4}; this

result illustrates that a consequence of selecting derivations as a group is the possible

inclusion of irrelevant derivations, and also explains why the detector performs poorly

when declaration of a seizure event is conditioned on observing seizure activity on

K=6 rather than K < 6 derivations. Note that specifying a minimum number of

derivations for declaring a seizure event is not required by the SDP architecture since

spatial localization constraints are encapsulated within its feature vectors, rather than

explicitly imposed as in the SIP architecture.

RFct Centrl

o 0
o O 

Figure 5-14: Case 1: Selected Group of Derivations

When the trained detector was used to detect the test seizure using K=4 deriva-

tions and T=6 seconds, a seizure event was declared seven seconds following the

electrographic onset as shown in Figure 5-15. The derivations responsible for trigger-

ing the detection included {F4 - C4 F8 - T8 T8 - P8 Fz - Cz Cz - Pz}. On the other

hand, the abnormal activity on the frontal derivations {FP1 - F3 FP1 - F7 FP2 -
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F4 FP 2 - F8 } was not used for the purpose of detection because these derivations

are not members of the selected group. Even if the frontal derivations were members

of the selected group they would not have triggered a detection since their seizure

activity does not persist for the required T=6 seconds.

Detection of Test Seizure

I1 second Seizure Onset1 second Seizure Onset Seizure Event Declared

FP1-F7

F7-T7

T7-P7

P7-01

FP1-F3

F3-C3

C3-P3

P3-01 -

FP2-F4 

F4-C4 /

C4-P4 

P4-02

FP2-F8

F8-T8

T8-P8

P8-02

FZ-CZ

CZ-PZ

7 Second Detection Latency

Figure 5-15: Case 1: Detection of Seizure Onset

5.6.2 Case 2

This case study highlights the importance of both localization and morphology to

seizure detection, and the possibility of sharing certain types of non-seizure activity

across the training sets of patients.

Consider detecting the electrographic onset of the seizure illustrated in Figure 5-16

again using a detector with SIP architecture. This seizure's onset is characterized by

a paroxysmal 2 Hz burst of monomorphic waves localizing to the central derivations
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{Fz - Cz Cz - Pz}, and all derivations on the right-side of the head {FP2 - F4 F4 -

C4 C4- P4 P4 - 02 FP 2 - F F8 - T8 T8 - Ps P8 - 02}. The baseline EEG can

be observed on derivations from the left-side of the head, which are odd-numbered,

since they exhibit no change after the onset. This electrographic evidence indicates

that the seizure originates from the right-side of the head.

Onset of Test Seizure
1 second

FP1-

F7- 

T7-P

P7-0
FP1-

F3-C

C3-P

P3-0

Figure 5-16: Case 2: Electrographic Onset of Test Seizure Following Dotted Line

To detect the seizure in 5-16 the detector must be trained on previous instances

of the seizure as well as on the non-seizure EEG separating these instances as was

done in Case 1. It is interesting to note that the baseline EEG included as part of

the non-seizure training must be specific to the case; in contrast, physiological and

nonphysiological artifacts as well as hallmark activity from different states of con-

sciousness can be shared across cases within similar age groups. This is supported

by the fact that an electroencephalographer can identify these activities solely based

on morphology, localization, and reactivity; reference to the baseline EEG associ-
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ated with the case is not necessary. In contrast, an electroencephalographer cannot

be certain whether an epoch of activity includes seizure onset without reference to

the baseline EEG, which argues for the necessity of baseline and seizure EEG to be

case-specific [5]. Practically this means that a diverse library of case-independent

physiological and nonphysiological activity can be compiled and saved, and then used

to supplement the baseline and seizure EEG that are specific to the case under con-

sideration. This is an approach we adopted while testing our algorithm as described

in Chapter 6. Figure 5-17 shows one of the training seizures presented to the detector.

Onset of Training Seizure
1 second

FP1-

F7-T7T7-P7 _ - .
P7-0 _
FP1-

F3-C 

C3-P
I--_

P3-O

Figure 5-17: Case 2: Electrographic Onset of Training Seizure Following Dotted Line

Following training and completion of the localization procedure of section 5.4,

the detector selected the right-central derivations shown in Figure 5-14. While the

selected group of derivations matches that of Case 1, the detector from Case 2 fails

to detect the test and training seizures from Case I because of the very different

waveform morphologies. This demonstrates the importance of both morphology and
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localization to seizure onset detection.

When the trained detector of this case was used to detect the test seizure in

5-16 using K=4 derivations and T=6 seconds, a seizure event was declared seven

seconds following the electrographic onset as shown in Figure 5-18. The six derivations

responsible for the detection included F4 -C4 C4 -P 4 F8- T8 T8T- P8 Fz-Cz Cz-

Pz}.

Detection of Test Seizure
1 second

FP1 -

F7-.

T7-P7 

P7-0
FPl-F <
F3-C

C3-P

P3-0

7 Second Detection Latency

Figure 5-18: Case 2: Detection of Seizure Onset

5.6.3 Case 3

This case illustrates a type of patient-specific, non-seizure activity that often leads

to the false declaration of seizure events by the detector. The activity corresponds

to the the abnormal discharges discussed in section 3.5, these are observed between

seizure events and may have similar morphology and localization to actual seizures.
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Seizure Onset
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Figure 5-19: Case 3: Electrographic Onset of Training Seizure Following Dotted Line

Consider a detector with the SIP architecture that is trained on several electro-

graphic seizure onsets similar to that shown in Figure 5-19. Since the onsets are

generalized, the detector can select any of the group of derivations illustrated in

Figure 5-10 for the purpose of subsequent detections.

