2,301 research outputs found

    Enhanching Security in the Future Cyber Physical Systems

    Get PDF
    Cyber Physical System (CPS) is a system where cyber and physical components work in a complex co-ordination to provide better performance. By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of a CPS. In this dissertation, security measures for different types of attacks/ faults in two CPSs, water supply system (WSS) and smart grid system, are presented. In this context, I also present my study on energy management in Smart Grid. The techniques for detecting attacks/faults in both WSS and Smart grid system adopt Kalman Filter (KF) and χ2 detector. The χ2 -detector can detect myriad of system fault- s/attacks such as Denial of Service (DoS) attack, short term and long term random attacks. However, the study shows that the χ2 -detector is unable to detect the intelligent False Data Injection attack (FDI). To overcome this limitation, I present a Euclidean detector for smart grid which can effectively detect such injection attacks. Along with detecting attack/faults I also present the isolation of the attacked/faulty nodes for smart grid. For isolation the Gen- eralized Observer Scheme (GOS) implementing Kalman Filter is used. As GOS is effective in isolating attacks/faults on a single sensor, it is unable to isolate simultaneous attacks/faults on multiple sensors. To address this issue, an Iterative Observer Scheme (IOS) is presented which is able to detect attack on multiple sensors. Since network is an integral part of the future CPSs, I also present a scheme for pre- serving privacy in the future Internet architecture, namely MobilityFirst architecture. The proposed scheme, called Anonymity in MobilityFirst (AMF), utilizes the three-tiered ap- proach to effectively exploit the inherent properties of MF Network such as Globally Unique Flat Identifier (GUID) and Global Name Resolution Service (GNRS) to provide anonymity to the users. While employing new proposed schemes in exchanging of keys between different tiers of routers to alleviate trust issues, the proposed scheme uses multiple routers in each tier to avoid collaboration amongst the routers in the three tiers to expose the end users

    Smart grid

    Get PDF
    Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016The SG concept arises from the fact that there is an increase in global energy consumption. One of the factors delaying an energetic paradigm change worldwide is the electric grids. Even though there is no specific definition for the SG concept there are several characteristics that describe it. Those features represent several advantages relating to reliability and efficiency. The most important one is the two way flow of energy and information between utilities and consumers. The infrastructures in standard grids and the SG can classified the same way but the second one has several components contributing for monitoring and management improvement. The SG’s management system allows peak reduction, using several techniques underlining many advantages like controlling costs and emissions. Furthermore, it presents a new concept called demand response that allows consumers to play an important role in the electric systems. This factor brings benefits for utilities, consumers and the whole grid but it increases problems in security and that is why the SG relies in a good protection system. There are many schemes and components to create it. The MG can be considered has an electric grid in small scale which can connect to the whole grid. To implement a MG it is necessary economic and technical studies. For that, software like HOMER can be used. However, the economic study can be complex because there are factors that are difficult to evaluate beyond energy selling. On top of that, there are legislation and incentive programs that should be considered. Two case studies prove that MG can be profitable. In the first study, recurring to HOMER, and a scenario with energy selling only, it was obtained a 106% reduction on production cost and 32% in emissions. The installer would have an 8000000profitintheMGslifetime.Inthesecondcase,itwasconsideredeconomicservicesrelatedtopeakloadreduction,reliability,emissionreductionandpowerquality.TheDNOhadaprofitof8 000 000 profit in the MG’s lifetime. In the second case, it was considered economic services related to peak load reduction, reliability, emission reduction and power quality. The DNO had a profit of 41,386, the MG owner had 29,319profitandtheconsumershada29,319 profit and the consumers had a 196,125 profit. We can conclude that the MG with SG concepts can be profitable in many cases

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Monitoring of Wireless Sensor Networks

    Get PDF

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Stealthy cyberattacks detection based on Control Performance Assessment methods for the air conditioning industrial installation

    Get PDF
    This paper aims to study the workflow of the detection centre of stealthy attacks on industrial installations that generate an increase in energy consumption. Such long-lasting, undetected attacks on industrial facilities make production more expensive and less competitive or damage the installation in the long term. We present the concept of the remote detection system of cyberattacks directed at maliciously changing the controlled variable in an industrial process air conditioning system. The monitored signals are gathered at the PLC-controlled installation and sent to the remote detection system, where the discrepancies of signals are analysed based on the Control Performance Assessment indices. The results of performed tests prove the legitimacy of the adopted approach.Web of Science163art. no. 129
    corecore