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Abstract

Future technology trends envision that next-generation Multiprocessors Systems-on-
Chip (MPSoCs) will be composed of a combination of a large number of processing and
storage elements interconnected by complex communication architectures. Communi-
cation and interconnection between these basic blocks play a role of crucial importance
when the number of these elements increases. Enabling reliable communication chan-
nels between cores becomes therefore a challenge for system designers.

Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the
communication between several design elements and IP blocks, as required in complex
Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis
of multiprocessing, parallel computing, networking, and on-chip communication do-
mains.

Networks-on-Chip, in addition to standard communication services, can be em-
ployed for providing support for the implementation of system-level services. This
dissertation will demonstrate how high-level services can be added to an MPSoC plat-
form by embedding appropriate hardware/software support in the network interfaces
(NIs) of the NoC. In this dissertation, the implementation of innovative modules acting
in parallel with protocol translation and data transmission in NIs is proposed and eval-
uated. The modules can support the execution of the high-level services in the NoC at
a relatively low cost in terms of area and energy consumption.

Three types of services will be addressed and discussed: security, monitoring, and
fault tolerance. With respect to the security aspect, this dissertation will discuss the im-
plementation of an innovative data protection mechanism for detecting and preventing
illegal accesses to protected memory blocks and/or memory mapped peripherals. The
second aspect will be addressed by proposing the implementation of a monitoring sys-
tem based on programmable multipurpose monitoring probes aimed at detecting NoC
internal events and run-time characteristics. As last topic, new architectural solutions
for the design of fault tolerant network interfaces will be presented and discussed.
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Chapter 1

Introduction

Future technology trends [2] envision that next generation Multiprocessors Systems-
on-Chip (MPSoCs) will be composed of a combination of a high number of processing
and storage elements interconnected by complex communication architectures. Pro-
cessing elements will include general purpose processors and specialized cores, such
as digital signal processors (DSPs), very long instruction word (VLIW) cores, pro-
grammable cores (FPGAs), application specific processors, analog front-end devices,
and peripheral devices. The integration of many heterogeneous cores will be possible
thanks to advances in nanoelectronic technologies, enabling billions of transistors on
a single chip, running at multi-GHz speed, and operating at supply voltages below one
volt.

As an example of this trend, an integrated architecture containing 80 tiles arranged
as an 8 x 10 2-D array of floating-point cores and interconnect elements was recently
presented by Intel [3]. Each tile has two pipelined single-precision floating-point mul-
tiply accumulators (FPMAC) which feature a single-cycle accumulation loop for high
throughput, and a packet-switched router. Both processing elements and interconnect
are designed to operate at 4 GHz, providing a bisection bandwidth of 2 Terabits/s.

Another example is given by the Intel Single-Chip Cloud Computer project [4],
which incorporates 48 Itanium cores organized in 24 tiles, each of them containing
two cores. Tiles are connected through a mesh network of 24 routers, with bisection
bandwidth of 256 GB/s.

In such a type of system, one solution to reduce design complexity, as well as the
gap between advances in the development of manufacturing technology and those
of synthesis and compiler technology, has been foreseen in the reuse of previously
developed Intellectual Propriety cores (IPs), that will constitute the basic blocks for the
designers. IP cores used in an individual MPSoC need not be homogeneous - actually,
adopting heterogeneous cores may lead to relevant benefits in cost and performances
when application-targeted embedded systems are considered. However, the design of
this type of heterogeneous systems raises the problem of having tools for synthesis and
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compilation that could efficiently exploit the large number of resources available to
designers.

Communication and interconnection between these basic blocks play crucial roles
when the number of such blocks increases. Indeed, the complexity of the new systems
spawns the challenge of enabling reliable communication channels between cores; a
challenge that becomes more and more difficult as the number of integrated cores
per design increases. Therefore, the traditional solution for inter-core communication
based on a shared bus, very soon becomes unable to guarantee sufficient levels of
efficiency, both from the performance and the power consumption perspectives.

Moreover, the distribution of the global wiring in the System-on-Chip generates
several problems related to the physical limitations of interconnect implementation
with new deep-submicron integrated technologies. As dimensions of wirings decrease
- following technology trends in device shrinking - the interconnection delay is likely
to largely exceed the clock period [5]. The wire delay δ can be in general expressed as
proportional to C ·R, where C is the capacitance of the wire, and R is its resistance. By
reducing the geometries of wires by a factor S, while the capacitance remains constant,
the resistance of the wires increases by a factor S2, increasing as well by the same factor
the wire delay. Therefore, technology trends aiming at obtaining faster and faster cells
bring as side effect slower and slower interconnection lines, as well as a higher relative
importance of the spreading of physical parameters (e.g. variance of wire delay per
unit length) when compared to the timing reference signal (e.g. clock period). All
these facts make it more difficult to safely meet signal timing constraints [5].

Other problems related to current technology trends should also be considered due
to their influence on the design of the communication infrastructure. In particular, it
will be increasingly difficult to guarantee the integrity of signals transmitted over the
wires. The reduced signal swings, and the corresponding reduction in the voltage noise
margin, adopted in on-chip communications to limit in the device’s power consump-
tion, will make it increasingly possible to receive signals corrupted by some external
sources of noise, such as for instance those due to electromagnetic interferences, or by
soft errors caused by the collision of thermal neutrons (due to the decay of cosmic ray
showers) and/or alpha particles (due to impurities in the package). At the same time,
reduction of the space between wires observed when shrinking feature sizes of inte-
grated devices implies a large increase in crosstalk, increasing therefore the possible
sources of noise influencing the transmission of signals.

In order to overcome all the above technological problems, Networks-on-Chip (NoCs)
[6, 7] appeared as a strategy to manage the communication between several design
elements and IP blocks, as required in complex Systems-on-Chip (SoCs), allowing the
transition from a core-centric design approach to a communication-centric design ap-
proach [7]. The topic can be considered as a multidisciplinary synthesis of multipro-
cessing, parallel computing, networking, and on-chip communication domain. NoCs
are usually composed of network interfaces (NIs), that adapt data and control signals
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Figure 1.1. NoC micro-network stack.

received by cores to the packetized communication protocol employed in the NoC, and
routers, that route packets to their destination node in the NoC.

As in wide-area networks, a layered-stack approach has been proposed for an
efficient design of on-chip inter-core communication medium, exploiting the lesson
learned by telecommunication community. Similarly to the ISO-OSI Reference Model,
the global on-chip communication is decomposed into several layers [7], in order to
provide the designers with a clear interface between the functionalities that such a
system should offer.

Figure 1.1 shows the NoC micro-network stack [7]. The Physical Layer is related to
all the aspects concerning the transmission of signals through physical wires, including
techniques and circuits for driving information. As previously discussed, many tech-
nology problems are related to this layer, due to the increased noise sensitivity in signal
transmission brought by the shrinking of integrated devices. In on-chip networks, sig-
nals may be allowed to arrive corrupted at the destination, leaving to higher layers in
the stack to take care of corrections and reliability of the overall communication.

As an example of this trend, packetized transmissions and error correcting codes

(ECCs) are implemented in the Data Layer, in order to retrieve and correct faulty sig-
nal transmissions. The Data Layer is in fact in charge of ensuring, up to a minimum
required level, a reliable data transfer despite of the physical unreliability of links, and
of dealing with contention by multiple IPs of the shared resources of the communica-
tion medium.

The Network Layer implements end-to-end delivery control, setting up connections
between successive links and routing information from sources to destinations. Three
main type of switching techniques can be identified to describe connections set up:

• With the Store-and-Forward technique, at each intermediate step along the rout-
ing path the packet is stored in a buffer, waiting for the whole packet to be
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completely received; only at that moment the packet is forwarded to the next
step of the path. While allowing the implementation of more elaborated rout-
ing schemes, the Store-and-Forward technique requires to have in each router
in the path enough buffer resources to store all the complete packets that may
simultaneously arrive.

• In the Virtual-Cut-Through scheme, packets are forwarded as soon as received, re-
ducing therefore the delay due to storing the packet before forwarding it. Buffer-
ing resources needed are still significant, due to the fact that entire packets have
to be stored in intermediate steps if resources for the following steps are not
available.

• In Wormhole switching, packets are divided into smaller pieces called flits (flow
control digits). The size of the flits is usually equal to the width of the physi-
cal link. The header flit, containing routing information, reserves resources in
routers along the path. Body flits follow the header flit, while the tail one releases
the resources. Flits are forwarded as soon as received by the routers, without
storing the whole packet as in the previous schemes. The packet’s last flit re-
leases resources for subsequent communications. While in Wormhole switching
buffering resources are smaller compared to the two previous schemes, problems
due to deadlock and livelock may arise [5].

Concerning routing strategies that can be adopted, it is possible to distinguish be-
tween deterministic routing, where the same path is associated with the same source-
destination pair, and adaptive routing, where paths can be modified according to in-
formation such as traffic congestion, power consumption, and reliability of physical
links.

The Transport Layer manages end-to-end services and deals with packets segmen-
tation and assembly. Unlike in data networks, packet sizes can be customized to appli-
cation requirements, in order to better satisfy the application needs in terms of energy
consumption, traffic congestions, or latency of the communication.

Upper layers can be viewed as merged in a generic Software and Application Layer,
which includes system and application software. System software provide an abstrac-
tion of the underlying hardware platform. Application software exploit the intrinsic
parallelism of NoC architectures, taking into account the communication aspects.

Even if the NoC idea seems an adaptation to the SoC context of similar com-
puter networks concepts, many research issues are still open, due to their different
constraints and amount of resources available in the two cases. In fact, some main
unique NoCs features are: the spatial locality of modules connected, the reduced non-
determinism of on-chip traffic, the constraints in terms of energy consumption and
low latency, the possibility of applying specific stack services, and the need for low cost
solutions.
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1.1 Dissertation contributions

The main goal of this dissertation is to demonstrate how high-level services can be
added to an MPSoC platform by embedding appropriate hardware/software support in
the network interfaces of the NoC. To achieve this goal, in this dissertation we propose
and evaluate the implementation of innovative modules, that, by acting in parallel
with protocol translation and data transmission in the NI, can support the execution
of high-level services in the NoC at a relatively low cost in terms of area and energy
consumption.

In particular, we target security, monitoring, and fault tolerance in NoCs:

• Security: as computing and communications increasingly pervade our lives, se-
curity is gaining an increasing relevance in the development of new electronic
devices. This fact is especially true in the case of embedded systems, intrinsi-
cally constrained in terms of computational capacity, storage size, and energy
availability. In the case of NoCs, the design of secure architectures has been
taken into account only recently. In this dissertation, we therefore address the
security aspects related to NoC-based platforms. In particular, the main contri-
butions of this dissertation to the security topic mainly focus on the introduction
of innovative mechanisms for providing support for data protection and run-time
detection of malicious attacks. The proposed mechanisms are based on the use
of dedicated hardware modules embedded within the NI. The modules guaran-
tee secure accesses to memory and/or memory-mapped peripherals by enforcing
access control rules specifying the way in which an IP initiating a transaction to
a shared memory in the NoC can access a memory block. Moreover, as part of a
secure monitoring system, they can be employed for detecting attempts of illegal
access to protected memory blocks as well as Denial-of-Service attacks.

• NoC monitoring: the complexity of future NoC-based MPSoC platforms raises
the problem of exploiting efficiently the amount of resources available, and of un-
derstanding the system behavior once the platform has been implemented. For
NoCs, new tools are needed for helping designers in these tasks, exploiting in-
formation derived by measurements taken on the running system. On this topic,
the main contributions of this dissertation focus on the idea of using the NI to
monitor run-time system behavior by tracing communication activities, in order
to retrieve information useful for performance analysis, run-time optimization,
and optimal resources allocation. In particular, we detail the implementation of
a programmable multipurpose probe, that, embedded within the NI, can provide
to a central management unit information about throughput and latency of NoC
transactions, as well as utilization of buffers in NI and routers.

• Fault tolerance: the aspects of fault tolerance in NoC-based architectures play a
role of increasing relevance, as complexity of the design increases, and as CMOS
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technology scales down into the deep-submicron domain. In fact, devices and
interconnect are subjected to new types of malfunctions and failures that are
hard to predict and avoid with the current design methodologies. Fault toler-
ant approaches are therefore necessary to overcome these limitations, and new
methodologies and architectural solutions should be explored. With respect to
the fault tolerance topic, the main contributions of this dissertation focus on the
analysis of the fault susceptibility of NoC components, and on the proposal and
evaluation of a fault tolerant architecture for the NI, which represents the most
critical component from the point of view of the resistance to faults. The solution
proposed, based on the use of a combination of error detecting and correcting
codes and a limited amount of architectural redundancy, allows a reduction of
the design costs with respect to standard fault tolerant techniques based on triple
modular redundancy, by maintaining similar levels of robustness to faults.

1.2 Organization of the document

The remainder of this document is organized as follows. Chapter 2 describes the char-
acteristics of the NoC-based MPSoC platform taken as reference in the following chap-
ters of the dissertation. Chapter 3 discusses the motivations for implementing the
high-level services studied in this work. In particular, section 3.1, presents an overview
of security threats that may affect NoCs, as well as discussing the need in NoC-based
architecture of implementing secure architectures to prevent attacks aiming at access-
ing critical information or disrupting system services. Section 3.2 discusses motivations
for implementing a monitoring system in the NoC that could help significantly both in
understanding at design time the platform behavior, and in optimizing at run-time re-
source utilization, while section 3.3 demonstrates that network interfaces are critical
elements from the point of view of the fault tolerance of the overall NoC, and that
appropriate methodologies should be applied for their design. In chapter 4, related
work is discussed, in particular focusing on the three main services targeted in this
dissertation. Chapter 5 presents the main contributions of this dissertation on the as-
pect of security: it describes and evaluate a data protection mechanisms for preventing
illegal accesses to protected memory blocks in NoC-based architecture, as well as a
secure monitoring system for detecting attempts of illegal access to protected memory
blocks and Denial-of-Service attacks. Chapter 6 deals with the aspect of NoC moni-
toring, by detailing the implementation of the several components of the monitoring
system and evaluating their implementation costs and overhead. Chapter 7 presents
the work performed towards the goal of implementing a fault tolerant NI, as well as
discussing implementation costs and resilience to faults of the proposed architecture.
Finally, chapter 8 summarizes achieved results and discusses future work.



Chapter 2

Reference MPSoC architecture

This chapter introduces the NoC-based Multiprocessor System-on-Chip architecture
taken as reference in this dissertation. The reference platform is a shared-memory
heterogeneous architecture composed of general purpose and custom dedicated pro-
cessors and cores (such as DSP, VLIW, and FPGA cores), storage elements and peripher-
als. Cores in the platform, heterogeneous for functionalities offered and characteristics,
communicate through an NoC. Signals coming from the communication interfaces of
the cores are translated by the network interface (NI) into packets compliant with the
protocol used within the NoC. We will assume a network interface compliant with the
specifications of the Open Core Protocol (OCP) interface [8]. The main characteristics
of the OCP interface will be described in better detail in section 2.1.1

The communication is transaction-based in order to present IP modules with a
shared-memory abstraction [9]. As a consequence, elements on the NoC are memory
mapped. Following the transaction-based protocol, it is possible to distinguish between
IP modules acting as initiators or as targets. Initiators are enabled to begin both a load

(read) and a store (write) transaction to targets. The protocol used to exchange data
between the initiator and the target in the network is simple and always requires to
send back an acknowledgement (or not acknowledgement) message to the initiator for
each request, both for load and store transactions. If the transaction is accepted, the
target replies by sending back an acknowledgement message (ack) and, in the case of
a load, also the requested data. If the transaction is rejected, a not acknowledgement
message (nack) is sent back to the initiator. A description of the main elements of the
NoC, i.e. the network interface and the router, is given next.

2.1 Reference network interface

The network interface translates IP signals and commands into packets, compliant with
the NoC protocol. Figure 2.1 shows the basic functional blocks of the network interface
taken as reference point in this dissertation. In general, a NI includes a front-end and a

7
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Figure 2.1. Overview of the reference NI architecture.

back-end sub-module [5, 10, 9]. The front-end module implements the communication
protocol adopted by the core. The back-end module is in charge of implementing
basic communication services, such as data packetization, and routing and control flow
related functions. Moreover, additional services, such as link error detection and error
recovering strategies, transactions ordering, support for cache coherence and security,
can also be implemented [5].

Several alternatives are available for the implementation of the basic services pro-
vided by the NI, and in particular for the packetization phase [5]. In this work, we will
consider the NI as an independent hardware block located between the core and the
communication infrastructure. The main NI components considered are:

• An OCP [8] adapter, which implements an instance of the OCP interface. At cores
acting as initiators, the adapter implements a Slave interface, while at target
cores, it implements a Master interface.

• The NI kernel, which receives and transmits data and control information from/to
the adapter, packetizes and de-packetizes messages, schedules and inserts pack-
ets in the output queue and retrieves them from the input queue, and finally
implements the control flow mechanism.

• The input and output FIFO queues, which on the producer side store packets
ready to be inserted into the NoC, and on the receiver side store incoming pack-
ets.

When a new transaction is requested by the processing element, the NI lookups the
memory-mapped address of the OCP transaction by employing a programmable lookup
table (LUT), located into the NI kernel [10]. The LUT returns as output the routing
information to be inserted into the packet header. At each router encountered along
the path to the destination node, the routing information is checked for requesting the
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Figure 2.2. System showing OCP instances and interfaces.

desired output port. The LUT is programmable in the sense that information stored
can be rewritten to support run-time modifications of the routing paths, caused for
instance by the presence of faulty links in the NoC. The NoC implements a wormhole
flow-control. Packets generated by the NI are therefore divided in subsequent flits.

2.1.1 OCP interface

The Open Core Protocol (OCP) is a protocol that comprehensively describes the sys-
tem level integration requirements of intellectual property (IP) cores [8]. The goal of
the OCP specifications is to clearly define design boundaries between cores, in order
to enable an independent design of the cores of the system, and to support the reuse
of IP cores as well as the reuse of verification and test suites. OCP interfaces can be
customized by designers in order to match core and platform requirements: both sim-
ple interfaces for low-performance peripheral cores and complex interfaces for high-
performance microprocessors can be implemented. The OCP defines a point-to-point
interface between two communicating entities. One of the entities acts as master of
the communication. The other entity acts as slave. The master initiates and controls
the communication, while the slave responds to the commands issued by the master,
either by accepting data from it, or giving data to it. As an example, figure 2.2 shows a
simple system containing a OCP-wrapped communication subsystem and three IP core
entities, acting as system initiator, system target, and both, respectively.

In this dissertation, we refer to a NI compliant with the OCP specifications. The
main OCP signals that will be used in this work for specifying the interface of a pro-
cessing element acting as initiator are the following (figure 2.1):

• Clk - clock signal;

• Reset_N - reset signal;



10 2.2 Reference router

• MCmd - OCP transfer type requested by the master, i.e., either a read or write
type request;

• MAddr - slave-dependent address of the resource targeted by the transfer;

• MData - data carried from the master to the slave in the case of a write operation;

• MDataValid - valid write data;

• MRespAccept - master accepts response;

• MBurstLength - number of transfers in a burst;

• MBurstPrecise - field indicating whether the precise length of a burst is known
at the start of the burst or not;

• MBurstSeq - signal specifying the sequence of addresses for requests in a burst;

• MReqLast - it specifies the last request in a burst;

• MConnID - connection identifier;

• MThreadID - thread identifier associated with the current transfer request;

• MReqInfo - this field can be used to send additional information sequenced with
the request;

• SCmdAccept - slave accepts transfer;

• SResp - response field from the slave to a transfer request from the master;

• SData - data carried from the slave to the master in the case of a read request;

• SReqLast - it specifies the last response in a burst;

• SThreadID - response thread identifier.

As discussed, the OCP interface can be customized by adding or removing some
of the signals, depending on the functionalities implemented and on the type and
complexity of the core.

2.2 Reference router

In NoCs, routers are in charge of directing to their destination packets injected by NIs
into the on-chip communication system. Several architectures have been proposed for
the implementation of the router. Without loss of generality, in this dissertation we re-
fer to the basic router architecture shown in figure 2.3. In the figure, Input Buffers are
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Figure 2.3. Overview of the reference router architecture considered in the experi-

ments.

employed at the router’s input ports for temporarily storing flits coming from previous
connections, while waiting for the destination ports to be available for the transmis-
sion. The Routing Logic reads the header of the packet (usually contained in the first
flit of the packet) and requests the utilization of the desired output ports. Several im-
plementations exist for the routing logic, depending on the routing strategy adopted
in the NoC. In the case of distributed routing, each packet carries the destination ad-
dress. At each router this information is processed through the use of lookup tables
or circuit logic implementing the routing decision algorithm, in order to define the
desired router’s output port. In the case of source routing, the packet header contains
the routing choice about the output port to request in each hop of the path to desti-
nation. Information is pre-calculated and stored into the NI, which inserts the routing
information into the header at the creation of each new packet. Moreover, routing can
be static or dynamic, depending on the possibility to adapt at run-time at the state of
the network. For each router’s output port, the Switch Allocator selects the input port
allowed to use it, arbitrating its utilization among the input ports requesting it, and
selecting the right configuration in the connections of the Crossbar.

In this dissertation, we will refer to input buffered router architectures which im-
plement a static routing. Depending on the topic, in our experiments we will both
consider a distributed (table-based) routing (in chapter 5 and chapter 6) and a source

routing (in chapter 7). Solutions proposed can be however applied to both routing
strategies.
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Chapter 3

Motivations

This dissertation focuses on the idea of providing Networks-on-Chip with high-level
functional services. These services add new functionalities to the system, and their im-
plementation depends on the application needs and on the type of platform employed
in the design [5], as well as on the possibility of finding the right trade-off between the
offered services and the related implementation costs. In principle, additional services
can be implemented in different alternative ways: via software, dedicated hardware,
or processor modifications [5]. The main idea presented in this dissertation is to im-
plement services within network interfaces, on top of the standard communication ser-
vices usually provided by them. High level services will be implemented as additional
modules running in parallel to the normal NI activity, in order to avoid degradation of
the performances.

This chapter presents motivations behind the introduction of each functional ser-
vices proposed and discussed in this dissertation. More in detail, in section 3.1, dif-
ferent possible attacks to NoC MPSoCs are described, which motivate the introduction
of modules to support security in the system. In particular, section 3.1.3 presents a
preliminary study of the effects of Denial-of-Service (DoS) attacks on NoCs. Section 3.2
discusses motivations for adopting a monitoring service in the NI. Section 3.3 presents
a study about the susceptibility to faults of the NI, which justifies the introduction of
fault tolerance techniques in its implementation.

3.1 The need for security-aware NoCs

As computing and communications increasingly pervade our lives, security and pro-
tection of sensitive data and systems are emerging as extremely important issues.
This is especially true for embedded systems, often operating in non-secure environ-
ments while at the same time being constrained by such factors as computational ca-
pacity of microprocessor cores, memory size, and in particular power consumption
[11, 12, 13, 14]. Due to such limitations, security solutions designed for general pur-
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pose computing are not suitable for this type of systems. At the same time, viruses
and worms for mobile phones have been reported since several years [15], and they
are foreseen to develop and spread as the targeted systems will increase in functional-
ities offered and in complexity. Currently known malware are able to spread through
Bluetooth connections or MMS (Multimedia Messaging Service) messages and infect
recipients’ mobile phones with copies of the virus or worm, hidden under the appear-
ance of common multimedia files [16].

In the context of the overall embedded SoC/device security, security-awareness is
therefore becoming a fundamental concept to be considered at each level of the de-
sign of future systems, which should be included as good engineering practice since
the early stages of the design of software and hardware platforms. Networks-on-Chips
should be considered in the secure-aware design process as well. In fact, the advan-
tages in terms of scalability, efficiency and reliability given by the use of such a complex
communication infrastructure may lead to new weaknesses in the system that can be
critical and should be carefully studied and evaluated. On the other hand, NoCs can
contribute to the overall security of the system by providing an additional mean to
monitor system behavior and detect specific attacks [17, 18]. Communication archi-
tectures can effectively react to security attacks by disallowing the offending commu-
nication transactions, or by notifying appropriate components of security violations
[19]. The particular characteristics of NoC architectures make it necessary to afford
the security problem in a comprehensive way, encompassing all the various aspects
from silicon-related ones to network-specific ones, both with respect to the families of
attacks that should be expected and to the protective countermeasures that must be
created.

In this dissertation, we will mainly focus on two aspects that can be considered
critical for enhancing security in future NoC-based architectures [11, 12], namely:
protecting critical data in shared memory MPSoCs and monitoring of system activities

for security purposes. Motivations for focusing on these two aspects are presented in
subsection 3.1.2 and in subsection 3.1.3. We start discussing the need of security by
presenting a taxonomy of security threats affecting NoCs, and, more generally, embed-
ded systems.