When the trained detector was presented with non-seizure EEG between seizure

occurrences, a false seizure event was declared upon analyzing the generalized, peri-

odic discharge of sharp-wave groups boxed in Figure 5-20 following the dotted line.

Visually one can distinguish the sharp wave groups in Figure 5-20 from those in Fig-

ure 5-19 by their temporal spacing. To the detector both activities are similar since

the spacing between any two groups of sharp waves does not exceed two-seconds, the

duration with which EEG is analyzed.
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Generalized Periodic Discharge
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Figure 5-20: Case 3: Periodic Discharge Leading to False Seizure Event

5.7 Summary

In this chapter we described two possible processing architectures for the patient-

specific seizure onset detector. In the Spatially Independent Processing (SIP) archi-

tecture, feature vectors extracted from each derivation are assigned to the seizure

or non-seizure class independently by way of classifiers trained on the EEG of an

associated derivation. A final decision regarding seizure onset is declared after all

classifications are examined in the context of automatically extracted spatial and

temporal constraints. In the Spatially Dependant Processing (SDP) architecture, the

features extracted from all derivations are grouped into a large feature vector that

captures whatever interdependencies exist between them. This feature vector is then

assigned to the seizure or non-seizure class by way of a classifier trained on EEG from

all the derivations.
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We described how a multi-level wavelet decomposition is used to extract feature

vectors that capture the amplitude, fundamental frequency, and morphology of EEG

waveforms. Then we discussed how a maximum-likelihood or support vector machine

classifier can be used to determine the class membership of these vectors based on

training examples of seizure and non-seizure EEG. As mentioned in the second case

study, the training seizure and baseline EEG must be specific to a patient, but physio-

logical and nonphysiological artifacts as well as hallmark activity from different states

of consciousness may be shared across them.

Finally, we concluded the chapter with case studies highlighting properties of the

detector. The first case study explored in detail the detector's training process as

well as consequences of our method for automatically determining spatial localization

constraints. The second case study highlighted the importance of both localization

and morphology to seizure detection, and the possibility of sharing certain types

of non-seizure activity across the training sets of patients. The final case study

illustrated a type of patient-specific, non-seizure activity that often leads to the false

declaration of seizure events by the detector.
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Chapter 6

Performance

In this chapter the performance of our seizure onset detector on thirty-six, de-identified

test subjects is presented. Performance is gauged in terms of the following three met-

rics computed for each subject:

* Detection Latency: The average time elapsed between the electrographic

onset of a seizure and the declaration of a seizure event.

* True-Detections: The number of test seizures declared as seizure events.

* False-Detections: The number of false-positives declared during analysis of

non-seizure EEG.

In general, a detector cannot be biased to improve performance in terms of all three

metrics simultaneously; instead, improving performance as measured by one or two

of these metrics implies forgoing performance as measured by the third. For example,

decreasing the detection parameter T will result in shorter detection latencies; a

possible increase in the number of true-detections; and an almost certain increase

in the number of false-detections. The extra false-detections will result from short-

duration, seizure-like discharges commonly observed in the EEG separating seizure

events. The number of true-detections will increase or remain unchanged depending

on whether or not the original value of T resulted in misses of very short-duration

seizure events.
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The testing methodology used to compute the performance metrics is described in

section 6.1. This is followed by a summary and comparison of the detector's perfor-

mance on thirty-six test subjects using the SIP and SDP architectures in section 6.2

6.1 Testing Methodology

For each test subject four or five bipolar EEG recordings sampled at 256 Hz, and

each containing a seizure event with an onset labelled by an experienced electroen-

cephalographer were available. The recordings lasted approximately 20 minutes for

twenty-four subjects; 40 minutes for six subjects; 150 minutes for four subjects; and

12 hours for two other subjects.

For each subject a leave-one-out cross-validation testing scheme was followed:

The detector was trained on a training set that includes the seizure and non-seizure

epochs from all but one of the subject's recordings, and was then used on the excluded

recording. This was repeated until each recording had been excluded once. We

also added to the training set a library of epochs that included generic artifacts and

hallmark activity from various states of consciousness; for example, sleep spindles from

the second stage of sleep. This compensates for the possible under representation of

any type activity in the training recordings; more practically, it implies that training

records can be assembled quickly and without a great deal of concern over whether

or not they are truly representative.

In short, a subject with recordings {A B C D} would require the following four

testing trials

* Trial 1 Train on {A B C EEG Library} and test on recording D

* Trial 2 Train on {A B D EEG Library} and test on recording C

* Trial 3 Train on {A C D EEG Library} and test on recording B

* Trial 4 Train on {B C D EEG Library} and test on recording A
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The performance metrics we would ideally measure to characterize the detector

include the expected detection latency; the percentage of seizures likely to be detected;

the hourly rate at which false-detections occur; and the ratio of true to false-detections

in a given period of time. The final metric exposes the frequency with which true

and false-detections occur in a routine clinical monitoring session. Unfortunately,

we cannot accurately report the hourly rate of false-detections since we do not have

long-term recordings for each patient. We also cannot report the ratio of true to

false-detections since the number of seizure events occurring in a given period of time

is lost through recordings with unknown temporal sequencing. This means we can

neither determine if the seizure event in one recording occurred an hour or a day after

the seizure event in another, nor whether other seizure events occurred in between.

