407 research outputs found

    Phenomenology of reaction-diffusion binary-state cellular automata

    Get PDF
    We study a binary-cell-state eight-cell neighborhood two-dimensional cellular automaton model of a quasi-chemical system with a substrate and a reagent. Reactions are represented by semitotalistic transitions rules: every cell switches from state 0 to state 1 depending on if the sum of neighbors in state 1 belongs to some specified interval, cell remains in state 1 if the sum of neighbors in state 1 belong to another specified interval. We investigate space-time dynamics of 1296 automata, establish morphology-bases classification of the rules, explore precipitating and excitatory cases and scrutinize collisions between mobile and stationary localizations (gliders, cycle life and still-life compact patterns). We explore reaction-diffusion like patterns produced as a result of collisions between localizations. Also, we propose a set of rules with complex behavior called Life 2c22. © World Scientific Publishing Company

    Handbook of Computer Vision Algorithms in Image Algebra

    Full text link

    Use of cellular automata-based methods for understanding material-process-microstructure relations in alloy-based additive processes

    Get PDF
    Deposition of metals through additive manufacturing has garnered research interest as of late due to the large range of potential industry applications. In particular, direct metal deposition processes such as Laser Engineered Net Shaping (LENS) have the ability to construct near net shape parts, open cellular structures, compositionally graded parts, and parts with improved mechanical properties over those manufactured via traditional methods such as casting and forging. To utilize additive processes to their full potential, it is imperative that the relationships among process parameters, development of the molten pool, microstructure, and properties are understood. Our goal in applying computational modeling to this problem is to aid in our understanding of such relationships to guide future experiments towards sets of alloying additions and deposition conditions that produce preferred microstructures. Cellular Automata (CA) based modeling techniques provide a way to bridge the scales of the complex phenomena that occur during AM processes, reducing them to physics-based rules for the evolution of cell state variables; in particular, this makes these methods well-suited for large scale parallel computing problems and large ensembles of simulations. CA is applied at the scale of individual dendrites yielding quantitative agreement with analytical models for dendrite tip undercooling as a function of solidification velocity. For dendritic colonies, CA modeled microstructures yielded favorable quantitative and qualitative agreement with expected trends in primary arm spacing, side branching, solute segregation, and non-equilibrium growth phenomena such as solute trapping and banded growth morphology. CA is also applied at the scale of multiple grains to investigate the columnar to equiaxed transition in 2D and 3D with varied nucleation undercooling, alloying addition, and interfacial response function. The lattice Boltzmann (LB) method for fluid transport is combined with COMSOL Multiphysics simulations of melt pool dynamics and the dendrite-scale CA for coupled simulation of fluid flow, solute transport, and solidification, yielding good agreement on microsegregation and dendrite arm spacing with experimental results for LENS alloy deposition. A thermal lattice Boltzmann (TLB) model of the melt pool is also developed and combined with the grain-scale CA for parallel, concurrent multiscale simulation of fluid flow, heat transport, and grain growth for LENS-representative conditions, showcasing the model\u27s ability to predict microstructure trends with changes in process conditions or alloying additions. The ability of CA to accurately predict many aspects of and trends regarding alloy solidification in additive processes show a promising future for using similar codes to augment experimental results for new alloy development, while the parallelizability and computational efficiency of CA show its potential for use in Exascale computing application codes

    Simulation of the spatial structure and cellular organization evolution of cell aggregates arranged in various simple geometries, using a kinetic monte carlo method applied to a lattice model

    Get PDF
    ilustraciones, graficasEsta tesis trata los modelos de morfogénesis, en particular los modelos de evolución guiada por contacto que son coherentes con la hipótesis de la adhesión diferencial. Se presenta una revisión de algunos modelos, sus principios biológicos subyacentes, la relevancia y aplicaciones en el marco de la bioimpresión, la ingeniería de tejidos y la bioconvergencia. Luego, se presentan los detalles de los modelos basados en métodos de Monte Carlo para profundizar más adelante en el modelo basados en algoritmos Kinetic Monte Carlo (KMC) , más específicamente, se describe en detalle un modelo KMC de autoaprendizaje (SL-KMC). Se presenta y explica la estructura algorítmica del código implementado, se evalúa el rendimiento del modelo y se compara con un modelo KMC tradicional. Finalmente, se realizan los procesos de calibración y validación, se observó que el modelo es capaz de replicar la evolución del sistema multicelular cuando las condiciones de energía interfacial del sistema simulado son similares a las del sistema de calibraciones. (Texto tomado de la fuente)This thesis treats the models for morphogenesis, in particular the contact-guided evolution models that are coherent with the differential adhesion hypothesis. A review of some models, their biological underpinning principles, the relevance and applications in the framework of bioprinting, tissue engineering and bioconvergence are presented. Then the details for the Monte Carlo methods-based models are presented to later deep dive into the Kinetic Monte Carlo (KMC) based model, and more specifically a Self-Learning KMC (SL-KMC) model is described to detail. The algorithmic structure of the implemented code is presented and explained, the model performance is assessed and compared with a traditional KMC model. Finally, the calibration and validation processes have been carried out, it was observed that the model is able to replicate the multicellular system evolution when the interfacial energy conditions of the simulated system are similar to those of the calibrations system.MaestríaMagíster en Ingeniería - Ingeniería Químic

    Generative agent-based architectural design computation : behavioral strategies for integrating material, fabrication and construction characteristics in design processes