3.1.1 Attack taxonomy

Adding specific security features to a system implies additional costs in the design as
well as during the lifetime of the devices, respectively in terms of modifications in de-
sign flow and in the need of additional hardware and software modules, as well as
in performance and power consumption increase [11]. Therefore, it is mandatory to
understand the requirements in terms of security of the system, i.e., which security
violation it will be able to efficiently counteract. This subsection overviews typical at-
tacks that could be carried out against an embedded system, providing a classification
in terms of the agent used to perform the attack and of its targets. The subsection dis-
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Figure 3.1. Attacks to embedded systems.

cusses various types of security threats, namely those exploiting software, physical and
invasive techniques, and side channels techniques. After reviewing the most relevant
types of attacks brought against SoCs "in general", special attention will be given to
those that may exploit the intrinsic characteristics of the communication system in a
System-on-Chip based on an NoC.

Attacks addressing SoCs

Figure 3.1 shows a possible classification of the attacks in general addressing embed-
ded systems [20]. The given classification is based on the type of agent used to per-
form the attacks. One or more types of agents can be employed by a malicious entity
attempting to achieve its objectives on the addressed system, and they can cause prob-
lems in terms of privacy of information, integrity of data and code, and availability of
the system’s functionalities.

Software attacks

Software attacks exploit weaknesses in system architecture, through malicious soft-
ware agents such as virus, trojan horses, worms, etc. These attacks address pitfalls
or bugs in code, such as in the case of attacks exploiting buffer overflow or similar
techniques [21]. As embedded systems software increases in complexity and func-
tionalities offered, they are foreseen to become an ideal target for attacks exploiting
software agents. Viruses for mobile phones have been reported since several years
[15], and similar attacks are likely to be extended to embedded devices in automotive
electronics, domotic applications, networked sensors and more generic pervasive ap-
plications. Due to the cheap and easy infrastructure needed by the hacker to perform
a malicious task, software attacks represent the most common source of attack and
the major threat to face in the challenge to secure an embedded system. Moreover,
while increasing the flexibility of the system, the possibility of updating functionalities
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and downloading new software applications increases also its vulnerability to external
attackers and maliciously crafted applications’ extensions. An additional challenge is
also represented by the extended connectivity of embedded devices [12], which im-
plies an increase in the number of security threats that may target the system, physical
connections to access the device not being anymore required.

Typical embedded system viruses will spread through the wireless communication
channels offered by the device (such as Bluetooth) and install themselves in unused
space in Flash ROM and EEPROM memories, immune to re-booting and re-installation
of the system software. Malicious software is in this way almost not visible to other
applications on the system, and capable of disabling selected applications, including
those needed to disinfect it [22].

Physical attacks

Physical attacks require physical intrusion into the system at some levels, in order
to directly access the information stored or flowing in the device, modify it or interfere
with it. These types of attack exploit the characteristic implementation of the system
or some of its properties to break the security of the device. The literature usually
classifies them as invasive and non-invasive [23].

Invasive attacks require direct access to the internal components of the system.
For a system implemented on a circuit board, inter-component communication can be
eavesdropped by means of probes to retrieve the desired information [11]. In the case
of Systems-on-Chip, access to the internal information of the chip implies the use of so-
phisticated techniques to depackage it and the use of micro-probes to observe internal
structure and detect values on buses, memories and interfaces. A typical micro-probing

attack would employ a probing station, used in manufacturing industry for manual
testing of product line samples, and consisting of a microscope and micromanipulators
for positioning microprobes on the surface of the chip. After depackaging the chip by
dissolving the resin covering the silicon, the layout is reconstructed using in combina-
tion the microscope and the removal of the covering layers, inferring at various level of
granularity the internal structure of the chip. Microprobes or e-beam microscopy are
therefore used to observe values inside the chip. The cost of the infrastructure makes
microprobing attacks difficult to be used. However, they can be employed to gather
information on some sample devices (e.g., information on the floorplan of the chip
and the distribution of its main components) that can be used to perform other types
of non-invasive attacks.

Non-invasive attacks exploit externally available information, unintentionally leak-
ing from the observed system. Unlike invasive attacks, the device is not opened or
damaged during the attack. There are several types of non-invasive attacks, exploiting
different sources of information gained from the physical implementation of a system,
such as power consumption, timing information, or electromagnetic leaks.
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Figure 3.2. Representation of the timing attack.

Timing attacks were first introduced by Kocher [24]. Figure 6.4 shows a repre-
sentation of a timing attack. The attacker knows the algorithm implementation and
has access to measurements of the inputs and of the outputs of the secure system. The
attacker’s goal is to discover the secret key stored inside the secure system. Starting
point for the attacker is the observation that the execution time of computations is
data-dependent, and hence secret information can be inferred from its measurement.
In such attacks, the attacker observes the time required by the device to process a
set of known inputs with the goal of recovering a secret parameter (for instance the
cryptographic key inside a smart-card). The execution time for hardware blocks im-
plementing cryptographic algorithms depends usually on the number of ’1’ bits in the
key. While the number of ’1’ bits alone is not enough to recover the key, repeated
executions with the same key and different inputs can be used to perform statistical
correlation analysis of timing information and therefore recover the key completely.
Delaying computations in order to make them multiple of the same amount of time, or
adding random noise or delays increases the number of measurements required, but
do not prevent the attack. Techniques exist however to counteract timing attacks at
the physical, technological or algorithmic level [23].

Power analysis attacks [24] are based on the analysis of the power consumption
of the device while performing the encryption operation. Main contributions to power
consumption are due to gate switching activity and to the parasitic capacitance of the
interconnect wires. The current absorbed by the device is measured by very simple
means. It is possible to distinguish between two type of power analysis attacks: simple

power analysis (SPA) and differential power analysis (DPA).

SPA involves direct interpretation of power consumption measurements collected
during cryptographic operations. Observing the system’s power consumption allows
identifying sequences of instructions executed by the attacked microprocessor to per-
form a cryptographic algorithm. In those implementations of the algorithm in which
the execution path depends on the data being processed, SPA can be directly used to
interpreter the cryptographic key employed. As an example, SPA can be used to break
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implementations of the public-key cryptography algorithm RSA by revealing differ-
ences between multiplication and squaring operation performed during the modular
exponentiation operation [24]. If the squaring operation is implemented (due to code
optimization choices) differently than the multiplication, two distinct consumption pat-
terns will be associated with the two operations making it easier to correlate the power
trace of the execution of the exponentiator to the exponent’s value. Moreover, in many
cases SPA attacks can help to reduce the search space for brute-force attacks. Avoiding
procedures that use secret intermediates or keys for conditional branching operations
will help to protect against this type of attack [24].

DPA attacks are harder to prevent. In addition to the large-scale power variations
used in SPA, DPA exploits the correlation between the data values manipulated and
the variation in power consumption. In fact, it allows adversaries to retrieve extremely
weak signals form noisy sample data, often without knowing the design of the target
system. To achieve this goal, these attacks use statistical analysis and error-correction
statistical methods to gain information about the key. The power consumption of the
target device is repeatedly and extensively sampled during the execution of the crypto-
graphic computations. Goal of the attacker is to find the secret key used to cypher the
data at the input of the device, by making guesses on a subset of the key to be discov-
ered, and calculating the values of the processed data in the point of the cryptographic
algorithm selected for the attack. Power traces are collected and divided into two
subsets, depending on the value predicted for the bit selected. The differential trace,
calculated as the difference between the average trace of each subset, shows spikes
in regions where the computed value is correlated to the values being processed. The
correct value of the key can thus be identified from the spikes in its differential trace.
As an example, figure 3.3 shows a simulation of DPA attack on a Kasumi S-box imple-
mented in CMOS technology [1]. The Kasumi block cipher is a Feistel cipher with eight
rounds, with a 64-bit input and a 64-bit output, and a secret key with a length of 128
bits. Kasumi is used as standardized confidentiality algorithm in 3GPP (3rd Generation
Partnership Project) [25]. In figure 3.3 it is possible to note how the differential trace
of the correct key (plotted in black) presents the highest peak, being therefore clearly
distinguishable from the remaining ones and showing a clear correlation to the values
processed by the block cipher. For a more detailed discussion of DPA attacks, see [24].

Electromagnetic analysis (EMA) attacks exploit measurements of the electromag-
netic radiations emitted by a device to reveal sensitive information. This can be per-
formed by placing coils in the neighborhood of the chip and studying the measured
electromagnetic field. The information collected can be therefore analyzed with sim-
ple analysis (SEMA) and differential analysis (DEMA) or more advanced correlation
attacks. Compared to power analysis attacks, EMA attacks present a much more flex-
ible and challenging measurement phase (in some cases measurement can be carried
out at significant distance from the device - 15 feet [23]), and the provided informa-
tion offers a wide spectrum of potential information. A deep knowledge of the layout
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Figure 3.3. Power traces of DPA attack on Kasumi S-box [1]. (©2007IEEE)

will make the attack much more efficient, allowing to isolate the region around which
the measurement should be performed. Moreover, depackaging the chip will avoid
perturbations due to the passivation layers.

Fault induction attacks exploit some type of variation of external and/or environ-
mental parameters to induce faulty behavior in the components in order to interrupt
the normal functioning of the system or to perform privacy or precursor attacks. Faulty
computations are sometimes the easiest way to discover the secret key used within the
device. Results of erroneous operations and behavior can constitute the leak informa-
tion related to the secret parameter to be retrieved. Faults can be induced by acting
on the device’s environment and creating abnormal conditions. Typical fault induction
attacks may involve variation of voltage supply, clock frequency, operating temperature
and environmental radiations and light. As an example, see [26], where the use of the
Chinese Remainder Theorem to improve performances in execution of RSA is exploited
to force a fault-based attack. Differential fault analysis (DFA) has been also introduced
to attack DES implementations [23].

Scan based channel attacks exploit access to scan chains to retrieve secret infor-
mation stored in the device. The concept of scan design was introduced over thirty
years ago by Williams and Eichelberger [27] with the basic aim of making the internal
state of a finite state machine directly controllable and observable. To this end, all
(D-type) flip-flops in the FSM are substituted by master-slave devices provided with a
multiplexer on the data input and - when the FSM is set to test mode - they are con-
nected in a "scan path", i.e., a shift register accessible from external pins. This concept
has been extended for general, complex chips (and boards) through the JTAG standard
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(IEEE 1149.1) that allows various internal modes for the system and makes its inter-
nal operation accessible to external commands and observation - when in test mode
- through the test port. JTAG compliance is by now a universal standard, given the
complexity of testing Systems-on-Chip; internal scan chains are connected to the JTAG
interface during the packaging of the chip, in order to provide on-chip debug capabil-
ity. To prevent access after the test phase, a protection bit is set - using for instance
fuses or anti-fuses - or the scan chain is left unconnected. However, both techniques
can be compromised allowing the attacker to access the information stored in the scan
chain [28].

Attacks exploiting NoC implementations

The above attacks were addressed basically to any type of complex architecture. We
shall now focus on attacks that exploit the specific characteristics of the NoC architec-
ture. A security-aware design of communication architectures is becoming a necessity
in the context of the overall embedded device. While the advantages brought by the
use of a communication centric approach appear clear, an exhaustive evaluation of the
possible weaknesses that in particular may affect an NoC-based system is still an on-
going topic. The increased complexity of this type of system can provide attackers with
new means of inducing security pitfalls, by exploiting the specific implementation and
characteristics of the communication subsystem. In addition to the attacks discussed
in the previous paragraph, several types of attack scenarios can be identified which
exploit Networks-on-Chips characteristics and that derive from networking rather than
from chip-based attacks [29, 18, 17].

Denial-of-Service

A Denial-of-Service attack (DoS attack) is an attempt to make the target device
unavailable to its intended users. Such attacks may address the overall system or some
individual component, such as the communication subsystem. Aim of the attacker is
to reduce the system’s performances and efficiency, up to its complete stop. This type
of attack reaches particular relevance in embedded systems, where reduction of the
already limited amount of available resources can constitute a not negligible problem
for the device and the users. Effects of a DoS attack to an NoC based system can appear
as slowing down of network transmissions, unavailability of network and/or process-
ing and storage cores and disruptions in the inter-core communication. Moreover, the
reduced capabilities of the communication infrastructure may compromise real-time
behaviors of the system.

We consider hereafter attacks impairing bandwidth (and therefore network re-
sources) and power availability.

Bandwidth reduction attacks aim at reducing network resources available to com-
municating IPs, in order to cause higher latency in on-chip transmission and conse-
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quent missing of deadlines in the system behavior. Depending on the routing strategies
adopted, different attacks scenarios can be identified [29]:

• Incorrect path. Packets with erroneous paths or invalid origin and destination
information are injected into the network, with the aim of routing them to a
dead end and occupying transmission channels and network resources, therefore
made unavailable to other valid packets.

• Deadlock. Packets with routing information capable of causing deadlock with
respect to the routing technique adopted are introduced into the network. Pack-
ets do not reach their destination, being blocked at some intermediate resource,
which in turn, as a consequence, is not available for other transmissions. NoCs
implementing wormhole switching are the most likely to suffer from this type of
attack.

• Livelock. As well as deadlock, livelock is a special case of resource starvation.
Packets do not reach their destinations because they enter cyclic paths.

• Flood (Bandwidth Consumption). Aiming at saturating the network, this type of
attack is performed by injecting in the network a large number of packets or
network requests, such as broadcasting or synchronization messages.

Network interfaces provide a basic filter to requests and packets injected mali-
ciously in the network by compromised cores. However, an illegal access to network
interfaces’ configuration registers performed by an attacker may be exploited to carry
out the described types of attacks. Moreover, fault induction techniques can be ap-
plied to modify information stored in such registers and cause disruptions in inter-core
communication.

Data and instructions tampering represents a serious threat for the system. Unau-
thorized access to data and instructions in memory can compromise the execution of
programs running on the system, causing it to crash or to behave in an unpredictable
way. Therefore, protection of critical data represents a critical task, in particular in
multiprocessor Systems-on-Chip, where blocks of memory are often shared among sev-
eral processing units. Tampering of data and instructions in memory can be performed
when a processor writes outside the bounds of the allocated memory, such as for in-
stance in the case of an attack exploiting buffer overflow techniques [21].

Draining attacks aim at reducing the operative life of a battery-powered embed-
ded system. In fact, battery in mobile pervasive devices represents a point of vulner-
ability that must be protected. If an attacker is able to drain a device’s battery, for
example, by having it execute energy-hungry tasks, the device will become not more
available for the user. Literature [30, 14] presents three main methods for an attacker
to drain the battery of a device:
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• Service request power attacks. In this scenario, repeated requests are made to
the victim of the attack. In our context, the victim can be the interconnection
subsystem or one or more processing or storage cores. Requests that could be
made and that would address the communication infrastructure may involve the
establishment of connections to valid or invalid IP cores or the range of memory
addresses, as well as synchronization and broadcasting of generic messages. An
example of service request power attacks to processing cores is given by the
repeated sending of requests to the power manager of the core to keep it in the
Active state [17, 31].

• Benign power attacks. In this kind of attack, valid but energy-hungry tasks are
forced to be executed indefinitely. Ideally invisible to the users, these tasks se-
cretly drain the energy source. The attacker provides valid data to a program
or a task in order to make it execute continuously and consume a considerable
amount of power.

• Malignant power attacks. These attacks are mainly based on viruses, worms or
trojan horses maliciously installed in the device. The attack alters the operating
system kernel or the application binary code in such a way that the execution
consumes a higher amount of energy. Malignant power attacks can be for in-
stance performed by a compromised core sending continuous requests to the
Bluetooth module. The core will keep the module continuously executing the
scan of the available devices and sending requests of connection or malicious
files [22].

Illegal access to sensitive information

This type of attack aims at reading sensitive data, critical instructions or informa-
tion kept in configuration registers on unauthorized targets. Attacks carried out using
several agents can be included under this classification. Buffer overflow, described in
detail in subsection 3.1.2, can be exploited to compromise a core and use its memory
access rights to access an unauthorized range addresses where sensitive data, such as
cryptographic keys, are stored [19]. Moreover, side channel information leaking from
the device can be detected and used to retrieve secret data or pieces of code.

Illegal configuration of system resources

In this type of attack the aim is to alter the execution or configuration of the system
in order to make it perform tasks set by the attacker in addition to its normal duties.
The attacks can be performed as a write access in secure areas in order to modify the
behavior or configuration of the system. The attacker takes control of one or more
resources of the device, and exploits it to achieve its malicious goal. A significant
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#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>

void func ( char p)
{

char stack_temp [20] ;
s t r c p y ( stack_temp , p ) ;
p r i n t f ( stack_temp ) ;

}

in t main ( in t argc , char argv [] )
{

func ( " Th i s_ tex t_causes_an_over f low ! " ) ;
return 0;

}

Figure 3.4. Example of an application causing buffer overflow.

example, exploiting buffer overflow in order to reconfigure the setting of peripheral
interfaces, is described in [19] for an audio CODEC adopting the IEEE 1394 interface
[32]. In the application presented, the CODEC is reconfigured to send unencrypted
audio samples to external unauthorized users, in order to bypass Digital Right Man-
agement’s (DRM) protection.

3.1.2 Protection of critical data

Protection of critical data represents a challenging task in multiprocessor Systems-on-
Chip, where blocks of memory are often shared among several IPs. Unauthorized
access to data and instructions in memory can compromise the execution of programs
running on the systems - by tampering with the information stored in selected areas -
or cause the acquisition of critical information by external entities, such as in the case
of systems dealing with the exchange and management of cryptographic keys [19].

Attacks exploiting buffer overflow aim at writing outside the bounds of a block
of the allocated memory, in order to corrupt data, crash the program, or cause the
execution of malicious code. The buffer overflow [21] is probably the best-known type
of attack aimed at obtaining illegal memory accesses. In a traditional attack exploiting
buffer overflow, the attacker passes as program arguments data whose dimension will
exceed the one allocated in the stack buffer. As a result, the information on the stack is
overwritten, as well as the return address. The data passed to the program are crafted
in order to set the value of the return address to point to malicious code contained in
the attacker’s data. When the function returns, the malicious code is executed.
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Figure 3.5. Stack behavior during the exploitation of buffer overflow.

An example of a simple application vulnerable to buffer overflow attacks is shown
in figure 3.4. In the code shown, strcpy() is the vulnerable function. In fact, this C
function lacks bounds checking and when the string passed as argument of func(char

*p) is bigger than the reserved memory space for the buffer, the information passed
overwrites the adjacent positions in the stack (see figure 3.5). The input string can be
maliciously arranged in order to contain attack code and a return address pointing to
the initial instruction of the attack code, which can be for instance a virus or a program
aiming at retrieving confidential information from memory. Once the malicious code
is running on the compromised core, it can exploit the rights of the application and
the core to access the memory. A practical example of exploitation of buffer overflow
in embedded systems is presented in detail in [19], where the attacker attempts to
obtain a copy of the cryptographic key used to verify the integrity and authenticity of
the rights object employed in the Digital Rights Management protocol.

Considering off-chip distributed shared memory multiprocessors [33, 34], the main
security problems are caused by the possibility of physically accessing the communica-
tion subsystem. In this case, one of the most famous attack is the insertion of a device
targeting at tapping or tampering with a bus to change program behavior [35, 33].
For example, Sony PlayStation and Microsoft Xbox can be hacked by modchips [35],
which can be soldered to the buses on the motherboard, allowing the console to play
pirated games. A clean machine always checks the digital signature and media flags
from a registered CD by executing a small code in BIOS. A modchip monitors the buses
to block the code from the BIOS and injects spoofing code at the appropriate time. The
hacked machine will execute the new code that skips authorization checks. This kind
of attack can be easily performed. In fact, the cost of the modchip is around $60, while
installing the chip is a relatively easy operation [35].

In multiprocessor System-on-Chip architectures based on an NoC, these direct at-
tacks to the communication subsystem will be unfeasible since there is no physical
network access, if not through a debugging or testing interface [28]. The presence of
a Network-on-Chip also avoids the possibility of sniffing (or snooping) the information
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that is passing through the communication channel, unless the messages are explic-
itly broadcasted by the initiator of the communication. The only way to replicate the
previous attacks in such systems is to use direct read/write operations to the memory
subsystem, since it stores the system status.

According to [36], it is possible to classify attacks to memory or to the communi-
cation subsystem in three categories:

• Sabotage: This first type of attack has as main goal crashing the application or
damaging the target system. An example is the possibility to write random values
in the memory by overwriting the application source code and its data. This type
of attack does not need any knowledge of the target application but, on the other
hand, it lacks incentives to be performed since the financial reward for a sabotage

attack is very limited.

• Passive: The main characteristic of this attack is that typically it is non-invasive.
In fact, the goal of the attacker is only to steal sensitive information without mod-
ifying the system behavior and without being discovered. Reading passwords or
economic information directly from the memory are simple examples of passive

attacks.

• Active: This is for sure the most difficult attack to perform since it needs a deep
knowledge of the target application but, on the other side, it is the most fruitful
for the attacker. Active attacks result in an unauthorized state change of the
target applications, such as the manipulation of memory data to perform other
unauthorized actions.

Without making any assumption on the specific capabilities of the attacker to obtain
control of processing cores to illegally access the memory, it is possible to notice how,
without a careful hardware design, simple software fallacies (such as the buffer over-
flow) can give the attacker the possibility to perform all the above mentioned memory
attacks without much difficulty.

3.1.3 Monitoring system activities to prevent Denial-of-Service attacks

A compromised core executing malicious code can be used to perform a Denial-of-

Service (DoS) attacks against the system, with the aim of reducing system performance
and operative life of battery and device [37]. In DoS attacks, an attacker attempts
to prevent legitimate users from accessing information or services. In common data
networks, an obvious type of DoS attack can occur when an attacker "floods" a network
with information. Since servers are able to process only a certain number of requests at
once, in the case of an overload of requests the server can delay processing a legitimate
request, causing disruption in the service provided. Similarly, DoS attacks to complex
System-on-Chip architectures will target shared resources of the system, such as the
communication subsystem or shared memories or peripherals.
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While DoS attacks have been studied for Chip Multiprocessors (CMP) [38] and Si-
multaneous Multithreading (SMT) processors [39], no study has been presented up to
now concerning the consequences that DoS attack may cause on architectures adopt-
ing the NoC paradigm as interconnecting subsystem. In [38], authors discuss DoS
attacks on Chip Multiprocessors (CMP). In such systems, sharing resources such as the
L2 cache provides the advantage of reduced inter-core communication overhead and
therefore a higher overall throughput for the entire system. However, it also makes the
system more susceptible to DoS attacks targeting these shared resources, increasing
the possibility of having degradation of performance. Authors design several types of
Denial-of-Service attacks and analyze their impact to the performance of CMPs, evalu-
ating how a cracker can exploit the shared resources of a CMP by injecting malicious
threads to deprive resources of legitimate applications and cause performance degra-
dation. Microarchitectural Denial-of-Service in SMT processors is discussed in [39].
Microarchitectural DoS attacks occur because a shared resource is exploited in an un-
expected manner by one (or more) malicious thread influencing the performance of
other threads. For instance, shared resources targeted by the malicious thread may
include the instruction cache. If the instruction cache consistency is maintained by
flushing the full trace cache, a single action by one thread can impact all threads shar-
ing that same cache. Each thread can be stalled by tens of cycles as the trace cache is
rebuilt; during this time, an attacking thread can simply cause the trace cache to be
flushed again. Similarly, SMT processor with shared pipeline can suffer from the same
type of attack [39]. A Denial-of-Service attack on SMT architectures, based on power
density is presented in [40]. In high-performance microprocessors, power density re-
lates to the problem of high power dissipation in a small area causing local hot spots
in the chip. In the DoS attack discussed in the work, a malicious thread repeatedly
accesses a resource to create a hot spot at that same resource. If the resource targeted
by the attacks is shared, the hot spot affects all the threads and it is harder to identify
the source of the problem. Several solutions to identify the occurrence of the attack
and to mitigate its effects on the overall system performances are discussed.

As discussed in subsection 3.1.1, in the case of NoCs, DoS attacks such as Band-

width consumption or Draining attacks can be easily performed once the malicious code
takes over one of the processing elements. In the remaining part of this subsection we
present the results of a set of experiments we performed to evaluate the effects of
flooding attacks on the two different architectures shown in figure 3.6, i.e., a typical
embedded architecture composed of 2 processors (initiators), 1 shared memory and 6
generic targets, and a shared memory multiprocessor composed of 5 initiators and 1
target shared memory. The experiments consist in simulating the effects of a DoS at-
tack generated by running a simple malicious code on one of the processors of the
architectures, and in measuring increases in links utilization and performance loss in
the system. As processing elements, we consider processors of the ARM9 family [41],
with data and instruction cache memories of 8 KBytes (for instance the ARM922T).
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(a) Embedded architecture with 2 initiators, 1
shared memory and 6 generic targets.