The performance metrics we actually report are the average detection latency; the

number of test seizures detected; and the total number, as opposed to the hourly rate,

of false-detections. For a given subject the reported detection latency is the average

of latencies measured in each testing trial, while the reported number of true and

false-detections is the sum of seizures and false-positives declared in all the testing

trials. The average detection latency corresponds closely to the desired "expected

latency" metric. Also, once the number of test seizures detected is normalized by the

total number of available test seizures, it will closely approximate the desired metric

"percentage of seizures likely to be detected".

Reporting the total number of false-detections equally weighs false-detections de-

clared in the short length recordings of one patient with those in the long length

recordings of another. In other words, a false-detection caused by a movement artifact

in a twenty-minute recording is not treated differently from the same false-detection

in a thirty-minute recording. If we had decided to compute an hourly rate, we would

have estimated a false-detection rate of 3/hour for one recording and a rate of 2/hour

for the other recording; however, nothing about the recordings suggests that extend-

ing them to an hour would have resulted in one or two more false-detections.
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6.2 Results

In this section the performance of the seizure onset detector under both the SIP and

SDP architectures is reviewed and compared for thirty-six test subjects. Specifically,

section 6.2.1 examines the performance and optimal parameter settings of the SIP

architecture when either support vector machines or maximum-likelihood classifiers

are used in the classification stage; the same discussion for the SDP architecture is in

section 6.2.2. Finally, architectures are compared in section 6.2.3.

All detection architectures satisfy our performance requirements. In particular,

the detector that combines the SDP architecture with the support-vector machine

classifier exhibited an average detection latency of 8.0 3.2 seconds while correctly

declaring 131 of 139 seizure events; and declared only 11 false-detections during 49

hours of randomly selected non-seizure EEG.

6.2.1 Spatially Independent Processing Architecture

In the SIP architecture, the detector's performance is influenced by the choice of

several parameters that directly control when seizure onset is declared. These param-

eters are: the required duration time T of an abnormality; the minimum number of

derivations K exhibiting the abnormality; the allowable probability of false-positive

classification c for maximum-likelihood classifiers; and the radial-basis kernel param-

eter a and vector parameter C for support vector machines. The parameters , a,

and C may be freely set for each classifier in the SIP architecture, but to reduce the

detector's degrees of freedom one value for each parameter is used across all of them.

The change in performance of a detector that combines the SIP architecture with

maximum-likelihood classifiers due to different choices of the parameters T, K, and a

is illustrated in Figure 6-1. Not surprisingly, the figure shows that for a given choice

of T and K increasing the probability of false-positives a results in a decrease in

the average detection latency, and an increase in both the true and false-detections

measured for twenty-eight of the thirty-six subjects.
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Figure 6-1: SIP Architecture Sensitivity with Maximum-Likelihood Classifier

The optimal choice of parameter settings depends entirely on the detector's appli-

cation. For instance, if the detector is used to activate harmless stimulation of brain

regions upon detecting a seizure, then false-detections are not costly but minimizing

latency is crucial. In such a case, the parameter settings T = 4 seconds, K = 3

derivations, and a = 0.10 may be appropriate. In our application minimizing both

latency and false-detections is crucial, which is achieved by the parameter settings

T = 6 seconds, K = 4 derivations, and a = 0.10 as shown by the circled data point

in Figure 6-1. A high true-detection rate is also desirable; however, since the cost of a

miss in the ictal SPECT application is conducting the procedure using existing hospi-

tal protocols, we decided to choose parameters that primarily maximize performance

in terms of latency and false-detections.

The sensitivity of a detector that combines the SIP architecture with support

vector machines to changes in T, K, , and C is illustrated in Figures 6-2 through

6-4. For a given choice of the vector C, whose first and second entries corresponds

to the cost of misclassifying seizure and non-seizure training examples respectively,
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Detection Latency, True-Detections, False-Detections vs Parameters for C = [5010]
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Figure 6-4: SIP Architecture Sensitivity with Support Vector Machine C=[50 10]

the values of T and K are responsible for changes in the average detection latency

and total number of true and false-detections. In contrast, the performance metrics

remain almost constant for changes in a. The values of a were chosen so that decision

boundaries required between 10%-40% of the training data to be support vectors, a

percentage that limits the prospect of overfitting. The parameter settings C = [10 10],

T = 6 seconds, K = 4 derivations, and a = 1 minimize both latency and false-

detections as measured for twenty-eight of the thirty-six subjects; this data point is

circled in Figure 6-2.

Although the detector can exhibit a lower detection latency and a higher true-

detection rate with C = [30 10] and C = [50 10] as shown by the boxes in Figures 6-3

and 6-4, the circled parameter settings that include C = [10 10] exhibit a lower

number of false-detections.

For the parameter settings T = 6 seconds, K = 4 derivations, a = 0.10, = 1,

and C - [10 10], Figure 6-5 compares the average detection latency of a detector that

combines the SIP architecture with maximum-likelihood classifiers and support vector
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Figure 6-5: SIP Architecture Detection Latency

machine classifiers. The detection latencies for both configurations are similar, which

argues that the detector is not grossly sensitive to the classifier type. Furthermore,

the detection latencies of most subjects are less than the proposed target latency

of ten seconds by more than one second. For subjects 12 and 23 a zero detection

latency is shown since the support vector machine based detector failed to identify

any seizure events. However, when the parameter C was changed from C = [10 10]

to C = [30 10], the support vector machine tries harder to correctly classify seizure

waveforms and does so with a latency matching that of the maximum-likelihood

classifier, but at the expense of two extra false-detections on subject 12. The same

change in C also reduces the latency of the support vector machine based detector

on subject 14 to the level shown for the maximum-likelihood based detector. Finally,

the large latencies shown for subjects 14 and 24 are a result of gradual seizure onsets

localizing to a number of derivations less than the required detection minimum of

K=4 before spreading to include a greater number of derivations.