    Get PDF
    The aim of this thesis is to investigate the generative potential of agent-based systems for integrating material and fabrication characteristics into design processes. This generative agent-based system reflects the significance of behavioral strategies in computational design and construction. This work presents a generative behavioral approach for integrating fabrication processes with material specifications. The development of a computational framework facilitates this integration via an agent-based system. A series of experiments with related case studies emphasizes behavioral strategies within the processes of formation and materialization. This research proposes the integration of material and fabrication processes through an agent-based system. The utilization of this system reflects a theoretical framework in developing an integrative computational method. The implementation of this theoretical framework in practical studies demonstrates the applicability of this research. The practical developments highlight the importance of behavioral strategies to establish integral design computation. Chapter 1 introduces the extended behavioral strategies to integration design. Chapter 2 provides a study about integrative design computation to abstract the main drivers of design integration through agent-based modeling. Chapter 3 presents agent-based systems in architectural design, specifically, in regards to material, fabricational, and environmental principles. Chapter 4 explores experiments and case studies to adjust the development of a generative agent-based system for integrating material and fabrication characteristics in design processes. Chapter 5 explains procedures for setting-up a generative agent-based design computation. Chapter 6 discusses the significance of behavioral strategies to develop different behavioral layers within a generative agent-based architectural design. Chapter 7 concludes the integral behavioral strategies by proposing trends to minimize the gap between formation and materialization through coalescing computational and physical agent-based systems.Ziel dieser Arbeit ist es, die generativen Potentiale von Agenten-basierten Systemen zur Integration von Material- und Fertigungseigenschaften im Entwurfsprozess zu untersuchen. Diese generative, Agenten-basierten Systeme spiegeln die Bedeutung von Regel- und Verhaltens-basierten Strategien für das digitale Entwerfen, Planen und Konstruieren wider. Die vorliegende Forschungsarbeit stellt einen generativen Ansatz zur Integration der Charakteristika von Material und Fertigung dar. Dies erfolgt über die Entwicklung einer digitalen Methode, die die Integration in ein Agent-basiertes System ermöglicht, was an einer Reihe von Experimenten und Fallstudien und der dazugehörigen Verhaltensstrategien für die Formgenerierung und Materialisierung erprobt wurde. Das operative Potential des theoretischen Rahmens wird in diesen praktischen Studien demonstriert und belegt die Anwendbarkeit der Forschung. Die theoretischen und praktischen Entwicklungen zeigen die Bedeutung von Verhaltensstrategien für das architektonische Entwerfen und einen ganzheitlichen digitalen Gestaltungs- und Bildungsprozess

    Methods and Measures for Analyzing Complex Street Networks and Urban Form

    Full text link
    Complex systems have been widely studied by social and natural scientists in terms of their dynamics and their structure. Scholars of cities and urban planning have incorporated complexity theories from qualitative and quantitative perspectives. From a structural standpoint, the urban form may be characterized by the morphological complexity of its circulation networks - particularly their density, resilience, centrality, and connectedness. This dissertation unpacks theories of nonlinearity and complex systems, then develops a framework for assessing the complexity of urban form and street networks. It introduces a new tool, OSMnx, to collect street network and other urban form data for anywhere in the world, then analyze and visualize them. Finally, it presents a large empirical study of 27,000 street networks, examining their metric and topological complexity relevant to urban design, transportation research, and the human experience of the built environment.Comment: PhD thesis (2017), City and Regional Planning, UC Berkele

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    An algorithmic approach to system architecting using shape grammar-cellular automata

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2008.Includes bibliographical references (p. 404-417).This thesis expands upon the understanding of the fundamentals of system architecting in order to more effectively apply this process to engineering systems. The universal concern about the system architecting process is that the needs and wants of the stakeholders are not being fully satisfied, primarily because too few design alternatives are created and ambiguity exists in the information required. At the same time, it is noted that nature offers a superb example of system architecting and therefore should be considered as a guide for the engineering of systems. Key features of nature's architecting processes include self-generation, diversity, emergence, least action (balance of kinetic and potential energy), system-of-systems organization, and selection for stability. Currently, no human-friendly method appears to exist that addresses the problems in the field of system architecture while at the same time emulating nature's processes. By adapting nature's self-generative approach, a systematic means is offered to more rigorously conduct system architecting and better satisfy stakeholders. After reviewing generative design methods, an algorithmic methodology is developed to generate a space of architectural solutions satisfying a given specification, local constraints, and physical laws. This approach combines a visually oriented human design interface (shape grammar) that provides an intuitive design language with a machine (cellular automata) to execute the system architecture's production set (algorithm). The manual output of the flexible shape grammar, the set of design rules, is transcribed into cellular automata neighborhoods as a sequenced production set that may include other simple programs (such as combinatoric instructions).(cont.) The resulting catalog of system architectures can be unmanageably large, so selection criteria (e.g., stability, matching interfaces, least action) are defined by the architect to narrow the solution space for stakeholder review. The shape grammar-cellular automata algorithmic approach was demonstrated across several domains of study. This methodology improves on the design's clarification and the number of design alternatives produced, which should result in greater stakeholder satisfaction. Of additional significance, this approach has shown value both in the study of the system architecting process, leading to the proposal of normative principles for system architecture, and in the modeling of systems for better understanding.by Thomas H. Speller, Jr.Ph.D
    corecore