(b) Multiprocessor architecture composed of 5
initiators and 1 target memory.

Figure 3.6. Architectures considered in the experiments implementing the DoS attack.

One memory block is shared among the processing elements acting as initiators. The
NoC is a mesh, implementing a transaction-based protocol, and a XY routing. In the
experiments, length of buffers in routers is of 4 slots, while buffers in NIs are 16 slots
long and able to store completely one packet. The NoC provides the cores with a
Quality-of-Service class of type Best Effort (BE) [9], and the switch allocator of the
routers assigns the use of output ports by employing a Round Robin algorithm. More
advanced techniques exist to guarantee a given throughput to each communication in
the NoC [9]. While these techniques may mitigate the effects of the DoS attack on the
communication infrastructure, they do not modify the effects on the shared resource
utilization (e.g. the shared memory). Moreover, depending on the implementation of
the Quality-of-Service techniques of the NoC, the compromised core can be allowed to
reserve connections for a long time (for instance using lock-down operations), poten-
tially amplifying the effects of the attack on shared resources.

Fig. 3.7 shows the simple malicious code we designed to cause the DoS attack in
the systems presented in figure 3.6. The code is crafted with the goal of reducing the
bandwidth available to the various initiators, as well as decreasing the availability of
the shared memory, by generating frequent cache misses. Frequent data cache misses
are generated due to the fact that in C matrices are stored by rows (row-major order),
while in the code presented array is accessed by columns instead that by rows. Without
loss of generality, we assume in our experiments the malicious code running on a core
different than the processing elements executing the main application. Alternatively,
the malicious code could be run as thread of the main processor.
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def ine s i z e 100000000
#def ine l i m i t 10000

in t array [ s i z e ] ;

in t main ()
{

in t i = 0;
in t j = 0;

for ( j = 0; j++; j < s i z e )
{

array [ i ] = j ;
i+=l i m i t ;
i f ( i >= s i z e ) i = 2;

}

}

Figure 3.7. Code used to perform the DoS attack.

In our experiments, we focus on the traffic generated by the communication trans-
actions among initiators and the block of shared memory. The malicious code is able to
increase the time needed to complete a memory transaction and therefore to degrade
the performance of the system.

We simulated the attack by implementing a SystemC NoC simulator. We instru-
mented the code in order to extract information about the time needed for memory
transactions and the links utilization. Five multimedia applications were considered
in the experiments: four from the MiBench embedded benchmark suite [42], and the
H263 video codec. We traced memory requests and cache misses generated by the ap-
plications running on an ARM processor model simulated with the SimpleScalar/ARM
simulator [43]. Cache misses generate load or store requests to the shared memory,
that are converted by the NI in NoC in packets that are forwarded by the NoC to the
NI of the target memory. Once the memory operation is completed, data requested
(or an acknowledgement signal) are sent back to the initiator of the transaction. The
storage element was modeled as a single write/read port memory. In our simulations,
we neglect traffic due to system synchronization and to other internal communica-
tions, focusing only on the effects of the DoS attack on the performance degradation
of the cores running the benchmark. Therefore, the results we obtain are optimistic.
In fact, under this assumption, we reduce the global traffic on the NoC, as well as the
number of possible conflicts for using shared resources. We run the NoC simulator
for 10’000’000 clock cycles, skipping the first 100’000 cycles to avoid the transients
due to the initialization of caches and NoC shared resources. In the first architecture
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Figure 3.8. Transaction latency for several benchmarks in the embedded architecture.

Table 3.1. Performance loss due to the DoS attack.

Benchmark Miss rate CPI reduction (%)

jpeg 0.0105 40.29
lame 0.0180 42.59
sha 0.0007 40.34

H263 0.0064 40.13
tiff2rgba 0.0082 39.27

considered (embedded architecture - figure 3.6(a)), ARM0 runs the benchmark, while
ARM1 runs the malicious code. In the second architecture (shared memory multiproces-

sor - figure 3.6(b)), we perform several experiments by changing the core running the
malicious code, while letting the remaining cores run copies of the benchmark.

Effects of the DoS attack on the embedded architecture

Figure 3.8 shows the average latency, in terms of clock cycles, of a transaction from the
ARM processor running the benchmarks. Values are presented for the case in which
the core is not yet compromised and the one in which the system is under the effects
of the DoS attack. Results show the effects of attacks in the case of load and store

transactions. While for all the benchmarks the transaction latency is almost the same
in the case of normal behavior, the effect of the DoS attack is more relevant when
executing those benchmarks requiring a higher number of accesses to the memory, i.e.,
those that present a higher number of cache misses. The lame application results to
be the most sensitive to the DoS attack, with an increase of the transaction latency of
around 66%. As it can be noticed from figure 3.8, the effects on the transaction latency
of the DoS attack carried out with store operations does not differ significantly from
those obtained with the load operation.
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Figure 3.9. Link utilization for the embedded architecture.

Table 3.1 summarizes the measured performance loss of the main processor for
the several benchmarks. The reference average CPI of the ARM9 family is 1.76 [41].
The bigger loss can be seen in the execution of the lame benchmark, where the CPI
reduction is up to 42.59%. For all the benchmarks, the reduction is above the 39%.
This result was again expected, since the lame benchmark is the one that access more
frequently the remote shared memory.

Figure 3.9 shows link utilization in the NoC, in the case of the lame benchmark.
Link utilization is measured as fraction of the use (value 1 is equivalent to a link always
occupied transferring data). The figure shows only the links crossed by the packets
following the XY routing strategy. In the figure, the notation a→ b indicates the NoC
link from element a to element b, where a and b are the NoC components as called in
figure 3.6(a). It is possible to notice how the influence of the DoS attack on the link
utilization depends on the relative position in the NoC of the compromised core. In
the case of the load instructions, the links more affected by the attack are those on the
path taken by the ack signals from the memory to the compromised core. In the case
of store, links more affected are situated on the path from the compromised core to the
memory. This is due to the fact that a load instruction issued by the compromised core
implies the transfer from the memory to the core of a relevant amount of data that
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tend to occupy the NoC resources on that path, while for the store instruction the data
are mainly transferred from the compromised core to the memory.
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Figure 3.10. Transaction latency in the multiprocessor architecture.
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Figure 3.11. Link utilization for the multiprocessor architecture.

Effects of the DoS attack on the shared memory multiprocessor architecture

Figure 3.10 shows the average latency, in terms of clock cycles, of a transaction from
the processing cores running the lame benchmark. Results are shown for the case in
which the malicious code is executed in PE0, PE2, and in PE4. The DoS attack causes
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an increase of the transaction latency to up the 91%, therefore notably influencing the
overall system performance.

Figure 3.11 shows links utilization for the NoC, in the two cases analyzed. It is
possible to notice how the usage of the links, in particular of the one involved in the
communication generated by the malicious code, dramatically increases. Also in these
cases, the increase in the links utilization depends on the position of the compromised
core in the NoC.

3.2 Monitoring NoCs

The integration of large numbers of heterogeneous processing cores, storage elements
and I/O peripherals in the same platform poses additional challenges to application
designers. A high number of complex concurrent applications will share the available
resources providing users with new services and functionalities, while platform-based
design will allow to reduce the cost per single item by giving the system the possi-
bility to easily adapt to different application requirements. The efficient exploitation
of available resources in these complex systems represents however a challenge for
application designers, and new tools are needed for NoC platforms, which employ
information derived by a measurements taken on the running system by an ad-hoc
implemented monitoring system.

On the one hand, in order to reduce the cost per single item and the time-to-market,
hardware platforms are in general over-designed in terms of the offered functionalities.
By following the platform-based design approach, the same platform is customized for
specific applications by turning off unneeded resources, giving the system the possibil-
ity to easily and rapidly adapt to different application requirements and/or customer
needs. The complexity of these systems raises the problem of efficiently exploiting
the amount of resources available, and of understanding the system behavior once the
platform has been implemented. A monitoring system is therefore needed for helping
designers in the tasks of optimizing resources’ utilization, by exploiting information
derived from measurements taken on the running system. Modern, high performance
processors deal with this problem through the use of special on-chip hardware that can
monitor performances and system behavior [44]. By using a set of selected hardware
event detectors and counters, information concerning system elements is collected dur-
ing program execution, analyzed, and then exploited to support the optimization of
users’ applications and the performance improvement. In the case of NoC architec-
tures, the presence of a highly distributed environment poses several challenges, in
terms of event detection and data collection, that should be addressed by the platform
designers.

On the other hand, the large amount of hardware resources present makes it pos-
sible to execute on the same device a very large number of diversified multimedia and
mobile applications. The execution of these applications introduce the necessity to
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match their requirements with the resources of the platform. However, applications’
requirements are usually not fully known at design time, in particular in the case of
changing run-time conditions or in the case of multiple tasks executing with different
computational effort, communication bandwidth, power consumption, and competing
for the same shared resources [45]. In order to cope with uncertainty, nowadays sys-
tems are over-sized, and their resources are not optimally used with a static and sepa-
rated allocation for each critical service. In future devices, it is foreseen that adaptivity
of systems will ensure optimal dimensioning and utilization of resources as well as
enhanced predictability via a dynamic and global run-time management [45, 46, 47].
Having the possibility of monitoring run-time activities and reacting to unpredicted
changes of the system behavior enables to deal with the problem of designing complex
system whose behavior could be only in part foreseen at design and compile time by
system designers.

For both types of design aspects, an efficient and reliable monitoring system is
needed for measuring resources utilization and monitoring system behavior. Similarly,
measurements performed on an instance of the application running on a virtual plat-

form [48, 49] can be used for the profiling and optimization phase at design time.
Virtual platforms simulate the behavior of their target architectures, and by specific
instrumentation of the simulator code it is possible to measure the desired application
characteristics at execution time. However, in the case of application scenarios chang-
ing at run-time, a monitoring system embedded into the actual platform is needed to
support the detection of modification in the application characteristics and therefore
the run-time adaptivity of the system. Being the NoC the central element of architec-
tures based on the communication-centric paradigm, it represents the ideal means for
collecting the information about the individual cores as well as about the system as a
whole.

In this dissertation, we will address the monitoring of NoC activities, in particular
focusing on the events that can be detected from the network interface. For this type
of monitoring, we identified four main categories of events to be taken into account:
throughput characterization, timing/latency proprieties, resource utilization (buffers),
events and messages statistics.

• Throughput characterization deals with the measurement of the amount of
data transmitted and received by the cores. Data collected can provide informa-
tion useful for optimizing the distribution of application tasks in the system, for
verifying that the bandwidth available to the core is sufficient for guaranteeing
its communication requirements, or for optimizing at run-time the power con-
sumption due to data transmission. An example of possible applications that can
benefit from monitoring the run-time throughput generated by processing cores
is given in [50]. By measuring the amount of traffic dynamically generated by
the cores, it is possible to adapt the traffic parameters to meet the performance
requirements needed in those SoC platforms implementing mobile, multimedia
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and 3DTV/HDTV applications for which, becoming more general purpose than
in the past, it is no longer possible to clearly identify a set of reference use cases.

• Information about timing and latency plays a significant role in systems in
which latency in communication is critical (for instance for memory-intensive
applications), as well as for the estimation of the length of tasks execution in
target cores, both for helping the operating system scheduling, and for identi-
fying possible bottlenecks. As shown in [51], this is particularly important in
systems such as Mobile Internet Devices, which can potentially execute at the
same time communication services, multimedia playback, content creation and
office applications, with the need of simultaneously providing the applications
with guaranteed throughput and best-effort services, while limiting communi-
cation latency for traffic generated from general-purpose applications running
on processors with caches, components system performance often dramatically
depends on [52].

• For motivations similar to those aforementioned, resources’ utilization can be
monitored for optimizing bandwidth allocation, as well as for discovering pos-
sible run-time problems of the communication system, such as the violation of
Quality of Service (QoS) contracts between cores and NoC. In systems like the
one presented in [53], the Operating System (OS) monitors NoC communica-
tions by polling the network interface through a remote function call, in order to
obtain the traffic statistics and the utilization of the NI’s queues. By exploiting
this information, the OS is able to control the message injection rate by limiting
the time wherein a certain processor is allowed to send messages onto the net-
work, as well as changing routers’ routing table for diverting message streams
from one channel to another.

• Detection of NoC events’ and messages’ characteristics, among the others, is
useful to verify the behavior of network control messages, as well as to tune
network characteristics (messages length and patterns, message injection rate,
etc) to better satisfy application requirements, in particular in adaptive systems.
Information detected can be employed for debugging purposes, as well as for
helping tracing behaviors and changes on the system configuration at run-time.
Monitoring this type of events can also be useful for security purposes [18, 54].
Events such as the overflow of the expected message length in FIFOs or the
tentative of accessing restricted memory addresses are associated with poten-
tial malicious behaviors of processing elements, and lead to possible isolation of
cores or network reconfiguration.

In addition to the list of detectable events, another aspect to be considered in
the design of a monitoring architecture is its influence on the observed system, i.e.,
the so called probe effect [55]. It refers to the fact that any attempt to observe the
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behavior of a generic distributed system may change the behavior of the system itself.
In general, the monitoring system should be able to minimize or completely avoid to
influence with its operations the measurements extracted on the system’s timing and
execution properties, in order to avoid non-deterministic behavior in programs with
race conditions and poor synchronization [56, 57, 58]. Besides the detection of the
events, the characteristic of non-intrusiveness concerns also the collection and storage
of monitoring data, that should not influence the nominal data transmission. Moreover,
it is possible to distinguish between the passive and active monitoring of a system, the
former using devices that just observe the occurrences of the events and the latter
also injecting test signals for observing the results of the injection on the behavior of
the system. In our work, we consider passive monitoring, therefore focusing on those
events that can be observed by the network interface, both in terms of applications
behavior and in terms of the communication system’s behavior.

3.3 Fault susceptibility of NoCs

As complexity of design increases, and as CMOS technology scales down into the deep-
submicron domain, devices and interconnect are subject to new types of malfunctions
and failures that are hard to predict and to avoid with the current design methodolo-
gies [59, 60]. This is particularly true for embedded systems, often composed of a
high number of heterogeneous IP cores (possibly offered by different vendors), and
connected by means of a Network-on-Chip (NoC). In order to deal with faults in such
complex systems, new fault tolerant approaches are needed: new methodologies and
architectural solutions should be explored.

The network interface represents a critical point in the design of a fault tolerant
NoC. NIs are in charge of interfacing IP cores to the communication infrastructure,
and therefore, to the overall system. Only few works have addressed up to now its
fault tolerance. Faults in the NI can cause errors that, directly affecting the correct
transmission of data and control information, could be extremely hard to detect and
recover without the appropriate support (leading for instance to deadlock or livelock

conditions). Moreover, a faulty NI can isolate a working core (or cluster of cores) from
the rest of the system, thus generating a massive and unwanted extension of the fault
area.

Particular attention should therefore be given to the design of the fault tolerant
provisions of the NI. Usual fault tolerant hardware implementations of sensitive com-
ponents employ triple module redundancy (TMR), in which three copies of the same
component perform the same operation, and the single output result is obtained by
a voting system [61]. A TMR implementation is however expensive in terms of the
amount of resources and energy needed; in particular in the case of embedded sys-
tems, the strict design constraints make the extensive use of hardware redundancy not
economically viable. This is particularly true for NIs, which often represent a signifi-
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Table 3.2. Fault injection results.

Component Fault location Fault percentage (%)

NIs

LUT 18.41
Buffers 30.05
FSMs 0.21
Other 2.67
Total 51.34

Routers

Input buffers 30.53
Switch allocators 3.33
FSMs 0.42
Other 14.38
Total 48.66

cant part of the area of the overall NoC [62].

In this dissertation, we focus on providing protection to the NI from both soft and
hard errors.

Soft errors, also called single-event upsets (SEUs), are caused by the interaction
of the system with radiations such as neutrons from cosmic rays and alpha particles
from packaging material. While traditionally this type of concerns regarded mainly
space applications, with newer technologies soft errors are much more frequent than
in the previous generations [63]. Moreover, embedded systems often operate in harsh
environments in which the soft error rate (SER) is significantly higher than in normal
operating conditions at ground level. The SER increases also in devices implement-
ing dynamic frequency and voltage scaling (DFVS) techniques for energy management
[64], as well as varying often unpredictably with technology scaling, process variation,
and speed operations. The number of soft errors affecting the device is directly propor-
tional to the amount and dimension of storage elements in the system. Typical values
for the SER, reported for modern SRAM cells, are at ground level in the range of 1000
to 10000 Failures in Time for Mbit of storage components (FIT/Mbit), while more than
15 times those values at 60’000 feet [65]. SER of the same order of magnitude can be
also found for flip-flops implemented in newer technologies [63].

In this work, we also consider permanent faults. These may derive from defects
occurred during the manufacturing process and that were not correctly identified with
standard testing techniques at the end of production, as well as from defects that occur
during the system’s lifetime. Considering this second case, for example, the interac-
tion with high energy particles can permanently damage memory cells (such faults are
estimated to be around the 2% of the total soft errors [65]); wear-out mechanisms
such as electro-migration, gate oxide breakdown, hot carrier injection, and negative
bias temperature instability can moreover cause permanent failures in the device [66].
Hard fault causes are extremely varied and may be process-dependent; as a conse-
quence, rather than pinpointing the specific cause, in this dissertation we will adopt
higher-level fault models, as done, in general, in the literature on fault-tolerance.
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In order to understand the susceptibility of the network interface and the NoC, we
employed a fault injection system. As model for the NI, we consider the baseline NI
architecture shown in figure 2.1, while for the routers we implemented a version of the
input buffer architecture presented in chapter 2. In the experiments, we considered a
tile-based NoC in a mesh topology. The NoC implements a wormhole control flow and
a deterministic deadlock-free source-based routing. Without loss of generality, in these
experiments we implement an XY routing. Network packets are 10 flits long. The
header is contained in the first flit of the packet. We considered a 34-bit data-path (32
bits for data and 2 bits for control information) and a depth of 4 for the input buffers
of routers and 8 for input and output buffers of NIs. Both network interfaces and
switches were implemented in VHDL, and synthesized with Synopsys Design Compiler,
by employing the Nangate 45nm CSS typical open cell technology library [67]. In
our synthesis, we targeted a frequency of 500 MHz. In the case of a 4x4 tiled mesh
topology, the area obtained for the NI and the router is respectively 0.0077mm2 and
0.0108mm2, while the number of flip-flops for the two components is 965 and 1140,
respectively.

We use a random traffic generator system to exercise the NoC components dur-
ing the fault injection campaign. Every node generates packets random destination
nodes with an injection rate equal to 0.01 flits per cycle per node. The fault injection
simulation was run for 10 Mcycles. The system evaluated a total of 43’921 faults.

In the fault injection campaign, we focused on Single Event Upsets. SEUs were
modeled as bit flips that occur in any of the NIs and routers storage cells (registers,
flip-flops, and latches). Bit flips are assumed to occur at random times and location
during the circuits’ operation. We chose to consider at this level only SEUs because
errors induced by such faults in our reference architecture (and the detection/recovery
countermeasures we introduce) provide a good representation of the ones induced by
hard faults as well. While this is obvious for hard faults in the memory cells and in
registers, other faults will also lead to corrupting the information derived from the
NI’s functions as detailed here below; since our approach targets errors and operates
at functional level, checking SEUs coverage implicitly checks for coverage of the hard
faults as well. The faults non exercised by our fault injection campaign involve mainly
glue logic, that represents less than 4% of the total NI’s area.

Table 3.2 reports the percentage of faults measured for each component of NIs and
routers. Both in the case of the NI and the router, Other components include glue logic
and some additional registers needed for the control of the FIFOs. For a 4x4 mesh
topology, the number of faults concerning NIs and routers are approximately similar.

By analyzing the functional architecture, we identified the following types of func-
tional errors:

1. Corrupt Data Error: data are corrupted during the operations of the NI and
wrong data are sent through the communication channel. This type of error can
happen due to faults in the protocol adapters and in the FIFOs;
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Table 3.3. Errors measured in NIs during the fault injection.

Error Type

Corr. data Corr. prot. conv. Routing path Control flow No effect

Fault location No. % No. % No. % No. % No. %
LUT 0 0 0 0 154’040 81.07 0 0 135 0.07

Buffers 16 0.01 443 0.23 0 0 0 0 12’739 6.07
FSMs 0 0 92 0.05 0 0 0 0 0 0
Other 3 0.001 390 0.21 0 0 48 0.03 731 0.38
Total 19 0.011 925 0.49 154’040 81.07 48 0.03 13’605 6.52

Table 3.4. Errors measured in routers during the fault injection.

Error Type

Corr. data Routing path Mult. copies Control flow Prot. error No effect

Fault location No. % No. % No. % No. % No. % No. %
Input buffers 11 0.006 3 0.002 0 0 2 0.001 610 0.321 12’785 6.729

Switch allocators 0 0 0 0 490 0.205 0 0 98 0.051 975 0.513
FSMs 0 0 0 0 0 0 0 0 182 0.096 0 0
Other 29 0.015 8 0.004 0 0 379 0.199 0 0 5’901 3.11
Total 40 0.021 11 0.006 490 0.205 381 0.2 890 0.468 19’661 10.352

2. Corrupt Protocol Conversion Error: on the side of the node initiating the trans-
action, faults in the NI lead to control signals received from the core being cor-
rupted, causing the NI kernel to generate wrong routing and control information
for the packet header. On the target node side, a fault affecting the protocol con-
version will cause a wrong implementation of the core communication protocol,
invalidating or disrupting the operation performed. This type of error is due to
faults in the NI’s protocol adapters;

3. Routing Path Error: routing paths inserted in packets’ headers are calculated
looking up the addresses of requested operations. Faults in the lookup table
(LUT) cause erroneous routing and control information to be inserted in the
packet headers, leading to possible communication errors, such as misdirection,
deadlock, or livelock. Similarly, faults in the FIFOs, when storing this informa-
tion, can cause this type of error;

4. Control Flow Error: faults in registers storing control information in FIFOs and
protocol adapters cause errors in the control flow of the FIFOs, by communicat-
ing corrupted information about the flits in the buffers. For instance, multiple
copies of an outgoing or incoming packet could be sent to the input or output
port throughout the time.

Table 3.3 shows errors generated on the NIs by the faults injected, according to
the high-level error model just described. The table shows the measured number of
errors and the related percentage with respect to the total errors in the NoC. As it is



39 3.3 Fault susceptibility of NoCs

0

20

40

60

80

100

 

 3x3 4x4 5x5 6x6 7x7 8x8  

%
 fa

ul
ts

NoC dimension

Routers
NIs

(a) Faults distribution

0

20

40

60

80

100

 

 3x3 4x4 5x5 6x6 7x7 8x8  

%
 e

rr
or

s

NoC dimension

Routers
NIs

(b) Errors distribution

Figure 3.12. Total faults and errors involving NIs and routers when varying the number

of nodes in the NoC.

possible to note from the table, a significant percentage of the faults leads to Routing

Path Errors (around the 81%). This is due to the fact that while bit flips in buffers
would be overwritten by new inserted data, faults in the LUT will continue to generate
packets with erroneous path information until the stored information is updated or
reset. The second most significant type of error (Corrupt Protocol Conversion Error) is
due to faults mainly concerning NIs’ buffers’ and NIs’ control registers, and it is likely
to lead the NI to a crash, i.e., to a situation in which the NI reaches a state in which
its operations are definitely compromised, and a hardware reset is needed in order to
have the system working again correctly. It has to be noticed that the results shown in
table 3.3 strongly depend on the traffic distribution, on the packet injection rate, and
on the dimension of the NoC. The experiments performed consider a relatively low
utilization of the NoC, for which buffers are most of the time empty. Therefore, SEUs
hitting buffers have low probability of affecting flits stored in FIFOs, causing no errors
in the NI (6.07%).

Table 3.4 shows errors generated into the routers by the faults injected. The table
shows the measured number of errors and the related percentage with respect to the
total errors in the NoC. In the case of the router, we adapt to our implementation the
system level fault models defined in [68] and [69]:

• Corrupt Data Error: transported data are corrupted during its passage through
the router;

• Routing Path Error: the data packet is routed to a direction different than the
one implied by the routing information originally inserted in the header of the
packet;

• Multiple Copies Error: packets are duplicated and sent to multiple ports;
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• Control Flow Error: the control flow of the FIFOs is corrupted, due to faults in
registers storing control information in the router;

• Protocol Error: a temporary or permanent fault in the state register of a Finite
State Machine implementing the router protocol leads the router to a state from
which it cannot recover.