Figure 6-6 shows the false-detections declared on each test subject for both de-

tector configurations. With the exception of subject 30 whose false-detections were a
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result of non-physiological artifacts, all the false-detections declared by both detector

types were caused by periodic discharges resembling the seizure onset activity of the

particular subject. The maximum-likelihood classifier based detector was especially

sensitive to the periodic discharges of subject 36, this lead to eight false-detections in

twelve hours of processing.

Figure 6-6 also shows the true-detections declared on each test subject for both

detector configurations; the number over each bar denotes the number of test seizures

for a given subject. The discrepancy in true-detections between detector types is

caused by the conservative choice of C = [10 10], which leads the support vector

machine based detector to miss more seizures from subjects 12, 21, and 23. When

C = [30 10] is used, the support vector machine based detector identifies the same

number of seizures for these subjects as the maximum-likelihood detector, but at the

expense of more false-detections on other subjects.
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6.2.2 Spatially Dependant Processing Architecture

In the SDP architecture, localization constraints are encapsulated within feature vec-

tors, so the detector's performance is influenced only by the required duration time T

of an abnormality; the likelihood ratio threshold y in the case of maximum-likelihood

classifiers; and both the radial-basis kernel parameter a and vector parameter C in

the case of support vector machines.

The sensitivity in performance of a detector with the SDP architecture and maximum-

likelihood classifiers due to different choices of the parameters T and y is illustrated

in Figure 6-7. The figure shows that for a given choice of T increasing the threshold

-y results in an increase in the average detection latency, and a decrease in both the

true-detections and false-detections measured for twenty-eight of the thirty-six sub-

jects. Since we have chosen to optimize performance primarily in terms of latency

and false-detections, we chose the parameter settings T = 6 seconds and -y = 102

because they provide an appropriate tradeoff between these metrics as shown by the

circled data point in Figure 6-7.
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Figure 6-8 illustrates the sensitivity of a detector that combines the SDP archi-

tecture with a support vector machine to different values of the parameter T; the set-

tings a = 1 and C = [10 10] were fixed having observed their effects on performance

through the SIP architecture. Figure 6-8 shows that increasing the parameter T in-

creases the average detection latency and decreases both the true and false-detections

measured for twenty-eight of the thirty-six subjects. For this detector configuration

the parameter settings T = 6 seconds, C = [10 10], and a = 1 result in a tradeoff

between detection latency and false-detections suitable for our application as shown

by the circled data point in Figure 6-8.

Detection Latency, True-Detections, and False Detections vs Parameters
with C = [10 10] and Signmau = 1
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Figure 6-8: SDP Architecture Sensitivity with Support Vector Machine C=[10 10]

For the parameter settings T = 6 seconds, = 102, C = [10 10], and a = 1,

Figure 6-9 shows the average detection latency of a detector that combines the SDP

architecture with a maximum-likelihood classifier or a support vector machine. The

latencies of both detector configurations are similar, which argues that the detector is

not too sensitive to the classifier type. Furthermore, the detection latencies of most

subjects are less than the proposed target latency of ten seconds by more than two

seconds. The conservative choice of C = [10 10] as well as gradual seizure onsets

100

tO OD

0o
ha Pub 115-n



I

SDP Architecture Detection Latency with
Maximum-Likelihood and Support Vector Machine Classifiers

ID Maximum-Likelihood U Support Vector Machine

26

Average Deaect-n Latency
24

Malmum-etaihd 9.0 +/- 4.2 eooda
22

Suppol Vectr Mad*e: 8.0 /- 3.2 seoad

20 

18 -

16

2 

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Patient Number

Figure 6-9: SDP Architecture Detection Latency

resulted in poor performance on subjects 23 and 24, while an artifact masking seizure

onset activity on a number of derivations resulted in poor performance on subject

33. Coincidentally, the artifact did not affect the performance of the SIP architecture

since it was not on the selected derivations. On the other hand, the SDP architecture

does not exhibit a latency for subject 14 that is as large as that of the SIP architecture

since there is no explicit setting for the minimum number of derivations required for

a detection.

Figure 6-10 shows the false-detections declared on each test subject for both detec-

tor configurations. With the exception of subjects 9, 29, and 30 whose false-detections

are a result of non-physiological artifacts, all other false-detections are a result of pe-

riodic discharges that resemble the seizure onset of a particular subject. The support

vector machine based detector was more sensitive to discharges of subject 36.

Figure 6-10 also shows the true-detections declared on each test subject for both

detector configurations. The difference in true detections is primarily caused by the

three seizure events from subject 32 that were missed by the maximum-likelihood

based detector. Unfortunately, the encapsulation of localization constraints within
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the feature vectors of the SDP architecture makes it very difficult to explain why the

seizure events were missed. Lowering the value of y would most likely allow for the

detection of these seizures at the cost of more false-detections.
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6.2.3 Comparison

The fundamental difference between the SIP and SDP architectures is the manner

of representing and enforcing spatial localization constraints. In the case of the SIP
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architecture these constraints are imposed using explicit rules in the final element of

the detector. This permits independent classification of activity on each derivation

in a low dimensional feature space, and the skipping of derivations that are irrelevant

to the detection of a seizure's onset. In contrast, the SDP architecture expresses

spatial constraints through the interrelations of elements within a large feature vector

summarizing activity from all derivations. While this obviates the need to explicitly

enforce localization constraints, it hides from the user which derivations are being used

for detection; and causes classification to take place in a higher dimensional space that

includes features irrelevant to the detection of a given seizure's onset. Comparing the

performance of these architectures will shed light on the question of which scheme of

representing spatial constraints is more effective, and will also illustrate the robustness

of the maximum-likelihood and support vector machine classifiers to feature vectors

with irrelevant data.

