993 research outputs found

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus

    Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern Recognizers

    Full text link
    This PhD thesis is focused on the central idea that single neurons in the brain should be regarded as temporally precise and highly complex spatio-temporal pattern recognizers. This is opposed to the prevalent view of biological neurons as simple and mainly spatial pattern recognizers by most neuroscientists today. In this thesis, I will attempt to demonstrate that this is an important distinction, predominantly because the above-mentioned computational properties of single neurons have far-reaching implications with respect to the various brain circuits that neurons compose, and on how information is encoded by neuronal activity in the brain. Namely, that these particular "low-level" details at the single neuron level have substantial system-wide ramifications. In the introduction we will highlight the main components that comprise a neural microcircuit that can perform useful computations and illustrate the inter-dependence of these components from a system perspective. In chapter 1 we discuss the great complexity of the spatio-temporal input-output relationship of cortical neurons that are the result of morphological structure and biophysical properties of the neuron. In chapter 2 we demonstrate that single neurons can generate temporally precise output patterns in response to specific spatio-temporal input patterns with a very simple biologically plausible learning rule. In chapter 3, we use the differentiable deep network analog of a realistic cortical neuron as a tool to approximate the gradient of the output of the neuron with respect to its input and use this capability in an attempt to teach the neuron to perform nonlinear XOR operation. In chapter 4 we expand chapter 3 to describe extension of our ideas to neuronal networks composed of many realistic biological spiking neurons that represent either small microcircuits or entire brain regions

    Neural coding strategies and mechanisms of competition

    Get PDF
    A long running debate has concerned the question of whether neural representations are encoded using a distributed or a local coding scheme. In both schemes individual neurons respond to certain specific patterns of pre-synaptic activity. Hence, rather than being dichotomous, both coding schemes are based on the same representational mechanism. We argue that a population of neurons needs to be capable of learning both local and distributed representations, as appropriate to the task, and should be capable of generating both local and distributed codes in response to different stimuli. Many neural network algorithms, which are often employed as models of cognitive processes, fail to meet all these requirements. In contrast, we present a neural network architecture which enables a single algorithm to efficiently learn, and respond using, both types of coding scheme

    Dendritic and axonal wiring optimization of cortical GABAergic interneurons

    Get PDF
    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons

    Novel 3D Microscopic Analysis of Human Placental Villous Trees Reveals Unexpected Significance of Branching Angles

    Get PDF
    The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact

    Unveiling the Neuromorphological Space

    Get PDF
    This article proposes the concept of neuromorphological space as the multidimensional space defined by a set of measurements of the morphology of a representative set of almost 6000 biological neurons available from the NeuroMorpho database. For the first time, we analyze such a large database in order to find the general distribution of the geometrical features. We resort to McGhee's biological shape space concept in order to formalize our analysis, allowing for comparison between the geometrically possible tree-like shapes, obtained by using a simple reference model, and real neuronal shapes. Two optimal types of projections, namely, principal component analysis and canonical analysis, are used in order to visualize the originally 20-D neuron distribution into 2-D morphological spaces. These projections allow the most important features to be identified. A data density analysis is also performed in the original 20-D feature space in order to corroborate the clustering structure. Several interesting results are reported, including the fact that real neurons occupy only a small region within the geometrically possible space and that two principal variables are enough to account for about half of the overall data variability. Most of the measurements have been found to be important in representing the morphological variability of the real neurons

    About connections

    Get PDF
    Despite the attention attracted by "connectomics", one can lose sight of the very real questions concerning "What are connections?" In the neuroimaging community, "structural" connectivity is ground truth and underlying constraint on "functional" or "effective" connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as "pairwise", point x projecting to point y (or: to points y and z), or more recently, in graph theoretical terms, as "nodes" or regions and the interconnecting "edges". This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis
    • …
    corecore