With respect to the total router’s faults, a significant percentage of the faults leads
to a router crash. Reasons for this are due to faults in the control registers of the
buffers, to packets stuck in the router for faults in the switch allocators, and to cor-
rupted FSM state registers. Multiple Copies Errors represent another significant type of
error for routers, which count for the 0.2% of the total NoC’s errors. Similarly to the
results obtained for the NIs, the errors measured depends on the traffic characteris-
tics, and on the utilization of the resources when hit by the faults. For the case of the
routers, faults not leading to any error count for approximately 10.4%.

As tables 3.3 and 3.4 show, NIs represent the main source of errors in the NoC
(around 88.7%). Figure 3.12 shows how the distribution of faults and errors in NIs
and in routers changes when varying the number of nodes in the NoC. Experiments
were performed by imposing the same traffic condition, topology, and faults generation
than in the case of the 4x4 NoC. The increasing influence of the NI in the number of
total faults and errors is due to the fact that, while the total area of the routers is
approximately directly proportional to the number of nodes n in the topology, the total
area of the NIs (and in particular of the LUTs) increases with n2. This fact causes NIs
to have higher probability to be hit by faults when the number of nodes increases, and,
consequently, to lead to errors in the system.

3.4 Summary

This chapter described the motivations for choosing security, monitoring, and fault

tolerance as high-level services to be implemented in the NoC.
With respect to the aspect of security in NoCs, in subsection 3.1.1 we showed sev-

eral type of attacks that can target NoC based architectures, and embedded systems in
general. We focused in particular on attacks aiming at accessing critical information
stored on the system, or at compromising the system’s behavior. The secure commu-
nication architecture proposed in chapter 5 is conceived to deal with the previously
described memory-based attacks and weaknesses intrinsic of a multiprocessors system
with shared memory, exploiting the characteristics of the Network-on-Chip to detect
and to prevent them.

With respect to the monitoring of NoCs, subsection 3.2 pointed out that a careful
design of the monitoring system is needed, which involves the design of probes detect-
ing the measured events, and of methods for collecting, storing, and processing the
collected information. Moreover, subsection 3.2 presented a taxonomy of events that



41 3.4 Summary

an NoC monitoring system should consider, as well as discussing general characteris-
tics of data collection and storage. The design of an NoC monitoring system will be
discussed in chapter 6.

With respect to the aspect of fault tolerance, in subsection 3.3 we showed, by
performing a fault injection campaign, that the NI represents a critical element in the
design of a fault tolerant NoC. As figure 3.12 shows, this fact is particularly true the
number of nodes in the NoC increases. These results calls for the need of designing
ad-hoc fault tolerant solutions for NI’s components. In chapter 7, we will address in
particular the fault tolerant aspects of network interfaces.
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Chapter 4

Related Work

Networks-on-Chip have been, since the first papers proposing the subject [6, 7], a
scientific topic in which researchers have been particularly active. Even if the NoC idea
seems an adaptation to the SoC context of distribute computers network concepts,
many research issues are still open, due to the different constraints and amount of
resources available in the NoC case. Key open points in current literature are, for
instance, choice of network topology [70, 71, 72, 73, 74, 75, 76, 77], routing strategies
[78, 79, 80, 81, 82, 83, 84, 85, 86], flow control [78, 79, 87, 88, 89], queuing sizing
and management [78, 90, 91, 92], and methods to guarantee Quality of Service (QoS)
at low hardware cost [93, 94, 95, 96, 97, 98, 51]. Asynchronous implementations of
NoCs have been proposed and evaluated by different research groups [99, 100, 101,
102], as well as implementations based on optical and wireless technologies [103, 104,
105, 106, 107, 108], or on 3D chips [109, 110, 111].

In the following sections, we will present and discuss related work about NoCs
which focuses on the high-level services considered in this dissertation, namely, secu-
rity, run-time monitoring, and fault-tolerance.

4.1 Security in Networks-on-Chip

Security is gaining increasing relevance in the design of embedded systems, intrinsi-
cally constrained in terms of computing power, area, and energy consumption. While
architectures for general purpose and embedded processors have been the object of
interesting studies in [112, 113, 12, 11, 19], only recently the aspects of security more
specifically related to NoC-based systems have been taken into account. A specific so-
lution to secure the exchange of cryptographic keys within an NoC was presented in
[114] and [115]. The work addresses in particular the protection from power/EM at-
tacks of a system containing non-secure cores as well as secure ones, the "secure cores"
being defined as hardware IP cores which can execute one or more security applica-
tions. The framework supports authentication, encryption, key exchange, new user
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keys and public key storage, and other similar procedures. No unencrypted key leaves
the cores of the NoC and only secure IP cores running trusted software are supported.
At the network level, security is based on symmetric key cryptography, where each
secure core has its own security wrapper storing a private network key in non-volatile
memory.

Diguet et al. [18] propose a first solution to secure a reconfigurable SoC based
on NoC. The system is based on Secure Network Interfaces (SNIs) and on a Secure

Configuration Manager (SCM). The SNIs act as filter for the network and handle attack
symptoms that may be caused by denial of service attacks and unauthorized read/write
accesses. The SCM configures system resources and network interfaces, monitoring
the system for possible attacks. A routing technique based on reversed forward path
calculation is proposed in [29]. The technique allows verifying that the sender of the
packet arrived at a specific SNI has the right to communicate with it.

It is worth noting that the use of protected transactions is also included in the
specifications defined by the Open Core Protocol International Partnership (OCP-IP)
Association [8]. The standard OCP interface can be extended through a layered profile
in order to create a secure domain across the SoC and provide protection against soft-
ware attacks and against some selective hardware attacks. The secure domain might
include CPU, memory, I/O etc... that need to be secured by using a collection of hard-
ware and software features such as secured interrupts, secured memory, or special
instructions to access the secure mode of the processor.

Memory data protection in general embedded systems architectures is another sub-
ject that should be considered as work related the NoC security solutions presented in
this dissertation. A specific implementation of a protection unit for data stored in mem-
ory is described in [19]. The proposed module enforces access control rules that spec-
ify how a processing element can access a memory device or peripheral in a particular
context. AMBA bus transactions are monitored in order to discover specific attacks,
such as buffer overflow to steal cryptographic keys used in Digital Right Management.
A lookup table, indexed by the concatenation of the master identifier signals and the
system address bus, is employed to store and check access rights for the addressed
memory location and to stop potential non-allowed initiators.

Considering commercial implementations of on-chip memory protection units, ARM

provides, in systems adopting the ARM TrustZone technology [116], the possibility of
including a specific module - the AXI TrustZone memory adapter - to support secure-
aware memory blocks. A single memory cell can be shared between secure and non-
secure storage area. Transactions on the bus are monitored to detect addressed mem-
ory region and security mode, in order to cancel non-secure accesses to secure regions
and accesses outside the maximum address memory size. The module is configured
by the TrustZone Protection Controller, which manages the secure mode of the various
components of the TrustZone-based system and provides the software interface to set
up the security status of the memory areas.
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A solution similar to the one presented above is provided by Sonics [117] in its
SMART Interconnect solutions. An on-chip programmable security "firewall" is em-
ployed to protect the system integrity and the media content passed among on-chip
processing blocks and various I/Os and the memory subsystem. The firewall is im-
plemented through an optional access protection mechanism to designate protection
regions within the address space of specified targets. The mechanism can be dynamic,
with protection region sizes and locations that can be programmed at run-time. It
can also be role-dependent, with permissions defined as a function not only of which
initiator is attempting to access but also which processing role the initiator is playing
at that time. Protection regions subdivide a target’s address space, where each target
can have up to 8 protection regions. One of four levels of priority is assigned to each
protection region.

All the above refers to work published before the year 2008; obviously, security
in NoC-based systems has been studied also in more recent research work. While it
would be unfair to compare our work to research published after it, it is worth men-
tioning research directions explored by other authors. Protection of sensitive data and
implementation of methods for restricting the access to sensitive memory blocks in
multiprocessor systems have been the topic of several research articles, often propos-
ing solutions similar to the one proposed in this dissertation. A reconfigurable data
protection controller for NoCs is proposed in [118], while the use of hardware mod-
ules embedded into the NI for supporting memory access control and additional se-
curity services is discussed in [119], [120], and [121]. In particular, in [121] the
concept of Quality-of-Security Service is introduced, by adopting different security lev-
els. Each level represents a trade-off between security and performances. Generic
security frameworks adopting some of the concepts introduced in the work described
in this dissertation have been applied in [122] and [123], in particular involving the
use of additional blocks for enforcing access control in memory blocks, and the use of
ad-hoc probes for monitoring security-related system behavior.

In [124], security in MPSoCs is enhanced by using an Authenticated Encryption
method for dividing the NoC into secure and non-secure zones, while in [125] authors
propose to use asynchronous design for reducing power consumption spurs and mak-
ing NoC communications less affected by side channel attacks based on power analysis.
Protection from power analysis is obtained in [126] by using multi-path routing for in-
troducing more non-determinism in the communication system.

4.2 NoC run-time monitoring

In next generation MPSoC platforms, a high number of complex concurrent applica-
tions will share the available resources providing users with new services and function-
alities. At the same time, platform-based design will allow reducing the cost per single
item by giving the system the possibility to easily adapt to different application re-
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quirements. The complexity of these systems raises however the problem of efficiently
exploiting the amount of resources available, and of understanding the system behav-
ior once the platform has been implemented. For NoCs, new tools are therefore needed
for helping designers in these tasks, exploiting information derived by measurements
taken on the running system.

Modern, high performance processors deal with this problem through the use of
special on-chip hardware that can monitor performances and system behavior [44].
By using a set of selected hardware units such as event detectors and counters, infor-
mation about system elements is collected during program execution, analyzed, and
employed to support users’ applications optimization and performance improvement.
In previous work, NoC monitoring was proposed for debugging and testing SoC ar-
chitectures [127, 128, 129, 130, 131, 132], for detecting congestion in best-effort net-
works [133], for platform run-time management [134, 135], and for security purposes
[17, 18]. In general, hardware monitors have been used as components of hardware
and software techniques to detect, collect and interpret real-time information about
system execution in order to help in testing, debugging, and validating design assump-
tions made on the behavior of the system and its environment [56, 57, 58].

In [129, 136], monitoring probes are inserted in the system for real-time debugging
purposes. Associated programming models are discussed, as well as monitoring traf-
fic management strategies. In [130], probes are inserted between the cores and their
network interfaces. A system-level debug agent controlled by an off-chip multi-core de-
bug controller collects information about system activities, providing in-depth analysis
features such as NoC transaction analysis, multi-core cross-triggering and global syn-
chronized time-stamping. While in [129] the system proposed requires de-packaging
of the packet to retrieve the needed information, in [136] probes are located at the
interface of the core, adopting therefore a solution similar to the one suggested in
[130]. In [133], link utilization is monitored to implement a strategy for controlling
congestion in on-chip networks.

An industrial implementation of a performance monitoring system for NoCs can be
found in the Arteris NoC [137, 138]. Through statistic collectors and sets of hardware

probes, embedded application software developers can analyze SoC behavior and mea-
sure performance for tuning applications and software drivers. Each statistic collector
can provide up to 8 probe input channels, and monitoring results can be automatically
or manually extracted for being analyzed. Type of events and monitored connections
can be configured at design and run-time [138].

Compared to a similar system for high-performance processors [44], in NoCs an
efficient monitoring must deal with a highly distributed environment, where event de-
tectors and counters are distributed in different parts of the chip with often multiple
clock regions. Moreover, the monitoring system should guarantee a limited intrusive-
ness in the detection, in the collection, and in the storage of the events [56]. In fact, in
[44], the event detection is performed through a set of programmable event detectors
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and counters. Data detected are collected by activating an Interrupt Service Routine
which influences the program execution and interferes with the system behavior - con-
trary to the basic requirements for a measurement/observation system, so that the
solution does not appear actually viable in a real-world environment.

Monitoring of system activities plays also an important role in the run-time man-
agement of modern adaptive and reconfigurable MPSoC platforms [134, 133, 45, 46,
47]. Having the possibility of monitoring run-time activities and reacting to unpre-
dicted changes of the system allows dealing with the problem of designing complex
system whose behavior could be only in part foreseen at design and compile time by
system designers. The use of run-time adaptive systems ensures optimal, dynamic
and global resource management and an enhanced predictability and use of resources
[45, 134, 139].

In [53, 140], the interaction between the operating system and an NoC is studied,
in particular focusing on the adaptation of system resources (i.e. injection rate of the
single processing elements, routing paths used within the network) with respect to
performances of applications running on the system, or for load distribution among
the processing cores. In [141] run-time adaptation is employed to guarantee an ade-
quate Quality of Service to communicating system resources while in [142, 134], the
use of a resource manager is proposed to improve the utilization of resource utiliza-
tion on heterogeneous MPSoCs, in particular focusing on the study of heuristics and
algorithms to be used to implement the run-time management of resources and system
configuration. In [133], congestion within the NoC is monitored, and injected load is
adapted at run-time through a feedback control loop in order to reduce traffic within
the interconnection. An overview of run-time management systems for SoCs will be
presented in subsection 6.4.3.

4.3 Faults detection and fault tolerance

The range of faults that in general can affect the on-chip network infrastructure is
significant and it extends from interconnects faults to logic and memory faults. For in-
stance, examples of faults that can affect Networks-on-Chip infrastructures are crosstalk
faults, memory faults in the input/output buffers of routers and network interfaces,
short/open interconnect faults, or stuck-at faults affecting the logic gates of NoC routers
and network interfaces [143].

The fault tolerant aspects of NoC-based systems have been recently the object of
a significant amount of research effort. From the point of view of the fault model to
be adopted, the NoC can be considered as a combination of several components, each
one with its own fault model. It is possible to consider NoCs as composed of links,
routers (or switches), and network interfaces. Every component is characterized by a
different fault model which depends on the specific modules composing it, and specific
fault tolerant solutions can be considered. Several fault tolerant solutions have been
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proposed for NoCs, in particular addressing "hard" and "soft" faults in the links and in
the router architecture.

With deep sub-micron technology and clock frequency in the GHz range, short
and long distance links are affected by the problem of signal integrity, due to both
soft errors in the data transmission, and to hard errors due to permanent faults in
the device. In particular, soft errors can be caused by cross-coupling capacity and
mutual inductance between wires of the links (cross-talk), degradation due to low level
voltage swing in the signal transmission, alpha particles and electromagnetic effects,
etc. Hard errors in interconnection can be caused by electromigration, in which metal
ions migrate over time leading to voids and deposits in the wires, causing faults due to
the creation of open and short circuits [144]. Depending on the specific fault, different
models have been proposed for links. The Maximal Aggressor Fault (MAF) model
[145] targets crosstalk effects, while a generic model based on the fault’s probability
of occurrence, its characteristics, and a distance matrix for the wires can be used in
general for the links [146]. Short faults are moreover discussed in [147]. In the
case of permanent faults, in general a faulty wire can be described as stuck-at-0 or
stuck-at-1 [146]. Error control techniques [146] have been proposed as a solution
to recover from faulty links, evaluating overhead in terms of area and power due to
several schemes [148, 149]. In [149, 69, 150], fault tolerant solutions are proposed
to mitigate transmission problems due to soft errors caused for instance by cross-talk,
electromagnetic radiations, or alpha particles. Solutions proposed and evaluated are
mainly based on the use of detection and correction codes [69, 150, 151], or/and
retransmission [149, 152].

Routers are in general composed of first-in/first-out (FIFO) communication buffers,
and several combinational blocks in charge of managing the flowing of the informa-
tion, the routing of the packets, the error control, and the assignment of the available
resources. Fault models obviously are strongly related to the specific implementation
and functionalities offered [143]. At the functional level, several fault models have
been proposed for routers and switches in NoCs. In general, in NoCs data and con-
trol faults should be considered [143, 153]. Data faults deal with the data content
of the packet (payload), while control flow faults deal with the faults in information
routing and in resources allocation [154]. While errors deriving from the first type
of faults can be considered non-critical for the communication network, the second
type of errors may lead to problems such as packet drops, lost destination, misrouting,
etc. [68] and [155] present a system level fault model based on the generic prop-
erties of an NoC switch functionality. According to the model, five types of fault can
occur: Dropped Data Fault, Corrupt Data Fault, Direction Fault, Multiple Copies in Space

Fault, Multiple Copies in Time Fault. Fault tolerant design of NoC routers is the goal
of [154, 156, 157]. Splitting the router operations into smaller and simpler distinct
and independent modules allows the use of components with reduced logic depth. In
the case of permanent failures in one of the blocks, the others will keep their function-
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alities, allowing a graceful degradation of the router performance. A comprehensive
router fault model is proposed, as well as safeguards to protect against various types of
intra-router faults. Flick et al. [158] propose several techniques to improve fault tol-
erance characteristics of an NoC, including the swapping of input ports, as well as the
use of crossbar bypassing and error correcting codes (ECCs) in the router data-path.
In [159], default backup paths are proposed between certain router ports which serve
as alternative data-paths to circumvent failed components (i.e., input buffers, crossbar
switch, etc.) within a faulty NoC router.

At network level, proposed solutions exploit the reconfiguration capabilities of the
NoC and the intrinsic redundancy of the available paths [158, 154, 160], focusing
on the analysis and implementation of specific communication algorithms.In [59], a
probabilistic flooding scheme based on gossip techniques is proposed. Flooding is an
effective fault tolerant technique because it is highly fault tolerant. In [161], the imple-
mentation of different algorithms is compared from the point of view of the overhead in
terms of area and energy. In [162], the use of multiple paths is suggested together with
a methodology to guarantee in-order delivery of the packets as a solution to overcome
problems in the communication due to faulty links. Related work can be also found in
similar studies performed in the area of interconnection networks for distributed com-
puting systems. Adaptive routing algorithms are suggested for avoiding faulty links or
components. However, allowing the possibility to modify at run-time the path followed
by packets in the network could cause deadlock situations. Algorithms based for in-
stance on the turn model [163] prevents network deadlock by disallowing various net-
work turns [164]. The turn model can be extended for n dimensional mesh networks
to tolerate (n-1) router failures (1 router failure for 2D-mesh) [165]. An adaptive fault
tolerant routing algorithm based on an odd-even turn model that addresses convex and
disjoint fault regions that do not lie on the mesh boundary is discussed in [166]. Other
works analyze solutions for adaptively routing around fault regions while imposing
different types of restrictions on the paths [167, 168, 169, 170, 171, 172, 173, 174].
These works are mainly based on the idea of transmitting packets along the edges of
the fault region encountered, and often involve disabling working IPs for meeting the
shape requirements of the adaptive routing algorithm [175]. Most of the solutions pro-
posed require the use of a large set of virtual channels for avoiding deadlock situations
and for extending the use of adaptive routing to failures in fault regions of arbitrary
shape.

The majority of the proposed solutions makes the assumption that the information
inserted in the packets’ header is correct. However, without a careful protection of the
information stored into the NI and of its operations, this assumption cannot be guaran-
teed, thus making ineffective all the previous solutions, being in fact the information
corrupted before entering the NoC. The network interface (NI) represents a critical
element within the NoC, being in fact the separation between the cores and the rest
of the system, and the ideal place for stopping propagation of cores’ error. Moreover,
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faults in the NI can cause the creation of corrupted messages that can disrupt the be-
havior of the communication network, as well as the one of the global system. Similar
to routers, network interfaces are composed of several elements: input and output FI-
FOs, a lookup table for translating the transaction destination address to the packets’
paths, several combinatorial blocks for the packet based protocol implementation, pro-
tocol adaptation, error control, and several services provided by the NI. Previous work
on fault tolerance in NIs mainly focused on the definition of a functional fault model
notation [153], or on providing support for errors detection in links [149, 69]. NI’s
faults are represented with the 2-tuple N I(c1, c2), where c1 is the identifier of the NI
and c2, indicates whether the NI is used as a source (S) or destination (D) of traffic
[153]. In [176, 177], the use of multiple NIs for each core is proposed. Cores can be
connected to more than one router, improving the fault tolerance in the case of faulty
links between NIs and routers. The possibility to connect the NI to more than one
router can increase the resistance to faults in the link between the NI and the router.
However, the NoC will still suffer from errors in the communication due to faulty be-
haviors of the NI’s components. Summing up, it is our opinion that the problem of
faults in NIs, while very critical, has not received up to now due attention.



Chapter 5

Security in Networks-on-Chip

A security-aware design of communication architectures is becoming a necessity in the
context of the overall embedded device. While the advantages brought by the use
of a communication centric approach appear clear, an exhaustive evaluation of the
possible weaknesses that in particular may affect an NoC-based system is still an on-
going topic. The increased complexity of this type of system can provide attackers with
new means of inducing security pitfalls, by exploiting the specific implementation and
characteristics of the communication subsystem.

This chapter deals with the aspects of security in NoC platforms. A first level of pro-
tection, as countermeasure against bandwidth consumption DoS attacks, is represented
by the implementation of Quality-of-Service mechanisms in the NoC. As an example,
the Aethereal NoC [94] provides a guaranteed throughput service based on time di-
vision multiplexing connections that are implemented by reserving for specific con-
nection time slots in each router. The MANGO asynchronous NoC [178] implements
instead prioritized channels over circuit switching techniques. This type of architec-
tures allows a guaranteed bandwidth in the inter-core communication and may help
avoiding malicious code running in one of the processors to flood the NoC with useless
packets and requests. Other NoC architectures implementing priority-based Quality-
of-Service may however still subject to the DoS attack described in subsection 3.1, in
particular when the priority is determined by traffic classes [76, 96]. As pointed it
out in subsection 3.1, a guaranteed-service NoC must be supported by the implemen-
tation of memory controllers providing some sort of Quality-of-Service [179], in order
to avoid the memory to be the target of the DoS attack. However, the implementation
of QoS techniques in the NoC does not preserve the system from DoS attacks aiming
at draining the battery life.

At higher levels, security in NoC architectures and embedded systems in general
can be enforced by implementing isolation techniques such as domain co-hosting or
virtualization [119, 180]. These approaches, still not well supported and implemented
in the embedded domain, present however a significant overhead, and are efficiently
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applicable in the case of symmetric multiprocessor architectures, that can be con-
trolled by a trusted entity such as the hypervisor, and that relies on the use of a
memory management unit (MMU) for controlling memory accesses [119]. In the case
of shared-memory heterogeneous system composed of general purpose and dedicated
programmable processors, this approach is often not applicable for the non availability
of MMU support for all the processing elements, as well as the lack of possibility to
define privilege levels [119].

While far from proposing a comprehensive approach for handling all the possible
attacks - a goal infeasible, in general, when dealing with security in computing systems
- in this chapter we will focus on two specific security-related topics: the protection of
data in shared memory MPSoCs, and the monitoring of NoC activities for detecting
illegal behaviors.

The remainder of this chapter is organized as follows. Section 5.1 discusses con-
tributions of this work with respect to the state of the art. Section 5.2 presents and
discusses the proposed solution for securing memory accesses in NoC-based MPSoC,
in particular focusing on the key element of the proposed architecture, i.e., the Data

Protection Unit. Section 5.3 discusses a system for the run-time configuration of the
DPUs, while section 5.4 presents implementation and experiment results. In section
5.5, we extend the work performed in the first sections of the chapter by describing
the basic elements of a security monitoring system for NoCs. Section 5.6 focuses on
the implementation details of the components of the monitoring system, while section
5.7 presents implementation details.

5.1 Contributions with respect to the state of the art

Aspects of security related to NoC-based systems have been taken into account by the
research community only recently. As discussed in chapter 4, previous work focused on
the exchange of sensitive information on-chip through encrypted communication, on
securing NoC based reconfigurable systems, and on supporting the creation of secure
and non-secure areas in bus based SoCs. With respect to the related work referenced
in section 4, the solutions discussed in this chapter can be considered orthogonal and
complementary.

On the one hand, we propose a solution that represents a step further with re-
spect to previous implementations of data protection techniques, since, for the first
time, it faces the problem of data protection on an NoC-based Multiprocessor System
on-Chip. With respect to previous work on data protection, our technique has finer
granularity (especially with respect to the ARM TrustZone), which will be more use-
ful for the next generation of security-enhanced multiprocessor systems. Moreover,
the binary co-hosting implemented by the TrustZone architecture is no more sufficient
to satisfy security requirements of new complex architectures. With respect to a bus-
based solution, our work takes into account the characteristic of NoC-based systems of
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representing a distributed environment. The memory protection solution proposed can
be used to support co-hosting and virtualization, by providing a programmable physi-
cal separation logic effective in protecting important resources of the base domain (or
hypervisor) from, for instance, downloaded applications on other virtualized domains
[180].

On the other hand, our work on secure monitoring represents a first attempt to
discuss in detail characteristics and implementation costs as well as design trade-offs
of including such a type of system in NoCs, thus taking a step forward towards the
realization of a security solution at system level that could adopt approaches similar to
the Intrusion Detection Systems (IDSs) employed in data network security [181].