SIP and SDP with Maximum-Likelihood Classifier

Figure 6-11 compares the performance of the SIP and SDP architectures when com-

bined with the maximum-likelihood classifier. The two architectures exhibit similar

detection latencies across all subjects, but the SIP architecture exhibits a slightly

higher number of true-detections and six extra false-detections. All of the additional

false-detections result form the periodic discharges of subject 36. The close perfor-

mance of both detectors in terms of latency suggests that the maximum-likelihood

classifier in the SDP architecture to a great extent ignored features from irrelevant

derivations, and effectively exploited those crucial for detection of seizure onset. The

results also argue that the SDP architecture does not exploit inter-derivation relations

masked or lost by the independent processing of the SIP architecture.

The ability of a maximum-likelihood classifier to ignore features irrelevant to de-

termining the class membership of an observed feature vector can be shown by reex-

pressing the likelihood ratio that the classifier compares to a threshold. To observe

this, consider classifying a two-dimensional feature vector X = [x1 x2] as an instance

of the classes C1 or C2 when the feature x1 is identically distributed conditioned on
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Figure 6-11: SIP and SDP Architecture Latency with Maximum-Likelihood Classifier

both classes, and is also independent of x2. The decision rule for this problem is

I p(XjC1)
p(XC 2) > 'y then X E C1
P(XIC2) 

Since the likelihood of X in this case can be reexpressed as p(X) = p(x11x2)P(x2) =

p(xl)p(x2), the decision rule can be rewritten as

If p(xIx2, C)p(X2 IC) p(XlIC)p(x21C1) > 7 then X C
p(xl x2, C2)p(x2IC2) p(XlIC2)P(x2lC2)-

Because is identically distributed conditioned on both classes, the likelihood

p(xlIC1) = p(xlIC2) and the decision rule simplifies to one that relies only on the

feature x2 for classification.

p(X21C1)pI xCf ly then X E C1

More generally Xl and x2 need not be independent. In such a case Xl needs to be

identically distributed conditioned on both classes and the feature x2 for the above
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result to hold since p(X) = p(xllx2)p(x2) ' p(xl)p(x 2). In other words, for the

decision rule to reduce to one that only relies on x2, one must satisfy the stronger

condition p(x1lx2 , Cl) = p(x1lx2, C2).

SIP and SDP with Support-Vector Machine

Figure 6-12 compares the performance of the SIP and SDP architectures when each

is combined with support vector machine classifiers. The SDP architecture exhibits a

smaller detection latency and a higher number of true-detections relative to the SIP

architecture, but a greater number of false-detections. The smaller average detection

latency of the SDP architecture suggest that the support vector machine to some

extent was handicapped by the smaller feature vectors in the SIP architecture, and

is more effective when allowed to freely exploit the interrelations of elements within

larger feature vectors.
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Figure 6-12: Latency of SIP and SDP Architectures with Support Vector Machine
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6.3 Summary

In this chapter we defined the metrics used to characterize our detector's performance

and outlined how they are computed. In terms of these metrics, we showed that both

the SIP and SDP architectures satisfy our application's performance requirements. In

particular, the detector that combines the SDP architecture with the support-vector

machine classifier exhibited an average detection latency of 8.0+ 3.2 seconds while

correctly declaring 131 of 139 seizure events; and declared only 11 false-detections

during 49 hours of randomly selected non-seizure EEG.

We also demonstrated how different choices for the detection parameters of the

SIP and SDP architectures affect performance. We highlighted settings that opti-

mize performance primarily in terms of latency and false-detections due to the lower

cost of missing seizure events in our target application. In particular, we chose the

parameter setting T = 6 seconds for both architectures to avoid a great number

of false-detections caused by short-length, seizure-like periodic discharges occurring

between true seizure events.

Finally, we observed that the SIP and SDP architectures perform similarly re-

gardless of the classifier type. This allowed us to conclude that for the purpose of

seizure onset detection, there is no gain or loss in performance resulting from the

simultaneous or independent processing of derivations. This conclusion does not ex-

tend to seizure onset prediction since researchers have clearly demonstrated the need

to consider the relation between derivations [18].

Nevertheless, the SDP architecture is both simpler to implement and more flexible

due to its ability to automatically embed any spatial localization constraint within

feature vectors. The SDP architecture is not limited to specifying localization con-

straints in terms of the group of derivations illustrated in Figure 5-10, and does not

require the user to set a minimum number of derivations K that trigger a detection.

106



Chapter 7

Patient-Specific and Generic

Seizure Detection

This chapter contrasts the properties and performance of our detector when used in

a patient-specific and nonpatient-specific, or generic mode. In the patient-specific

mode, the detector is trained solely on previous examples of seizure and non-seizure

EEG from the test subject. In the generic mode, it is trained on seizure and non-

seizure EEG from a collection of subjects that excludes the test subject.

Section 7.1 highlights a property of the patient-specific detector that allows it to

be of immediate, practical utility in a clinical setting; specifically, a high learning rate

that results in excellent performance following observation of a very small number of

seizures from the test subject. This issue is not considered for the generic detector

since training data is always available and plentiful. Next, section 6.2.3 compares the

performance of the two detector types, and highlights and important drawback to the

generic approach.

