46,346 research outputs found

    MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury.

    Get PDF
    To compare venous drainage patterns and associated intracranial hydrodynamics between subjects who experienced mild traumatic brain injury (mTBI) and age- and gender-matched controls. Thirty adult subjects (15 with mTBI and 15 age- and gender-matched controls) were investigated using a 3T MR scanner. Time since trauma was 0.5 to 29 years (mean 11.4 years). A 2D-time-of-flight MR-venography of the upper neck was performed to visualize the cervical venous vasculature. Cerebral venous drainage through primary and secondary channels, and intracranial compliance index and pressure were derived using cine-phase contrast imaging of the cerebral arterial inflow, venous outflow, and the craniospinal CSF flow. The intracranial compliance index is the defined as the ratio of maximal intracranial volume and pressure changes during the cardiac cycle. MR estimated ICP was then obtained through the inverse relationship between compliance and ICP. Compared to the controls, subjects with mTBI demonstrated a significantly smaller percentage of venous outflow through internal jugular veins (60.9±21% vs. controls: 76.8±10%; p = 0.01) compensated by an increased drainage through secondary veins (12.3±10.9% vs. 5.5±3.3%; p<0.03). Mean intracranial compliance index was significantly lower in the mTBI cohort (5.8±1.4 vs. controls 8.4±1.9; p<0.0007). Consequently, MR estimate of intracranial pressure was significantly higher in the mTBI cohort (12.5±2.9 mmHg vs. 8.8±2.0 mmHg; p<0.0007). mTBI is associated with increased venous drainage through secondary pathways. This reflects higher outflow impedance, which may explain the finding of reduced intracranial compliance. These results suggest that hemodynamic and hydrodynamic changes following mTBI persist even in the absence of clinical symptoms and abnormal findings in conventional MR imaging

    Traumatic axonal injury in the spinal cord evoked by traumatic brain injury

    Get PDF
    Although it is well known that traumatic brain injury (TBI) evokes traumatic axonal injury (TAI) within the brain, TBI-induced axonal damage in the spinal cord (SC) has been less extensively investigated. Detection of such axonal injury in the spinal cord would further the complexity of TBI while also challenging some functional neurobehavioral endpoints frequently used to assess recovery in various models of TBI. To assess TAI in the spinal cord associated with TBI, we analyzed the craniocervical junction (CCJ), cervico-thoracic (CT), and thoraco-lumber (ThL) spinal cord in a rodent model of impact acceleration of TBI of varying severities. Rats were transcardially fixed with aldehydes at 2, 6, and 24 h post-injury (n � 36); each group included on sham-injured rodent. Semi-serial vibratome sections were reacted with antibodies targeting TAI via alteration in cytoskeletal integrity or impaired axonal transport. Consistent with previous observations in this model, the CCJ contained numerous injured axons. Immunoreactive, damaged axonal profiles were also detected as caudal, as the ThL spinal cord displayed morphological characteristics entirely consistent with those described in the brainstem and the CCJ. Quantitative analyses demonstrated that the occurrence and extent of TAI is positively associated with the impact/energy of injury and negatively with the distance from the brainstem. These observations show that TBI can evoke TAI in regions remote from the injury site, including the spinal cord itself. This finding is relevant to shaken baby syndrome as well as during the analysis of data in functional recovery in various models of TBI

    Biomechanical, ultrastructural, and electrophysiological characterization of the non-human primate experimental glaucoma model.

    Get PDF
    Laser-induced experimental glaucoma (ExGl) in non-human primates (NHPs) is a common animal model for ocular drug development. While many features of human hypertensive glaucoma are replicated in this model, structural and functional changes in the unlasered portions of trabecular meshwork (TM) of laser-treated primate eyes are understudied. We studied NHPs with ExGl of several years duration. As expected, ExGl eyes exhibited selective reductions of the retinal nerve fiber layer that correlate with electrophysiologic measures documenting a link between morphologic and elctrophysiologic endpoints. Softening of unlasered TM in ExGl eyes compared to untreated controls was observed. The degree of TM softening was consistent, regardless of pre-mortem clinical findings including severity of IOP elevation, retinal nerve fiber layer thinning, or electrodiagnostic findings. Importantly, this softening is contrary to TM stiffening reported in glaucomatous human eyes. Furthermore, microscopic analysis of unlasered TM from eyes with ExGl demonstrated TM thinning with collapse of Schlemm's canal; and proteomic analysis confirmed downregulation of metabolic and structural proteins. These data demonstrate unexpected and compensatory changes involving the TM in the NHP model of ExGl. The data suggest that compensatory mechanisms exist in normal animals and respond to elevated IOP through softening of the meshwork to increase outflow

    Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2

    Get PDF
    FGF-2, a potent multifunctional and neurotrophic growth factor, is widely expressed in the brain and upregulated in cerebral ischemia. Previous studies have shown that intraventricularly or systemically administered FGF-2 reduces the size of cerebral infarcts. Whether endogenous FGF-2 is beneficial for the outcome of cerebral ischemia has not been investigated. We have used mice with a null mutation of the fgf2 gene to explore the relevance of endogenous FGF-2 in brain ischemia. Focal cerebral ischemia was produced by occlusion of the middle cerebral artery (MCAO). We found a 75% increase in infarct volume in fgf2 knock-out mice versus wild type littermates (P < 0.05). This difference in the extent of ischemic damage was observed after 24 h, and correlated with decreased viability in fgf2 mutant mice following MCA occlusion. Increased infarct volume in fgf2 null mice was associated with a loss of induction in hippocampal BDNF and trkB mRNA expression. These findings indicate that signaling through trkB may contribute to ameliorating brain damage following ischemia and that bdnf and trkB may be target genes of FGF-2. Together, our data provide the first evidence that endogenous FGF-2 is important in coping with ischemic brain damage suggesting fgf2 as one crucial target gene for new therapeutic strategies in brain ischemia

    CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors

    Get PDF
    Transient electronics entails the capability of electronic components to dissolve or reabsorb in a controlled manner when used in biomedical implants. Here, the authors perform a systematic study of the processes of hydrolysis, bioabsorption, cytotoxicity and immunological biocompatibility of monolayer MoS2

    Efectos de la administración crónica de carvedilol sobre la variabilidad de la presión arterial y el daño de órgano blanco en ratas con desnervación sinoaórtica

    Get PDF
    Background: Increased blood pressure variability is a novel risk factor for the development of target organ injury both in hypertensive and normotensive subjects, so its reduction should be considered as a new therapeutic goal. Objective: The aim of this study was to evaluate the effect of long-term oral carvedilol treatment on blood pressure, blood pressure variability and target organ injury in the left ventricle and thoracic aorta in a model of blood pressure liability. Methods: Twelve male Wistar rats submitted to sinoaortic denervation were treated during 8 weeks with a single dose of carvedilol 30 mg/kg or vehicle. At the end of treatment, echocardiographic evaluation and blood pressure and short-term variability measurements were performed. Left ventricular and thoracic aortic weights were determined and histological samples were prepared from both tissues. Metalloproteinase MMP-2 and transforming growth factor β (TGF-β) were quantified in the left ventricle and thoracic aorta. Results: Carvedilol reduced systolic blood pressure and its variability in sinoaortic-denervated rats compared with the control group (126±5 vs. 142±11 mmHg, p<0.05; SD: 2.9±0.5 vs. 6.0±0.5 mmHg; p<0.05). A lower amount of connective tissue was found in carvedilol-treated animals. The expression of TGF-β decreased in both organs after carvedilol treatment. Conclusions: Chronic carvedilol treatment significantly reduces systolic blood pressure and its short-term variability in sinoaorticdenervated rats, decreasing the degree of left ventricular fibrosis.Fil: del Mauro, Julieta Sofía. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Santander Plantamura, Yanina Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Bertera, Facundo Martin. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Carranza, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Donato, Pablo Martín. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiopatología Cardiovascular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gorzalczany, Susana Beatriz. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Gelpi, Ricardo Jorge. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiopatología Cardiovascular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentin
    corecore