To summarize, the main contributions described in this chapter are:

• The proposal of a data protection hardware module (called Data Protection Unit

(DPU)) that enforces access control on protected memory blocks, and that guar-
antees secure accesses to memories and/or memory-mapped peripherals. Access
to a given memory space is granted only if the initiator of the request is au-
thorized to perform the operation requested. Access filtering is performed by
considering memory address, operation requested, and status of the initiator.

• The proposal of a system for managing the run-time configuration of the several
DPUs distributed in the NoC.

• The proposal and evaluation of a monitoring system for helping detect attacks
aimed at retrieving sensitive information from the system or at causing Denial-
of-Service (DoS) by exploiting implementation characteristics of the NoC.

5.2 Secure memory accesses in NoCs

This section describes an original data protection infrastructure for architectures adopt-
ing the Network-on-Chip communication paradigm. The proposed infrastructure pro-
vides support for secure accesses to memory locations in shared memory multiproces-
sor NoC architectures. In particular, as reference target system, we refer to the NoC
and NI introduced in chapter 3, i.e., a communication infrastructure implementing a
transaction-based protocol within memory-mapped components, and an OCP compli-
ant NI.

In this section, we present a solution to contrast attacks that aim at obtaining ac-
cess to restricted blocks of memory, and that exploit techniques (such as the buffer
overflow) that have been the basis for a relevant number of attacks and the most
common form of security vulnerability for the last ten years, as discussed in chapter
3. The secure network architecture proposed in this section is based on the use of
Data Protection Units (DPUs) integrated into the network interfaces of the NoC, which
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guarantee secure accesses to memories and/or memory-mapped peripherals, by en-
forcing access control rules specifying the way in which an IP initiating a transaction
to a shared memory in the NoC can access a memory block. The partitioning of the
memory into blocks allows separating sensitive and non-sensitive data for the different
processors connected to the NoC. The proposed DPU represents a hardware solution
enabling access to a given memory space only if the initiator of the request is autho-
rized. Access filtering is performed by considering not only the memory address but
also the type of the requested operation (data load/store and instruction execute),
and the status of the initiator (user or supervisor mode, secure or unsecure mode[8]).
Use of the Data Protection Unit offers the possibility to easily load/store critical data
and instructions while protecting them from illegal accesses by malicious code run-
ning on compromised cores, without requiring time-consuming encryption/decryption
and thus guaranteeing a fast memory access. The run-time configuration of the pro-
grammable part of the DPUs is managed by a central unit, the Network Security Man-
ager (NSM), which guarantees the run-time flexibility of the proposed approach. Two
different basic DPU architectures will be evaluated, which provide different trade-offs
in terms of implementation costs: the case of the DPU implemented at the target, and
its implementation at the initiator.

In the first proposed architecture (see figure 5.1(a)), the DPU is a module embed-
ded into the NI of the target memory (or the memory-mapped peripheral) to be pro-
tected, supplying services similar to those offered by a traditional "firewall" in data net-
works. In briefly, the DPU filters the requested accesses to the memory blocks through
a lookup of the access rights, done in parallel with the protocol translation within the
network interface. In the second proposed solution, the filtering of memory accesses is
done at the network interface of each initiator (figure 5.1(b)). A detailed description
of the behavior of the protection system is given in the following subsections, where
we describe the two alternative implementations of the proposed solution for data
protection: the DPU architecture implemented at the target NI, called DPU@TNI (sec-
tion 5.2.1), and the DPU architecture implemented at the initiator NI, called DPU@INI

(section 5.2.2).

5.2.1 DPU at the target NI (DPU@TNI)

Figure 5.2 and figure 5.3 respectively show the architecture details and the whole
system overview when the DPU is embedded in the target NI (DPU@TNI). For this ar-
chitecture, the DPU checks the header of the incoming packet to verify if the requested
operation is allowed to access the target. In order to implement this type of archi-
tecture, we need to refer to an NoC packet such as the one shown in figure 5.4. In
fact, the DPU exploits the information forwarded within the packet to perform access
control on the requests arriving at the target. However, the proposed DPU architecture
can be easily adapted to different packet formats. The proposed format of the packet
header (see figure 5.4) is compliant with the OCP interface and it is composed of the
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(a) (b)

Figure 5.1. Simple system with three initiators (PEi) and one target (Mem) showing

the two different network architectures using the DPU (a) at the target NI and (b) at

the initiators NIs.

following fields:

• DestID is used to identify the target of the request (we assume a table-based
routing depending on source and destination addresses). The OCP MAddr field
is converted by the NI, following the shared-memory abstraction, to obtain the
DestID identifier;

• SourceID identifies the initiator of the transaction and, depending on the granu-
larity of the system, could refer to the identification number of the node in the
NoC, to a single IP in a cluster (assuming more IPs connected to the NoC through
the same NI) or to a thread running on a specific IP core. This field comes from
information provided by the OCP interface (MConnID and MthreadID) represent-
ing respectively the processor identifier and the thread identifier, and a value
stored into the NI representing the network node identifier (NodeID);

• MemAddr is the memory address of the initiator requesting access and it is the
direct translation of MAddr signals of OCP interface;

• Length field represents the length of the data to be sent/retrieved. The burst
information derived by the OCP/IP interface (MBurstLength, MBurstPrecise and
MBurstSeq) are used to define the length of the information to be sent/received
(expressed as number of words);

• L/S encodes which kind of operation (load/store) the initiator requests at the
target memory address. It corresponds to the MCmd signal of the OCP interface.
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Figure 5.2. DPU architecture at the target network interface (DPU@TNI).

Figure 5.3. Overview of the whole NoC-based architecture including the DPU@TNI.

• D/I and Role respectively identify data/instruction and initiator role (user/supervisor)
associated with the request. These bits correspond to MReqInfo[2:3] signals that,
following OCP recommendations for the security profile [8], are used to forward
information about type of data and initiator role;

• Opt represents an optional field that can be used to add further network services.

The size of DestID, SourceID and Length fields depends on system parameters (num-
ber of targets for DestID, number of initiators and threads for initiator for SourceID, and
maximum burst size for Length). As an example, the size of the SourceID fields has been
designed in figure 5.4 for a system with a number of connections up to 255, where the
connection number is a combination of the number of network nodes, number of IPs
on the same network node and maximum number of threads active in the same IP.

This access control in the DPU@TNI is done mainly at the time of the reception
of a new packet by using a lookup table (LUT), where entries are indexed by the



57 5.2 Secure memory accesses in NoCs

Figure 5.4. Interface between the OCP signals and the packet format used within the

NoC.

concatenation of the SourceID, the type of information (D/I), and the starting address
of the requested memory operation MemAddr. The number of entries in the table
depends on the number of memory blocks to be protected in the system, as well as on
the number of initiators. In the implementation shown in figure 5.2, we assume 4KB as
the size of the smallest memory block to be managed for the access rights. This means
that all data within the same block of 4KB have the same rights (corresponding to the
12 LSB in the memory address) and that we use only the 20 most significant bits of the
MemAddr field for the lookup.

The lookup table of the DPU is the most relevant part of the architecture and it is
composed of three parts:

• A Content Addressable Memory (CAM) [182] used for the lookup of the SourceID

and type of data (D/I);

• A Ternary Content Addressable Memory (TCAM) [182] used for the lookup of
the MemAddr. With respect to the binary CAM, the TCAM is useful for grouping
ranges of keys in one entry since it allows a third matching state of ’X’ (Don’t

Care) for one or more bits in the stored datawords, thus adding more flexibility to



58 5.2 Secure memory accesses in NoCs

the search. In our context, the TCAM structure has been introduced to associate
to one LUT entry memory blocks larger than 4KB.

• A simple RAM structure used to store the access rights values.

Each entry in the CAM/TCAM structure indexes a RAM line containing the access rights
(allowed/not allowed) for user load/store and supervisor load/store. The type of
operation (L/S) and its role (U/S) taken from the incoming packets are the selection
lines in the 4:1 multiplexer placed at the output of the RAM. Moreover, a parallel check
is done to verify that the addresses involved in the data transfer are within the memory
boundary of the selected entry.

If the packet header does not match any entry in the DPU, there are two possible
solutions, depending on the security requirements. The first one is more conservative
(shown in figure 5.2), avoiding access to a memory block not matching any entry
in the DPU lookup table by using a match line. The second one, less conservative,
enables the access also in the case when there is no match in the DPU lookup table.
This corresponds to the case when a set of memory blocks does not require any access
verification.

The output enable line of the DPU is generated by a logic AND operation between
the access rights obtained by the lookup, the check on the block boundaries and, con-
sidering the more conservative version of the DPU, the match on the lookup table.

Given the complexity of the protocol conversion to be done by the NI kernel, we can
assume that the DPU critical path is shorter than the critical path of the NI kernel (as
confirmed by the results reported in section 5.4). Under this assumption, integrating
the DPU at the target NI guarantees that no additional latency is associated with the
access rights check since, as shown in figure 5.3, the protocol conversion and the DPU
access are done in parallel.

5.2.2 DPU at the initiator NI (DPU@INI)

Figure 5.5 and figure 5.6 show respectively the architecture details and the whole
system overview when the DPU is embedded at the initiator NI (DPU@INI). For this
architecture, the DPU directly uses the signals coming from the OCP slave interface
of the NI for the access rights evaluation, and no special packet format is needed for
this type of implementation of the DPU. As shown in figure 5.4, when the PE initiates a
transaction driving the OCP Master interface signals, the NI looks up the MAddr signals
in order to obtain the routing information to be inserted in the DestID field in the
header of the packet. At the same time, the DPU looks up the information coming from
the OCP interface to check if the request has the right to access the addressed memory
block. As shown in figure 5.5, in the DPU@INI architecture each entry of the LUT is
indexed by the concatenation of MConnID, MThreadID and part of MAddr. In this case,
the number of entries in the LUT depends only on the number of blocks to be protected



59 5.2 Secure memory accesses in NoCs

Mux

20

4

Adder

>=

match

upper_bound 32

enable

0x001B2

0x02FFX

0x01CXX

0x0110X

0x04XXX

0x03ABC

0x03ABC

0x01DXX

10 10

01 10

01 01

10 00

11 10

10 00

11 11

10 10

0x1

0xA

0x2

0xD

0x5

0x2

0x1

0xB

0

0

0

1

1

1

0

0

M
A

d
d
r

M
R

eq
In

fo
[2

]

M
B

u
rs

tL
en

g
th

M
R

eq
In

fo
[3

]

M
C

m
d

M
C

o
n
n
ID

&
 M

T
h
re

ad
ID

log ( ) +

log ( )
2

2

threads

connid_wdth

CAM TCAM RAM
LUT

U

LS LS

S

Figure 5.5. DPU architecture at the initiator network interface (DPU@INI).

Figure 5.6. Overview of the whole NoC-based architecture including the DPU@INI.

in the target memories since the initiator NI is related to only one processing element.
As well as in DPU@TNI, when the information present at the OCP interface matches
one entry line in the LUT, the LUT returns the access rights for the roles of the initiator
(user load/store and supervisor load/store). The MCmd and MReqInfo signals coming
from the OCP interface represent the selection lines in the 4:1 multiplexer placed at
the output of the RAM. A parallel check on the MBurstLength is done to verify if the
block boundaries are respected.

As mentioned for the DPU@TNI, given the complexity of the protocol conversion
to be done by the NI kernel, we can safely assume that the DPU critical path is shorter
than the critical path of the NI kernel (as confirmed by the results reported in section
5.4). Under this assumption, integrating the DPU at the initiator NI guarantees that
no additional latency is associated with the access right check since, as shown in figure
5.6, the protocol conversion and the DPU access are done in parallel.
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With respect to DPU@TNI, the overhead associated with the dimension of the CAM
is smaller because it is not necessary to include in the LUT the identifier of the initiator
node (NodeID).

Checking the access rights at the initiator NI avoids initiating the network trans-
action whenever the request would be rejected. As a matter of fact, with respect to
DPU@TNI, the DPU@INI blocks bad memory requests before they enter the network;
this results in no NoC traffic and less energy consumption. As drawback of DPU@INI

solution, when a target would not require data protection, we pay for DPU accesses in
all instances they would not be necessary. In fact, since the protocol translation (thus
the target identification) and the DPU access are done in parallel to hide the latency
overhead, it is not possible to avoid DPU accesses such targets that not require data
protection. As it will be shown in section 5.4, the choice of the best DPU architecture
to implement depends on the target system.

5.2.3 Example of data transfer in systems adopting the DPU

This subsection outlines through an example the steps performed during a memory
transfer taking as reference the system shown in figure 5.3 (DPU@TNI). In the ex-
ample, we consider a store operation of 512 Bytes of data, starting from the memory
address equal to 0x01B02CF0. The PE is identified by a SourceID equal to 0x2D, its
operating role is user (Role=0), and the target memory has a node identifier (DestID)
equal to 0x0A.

In the case of a store operation, the PE drives the OCP signals to begin the data
transfer in bursty way [8] and the NI behaves as slave for the OCP protocol. As de-
scribed in section 5.2.1, the front-end of the NI looks up the information on the first
address of the burst on MAddr to obtain the routing information to be inserted in the
field DestID in the header of the packet. The control signals of the OCP transaction
are extracted from the OCP adapter and coded into the NI kernel to build the packet
header (see figure 5.4). Then, the NI samples data from OCP MData and create the
payload of the packet.

Considering the DPU@TNI architecture, the header of the packet, followed by the
payload is therefore sent through the network to the target NI. While the NI Kernel is
processing the header of the packet, and waiting for the payload, the DPU checks in
parallel the header information to verify the access rights.

As shown in figure 5.7, since one of the LUT entries matches the request, the cor-
responding 4 bits stored in the RAM are forwarded to the multiplexer. In parallel, the
DPU also verifies that the addresses involved in the data transfer (from MemAddr to
MemAddr+512) are within the memory bounds of the selected entry (0x01B02000-
0x01B02FFF). Because the header information matches one entry of the LUT, the re-
lated right value is equal to ’1’, and the memory addresses are within the boundaries,
the DPU enables the requested store operation, allowing also the NI to initiate the OCP
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Figure 5.7. Example of usage of DPU@TNI for a store memory access.

transaction for a write in the target memory. When the transaction completes, a sig-
nal of acknowledgement is sent back to the initiator NI to notify the end of the data
transfer. In the case of not allowed memory request, the DPUs would stop the proto-
col translation avoiding the OCP transaction, notifying a security warning and sending
back to the initiator NI a not acknowledgement message.

The same example can be easily replicated by considering the system outlined in
figure 5.6 (DPU@INI). The only significant difference is that being the lookup at the
initiator NI, while the NI kernel is processing the OCP control signals to create the
packet header, the DPU checks in parallel these signals to verify the access rights,
blocking (or not) the packet generation.

5.3 Run-time Configuration of the DPUs

In this section, we extend the solution presented in the previous section to program
DPUs at run-time. This feature allows the system to optimize the use of the protection
units and to modify them in the case of changing application-scenarios. To configure
the DPUs distributed in the system, we adopt a centralized approach. An overview of
the overall system proposed to program the DPUs at run-time is shown in figure 5.8,
where the main elements are the Network Security Manager (NSM) and the DPU@TNI.
The proposed run-time configuration can be applied also to DPU@INI. The NSM is
in charge of accepting or refusing new restriction rules on the memory blocks and
configuring appropriately the DPUs.

In this section, first we discuss the configuration of the system, focusing in particu-
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Figure 5.8. System architecture including the Network Security Manager (NSM) to

program the DPUs at run-time.

lar on the activities involving the initiators of the transactions and the NSM. Secondly,
we focus on the DPUs, in particular analyzing the architectural changes necessary to
support run-time configuration and the interaction with the NSM. Thirdly, some pos-
sible security faults of the system and countermeasures are presented, especially to
counteract spoofing attacks.

5.3.1 Network Security Manager

The NSM is a dedicated IP block that, together with the DPUs, dynamically associates
access rights with selected memory spaces. The possibility to dynamically manage the
memory protection is useful in architectures where the number, position and/or size
of the memory regions to be protected cannot be resolved at design time.

Since we possibly do not want every processing element to be able to request the
assignment of access rights to the NSM, these service request messages are filtered
by the NSM considering only those arriving from particular processing elements in a
particular state and performing specific roles. In detail, only initiators in secure status
and acting as supervisor are enabled to communicate with the NSM. According to OCP
specifications, this is translated into the possibility for the initiator to set to ’1’ the
values of specific bits in MReqInfo. Obviously, the access to these bits must be restricted
to initiators acting in the previously specified operating mode.

When an application requires a memory space to be protected, the right assign-
ment operation is issued by the initiator to the NSM. If that space is not yet under
rights management, the request is accepted and a message is sent to update the DPUs
involved in the process. The NSM keeps track of all successful protection requests
in a record for managing successive requests. Each entry of the record contains the
information regarding the access rights and the DPUs involved in the request. If the
memory space requested to be protected is already under rights management, and the
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Figure 5.9. LUT modified to support run-time configuration.

requesting initiator is the owner of the block, the request is accepted and the corre-
sponding record is updated. If the requesting initiator is not the memory block owner,
the request is rejected by the NSM. The transaction related to the rights assignment
can be considered completed when all the DPUs involved in the update acknowledge
to the NSM.

When a protected region needs to be released from the access restriction, the re-
quest is sent to the NSM. If the source of the request is the owner, an update message
is sent to the DPUs and only when all responses are received by the NSM, the protected
region can be considered released. If the requesting initiator is not the memory block
owner, the request is rejected by the NSM.

Beside the dynamic configuration of the DPUs, the Network Security Manager could
be used more in general to reprogram all the programmable parts of the NoC, such as
the network interface registers.

5.3.2 DPU to support run-time configuration

The modified DPU architecture supporting dynamic reconfiguration is shown in figure
5.9. We consider, without loss of generality, only the architecture previously named as
DPU@TNI. However, similar considerations apply to DPU@INI.

As shown in figure 5.9, a Validity Bit (VB) must be added to each line of the DPU.
Only the entries of the lookup table with a Validity Bit equal to ’1’ are taken into con-
sideration when checking the access rights, while the others are ignored. To configure
at run-time the protection module by writing the necessary data into the lookup table,
a port has been added to the DPU. The NI hosting the DPU manages the updates for
the DPU, processing the requests coming from the NSM.
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When the NSM requests the storage of a new access restriction to the DPU, it com-
municates to the hosting NI the address of the lookup and the information to be in-
serted in the DPU lookup table. To avoid conflicts between the requests of the NSM and
the packets being processed by the DPU, priority is given to the former (configuration
requests). In the case of access requests arriving during the configuration of the DPU,
they will wait in the NI’s input buffers until the lookup table has been updated. After
successful completion of the update of the DPU, the NI enables the processing of the
requests coming from the initiators and sends back to the NSM a signal of acknowl-
edgement.

In the case of deletion of one of the access restrictions, the NSM sends a request to
release the corresponding line of the lookup table. The NI processes the request and
notifies to the NSM the completion of the transaction.

The overhead required by the dynamic reconfiguration of the DPU occurs only
when the memory protection must be updated. However, this situation usually hap-
pens only once per application run. The possibility to dynamic reconfigure the DPUs
increases the flexibility of the system, but its variable overhead, involving several net-
work messages, affects the time determinism of an application/context switching. For
hard real-time systems, the use of this feature should be avoided.

5.3.3 Possible security faults and countermeasures

In this section, we consider a possible security fault that may affect the type of dy-
namic data protection mechanism we described, and we propose a countermeasure.
In particular, we focus our attention on those parts of the system - such as registers -
that can be modified by the applications, and whose unauthorized or careless accesses
could compromise the effectiveness of the NSM and the DPUs.

As described in section 5.2, the identifier of a request (SourceID) is mainly based
on the identifier of the NI (NodeID) and the identifier of the connection (MConnID).
The possibility to maliciously modify the information stored in those registers could
imply the hiding of the identifier of the processor requesting the access to the NSM or
to the protected memory blocks, by substituting it with that of an authorized processor
with higher privileges. This fact could cause a serious security problem since, as an
example, it opens the possibility to access the NSM and to reprogram all the DPUs,
enabling the access to protected locations. In the context of network security, these
attacks are called spoofing attacks [183]. To carry out this kind of attack, an attacker
successfully masquerades as a legitimate party by falsifying data and thereby gaining
an illegitimate access.

In such NoC implementations where the mentioned registers are not hardwired or
efficiently secured, in order to avoid unauthorized accesses to the NSM, we propose a
possible countermeasure to spoofing attacks. In figure 5.10(a) we show a simple double
acknowledgement authentication protocol to overcome spoofing attacks. The protocol
attempts to identify a malicious substitution of the processor identifier by sending an
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(a) Authentication protocol

(b) Attack

Figure 5.10. Overview of the authentication protocol between an initiator and the

NSM (a) and the identification of a possible attack (b).

acknowledgement message to the source of the request and requiring a correct answer,
as shown in figure 5.10(a). In this way, if the real source of the request is not the one
written in the original request, the malicious processor cannot end the authentication
protocol, since it does not receive the acknowledgement message ACK01. To avoid
also the possibility that the malicious processor could answer the NSM without having
received the ACK01 (as in figure 5.10(b)), the ACK01 message contains also a TAG

field that should be elaborated by the source (by using a simple translation function
f ) and sent back to the NSM that will check the correctness. In fact, the attacker,
represented in figure 5.10(b) by PE02, attempts a spoofing attack by masquerading
its real identity with the one of PE01 in the request (SRC = PE01). The NSM sends
the ACK01 response to PE01 including the TAG value k (since it is the requester in the
message) but PE02 cannot know what is the TAG value of the response, k. Even though
PE02 does not know the real TAG value (as shown in figure 5.10(b)), it attempts to end
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the authentication process by sending a random tag m. This tag value has a probability
equal to 1/2n (where n is the number of bit of the TAG field) to be equal to the correct
value. During this failed authentication, two security warnings are reported: the first
one given by PE01 that receives the ACK01 message without any previous request and
the second one given by the NSM due to the TAG value mismatch.

The same problem as that just shown for access to the NSM could arise for access
to memory locations protected by using DPUs, or for reconfiguration of DPUs, or more
in general for the reprogramming of all the programmable parts of the network. We
suggest two proposals to avoid spoofing attacks also in these cases by using an authen-
tication mechanism:

• The first solution takes into account the same protocol, based on a double ac-
knowledgement as for the NSM, for all restricted accesses. In this case, the re-
stricted request is issued to the target passing through the DPU that will perform
the authentication protocol; the target will send the ACK01 message together
with the TAG information, and will wait for the ACK02 message from the initia-
tor to check its identity.

• The second solution uses the double acknowledgement protocol only to ex-
change a key, while the other accesses will be authenticated by appending the
key to the request. To increase the level of security, we can restrict the use of a
key by using the concept of session. A session represents a time-slice, defined in
terms of fixed number of operations or fixed time duration, during which we can
use the same key. When the session ends, a new key needs to be exchanged for
the management of the accesses in the next session.

Selecting the solution to be adopted strongly depends on several factors, such as
the level of security that we want to enable, the frequency of the accesses to protected
location, the position of the DPUs into the network and the available overhead to meet
the performance constraints.

5.4 Experimental Results

In this section, we discuss the experimental results related to the proposed data protec-
tion mechanism for NoC-based architectures, evaluating the overhead introduced by
DPU modules into the communication subsystem. In particular, section 5.4.1 presents
the experimental setup, while section 5.4.2 and 5.4.3 respectively show the synthesis
results for the two different implementations of the DPU and the overhead introduced
by the data protection mechanism for two case studies.
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(a) Arch1 (b) Arch2

Figure 5.11. Architecture overview of the two case studies. Targets and initiators are

in gray and white boxes respectively.

5.4.1 Experimental Setup

To evaluate the impact introduced by the proposed data protection mechanism into a
System-on-Chip architecture based on NoC, we considered two systems representing a
typical embedded architecture and a shared-memory multiprocessor. In particular, the
DPU overhead has been evaluated in the context of the NoC subsystem. The two case
studies are shown in figure 5.11:

• Arch1 represents a typical embedded architecture with 2 initiators and 8 target-
memories/peripherals. For our purposes, we consider each target of the memory
space partitioned into 4 blocks.

• Arch2 represents a shared memory multiprocessor composed of 8 initiators and
1 target-memory partitioned into 16 blocks.

Within the NoC clouds represented in figure 5.11 we consider routers in a mesh topol-
ogy, each connected with a network interface. The type of the NI (initiator or target)
depends on the type of the connected IP module. Both case studies are used to show
how, by varying system characteristics, the best DPU configuration and its energy/area
overhead on the communication subsystem will vary as well. Concerning performance
results for the two case studies, we will show in section 5.4.2 how no performance
overhead is introduced by the DPU because the DPU critical path is less than the NI
kernel critical path. Given that, the system-level performance is not impacted by the
DPU insertion.