7.1 Learning Rate

Figure 7-1 illustrates the improvement in a patient-specific detector's average detec-

tion latency and true-detection rate as function of the number of 20 minute EEG

training recordings observed; a training recording includes a single seizure event as
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well as non-seizure activity from a given subject. The figure highlights that a detector

trained on one recording from a test subject is capable, on average, of detecting 91%

of that subject's future seizures with a mean latency of 9.5 ± 5.0 seconds. When an

additional training recording is observed, the detector identifies 96% of the subject's

future seizures with a latency of 7.6 ± 2.4 seconds. Observing a third recording only

slightly improves performance beyond that obtained using two training recordings.

In particular, a detector trained on three recordings detects on average 97% of a

subjects future seizures with a mean latency of 7.1 ± 1.9 seconds. It is important to

note both the decreasing mean latency, and the decreasing deviation about the mean

as the number of training records is increased. These numbers were compiled using

twenty-one1 of the thirty-six test-subjects, which explains the deviation of the true

detection rates and average detection latencies from those presented in Chapter 6.

False-detections are not greatly affected by the number of training records observed,

but primarily by the prevalence of a patient's seizure-like, interictal abnormalities

and diversity of artifacts collected for inclusion in the training set.
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1These twenty-one patients each had four or more recordings, which allowed us to evaluate and
compare the detector's performance after training on one, two, or three recordings. If a patient
were to have three or fewer recordings, then we would have been able to compare performance after
training on one and two recordings, but not three.
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The results presented in Figure 7-1 support the notion of seizures from a given

subject being electrographically stereotypical, and argue that our patient-specific de-

tector can reliably and quickly detect seizure onsets using as few as two training

seizures. This is crucial in a clinical setting due to the paucity of data collection

time, and the possible rarity of seizure events in some patients. To put these results

in perspective, note that the generic detector discussed in the following section ex-

hibits a 76% detection rate with an average detection latency of 12.3 i 7.4 seconds

even when trained on more than forty training recordings.

7.2 Comparison

A generic seizure onset detector is expected to perform poorly in terms of total number

of true and false detections when compared to a patient-specific detector. This is

primarily due to the heterogeneity of seizure onset patterns across patients, and the

possible similarity between the non-seizure EEG of one subject and the seizure EEG

of another. On the other hand, prior to this comparative study, the expected disparity

between the average detection latency of a generic and patient-specific detector was

not clear.

Figure 7-2 compares the performance of a patient-specific and generic detector.

For each test subject the patient-specific detector was trained as described in section

6.1; while the generic detector was trained on the seizure and non-seizure EEG from

all subjects excluding the one being tested. All performance metrics were computed

using the manner described in section 6.1.

Performance tests were conducted for patients numbered 1-34, but results from

patients {4, 29-34} are omitted from Figure 7-2 due to exceedingly poor performance

by the generic detector. In particular, the generic detector declared an excess of 50

false-detections on the EEG recordings of these subjects due to the similarity of

seizure EEG from the training subjects and non-seizure EEG from the test subjects.

In short, a generic detector always runs the risk of declaring many false-detections

due to the possible similarity of training seizure and testing non-seizure EEG.
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Patient-Specific vs. Generic Seizure Onset Detection
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Figure 7-2: Comparison of Patient-Specific and Generic Seizure Detection

To convince ourselves that poor performance resulted from the seizure EEG of

training subjects matching the non-seizure EEG of the test patients {4, 29 - 34},

we conducted the following experiment: We recorded the number of false-detections

for each of {4, 29 - 34} when the detector was trained on a single training subject

at a time, and then noted the training subjects resulting in fifteen or more false

detections. Next, we constructed a training set for the test patients that exclude

the problematic training subjects, and verified the ability of the generic detector to

process the recordings with fewer false-detections. Specifically, the new training sets

allowed the detector to process each of the recordings from patients {4, 29 - 34} with

only 2-10 false-detections.

On the remaining test subjects of Figure 7-2, the generic detector exhibited a

smaller number of true-detections and greater number of false-detections relative to

the patient-specific detector. This is clear when comparing the generic detector's 76%

seizure detection rate and 29 false-detections to the 91% detection rate and 4 false-

detections of the patient-specific detector. Furthermore, the generic detector declared

a seizure event on average 5.3 + 6.6 seconds after the patient-specific detector; the

+6.6 deviation from the smaller 5.3 average implies that there were subjects like 19 for
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whom the generic detector outperformed the patient-specific detector. Finally, subject

27 is noteworthy since the patient-specific detector failed to detect a test seizure due

to its dissimilarity to other training seizures from the same subject; in contrast, the

generic detector successfully detected the test seizure because it resembled a seizure

contributed by one of the many training subjects. A similar phenomena may explain

why the generic detector is able to identify one of three seizures from subject 23,

while the patient-specific detector found none.

7.3 Summary

In this chapter we provided experimental evidence of our patient-specific detector's

high learning rate; a property that allows it to exhibit excellent performance even

when trained on as few as two seizure events from the test subject. Moreover, we

demonstrated that a patient-specific detector exhibits a lower average detection la-

tency; a lower total number of false-detections; and a higher total number of true-

detections than a generic seizure onset detector. Our comparative study also under-

scored the likely event of a generic detector performing very poorly when the seizure

EEG of a subject in the training set matches the non-seizure EEG of the test subject.

111



112

---



Chapter 8

Conclusion

In this chapter, we conclude the thesis with a summary of its goals and contributions

followed by proposed improvements and directions for future work.

8.1 Goals and Contributions

The goal of this work was to design a real-time detector that identifies electrographic

seizure onsets in scalp EEG for the purpose of initiating time-sensitive clinical pro-

cedures like ictal SPECT.

The detector's performance requirements were set according to the nature of clin-

ical settings and the ictal SPECT procedure. In particular, the hectic clinical envi-

ronment necessitated that the detector require minimal assistance from experienced

hospital staff. Moreover, we required the detection and initiation of protocols to be

within ten seconds of electrographic onset to improve upon the current ability to lo-

calize epileptogenic foci using ictal SPECTs. Finally, we required a low false-positive

rate, or the ability to tradeoff more false-negatives for fewer false-positives due to the

low cost of missed seizures in our target application.

We proposed a patient-specific seizure onset detector that extracts wavelet-based

features from the EEG, and then employs a classifier to determine whether those

features are indicative of seizure onset based on the learned features of a patient's

seizure and non-seizure EEG. Our research makes the following contributions:
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* Provides an Effective Clinical Tool

Our detector exhibits the properties of an effective clinical tool. In particular

the detector is simple to operate; broadly applicable; and has a high sensitivity

and specificity.

- Simple To Operate: To use the detector an electroencephalographer

only needs to mark seizure onsets in EEG training records that are ap-

proximately thirty-minutes in duration; the number of records maybe as

small as one and need not exceed three as demonstrated in Chapter 7.

The detector automatically combines sections of the training records not

marked as seizure with both artifact and generic EEG from various states

of consciousness to form a representation of non-seizure activity, and to

extract derivations to which the seizure onset localizes as discussed in

Chapter 5.

- Broadly Applicable: The detector's use of multi-scale, wavelet-based

features allows it to detect seizure onsets with diverse electrographic man-

ifestations. These manifestations include bursts of sharp waves, spike-and-

slow-wave complexes, polymorphic waves, and rhythmic hypersynchrony

of variable amplitude and frequency.

- Highly Sensitive and Specific: When tested on the seizures of thirty-six

de-indentified test subjects, the detector exhibited an average delay of 8.0+

3.2 seconds while correctly declaring 131 of 139 seizure events. Further-

more, the detector only declared 11 false-detections during 49 hours of ran-

domly selected non-seizure EEG from these subjects. Most false-detections

were caused by seizure-like, interictal abnormalities as illustrated by the

third case study of Chapter 5.

* Demonstrates Utility of Patient-Specificity in Seizure Detection.

We demonstrated through the comparative study of Chapter 7 the improved

performance of a patient-specific seizure detector over a generic detector. The
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patient-specific detector exhibited a lower average detection latency; a lower

total number of false-detections; and a higher total number of true-detections.

Our study also underscored the likely event of a generic detector performing

very poorly when the seizure EEG of a subject in its training set matches the

non-seizure EEG of the test subject.

* Provides a Novel Perspective on Artifact Rejection.

We included various classes of EEG artifacts as part of the detector's non-

seizure training set so that they can be identified and avoided through a learning

methodology. This is in contrast to the more common approach of removing

artifacts using traditional linear, nonlinear, or adaptive signal processing tech-

niques.

* Compares Alternative Approaches to Seizure Onset Detection

In Chapters 5-6, we designed and compared the performance of two different

detector architectures that differ in how they capture and enforce the spatial

localization constraints of seizure and non-seizure EEG. We also compared the

efficacy of different classification schemes within each architecture; specifically,

we experimented with both support vector machine and a maximum-likelihood

classifiers. Our results demonstrated similar performance for the different ar-

chitectures and classifiers.

8.2 Future Work

In this section, we present possibilities for future work that are likely to improve the

current performance of our patient-specific seizure detection algorithm.

Making Detection Parameters Patient-Specific

In the SIP architecture seizure events are declared when K derivations exhibit abnor-

mal activity for a duration T. The derivations vary for each subject, but their number

K is fixed. This leads to a large detection latency for any subject with seizure onsets
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that localize to a number of derivations less than K before spreading to include a

number that is greater. By varying K automatically for each subject, large latencies

resulting from an inappropriate fixed setting can be avoided.

One approach for automatically selecting K on a per-subject basis would use

cross-validation on the training set. Specifically, for each candidate choice of K the

detector would evaluate its performance on the available training set using leave-

one-out cross-validation; then it would select the value of K with the best overall

performance for use in the detection of future seizures from the same subject.

The selection procedure just outlined could also be used to select T for each

subject. However, the prevalence of short-duration, patient-specific pre-seizure ab-

normalities that otherwise resemble seizure onset activity is likely to result in final

values of T that are very similar across patients, and close to our fixed choice.

Using Pre-Seizure Abnormalities to Enhance Seizure Onset Detection

Prior to the electrographic onset of a seizure, the EEG in some subjects exhibits

patient-specific abnormalities that may or may not resemble the electrographic signa-

ture of the onset. For instance, the electrographic onset of a subject may be preceded

by a combination of time-limited discharges and epochs of electrocerebral inactivity

that remain constant or change in duration and frequency of repetition as the onset

nears.

A detector that not only recognizes this patient-specific pre-seizure activity, but

also estimates from training data the duration of time separating the beginning of

this activity and the actual seizure onset would be an effective seizure forewarning

device. However, even for a specific subject, the time between the beginning of pre-

seizure activity and seizure onset may be variable; and for any given observation of

the pre-seizure activity the seizure may or may not actually occur. These difficulties

will directly influence how long prior to a seizure event the detector can reliably make

a prediction.