Regarding the evaluation of the a single DPU module, synthesis and energy estima-
tion have been respectively performed by using Synopsys Design Compiler and Prime
Power with 0.13µm HCMOS9GPHS STMicroelectronics technology library.

To compare area and energy overheads introduced by the proposed data protection
mechanism into the NoC subsystem, table 6.3 shows area and energy values for each
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Table 5.1. Area and energy dissipation due to the NoC components considering a

32-bit data-path running at 500MHz.

NoC router NI-initiator NI-target

3p 4p 5p arch1 arch2 arch1 arch2

Area [mm2] 0.078 0.112 0.143 0.141 0.166 0.172 0.172
Header Energy [pJ] 75.2 80.1 88.1 101.2 92.7 107.3 107.3
Payload Energy [pJ] 63.3 65.1 67.8 44.7 44.7 52.3 52.3

NoC components, obtained by using the PIRATE-NoC compiler [184]. All results pre-
sented in table 6.3 are obtained by considering a frequency of 500MHz imposed by the
critical-path of the NI-kernel both at the initiator and target. The NIs implement the
OCP interface. The router adopts a wormhole control flow strategy, it includes input
and output buffers, a three-stage pipeline, and table-based routing [184]. The results
on table 6.3 have been generated by considering a target network characterized by a
32-bit data-path, with the router input/output buffer depth equal to 4 and the target
and initiator NIs buffer sizes equal to 16 and 8 respectively. Since we considered a
mesh topology, table 6.3 shows the area and energy values considering the three pos-
sible router configurations in terms of number of ports (3p, 4p and 5p), including the
NI port. Table 6.3 also shows the values for each NI (initiator and target) for the two
architectures (Arch1 and Arch2). Area and energy values for the NI-initiator depend on
the target architecture because the logic for the generation of the DestID field depends
linearly on the number of targets in the system. According to [184, 185, 186], the
energy consumption of the different network units must consider two different costs
for the header flit of the packet and for each flit of the payload. The energy associated
with the header flit is higher than that of the payload, since the header flit activates all
the control parts of the network (e.g. routing unit and protocol translation).

5.4.2 DPU Synthesis Results

In this section, we present the synthesis results for the two proposed implementations
of the DPU architecture (DPU@TNI and DPU@INI) presented in section 5.2.

Figure 6.11 shows the synthesis results for a single DPU module in terms of delay
[ns], area [mm2] and energy [nJ] by varying the number of entries for the DPU@TNI

and DPU@INI. All the results have been obtained by targeting the synthesis to a clock
frequency of 500MHz imposed by the critical path of the NI-kernel. As shown in figure
5.12(a), the critical path of all the explored DPU configurations (up to 128 entries) are
below 2ns, confirming that the DPU does not introduce any additional cycle to each
memory request.

Figure 5.12(b) shows that for both architectures (DPU@TNI and DPU@INI) the
DPU area increases almost linearly with the number of entries. This is due to the
fact that the most significant area contribution is given by the CAM/TCAM included
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Figure 5.12. Synthesis results in terms of delay, area and energy by varying the DPU

entries for DPU@TNI and DPU@INI.

Table 5.2. DPU area comparison with respect to ARM920T processor and 16KByte

SRAM memory.

128-entry DPU

ARM920T 16KB SRAM @TNI @INI

[mm2] [mm2] [mm2] [mm2]

4.70 2.31 0.57 0.46

in the DPU. Although the two versions of the DPU behave similarly, the area value of
DPU@INI are always smaller than those of the DPU@TNI with the same number of
entries. This gap is due to the different type of interfaces (OCP or packet-based) and
to the reduced number of CAM bits.

As expected, since the main part of the DPU is composed of a CAM/TCAM, the
energy trends shown in figure 5.12(c) by scaling the number of DPU entries are similar
to those already described for the area values.

To evaluate the complexity of DPU architectures in a System-on-Chip context, in ta-
ble 5.2 we compare the area values with two widely used IPs for SoC architectures: an
ARM920T processor with 16KByte of Instruction and Data Cache running at 250MHz
and a 16KByte SRAM memory with 16 Byte for each entry and 1 read and 1 write port.
The comparison has been done by considering the same technology (0.13µm) for all
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Table 5.3. Area and energy overhead due to Data Protection Units for the two case

studies.

Number DPU Area Total DPUs Energy for DPU

of DPUs [mm2] Area [mm2] Access [pJ]

Arch1

DPU@TNI 8 0.034 0.268 36.5
DPU@INI 2 0.111 0.221 117.4

Arch2

DPU@TNI 1 0.581 0.581 508.6
DPU@INI 8 0.055 0.443 59.9

IPs. For both DPUs we selected the LUT with 128 entries. With respect to the area of
ARM920T processor [187] and to the area of 16K SRAM memory [188], the area of
DPU@TNI/DPU@INI is respectively the 12%/10% and 25%/20%. A further compari-
son with the components of the NoC subsystem will be shown in the next subsection
for the two selected cases studies.

5.4.3 Case Studies

Given that no performance overhead has been introduced by the proposed DPU, in
this section we evaluate the area and energy overhead introduced by the proposed
data protection mechanism into the communication subsystem for the two case studies
shown in figure 5.11.

Table 6.1 shows area and energy overhead due to both DPUs, applied to all the
memory elements and peripherals of the system. The column DPU Area reports the
area overhead of each DPU, while the column Total DPUs Area reports the sum of the
area of all the DPUs distributed on the different NIs. The column Energy for DPU Access

represents the cost for access to the DPU for each memory request.
Considering Arch1, the area of a single DPU@INI is larger than DPU@TNI, since

the number of entries is 32 (4 memory blocks × 8 targets) in the former and 8 (4
memory blocks × 2 initiators) in the latter. Similarly, the energy for DPU access is
larger for DPU@INI than for DPU@TNI. Globally, for Arch1 there are 64 DPU entries
(4 memory blocks × 8 targets × 2 initiator) distributed on the system for both DPU
solutions. Since the number of bits for each DPU@INI entry are smaller than those for
the DPU@TNI and the DPU area is mainly due to the LUT, the Total DPUs Area for the
DPU@INI solution is smaller than in DPU@TNI solution.

Considering Arch2, the area of a single DPU@TNI is larger than DPU@INI since
the number of entries is 128 (16 memory blocks × 8 initiators) in the former and 16
(16 memory blocks × 1 target) in the latter. Similarly, the energy for DPU access is
larger for DPU@TNI than for DPU@INI. Globally, for Arch2 there are 128 DPU entries
(16 memory blocks × 1 targets × 8 initiator) distributed on the system for both DPU
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Figure 5.13. Area breakdown for the NoC subsystem including DPUs.

solutions. As before, since the number of bits for each DPU@INI entry are smaller than
those for the DPU@TNI and the DPU area is mainly due to the LUT, the Total DPUs Area

for the DPU@INI solution is smaller than DPU@TNI solution.
In the following analysis, we consider only one DPU solution for each case study.

While for Arch2 we selected the DPU@INI architecture due to its better results in terms
of both cost functions (Total DPUs Area and Energy for Access), for Arch1 we selected
the DPU@TNI, as shows a limited area overhead but a reduced energy cost for access.

For both cases, figure 5.19 shows the area breakdown of the NoC subsystem in
terms of NoC routers, target and initiator network interfaces (see table 6.3) and DPUs
(see table 6.1). The area overhead introduced by the DPUs is limited to 9% and 17%
with respect to the NoC subsystem for Arch1 and Arch2 respectively. The difference
in the number of network targets and initiators in the two architectures is reflected
in the area breakdown: the target/initiator NIs rate results 45%/11% with respect to
6%/43% for Arch1 and Arch2 respectively.

Concerning energy, figure 5.14 shows the DPU energy overhead with respect to
the energy consumed by the NoC subsystem for a memory access. Because the energy
consumed by the NoC for a memory access depends on the length of the packet and
on the network distance (number of hops) between the initiator and the memory, we
plotted the DPU energy overhead as a surface dependent on these two parameters. The
DPUs energy overhead for Arch1 and Arch2 is up to 4.5% and 7.5% respectively.

Increasing the packet length, the energy to transmit and translate the packet due
to NoC routers and NIs increases proportionally. For the DPU components, energy does
not increase because the lookup is done by the header independently of the payload
length. As a results, the DPU energy overhead decreases with the increment of the
packet length. The same behavior can be noted by varying the number of hops: the
increment of the number of hops does not influence the DPU energy cost since the
lookup is done on the NI. The increment of the network distance increases the energy
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Figure 5.14. DPU energy overhead with respect to the energy consumed by the NoC

subsystem for a memory access.

due to the transmission of the packet (NoC router) but not the energy due to the data
protection (DPU).

5.5 Monitoring NoCs for Security Purposes

The protection mechanism described in previous sections represents an effective method
for providing a secure access to memory locations, as well as secure transactions. How-
ever, while the presented protection mechanisms can help limit unauthorized accesses
to protected memory blocks, attempts to illegal access in memory must be necessar-
ily monitored to make the system aware of potentially dangerous behaviors. In fact, a
compromised core executing malicious code can be used to perform a Denial-of-Service
(DoS) attack against the system, with the aim of reducing system performance and op-
erative life of battery and device. Moreover, as done for instance in modern anti-virus
programs, sequences of accesses to memory and peripherals should be monitored to
discover patterns that could imply the presence of an on-going attack to the system
[19, 17].

In the following sections, we extend the security mechanism based on the use of
Data Protection Units by defining a security monitoring system for NoC based architec-
tures. Aim of the proposed system is to detect general security violations in the device
and to allow an efficient counteraction for attacks addressing the communication sub-
system and aiming at causing disruption or retrieving sensitive information. We focus
in particular on the implementation of the basic blocks composing the security moni-
toring system. We detail the overhead associated with their implementation, and types
of attack detected by the system.
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Figure 5.15. General NoC-based architecture including the security monitoring sys-

tem.

Figure 5.15 shows a general NoC-based architecture including the monitoring sys-
tem for detecting security violations. The monitoring system is mainly composed of
three elements: probes (P), the Network Security Manager (NSM), and the communica-

tion infrastructure (NIs and Rs). Probes, collecting information about the NoC traffic,
are implemented inside OCP compliant network interfaces [8]. In fact, as also previ-
ously explained, NIs represent the ideal position where to perform analysis of incoming
traffic and discard malicious requests. The choice of embedding such activities inside
NIs presents several advantages:

• Traffic is analysed when inserted by the core, therefore there is not need of
sniffing packets to retrieve the information necessary for threats detection. As
a consequence, the logic to implement probes is less complex and expensive in
terms of area and power consumption.

• Monitoring is performed in parallel with operations performed by the NI kernel
for the protocol translation from the OCP interface to the NoC. No overhead in
performance is therefore associated to traffic analysis.

• Being probes embedded in NIs, traffic detected as malicious can be stopped or
limited, and the relative core considered as compromised by the system. This
allows a easier identification of the source of security violations and, if necessary,
the "quarantine" of the core by sealing the NI.

The NSM, a dedicated core already introduced in section 5.3, takes care of collect-
ing events and information coming from the several probes distributed in the system,
analyzes the data received, and counteracts efficiently to the detected attacks. While
focusing on hardware characteristics of the monitoring system, we leave to software
designers the task of implementing detection strategies for security violations and ap-
propriate countermeasures.
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Figure 5.16. Architecture of the NI including the proposed probes.

Traffic produced by probes is to be kept divided from standard communication
traffic inside the NoC. Although less impacting on the overall network traffic than
the one generate for debugging activities [189], a higher priority must be given to
this type of communication, in order not to be sensitive to denial-of-service attacks
addressing NoC performance. Moreover, differently from the case of on-chip debug,
messages coming from probes should not be accessible by external entities through
public interfaces, in order to avoid the exploitation of the information collected to
attacks the system.

5.6 Security monitoring system components

In this section, we give first an overview of the probes within the NI, discussing some
of the concepts needed to understand their operation. Probes rely on the presence of
DPUs embedded within the initiators’ NIs. Moreover, we discuss the concept of Event,
useful to describe communications with the central unit. In the second part of the
section, we provide implementation details for the probes.

Figure 5.16 shows a NI embedding the probes we propose (in grey in the figure).
The Illegal Access Probe (IAP in the figure 5.16) detects attempts to illegally access
restricted memory blocks or range of addresses in shared memory systems, while the
Denial of Service Probe (DoSP in the figure) is employed to detect bandwidth reduction

or draining attacks. The Event Generator is triggered by the two probes and generates
the packets to be sent to a central unit to communicate the security violations.

5.6.1 Events

Every probe generates events to notify the central unit security violations. As defini-
tion of event, we comply to what discussed in [129]: an event can be represented as
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Figure 5.17. Illegal Access Probe: details.

a tuple composed by an Identifier, a Timestamp, a Producer, and several Attributes.The
Identifier identifies events of a certain class of events, and it is unique for each class.
The Timestamp defined the time at which the event was generated by the producer,
identified by the field Producer. Attributes are represented in the form At tr ibute =

(At tr ibuteIdenti f ier, Value) and the type of attributes and their values depend on
the type of the event generated. In our case, Identifier specifies the type of symptom of
attack detected by the probe, while Producer the combination of node, processing ele-
ment, thread causing the illegal action. While not using Timestamp (we assume service
packets transmitted in order and with prioritized or predictable latencies - statistics
about timing are therefore generated inside the central unit), type of attributes are
different for the two cases presented. Events generated are discussed in detail in next
subsections.

5.6.2 Illegal Access Probe

As previously discussed, a data protection mechanism does not provide protection
against the attacks described in section 3. Moreover, attempts to access unauthorized
addresses should be notified to counteract efficiently the related security violations. In
fact, an access to a non-allowed memory location could be due to software coding er-
rors, as well as to the presence of a core compromised by buffer overflow or a draining
attack.

Figure 5.17 presents architectural details of the Illegal Access Probe (IAP). The IAP
is in charge of detecting the presence of attempts of unauthorized access to memory
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locations and to notify the reasons of the alert to the central unit. The IAP triggers
the creation of a packet to notify the security alert event to the central unit, passing
the necessary information to the Event Generator. The event is generated when a new
transaction is requested to the NI (MCmd) and the transmission of the packet is not
enabled by the DPU (TX_enable = ’0’). The IAP module takes as input OCP signals used
for identifying the producer of the event and the attributes correlated, as well as some
DPU signals, used for identifying the type of security alert. Three main types of event
can be identified:

• Entry input not present in DPU: this case corresponds to a request in which the
combination of the PE identifier and thread ID is not present among the entry
lines of the LUT of the DPU, as well as the memory address targeted. This event
is identified by a DPU’s match line equal to ’0’.

• Out of block boundaries: in this event, the request addresses input combinations
recorded in the LUT of the DPU, while the length of the data to be stored or
read would exceed the memory block boundaries. This event is detected when
the signal in_bounds, which is true when upper_bound is higher than the sum of
MBurstLength and the targeted memory address, is equal to ’0’.

• Wrong access rights: while the previous two cases are satisfied, the access rights
recorded in the RAM of the DPU for the input combinations are negative. The
signal access_right is therefore equal to ’0’.

The right part of figure 5.17 shows also the packet generated to communicate
the event. The header of the packet depends on the specific NoC implementation
and it is not discussed. As previously said, the event packet is composed of several
fields. Identifier identifies the type of security alerts detected by the IAP. Producer is
generated by the combination of the identifier - contained in the NI - of the node in the
NoC (NodeID), the PE identifier (MConnID), and the thread identifier (MThreadID).
Attributes sent to the central unit and relevant for analyzing the security alert are
composed of the information of the unauthorized transaction, i.e., block of targeted
addresses (given by the DPU’s upper_bound signal), length of the data (MBurstLength),
type of operation requested (given by the OCP signal MCmd), and role of the initiator
(given by the OCP signal MReqInfo).

5.6.3 Denial of Service Probe

Access control solutions allow to stop unauthorized operations on restricted blocks of
memory or ranges of addresses. However, they do not provide protections against
attacks aiming at creating Denial-of-Service in the system for instance through the in-
jection of useless packets. As discussed in section 3, these attacks can be carried out
in mobile and multimedia systems with the goal of reducing resources bandwidth or
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Figure 5.18. Architecture details of the DoSP.

battery life. In order to avoid such types of attacks, our monitoring system collects
statistics about traffic inserted by every element active on the NoC. This would allow
discovering unnatural behaviours performed in the system, as done by IDSs in data net-
works [181]. Goals of the Denial of Service Probe (DoSP) presented in this section are
to collect information about the traffic generated by the processing elements interfaced
to the NI and to notify the central unit of unexpected traffic conditions, interpreted as
symptom of DoS attacks.

In this work, we consider as unnatural traffic conditions all deviations from the
average bandwidth expected at design time. We monitor the bandwidth considering
the data loaded / stored by an initiator from/to a specific memory block or range
of addresses. The bandwidth - representing our statistic event - is calculated over a
defined time window. The length of the time window is set by the central unit at
run-time or by the designer at design time and depends on the selected security level.

Considering a generic discrete probability distribution for traffic profiles produced
by a PE, with media µ and standard deviation σ, we consider unnatural traffic the one
exceeding µ±mσ, with m set accordingly with a desired security level. If those limits
for a specific connection are exceeded, an event is generated and sent to the central
unit.

Figure 5.18 shows architectural details of the DoSP. The probes triggers the Event

Generator, as done already by the IAP. In this case, the DoSP monitors the amount
of traffic to/from a selected memory space caused by an initiator (thread running on
a PE). With respect to a complete monitoring of the lower and upper bounds of the
traffic distribution, and to the monitoring of all the input combinations of the DPU, in
the architecture shown in figure 5.18 we monitor a limited number of combinations. In



78 5.6 Security monitoring system components

particular, we consider only transactions initiated by initiators acting as user. Moreover,
we consider only the case of traffic exceeding the upper limit of the distribution (µ+
mσ). Therefore, without loss of generality, we assume under monitoring the entries
combinations recorded in the first l lines of the protection unit, with l < n, where n

is the total number of entry lines of the DPU. We believe this choice a good trade-
off between the security service offered and the overhead of the implementation. We
implemented the generation of the time window using a programmable counter.

When an initiator loads or stores data into an address in the monitored block i,
the length of the data is added to the register Rl en,i. The register is selected by the
signals driving the RAM of the DPU (RAM_Addr).The new value stored in Rl en,i is
compared to the maximum value allowed for the selected block in the current time
window, stored in register Rmax ,i. In the case that the new value in register Rl en,i is
higher than what allowed, an event is triggered and a packet is created to communicate
the security alert. As with the IAP, the packet generated to communicate the security
alert event to the central unit is composed of the Identifier, which identifies the type
of security alerts detected by the DoSP, the Producer, generated by the same signals
creating the IAP Producer’s field, and Attributes, in this case containing information
about the memory block addressed by the DoS attacks (DPU’s upper_bound signal).
Once the time window reaches its end, the value stored in register Rl en,i is reset, and
statistics begins are collected for the following time window.

With reference to the full coverage of possible entry configurations, it is easy to see
how the hardware blocks shown in figure 5.18 should be replicated for every entry line
of the DPU. Monitoring the lower level of the bandwidth implies instead waiting for
the end of the time window to avoid false alerts. Moreover, in the case of monitoring
of traffic incoming from initiators with superuser and user roles, hardware blocks now
described should be duplicated.

5.6.4 NSM and communication infrastructure

Goals of the NSM in the security monitoring system are to collect security alerts coming
from probes and to elaborate appropriate countermeasures to attacks and problems
detected. For these purposes, the NSM can be implemented in ASIC as a dedicated
core, as a general purpose processor or as mixed implementation. However, software
(or reprogrammable logic based) implementations allow a higher degree of flexibility,
necessary to adapt and update the system in order to be able to face threats coming
from new malware. In our architecture, we opted for this solution.

Another point to be considered in the implementation of the secure monitoring
system is the communication infrastructure. As already mentioned, the traffic coming
from probes should be kept separate (at least virtually) from traffic coming from ini-
tiators, in order to avoid DoS attacks to influence security service communication. As
reported in [189], three main options can be considered: Separate Physical Intercon-

nect for the original NoC application and the NoC Monitoring Service, Common Physical
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Table 5.4. Area and energy consumption of the elements composing the security

monitoring system.

Area [µm2] Energy [pJ]

IAP 56.48 0.088
DoSP 25699.38 30.820

Event Gen. 968.26 1.123
DPU 600041.96 72.970

IAP 0,02%

DoSP 7,63%

Event Gen.

0,29%

DPU 17,83%

NI 74,24%

Figure 5.19. Area breakdown of the several elements of the security monitoring sys-

tem inside the NI.

Interconnect but Separate Physical NoC Resources, Common Physical Interconnect and

Shared Physical NoC Resources.
We have chosen in our case to consider the third option, i.e, sharing all the NoC re-

sources while keeping the NoC user traffic and the monitoring traffic separated, there-
fore creating a virtual NoC for monitoring. This solution is particularly convenient in
our case, being the monitoring traffic not relevant and the overhead associated to the
NoC implementation limited.

5.7 Probes Synthesis results

In this section, we present synthesis results for the implementations of the probes
presented in Section 5.6, obtained by using the 0.13µm HCMOS9GPHS STMicroelec-
tronics technology library. In table 6.1 we show area (in µm2) and energy consumed
(pJ) of the proposed components, i.e., the IAP, DoSP and Event Generator. Values for a
DPU with 16 entry lines are also shown for comparison. The value for the DoSP refers
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Figure 5.20. Synthesis results of the DoSP by varying the number of elements moni-

tored.

to an implementation monitoring 8 input combinations. The synthesis was optimized
for a clock frequency of 500 MHz.

Figure 5.19 shows the area breakdown (in mm2) for a NI including a DPU module
and the two probes. The DPU has 16 entries, while the DoSP monitors 8 input con-
figurations. The area occupied by the IAP is around the 0.02% of the overall NI [9],
impacting therefore not significantly to the overall area budget. This is mainly due to
the fact that the IAP is mainly composed of combinatorial circuits, reacting to changes
of the input signals to provide a trigger to the Event Generator. A bigger impact is given
by the area consumed by the DoSP (7.63% for 8 configurations monitored). The over-
all security system, including the DPU and the two probes, counts for around 25.6% of
the NI implementation.

In figure 5.20(a) we show the area occupied by several DoSP implementations, by
varying the number of input configurations monitored (4, 8, 16, 32). As expected,
the area increases linearly with the number of monitoring blocks, increasing in fact
the number of registers used for storing statistics about traffic and maximum values al-
lowed. Similar trends can be also observed for the energy consumed by the component
(shown in figure 5.20(b)).

5.8 Summary

This chapter presented a secure communication system conceived for dealing with the
weaknesses intrinsic of a multiprocessor system with shared memory and for exploiting
the characteristics of the Network-on-Chip to detect and prevent them. In particular,
we presented an innovative solution for data protection in Multiprocessor System on-
Chip architectures based on NoC. The solution is based on a hardware module (called
Data Protection Unit) that is integrated into the network interface and that guarantees
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secure accesses to memories and memory-mapped peripherals. The proposed solu-
tion takes into consideration a distributed infrastructure. We studied different design
alternatives applicable to the target distributed shared memory architecture, and the
design of a central unit that dynamically manages the data protection modules pro-
posed in the chapter. The experimental results obtained by considering two different
case studies have shown that the introduction of the DPU has only a limited area and
energy overhead (up to 17% and 7.5% respectively) without impacting the system
performance.

Moreover, we presented a monitoring system for NoC based architectures based
on the proposed data protection units, with the goal of detecting security violations
carried out against the system. Information collected are provided to the central unit
for efficiently counteracting actions performed by attackers. We detail architectural
implementation of two type of hardware probes, i.e., the Illegal Access Probe, in charge
of detecting the presence of attempts of unauthorized access to memory locations, and
the Denial-of-Service Probe, which detects unnatural traffic behaviors. We analyzed the
overhead associated with an ASIC implementation of the monitoring system, discussing
type of security threats that it can help detect and counteract.

The work presented in this chapter resulted in publication in several conferences
[17, 190, 191], a book chapter [192], a journal paper [54], and two patent applica-
tions [193, 194].
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Chapter 6

Networks-on-Chip Monitoring

The classical approach for observing system performances and behavior involves the
use of a monitoring subsystem for detecting, collecting, and interpreting run-time in-
formation collected during the system execution. Monitoring of system resources and
behavior is needed for testing, debugging, performance optimization, as well as for
run-time tuning of resources utilization. This chapter deals with the aspect of NoC
monitoring, and presents the work performed for implementing a monitoring system
for NoCs, as well as discussing costs and overhead associated with to its utilization.
The approach proposed in this dissertation represents an attempt to provide to ap-
plication and system designers with a comprehensive study on the set of tools and
information that can be exploited at run-time or during the post-manufacturing phase
for the optimization of an NoC architecture.

The remainder of this chapter is organized as follows. Section 6.1 discusses con-
tributions of this dissertation with respect to the state of the art. Section 6.2 presents
an overview of the proposed NoC monitoring architecture. Section 6.3 discusses im-
plementation details of probes deployed in the system, while section 6.4 presents the
strategies adopted for data collection and storage of detected information. Section 6.5
discusses the experimental results obtained when employing the monitoring system at
design time for profiling a ray tracing application (subsection 6.5.1), and at run-time
for optimizing the NoC operating frequency while running an audio-video multimedia
system (subsection 6.5.2).

6.1 Contributions with respect to the state of the art

Compared to previous work, we address the problem of NoC monitoring from the point
of view of the architecture to be deployed on the system, while focusing on the differ-
ent design trade-offs related to its implementation. Compared to [129] and [130],
the system we propose focuses on the automatic collection of data without altering the
execution of the events on the NoC, and without the need of employing de-packing of

83
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the messages, being events collection performed at the NI. As in [133], we suggest the
use of the monitoring system for dynamic adaptation. However, in our work we pro-
pose a solution that provides the designer with a larger set of information other than
the link utilization, allowing a more detailed view about the system behavior. More-
over, we propose a set of preprocessing operations that can significantly reduce the
amount of traffic generated by the probes, therefore limiting the intrusiveness of the
monitoring activities. With respect to previous work on debugging and testing, the im-
plementation of our monitoring system results in lower complexity and overhead, due
to the fact that we focus on monitoring specific operations of the NoC, and not on the
observation of the circuit signals and registers’ values. We acknowledge however the
fact that more complex debugging systems such as the ones presented in [129, 127]
and [128] can be reused for instance for monitoring at run-time the system behavior,
provided additional support for the run-time management of the received data is avail-
able. In [44, 53], data detected are collected by activating an Interrupt Service Routine
which influences the program execution and interferes with the system behavior. On
the contrary, in our work we detail a solution in which data collection is initiated by
the probes: such solution does not influence processing cores execution, and it is more
suitable for a distributed and heterogeneous system such as an NoC-based MPSoC. The
industrial case in [137, 138] presents several similarities with the solution discussed
in this dissertation: more specifically the run-time programming the probes, as well
as the possibility to automatically send the monitoring results to a central manage-
ment unit, are concepts that have been addressed and implemented, even though with
different trade-offs in costs and flexibility, both in [137] and in our solution. In this
dissertation, however, we propose a probe architecture which provides the designer
with better flexibility on the choice of the amount of on-chip resources to devote to
the monitoring, considering that the Statistics collector implemented in [137] has a
granularity of 8 probes (i.e., each Statistics collector can provide from 1 to up 8 input
channels for the probes). In our solution, the number of probes that can be instanti-
ated in one tile is not restricted to any configuration. Moreover, in our work, we target
a wider and more detailed range of events, as well as providing a set of pre-processing
functionalities which can reduce significantly the amount of bandwidth needed for the
communication of the monitoring data.

The main contributions of this work can be summarized as follow:

• We perform a comprehensive study of the most common system events that can
be object of detection in the communication subsystem, including those events
about cores and processing units that can be observed, with limited intrusiveness,
from the NoC monitoring architecture;

• We introduce a multi-purpose programmable probe, located at the network in-
terfaces of the NoC, that can provide useful information about core activities by
analyzing transactions and requests passing through the communication chan-
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Figure 6.1. Overview of the NoC monitoring architecture.

nel. Probes in NIs do not influence core operations, and a relatively small over-
head is paid in terms of area and energy consumed by the monitoring system, as
well as in the amount of monitoring traffic data generated by probes.

• We propose and discuss an architecture for the efficient and automatic collection
and storage of the information related to the detected events, and we evaluate
the intrusiveness of the monitoring system. Data monitoring and their early pro-
cessing is performed by NIs in parallel to protocol translation, thus limiting the
intrusiveness and the impact of the monitoring architecture on system perfor-
mance.

• We propose a strategy for managing collected information at system level, for
improving performances and management of system resources at run-time.

6.2 Overview of monitoring Architecture

As reference platform, we consider the same shared-memory multiprocessor architec-
ture introduced in chapter 3. Figure 6.1 shows a generic NoC architecture including
the processing elements (PEs), the shared memories, and the four main components
of the monitoring system discussed in this dissertation, i.e.:

• Probes (P in figure 6.1): we located probes inside each NI. By snooping OCP
signals at the interface of the core, probes observe cores’ operations and events.
The probes can also monitor resources utilization and the generation of commu-
nication events by detecting signals behavior in the router and the NI.
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• Probes Management Unit (PMU): a centralized element is in charge of the config-
uration of the probes, of the retrieval of the collected data, and of its elaboration
both after the execution of applications and at run-time, depending on the func-
tionalities offered to the platform.

• Data collection subsystem: data generated by probes are collected in order to
be stored and/or processed by the PMU. Traffic generated by probes have to be
taken into account in the design of the interconnection system.

• Data storage subsystem: data collected and transmitted by the probes are stored
locally in registers or in a local memory of the PMU for being used at run-time, or
in a on-chip streaming memory for being processed after execution (not shown
in figure 6.1).

The four generic components will be presented in detail in next sections, by pro-
viding a description of their functionalities and of the respective design trade-offs.

6.3 Programmable Probes

Probes are in charge of detecting events generated by the system, as well as of initiat-
ing the procedure for data collection. Probes are embedded within the NI of each tile,
at the boundary between the NoC and the core. They observe signals of the OCP in-
terface, as well as internal signals of the NI and the router. For our monitoring system,
we propose the implementation of a multipurpose probe that can be programmed for
detecting several types of event.

Figure 6.2 shows the general architecture of our multipurpose programmable probe.
It is composed of six main elements:

• An Events Detector, that reacts every time the event to be monitored occurs.

• An Accumulator, used for collecting measured values for the observed event.

• A collection of preprocessing modules for early data elaboration.

• Configuration Registers, used to configure the probe for monitoring different
events.

• A Message Generator, which creates messages to be sent to the PMU and the
storage elements, and inserts them into the probe output queue.

• An output queue for buffering the message generated by the Message Generator

before being scheduled for transmission.
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Figure 6.2. Architecture of the programmable probe.

6.3.1 Events detectors

The event detector observes OCP signals as well as NI and router internal signals.
While in [44] probes are specialized for single events, we have chosen to implement
a multipurpose probe that can detect all the types of events described in chapter 3 by
selecting the event to be monitored in the probe configuration registers. As it will be
shown in section 6.3.5, with this choice we trade-off the number of events simulta-
neously detectable with a strong reduction in the area overhead, while still keeping
the possibility of detecting all the events. This choice allows designers to decide the
amount of space in each tile and on the chip that will be spent for the monitoring sys-
tem, by deciding the number of multipurpose probes to be deployed in each tile and,
therefore, the number of events that it is possible to monitor in parallel in a single
execution of the application.

Event detectors operate in parallel with the operations performed by the NI kernel.
In this way, event detectors do not interfere with the operations of address translation
or packing/de-packing performed by the NI kernel, thus satisfying the requirements of
non intrusiveness needed for avoiding the probe effect previously described in chapter
3. Event detectors detect changes in the signals at the interface, without adding latency
to the system. Following the classification described in chapter 3, event detectors
can monitor the following types of events: throughput events, timing/latency events,
resources’ utilization events, and message characteristics and statistics about messages
and packets generation. In the following subsections, we describe the implementation
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Figure 6.3. Throughput Detector.

of the event detectors, as well as the modules involved in the preprocessing of the
collected data, and in the generation of the messages to the PMU. We moreover discuss
the configuration and the programming model for the probes.

Throughput Detector

Throughput is evaluated by keeping track of the amount of traffic to/from a selected
range of addresses generated by an initiator (i.e., a thread running on a processing
element). Figure 6.3 shows a more detailed view of the Throughput Detector module.
The connection to be monitored by the probe is written in the probe configuration
registers. When an initiator begins a transaction, it drives the MCmd signal of the
OCP interface of the NI, by specifying the type of operation (load/store) to be per-
formed on the target. When the elements identifying the transaction (i.e., initiator,
target, type of operation) match those specified in the configuration registers, the ac-
cumulator is enabled and the information about the amount of data transferred in the
transaction (carried by the OCP signal MBurstLength) is added to the accumulator. The
OCP signals involved in the detection are MCmd, which specifies the type of opera-
tion (load/store, i.e., incoming/outgoing traffic), MConnID (connection identifier) and
MthreadID (thread identifier), which identifies the initiator, and signals coming from
the look up table (LUT) of the NI Kernel (LUT_PathAddr)[195]. LUT_PathAddr drives
the RAM of the LUT looking up the target memory address present as input of the OCP
MAddr signal to retrieve the routing information to be inserted in the header of the
packet [10]. Throughput can be collected for the whole execution, for specific time
windows, and for the different connections active at the initiator.
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Figure 6.4. Timing/Latency Detector.

Timing/Latency Detector

The Timing/Latency module is in charge of measuring time properties of transactions.
Details about its implementation are shown in figure 6.4. It is able to measure the
latency between:

• An initiator’s request and the reception of the acknowledge message (initiator-
to-initiator transaction (I2I)).

• The time needed for a request (initiator-to-target transaction (I2T)).

• The time needed by the target for executing its task (execution time (EXEC)).

• The time needed by the acknowledgement message of the target to reach the
initiator and complete the transaction (target-to-initiator (T2I)).

When the initiator begins a transaction, the probe detects a change in the OCP
signal MCmd. Depending on the latency measurement, the probe:

• Stores a timestamp in the accumulator which is subtracted from the arrival time
when the acknowledgement message is received (I2I transaction).

• Stores in the accumulator a timestamp and subtracts it from the arrival time of
the initiator request detected at the target - the probe sends along with the ini-
tiator message a communication for the target to timestamp the arrival time of
the initiator request, and to send back this information along with the acknowl-
edgement (I2T transaction).

• Communicates to the target that it should measure execution time and to send
the information along with the acknowledgement, which is stored in the accu-
mulator (EXEC).
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Figure 6.5. Synchronization protocol between PMU and probes.

• Communicates to the target that it should send timestamp of acknowledgement
message generation, to be subtracted from arrival time at the initiator, and stored
in the accumulator (T2I transaction).

Latency can be collected for every single transaction, and for different connections,
monitoring the same signals and using the same procedure described for the Through-

put Detector module for selecting the desired connection.

Timers synchronization

The use of the Timing/Latency event detector requires the collaborative action of
probes at the initiator (shown in figure 6.4) and at the target of the transaction. There-
fore, before executing timing/latency measurements, the system should synchronize
timers at initiator and target. However, timing synchronization in a distributed archi-
tecture may represent a challenge, due to the problem of being able to synchronously
start or tune timers in two different areas of the chip. In fact, in large designs, signals
may take several clock cycles to be transmitted from one area of the chip to another.

In [129], timestamping of messages (and events ordering) is supported by a totally
synchronous NoC. However, for a large NoC a fully synchronous behavior is not likely
to be implemented due to signal delay reasons, and the timestamping methodology
proposed in [129] would not be able to work without some sort of time synchroniza-
tion between the tiles of the NoC. Abstracting the synchronization at the transaction
level [196] would not equally help in our goal, i.e, being able to calculate precise
timing information when two or more actors are involved in the transaction.

We therefore developed a synchronization methodology inspired by a simplified
version of the Network Time Protocol (NTP), the current widely accepted standard for
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synchronizing clocks over the internet [197]. The synchronization protocol is shown
in figure 6.5. As basic assumption, we consider having in NoC tiles counter-timers
running at the same clock frequency. For each node in which timestamping is needed,
at time tPMU ,0 the PMU sends a read request to the timer register of the node. tPMU ,0

is read from the PMU local timer and stored. At time tpr,0, the message is received
by the probe and, after ∆tdepack cycles in which the received message is processed,
the value of the probe timer is read (t t imestamp) and inserted in the acknowledgement
message sent back to the PMU at time tpr,1, after the packet has been created. The
acknowledgement message is received by the PMU at time tPMU ,1.

The roundtrip delay d can be calculated as:

d = (tPMU ,1− tPMU ,0)− (tpr,0 − tpr,1)

while the timer offset to f f set between the PMU and the probe can be defined as:

to f f set =
(tPMU ,0 + tPMU ,1)− (tpr,0 + tpr,1)+ (∆tPMU ,pr − t∆pr,PMU)

2

where ∆tPMU ,pr is the time needed for the message to travel from the PMU to
the probe, while ∆tpr,PMU is the time needed for transferring a packet in the opposite
direction. By assuming at synchronization time that the latency of transmitting packets
from PMU and probe and vice versa is constant, and ∆tPMU ,pr equal to ∆tpr,PMU (as
it is possible to observe for instance in regular topologies such as meshes), to f f set can
be expressed as:

to f f set =
(tPMU ,0 + tPMU ,1)

2
− t t imestamp+α

where α is a value that can be considered constant and that depends on the differ-
ence between ∆tpack and ∆tdepack. Once evaluated by the PMU, the value of to f f set is
stored in a register in each probe, and used in the calculation of the timestamps. Syn-
chronization can also be repeated at run-time, in the case, for instance, of the recon-
figuration of the probes, or for retuning timers offsets due to mismatches in counters
clock frequencies.

Resources’ Utilization Detector

At network level, the measurement of resources’ utilization is performed by monitoring
the status and the occupation of the internal queues of NIs and the routers. In fig-
ure 6.2, cnt_queue represents the signal monitored for this purpose by the resources’
utilization event detector. These signals are directly taken from the counter used in
general implementations of a hardware FIFO for measuring the number of slots occu-
pied, and for calculating whether the FIFO is full or not [198]. From the configuration
registers it is possible to specify which FIFO, among the NI’s and router’s ones, should
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be monitored, and select the right counter signals to sample. The information about
the utilization of the resources is sampled at intervals set in the configuration regis-
ters, and generated by using a programmable counter internal to the probe. For every
sample, the information detected is stored in the accumulator. A message is therefore
generated by the message generator and sent to the PMU. The Resources’ utilization

Detector can also be programmed to generate an event only if the monitored FIFO is
full.

Messages’ Characteristics Detector

The event detector monitors also characteristics of message generated, and general
NoC characteristics. In particular, the Messages’ Characteristics Detector aims at detect-
ing user configuration events and NoC configuration events [129]. User configuration

events include the detection of information about the characteristics of the communi-
cation between two cores, such as the connection identifier, the type of connection,
the amount of data transferred, and so on. NoC configuration events are mainly related
to communicate modifications in the configuration of the elements of the NoC (such
as changes in the entries of a routing table in a router), and of the system in general.
Other types of more specific events detected by the Messages Characteristics Detector

include also information about the number of transactions generated by an initiator,
the type, length and connection characteristics of messages between cores, and type,
length and connection characteristics of packets created. These measurements are use-
ful only in those NoC architectures in which a certain degree of dynamic adaptation on
the communication characteristics is allowed by the system.

6.3.2 Data preprocessing

The detection of some of the events can generate traffic that could be too expensive to
be supported or managed. In order to reduce the traffic generated by the probes, we
implemented the possibility of pre-processing collected data before sending them to the
PMU. Pre-processing is enabled by selecting the desired functionality in the probe con-
figuration registers. The following pre-processing functionalities were implemented:

• Time windows: total execution time can be divided in time windows, and mes-
sages are generated at the end of each of them. The maximum number of sent
messages is therefore reduced to the number of time windows, instead of sending
messages for every occurrence of an event. Time windows are generated through
the use of a 32 bits programmable counter. The length of a time window is set
in the configuration registers;

• Threshold: by allowing this feature, messages are generated only after compar-
ing the event measured and stored in the accumulator with a threshold specified
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in the configuration register. A message with the collected information is gen-
erated if the data is higher, equal, or lower than the specified threshold. In this
way, only critical information is sent, and, as shown in the section 6.5, transmit-
ted data can be reduced significantly;

• Average: traffic generated by individual samples can be reduced by averaging
the collected values over the number of collected samples in the execution or
in the time window. At every event detection, the measured value is added to
the accumulator, while increasing by one an internal counter. At the end of the
averaging time, only a message containing the sum of all the collected values and
the number of occurrences is sent, delegating to the PMU the execution of the
division between the two for the exact calculation of the average. This solution
avoids the implementation in the probe of an expensive hardware divider, while
still obtaining the reduction in the traffic generated.

6.3.3 Message Generator

The Message Generator creates packets to communicate to the PMU the event or set of
events detected. We propose a data collection system in which the generation of mon-
itoring messages is automatically triggered when reaching the end of a time frame,
when a specific event occurs, or when reaching the end of the application. When one
of these events occurs, the Message Generator generates a packet whose payload con-
tains the information kept in the accumulator, leaving the accumulator ready for the
following events. It acts as an initiator performing a write operation on a memory
location, and it sends the packet to a specific register or memory address associated
with the probe. Message packets are composed of a header and a number of payload
flits (up to 3) that varies depending on the collected event. The header of the packet
contains information about the source of the communication (the probe generating
it) and the destination where to store the collected value. The destination is gener-
ated using the memory address stored in the Storage_Address field of the configuration
registers, which contains information about the memory location associated with the
probe. The PMU associates each probe with its identifier, its configuration, and the
memory address where to store the collected data, in order to retrieve and recognize
the data read during the elaboration. The packet generated is inserted in the probe
queue (Probe Output Queue in figure 6.2), waiting to be scheduled for being transmit-
ted.

For certain types of events in which data transmitted can be coded with a small
number of bits (for instance the queue occupation), the message can contain infor-
mation about more than one event, in order to reduce the bandwidth needed by the
monitoring system. For instance, considering 4 bits for encoding the occupation of a NI
input FIFO long 8 stages, with a data width of 32 bits, up to 8 samples can be grouped
and sent together in one single message with 1 header and 1 payload flit, reducing
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Figure 6.6. Probe Configuration Registers.

therefore the required monitoring throughput by around 87%. Using the maximum
length event message (represented in our monitoring system by 4 flits packet, i.e., 1
header flit and 3 payload flits), throughput can be reduced up to 92%. Data aggre-
gation is selected by enabling the appropriate bit in the probe configuration register
(Aggr_factor in figure 6.6). The aggregation factor (α) can be set from to no aggre-

gation to the maximum aggregation, in which packets, with 3 payload flits containing
each the information of 8 events, are generated. The use of the data aggregation de-
pends on the type of application to be monitored, on the type of event, and on the
delay allowed between the detection of the event and its delivery to the PMU.

6.3.4 Probe configuration

Figure 6.6 shows the Probe Configuration Registers, and all the register fields that can
be selected for enabling the functionalities of the probe. The Event_Select field is used
for selecting the general class of event to be monitored, while Event_Select (sub_class)

allows to specify the subclass of the event. As an example, if the latency is the event to
be monitored, Event_Select (sub_class) can select one between the initiator-to-initiator
transaction (I2I), the initiator-to-target transaction (I2T), the target execution time
(EXEC), or the target-to-initiator transaction (T2I). Source_Id and Destination_Id spec-
ify the source and the destination identifier of the connection to be monitored by the
probe, and these values are compared during the collection of events with the sig-
nals identifying a connection received by the OCP interface and the NI, i.e., MConnID,
MthreadID, and LUT_PathAddr. The bits of the Multiple_SrcDst field specify the connec-
tions to monitor between initiators on the source core and targets on the destination
core (1-to-1, 1-to-all, all-to-1, all-to-all). Transaction_Type specifies the operation to
be monitored by the probe, i.e., read, write, or all. Enable_Time_Window and En-

able_Threshold enable the corresponding preprocessing features. Time_Window stores
the value to be considered as the length of the time window, while Threshold the value
to be used as comparison with the value collected by the accumulator of the event de-
tector. Select_Comparator selects whether a greater-than, equal, or less-than operation
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Table 6.1. Cost of probes and tile components.

Area (mm2)

Single multipurpose probe 0.042
Timing/latency probe 0.037
4 multipurpose probes 0.156
Router (5 p) 0.143
NI initiator 0.141
NI target 0.172
ARM920T 4.7

should be performed on the data compared with the threshold. Enable_Average en-
ables the use of the average functionality. Queue_Id is employed to select the internal
queue to be monitored by the probe, while Sampling_Time to set the time (in clock
cycles) between two consecutive measurements of the number of elements contained
in the buffer. The Storage_address field contains the memory address storing the value
of the event detected by the probe. An additional bit in the configuration register (no-

tify_PMU) is used for specifying whether notifying the PMU of the arrival of the event
message from the probe, in particular in the case of the use of the monitoring system
for the run-time management of the platform. In the case of notify_PMU enabled, mes-
sages transmitted by the probes generate an interrupt at their arrival at the NI of the
PMU, allowing the central unit to immediately receive the information.

Configuration registers are memory-mapped, and, as explained in section 6.4.3,
the PMU configures them before program execution or at run-time. The PMU keeps a
record of the configuration of each probe, in order to be able to interpret correctly and
process the data received, together with the information about the memory address or
register in which the collected data will be stored.

6.3.5 Implementation cost

We implemented the monitoring probes in VHDL and synthesized them by using Syn-
opsys Design Compiler, considering a 0.13µm technology library, and optimizing the
synthesis for a clock frequency of 500 MHz.

Table 6.1 shows the area, in mm2, of a single multipurpose probe, as well as the
cost of a monitoring system composed of 4 probes, able therefore to monitor 4 different
events in parallel in the tile. The implementation of a multipurpose probe implies
an overhead in area of around the 13% with respect to the most expensive single
monitor, i.e., the timing/latency probe. In the evaluation of the area occupied by the
Timing/latency probe, both probe components at the initiator and at the target where
considered. As it is possible to notice, the area used by a 4-probe system is slightly
smaller than the area of a single probe multiplied by 4. This is due to the fact that
some components of the multipurpose probe, such as the programmable counter used
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Figure 6.7. Area of a monitoring system composed of multipurpose probes (mult) and

“full” probes (full), while varying the number of probes and the number of instances

of the same event detectable in parallel.

for generating the sampling signal, are shared by all the events generators of the probe.
An alternative choice to the use of multipurpose probes could have been to im-

plement all the event detectors separately, such as for instance in [44]. However, the
cost of a complete implementation would have been prohibitive, in particular because
of the high number of possible connections to be monitored, and of the significant
amount of buffering space needed for accumulating locally at the probe all the possi-
ble events for guaranteeing non-intrusiveness in the message generation. The saving in
area obtained when comparing a monitoring system with 4 multipurpose probes with
such a “full” monitoring system able to monitor all the events in parallel is around
52%, being its estimated area of 0.328 mm2. In the comparison, we considered the
“full” monitoring system having probes for every type of detectable event, and able to
follow 4 different connections at the time [44, 195]. Figure 6.7 compares the scalabil-
ity of the two types of monitoring systems while varying the number of probes, and,
therefore, the number of events detectable in parallel in the same tile. As is it possible
to notice, the monitoring system implemented by using multipurpose probes allows a
significant saving in area in all the configurations.

The 4-probe system counts for approximately the 35% on the total area of the NI
and the router. Reference routers and NIs are those obtained when generating a system
similar to the one shown in figure 6.1. The reference architecture represents a typical
shared memory multiprocessor composed of 10 initiators and 1 target-memory. Tiles
are positioned in a mesh topology. The architecture implements a table-based routing
algorithm and wormhole control flow. Arbitration of output queue is based on Round
Robin, among elements of the same class of messages (NoC data or probes messages).



97 6.3 Programmable Probes

Table 6.2. Energy per operation of the event detector components.

Energy (pJ)

Throughput probe 0.29
Timing/latency probe 2.10
Resource utilization probe 0.15
Message characteristics probe 0.87
Accumulator 11.51
Output queue 12.90

Table 6.3. Energy dissipation due to the NoC components considering a 32-bit data-

path running at 500MHz.

NoC router NI initiator NI target

3p 4p 5p

Header Energy [pJ] 75.2 80.1 88.1 92.7 107.3
Payload Energy [pJ] 63.3 65.1 67.8 44.7 52.3

NIs and routers were obtained by using the PIRATE-NoC compiler [184]. Buffers length
was imposed equal to 4 for the routers, while equal to 8 and 16 respectively for NI at
the initiator and target.

Considering an NoC with a monitoring system with 4 probes in each tile and one
without it, the overhead is 55% of the total area of router and NI in the tile. Overhead
obtained is of the same order of magnitude of probes implemented for debugging
purposes [129]. The overhead obtained when considering in the evaluation also the
processing element in the tile is approximately the 3% (we consider as reference a
typical embedded processor implemented with the same 0.13µm technology library,
i.e., an ARM920T with 16KB of data and instruction caches) [41].