If a prediction is not desirable, the detector could instead enter a mode of higher-

sensitivity for an allotted duration of time upon detecting pre-seizure activity. The
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higher-sensitivity mode may result in smaller detection latencies, and can be attained

by decreasing the minimum detection duration T, the minimum number of derivations

K, or by increasing the tolerance a for the probability of a false-detection. If no seizure

is detected within the allotted window of time, the detector can return to its original

sensitivity.

Using Generic Data to Overcome Deficient Patient-Specific Training Sets

Our study of generic seizure detectors underscored the possibility of poor performance

whenever the seizure EEG of a subject in the training set matches the non-seizure

EEG of the test subject. The study also highlighted that a generic detector could

exhibit performance close to that of a patient-specific detector when seizure and non-

seizure EEG in the training set closely matched that of the test subject. These results

argue for augmenting a patient-specific detector with data from a group of patients

with similar EEG characteristics whenever the training set from the test subject is

insufficient.

The process of automatically choosing other subjects to include in the training

set of a patient-specific detector is known as active learning. Its main challenge is to

devise metrics that accurately reflect similarities between the seizure and non-seizure

EEG of two patients in terms of amplitude, fundamental frequency, morphology, and

localization of seizure and non-seizure activity. Once these metrics are developed, a

large collection of patients can be easily screened for subjects to augment the training

set of a patient-specific detector.

Deployment

Figures 8-1 and 8-2 illustrate two strategies for using our detector to initiate Ictal

SPECTs following electrographic seizure onsets. In the expert-assisted strategy of

Figure 8-1, the detector is first trained on the seizure and non-seizure EEG of a

patient and then set to monitor their streaming EEG. When seizure activity is de-

tected, an electroencephalographer is immediately notified and automatically shown

both the suspected electrographic pattern and a live video of the patient. The elec-
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troencephalographer uses this information to confirm with the detector whether or

not to infuse the Ictal SPECT radioisotope. Although the expert-assisted strategy

introduces a delay by requiring confirmation of a seizure event, it has the advantage

of producing no false injections of the SPECT radioisotope by the detector.

Drug Infusion -- r i.
Camera Pump EEG Expert

A Detector Cnimto

EEG

Confirmnnation

Seizure EEG

Clinical Video

Figure 8-1: Expert-Assisted Strategy For Initiating Ictal SPECTs Using Detector

In the automated strategy of Figure 8-2, the detector is again trained on the

seizure and non-seizure EEG of a patient and then set to monitor their streaming

EEG. When seizure activity is noted the detector automatically initiates the infusion

of the ictal SPECT radioisotope without incurring further delay by awaiting a seizure

event confirmation; the decrease in latency comes at the expense of an incorrect

injection occurring at the rate of the detector's false-detection rate.

Drug Infusion :
Pump Detector

- ~~~Detector

EEG

Figure 8-2: Automated Strategy For Initiating Ictal SPECTs Using Detector

To determine the efficacy of our detector as well as which deployment strategy

is more effective, one needs to conduct a clinical trial comparing the accuracy and

consistency of seizure focus localization obtained across several patients using the

two deployment methods. If the trial demonstrates that the extra delay incurred
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by confirming seizure events in the expert-assisted strategy does not greatly affect

localization, then that strategy should be used since it greatly limits the possibility

of a false-injection. On the other hand, if the trial demonstrates that the minimal

delay of the automated strategy leads to much more accurate localizations, then one

may need to accept the possibility of an incorrect injection occurring at the rate of

the detector's false-detection rate.

8.3 Summary

This thesis discusses the design and validation of a real-time, patient-specific method

that can be used to detect the onset of epileptic seizures in non-invasive EEG, and

then initiate time-sensitive clinical procedures like ictal SPECT. We adopt a patient-

specific approach because of the clinically observed consistency of seizure and non-

seizure EEG characteristics within patients, and their great heterogeneity across pa-

tients. Furthermore, we treat patient-specific seizure onset detection as a binary

classification problem. Our observation is a multi-channel EEG signal; its features

include amplitude, fundamental frequency, morphology, and spatial localization on

the scalp; and it is classified as an instance of non-seizure or seizure EEG based on

the learned features of training examples from a single patient as well as a library

that includes generic EEG artifacts and hallmark activity from different states of

consciousness.

We use a multi-level wavelet decomposition to extract features that capture the

amplitude, fundamental frequency, and morphology of EEG waveforms. These fea-

tures are then classified using a support vector machine or maximum-likelihood clas-

sifier trained on a patients seizure and non-seizure EEG; non-seizure EEG includes

normal and artifact contaminated EEG from various states of consciousness. The

outcome of the classification is examined in the context of automatically extracted

spatial and temporal constraints before the onset of seizure activity is declared.

During validation tests our method exhibited an average latency of 8.0± 3.2 sec-

onds while correctly identifying 131 of 139 seizure events from thirty-six, de-identified
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test subjects; and only 11 false-detections over 49 hours of randomly selected non-

seizure EEG from these subjects. The validation tests also highlight the high learning

rate of the detector; a property that allows it to exhibit excellent performance even

when trained on as few as two seizure events from the test subject.

We also demonstrate through a comparative study that our patient-specific detec-

tor outperforms a nonpatient-specific, or generic detector in terms of a lower average

detection latency; a lower total number of false-detections; and a higher total number

of true-detections. Our study also underscores the likely event of a generic detector

performing very poorly when the seizure EEG of a subject in its training set matches

the non-seizure EEG of the test subject.

This research has lead to an effective clinical tool that has the potential to initiate

ictal SPECTs in a more timely and consistent fashion, and consequently improve the

localization of epileptogenic foci.
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