Table 6.2 shows energy values per operation associated with the data detection of
each different event of the probe, as well as to the other components of the probe.
The energy was obtained by using Synopsys Design Compiler and Prime Power with
the same 0.13µm technology library. The energy consumption of each event detector is
proportional to its architectural complexity and the amount of storage elements needed
for performing its operation; the Timing/latency probe is for this reason the most power
hungry event detector, due to the monitoring options available and to the protocol
implemented for calculating the latency of the transactions. As a comparison, we also
reported in table 6.3 the energy dissipation for the network components obtained by
using the PIRATE-NoC Compiler [184].

Summarizing, looking at the synthesis results both energy and area overhead can
be considered acceptable given the provided service at network level provided by the
monitoring infrastructure.
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Table 6.4. Traffic generated by a probe for notifying several detected events.

Event Bandwidth

Throughput for 64bits

execut ion_t imeexecution
Throughput for 64bits

t ime_windowtime window
I2I latency for 64bits∗number_t ransact ions

execut ion_t imetransaction
I2I latency above 64bits∗number_t ransact ions

execut ion_t imethreshold

queue utilization
64bits

queue_sampl ing_t ime∗α
Average I2I latency 96bits

t ime_windowin time window

6.4 Data management

In this section, we discuss data collection, storage, and management of messages gen-
erated by the probes. In a distributed system, such as an NoC-based architectures, the
collection and storage of information detected represents a challenge for the designer.
In [44] and [53], data collection is performed running an interrupt service routine
that reads at regular intervals data detected by the probes. However, in [44], such
a strategy stops normal core execution. Moreover, it is either not applicable in the
case of probes distributed in the different tiles of the NoC, or, it would imply storing
locally the information detected and requesting the PMU to read them from the local
memories. On the one hand, this strategy would postpone the transmission of infor-
mation at times decided by the central probes manager, increasing the time between
the detection of the event and its processing by the PMU. On the other hand, it would
increase the amount of traffic needed for obtaining the information from the probes, in
particular in the cases in which warning messages (for instance, events over a specific
threshold) are transmitted. As introduced in 6.3.3, in our approach, warning messages
are automatically triggered when reaching the end of a time frame, when a specific
event occurs, or when reaching the end of the application execution.

6.4.1 Data collection

Traffic coming from probes should be kept ideally distinguished from traffic coming
from cores, in order to avoid influence on normal system communication. As reported
in [189], three main options can be considered: Separate Physical Interconnect for

the original NoC application and the NoC Monitoring Service (i.e., implementation of a
service network [138, 137]), Common Physical Interconnect but Separate Physical NoC

Resources (i.e., use of virtual channels), Common Physical Interconnect and Shared Phys-
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ical NoC Resources (i.e., use of bandwidth regulators or QoS techniques for separating
the traffic [9]). We have chosen in our study to consider an NoC in which communica-
tion resources are shared among the two types of traffic. This solution is particularly
convenient in our case, being the overhead on the NoC implementation limited, but
the network should be able to guarantee enough bandwidth to support both data flows
without significant interference between them.

In general, the communication system should be over-designed in order to allocate
the monitoring traffic together with the NoC traffic, and avoiding significant influences
between the flows. As shown for instance in section 6.5, this can be done a posteriori
by verifying that data forwarded to the PMU represents a negligible part of both the
traffic generated by the NoC and the total bandwidth available, or by limiting the
bandwidth available to probes.

To evaluate the influence of monitoring activities on the data collection, we per-
formed an analysis of the traffic generated by the probes. A similar consideration holds
also for the data storage. Table 6.4 presents the bandwidth expected to be generated
by a selected set of events, in terms of the execution time of the application (execu-

tion_time), the length of the time window observed (time_window), the sampling time
of the queue utilization (queue_sampling_time), the number of transactions executed
during the application (number_transactions), and the aggregation factor (α). Similar
formulas can also be found for other events not shown in the table.

The minimum traffic generated by the probe is equivalent to 64 bits, i.e., a 2-flit
packet composed of a header and a payload flit (we assume a 32-bit data width for
the NoC physical links). Such traffic can be observed for single event messages, such
as those generated in the case of the detection of the measurement of the throughput
during the execution of an application. A 96-bit packet (three flits) is employed for
sending information about averaged measurements. The first data flit contains the
measured value, while the second the counted number of occurrences of the event.

For some measurements, such as the one counting the number of times the initiator-
to-initiator (I2I) latency is above a certain threshold, the bandwidth depends on the
number of occurrences of the event. Table 6.4 reports therefore the maximum value,
i.e., the bandwidth generated when all the transactions are above threshold.

The overall bandwidth of the probes can be calculated once the values of the mon-
itoring parameters have been set (execution_time, time_window, queue_sampling_time,
α). In the case of messages depending on the number of events appearing on the NoC
(such as for instance in the case of the notification of the messages length, or in the case
of the number of transactions generated during a dynamically changing application)
an estimation of the needed bandwidth should be performed before data collection.
This can be done for instance by preceding the measurement of the event to be esti-
mated with another execution of the application, during which the probe measures the
number of occurrences of the event.
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(a) (b)

Figure 6.8. Memories used for storing the collected data: (a) PMU local memory; (b)

streaming memory.

6.4.2 Storage

In terms of the storage strategy adopted in our architecture, we can distinguish be-
tween two approaches: the use of local memory in the PMU, and the use of an on-chip
streaming memory for larger amount of data. Those two different approaches can
support the run-time management the and profiling features, respectively. Figure 6.8
shows an overview of the two approaches.

PMU Local memory

The former approach, shown in figure 6.8(a), can be employed for events generating
a limited number of values for each execution (such as for instance the throughput
measured in one communication, the average message length, or the number of trans-
actions). Local storage is moreover important in the case of utilization of collected data
for the analysis of run-time system behavior for run-time management of resources, or
in general for applications that may require an adaptive reaction from the system. As
a matter of fact, values stored in the PMU’s local memory or registers can be accessed
by the Operating System in a faster way, and they can be employed for evaluating
appropriate reactions to changes in the system detected by the probes.

Streaming memory

The streaming memory approach is employed for storing data exceeding the allocated
space in the PMU’s local memory, and for data whose dimension is not known before
the execution of the application to be monitored. The streaming memory can be imple-
mented by using an approach similar to [199], where a real-time streaming memory
controller supporting off-chip services and real-time guarantees for accessing exter-
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nal memory is proposed. The need for using a streaming memory in our monitoring
framework lies on the fact that it allows to store streams of data without taking care
of the addresses generation, and to use as much as possible the memory bandwidth.
In our architecture (see figure 6.8(b)), a FIFO manager is in charge of retrieving data
from the input buffer receiving the streaming data of the probes, and of implement-
ing the address generation for the streams, as well as updating the access pointer to
access the external memory. The buffer is memory mapped to the probes through the
Storage_address field in their configuration registers. The usage of different memory
addresses to map the same input buffer is enabled to manage the record of different
streams. The PMU will read the data stored once the application is completed, using
the inverse (read) functionality of the FIFO manager. The header of the message is
stored in the memory along with the information generated by the probe, in order to
let the PMU be able to associate the information with its source when performing the
elaboration of collected data.

For systems with a large number of probes, only one streaming memory might
represent a bottleneck for the monitoring system, both in terms of the possible traffic
saturation and in the waiting time for accessing the memory. More streaming memories
can be envisioned and therefore distributed in the NoC to solve this issue. Extending
the PMU for using more streaming memories is straightforward, as far as they are
memory-mapped to the centralized control management unit, and as far as additional
interfaces to the main memory are available, as for instance in 3D-stacked memory
architectures [200].

6.4.3 Probes Management Unit

Depending on the purpose of the monitoring system, the PMU can be in charge of
managing the profiling or of the run-time adaptation of the resources. In the first case,
tasks performed by the PMU are mainly two: programming the configuration registers,
and retrieving the collected data for processing them. These tasks can be implemented
with two software routines running on a processor. No particular performance re-
quirements are needed concerning these two routines, as they are executed when the
application is not running. The former task is executed before running the application
to be monitored, and it is in charge of writing the memory-mapped configuration reg-
isters of each probe for detecting the desired event. A record is kept by the PMU that
associates the register identifier with the configuration written in it and the memory
address where to retrieve the stored data.

The second software routine is executed at the end of the application, and it reads
the stored data so as to process them in order to perform additional operations on the
collected information, such as the calculation of the throughput or the averaging of
the measurement performed. These two routines can be executed by any processor
before and after the execution of the application. With this choice, no overhead cost is
associated with the implementation of the PMU.
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Figure 6.9. Run-time control loop based on the proposed NoC monitoring framework.

In the case of the use of the PMU for the run-time management of the platform, a
third software routine is active on the core selected as run-time manager [134, 195].
The run-time manager routine is in charge of analyzing the data received by the several
probes, elaborate them, and to react appropriately to changes in the application re-
quests by appropriately configuring the utilization of system resources, such as the op-
erative frequencies of NoC link, buffer allocations, priorities of communication flows,
etc [50, 133, 201]. Typical examples of utilization for run-time management issues
of the NoC monitoring framework we are proposing, can be summarized in figure
6.9 where the feedback controller is used to set the desired system behavior. In this
case, the controller does not need to be activated too much frequently since the period
should be large enough to wait for the implementation of the selected policies by the
control algorithm. Moreover, by using the notify_PMU field of the configuration regis-
ter it is possible to generate an interrupt at the reception of the monitoring messages
which immediately notifies the occurrence of the event to the PMU. This is particularly
useful in the case of events such as the exceeding of a defined threshold in one of the
measurements. An example of the utilization of the monitoring system for run-time
management of NoC resources is given in subsection 6.5.2.

General considerations about run-time management of platform resources

In the case of the use of the monitoring information collected by the probes for run-time
purposes, the platform should provide hardware/software support for the execution of
those tasks taking care of the reallocation of the resources, and of the modification of
the operating points of the platform components. Mismatches between performance
and quality of service required and those currently provided by the platform, due to
parameters and workload run-time variations, should be minimized.

The decision about the adaptations to be performed on the platform can be taken at
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different levels, i.e., at hardware, OS, or/and application, depending on the granularity
of the adaptation and on the time overhead still allowing satisfying the requirements
[202]. At system level, monitoring activity may target processors and memories behav-
ior through dedicated hardware probes [203, 204, 202, 44] or by code structures in the
OS and at application level [205, 206, 207, 208, 209], and, as also discussed in this dis-
sertation, the communication subsystem behavior [140, 133]. Goals of the run-time
adaptation range from reconfiguration of platform components [134, 18, 210, 204]
to the reallocation of application tasks into the processing elements in order to, for in-
stance, increase performance [211, 212], reduce energy consumption [213, 214, 215],
or for fault tolerant purposes [216, 217, 218].

As presented in [45], several architectures have been proposed for the implemen-
tation of run-time management in MPSoCs. In general, it is possible to distinguish
among three types of implementation, i.e., the Master-Slave configuration, the Separate

supervisor configuration, and the Symmetric configuration. The first category includes
all those systems in which the run-time management is executed by a single master pro-
cessor, which monitors and assigns work to the slave processors. The master processor
is in charge of collecting monitoring data and elaborating them, as well as driving the
adaptation of the system. While being simple and efficient, this type of implementa-
tion may present the drawbacks of having in the master processor a single point of
failure, as well as a possible performance bottleneck. Several works in the literature
target this type of architecture: in [201], the run-time manager implements a state-
space feedback control for tuning operating points of the voltage/frequency islands in
which the architecture is divided; in [205], run-time management is employed for ob-
taining, in the case of changing application scenarios, a desired QoS while minimizing
power consumption and maximizing the usage the multiple cores in the architecture;
the Texas Instruments OMAP MPSoC platform [219] implements a software run-time
manager running on a master processor and taking care of assigning tasks to the slave
processing cores.

In the Separate Supervisor configuration, the run-time management functionali-
ties are executed independently in each processor. A relatively costly synchronization
among the processors needs to be implemented, while gaining in terms of scalability
and graceful degradation in the case of the failure of one of the processors. This type
of implementation presents however a significant overhead in terms of duplicated data
structure, and inter-processor communication.

All the processors in the Symmetric configuration execute concurrently a single run-
time manager. Shared data are accessed through critical sections. This configuration is
implementable in the case of homogeneous shared-memory MPSoCs, and while being
the most flexible architecture, similarly to the Master-Slave configuration, it presents
downsides due to possible bottlenecks in the execution of the run-time manager. The
ARM MPCore architecture [220] implements this type of configuration while running
an SMP OS such as Linux SMP. Similarly, the K42 OS [209] developed by IBM includes
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Figure 6.10. General structure of run-time management systems.

a software implementation of a Symmetric configuration run-time manager.
Mixed implementations exist which attempt to combine the above mentioned con-

figurations, such as for instance the StepNP flexible multi-processor SoC architecture
platform [139], which contains general purpose processing elements running an OS in
Symmetric configuration that act as master for the slave dedicated cores and proces-
sors.

Figure 6.10 shows the general structure of a run-time management systems, in
particular focusing on the case of the architecture considered in this chapter, i.e., the
Master-Slave configuration. In the figure, the main functionalities offered and imple-
mented in the case of run-time management are highlighted. Typically, applications
may or may not be allowed to interact with the run-time management, by being able
to configuring it or by taking over part of its tasks [45]. In our case, applications are
considered separated from the run-time manager, which supports their adaptivity by
selecting the most appropriate operating point according to resources requirements
and availability. This type of architecture can be for instance observed in systems such
as the one presented in [205] or [201].

The Monitoring Manager deals with the configuration of the probes and the collec-
tion of information. As presented in section 6.4.3, this is implemented in our system
by running a software routine before the execution of the application, and by allowing
the possibility to configure probes’ memory-mapped registers at run-time. Collection of
information is event-based, or performed at moments specified in the probes’ configu-
ration registers. The Resource Manager takes care of the configuration and assignment
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of the resources to the applications requiring them, by trying to match availability with
requirements. The Evaluation Engine calculates the new configuration to be applied
to the system, by elaborating information detected by probes. Depending on the re-
sources managed, different types of algorithms and heuristics can be used for optimiz-
ing the new configuration, in particular trading-off execution speed versus quality of
the solution. As an example, state-space feedback control is employed in [201], while
heuristics in [213, 214, 212, 221]. Evolutionary algorithms can be employed for calcu-
lating the optimal distribution of resources [222, 223, 224], but their execution can be
to costly to be performed at run-time. Systems based on the storage of pre-calculated
solutions have been proposed [217, 204], that provide the run-time manager a pool
of possible configurations to choose from for satisfying new requirements. The Sys-

tem Quality Manager interacts with user, applications, and Evaluation Engine in order
to find the right trade-off between the applications and user requirements, and the
available platform resources [45].

6.5 Experiments

6.5.1 Profiling of ray tracing application

In order to evaluate the overhead of employing the monitoring system in a real case
study, we implemented a cycle accurate simulator of an NoC in SystemC. In our exper-
iments, we considered the architecture shown in figure 6.1, composed of 10 initiators,
where each initiator has a processing element and 16KB local L1 cache, and a shared
L2 memory. Cores of the architecture are mapped on a 4 x 3 mesh. As shown in fig-
ure 6.1, we located the L2 shared memory on tile (1,1), while tile (1,2) was assigned
to the Probes Management Unit. As use-case, we monitored the execution of a ray

tracing application [225]. Ray tracers are typically used to render scenes in games, 3-D
modeling/visualization, virtual reality applications, etc., and they can be considered as
one of the key challenging applications for general-purpose and embedded processors
[226]. The application was parallelized and mapped on the ten processing elements.
Every processor generates read or write operations toward the shared memory, driven
by the memory request generated by the application. We deployed 4 probes in each
initiator tile, and perform with each probe a different measurement within the same
node. Configurations of the probes, a part from the addr fields, were set to the same
value for each node. We measured the total traffic generated by each initiator towards
the target, the average initiator-to-initiator (I2I) latency, the number of times the I2I
latency exceed the threshold (set to 95 cycles), and the throughput generated during
each time window (set for this experiment to 215 cycles (32Kcycles)). We ran the sim-
ulation for 15 Mcycles, starting to gather our measurements after a warm-up time of
10 Kcycles.

Figure 6.11(a) and figure 6.11(b) show respectively the traffic measured from each
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Figure 6.11. Monitoring results: (a) Traffic from each initiator to the shared memory

(MB/s), (b) Average I2I latency from each initiator (cycles), (c) Number of times I2I

latency over threshold, (d) Throughput detected for initiator in PE1, in tile (0,0) (MB/s).

initiator to the shared target (in MB/s), and the average transaction latency (I2I) for
each connection (in cycles). Figure 6.11(c) shows the number of times in which the
I2I latency exceeded the value set as threshold. By using the threshold capability the
number of messages sent by the probes is reduced in average of about 91%, reducing
accordingly also the bandwidth needed for the transmission of the messages.

Figure 6.11(d) shows an extract of the throughput (in MB/s) generated by initia-

tor 1 (in tile (0,0)) while varying the time. The graph shows the values of the traffic
detected at every time window, and it provides a good example of the possibility to
observe with our monitoring system run-time characteristics of the application. The
throughput generated by the probes during the experiment, averaged on the number
of initiators, is shown for the measured events in table 6.5. The first two values are
of fixed data length and the probe send only one message. The second two values
depend on the run-time parameters of the execution. In particular, for the detection
of the throughput, only one packet, composed of the header and one payload flit, is



107 6.5 Experiments

Table 6.5. Throughput generated by each event in the experiments performed.

Event Bandwidth

Throughput 0.26 KB/s
Average I2I latency 0.39 KB/s
I2I latency over threshold 4.62 MB/s
Throughput in time window 119 KB/s

Table 6.6. Average power consumption (in µW) associated with event detection and

monitoring data transmission at the initiator 1.

Event Detection (µW) Transmission (µW)

Throughput 78.911 0.023
Average I2I latency 194.699 0.0344
I2I latency over threshold 210.316 419.668
Throughput in time window 79.303 10.432

generated. For the measurement of the average I2I latency, the packet generated con-
tains two payload flits. In the case of the measurement of the number of transactions
with I2I latency above the threshold, the throughput generated (and the number of
messages sent by the probe) depends on the number of events detected, while for the
throughput measured in every time interval, the amount of information transmitted
is inversely proportional to the dimension of the time windows. The traffic generated
by the probes is about 5% of the traffic generated by the initiators (measured with the
throughput event detector) and 0.2% of the NoC link bandwidth (equivalent to 2GB/s).
These values allowed us to verify in the experiments performed the assumption of non
intrusiveness of the monitoring system.

Table 6.6 shows the values of the average power consumption (in µW) associated
with the detection of the four events at initiator 0 (PE00), as well as the average
power consumption due to the transmission of the monitoring data. The average power
consumption related to the detection were calculated considering the values reported
in table 6.2, and the rate in which the event detectors were active during the execution
of the application. On the other hand, the average power consumption associated with
the transmission of the monitoring data has been obtained by using the values shown
before in table 6.3 for routers and NIs, the number and type of routers encountered by
the monitoring messages from the probe to the PMU and related bandwidth. As table
6.6 shows, the power consumption related to the detection of latency values is higher
than the one related to the detection of the throughput. This is mainly due to the
exchange of information between initiator and target for implementing the protocol
needed for measuring the latency (see section6.3.1). The power associated with the
data transmission is in general (except for I2I latency over threshold) lower than the one
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Figure 6.12. Architecture and communication bandwidth of the MMS. The value of

β depends on the application mode. beta = 0 : Only audio stereo (AS_V0); β = 1

: Audio plus low resolution video (AS_V L); β = 2 : audio plus medium resolution

video (AS_V M ); β = 8 : audio plus high resolution video (AS_V H).

associated with the detection, due to the fact that for the measurements performed
the number of messages sent to the PMU is significantly lower than the number of
transactions monitored. For instance, only one packet is sent by the probe in the case
of the throughput and of the average I2I latency. Similarly to the results obtained
in table 6.5 for the bandwidth required by the probes, the I2I latency over threshold

measurement presents the highest value of power consumption, due to the relatively
high number of messages sent by the probe. Overall, the average power consumption
due to the monitoring system is about 6% of the power consumption due to the traffic
generated by initiator 1 executing the ray tracing application, that results equal to 19
mW .

6.5.2 Monitoring of queues utilization for dynamic voltage-frequency man-

agement

This section presents a use case in which the monitoring system is employed for pro-
viding information for adapting at run-time the voltage and frequency level of the NoC
routers in a generic multimedia system (MMS). We consider a multimedia application
including an H263 video decoder and an MP3 audio decoder [227]. Figure 6.12 shows
how the tasks of the application have been mapped on the NoC architecture, as well
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as the communication bandwidth of the cores (in KByte/s). Cores bandwidth depend
on the parameter β , which varies accordingly to the video resolution of the applica-
tion. Every processing element (PEi) and router (Ri) belongs to a different voltage and
frequency island (VFIs). Without loss of generality we focus only on the adaptation
of the operating points of the routers, by imposing the frequency of the PEs to 1GHz.
The goal of the adaptive system is to optimize the voltage and frequency of the routers
by monitoring the queues utilization, directly related to the waiting times of the pack-
ets in the queues and therefore on their latency [228]. We consider routers able to
operate at the following discrete frequency levels: F = {1 GHz, 0.5 GHz, 0.250 GHz,
0.125 GHz, 0.0625 GHz}. The corresponding discrete supply voltage levels are based
on the model presented in [229]. Queues connecting processing elements and routers
are 8-slot long.

In our experiments, we consider four different application modes impacting the
network workload: only audio stereo (AS_V0, β = 0), audio plus low resolution video
(AS_VL, β = 1), audio plus medium resolution video (AS_VM, β = 4), audio plus
high resolution video (AS_VH, β = 8). When moving from one case to another, the
variations in the average utilization of the queues are detected by the probes, which
communicate the event to the PMU. The PMU increases or decreases the operating
levels of the routers, depending on the event detected. Queues utilization is measured
every 32 cycles, and, in the case that the average of the measured values over the
time window exceeds a defined threshold, a warning message is sent at the end of
a time window to the PMU. The used time window is approximately 100µs long, and
represents the control intervals in which the application is divided. This amount of time
is conservatively large enough for completing the operations of event detection and
communication to the PMU, execution of the simple control algorithm, and updating
the routers with the new operating points [201].

We monitor the input queue of router R0 connected to the MC → ADD processing
element (QR0MC−ADD), being in fact MC → ADD the processing element requiring a
higher bandwidth. Moreover, we monitor the input queue of router R1 connected to
router R0 (QR1R0), which gives an indication about the capability of R1 of satisfying
bandwidth requirements of messages flowing within tile 1 and of those coming from
and directed to tile 0. By profiling the queues behavior in the four cases we obtained
a simple rule for adapting the frequency of the two routers. The R0(R1) frequency
will be increased when the utilization rate of the QR0MC−ADD(QR1R0) is higher than

0.3, while decreased when the utilization rate is lower than 0.05. When the two alerts
are received in the same control interval, priority is given to the adaptation of R1’s
frequency. More complex control algorithms based on analytical models of the queues
behavior can be implemented [201, 228]. However, this is out of the scope of the focus
of the work presented in this dissertation.

Figure 6.13 presents the results of our simulations, in particularly focusing on the
moments when switching from one case to another showing a time window of 1.5msec.
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Figure 6.13. Monitored queues utilization and routers frequency during the applica-

tion scenario composed of the following sequence: AS_V 0 → AS_V L → AS_V H →
AS_V M . The results presentation has been focalized on the transition between appli-

cation modes for a period of 1.5 ms.

We run every application mode for 5 seconds with the sequence AS_V 0→ AS_V L →
AS_V H → AS_V M , for a total simulation length of 20 seconds. In figure 6.13 we
show measured values for queue utilization and routers frequency when varying video
mode (β). At second 5 and 10 the increment of the network load (AS_V0 → AS_V L

and AS_V L → AS_V H transitions) can been noticed by the high queue utilization
that requires a subsequent increment of the router(s) frequency, that in the second
case occurs through 5 intermediate steps (0.5 ms). The opposite occurs at second 15
(AS_V H → AS_V M transition) where the under utilization of both queues required to
reduce both frequencies. No other event occurs during the rest of the simulation. The
average power consumption associated with the event detection and transmission is
equal to 0.966 mW , while the traffic generated by the probes is equal to 72 Bytes. By
employing the Orion [230] we evaluated the power consumption of our implementa-
tion with respect to a baseline architecture in which the routers have been designed
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for the worst case scenario (AS_V H) running R0 at 1GHz and R1 at 250MHz, obtain-
ing an average saving of about 19%, while the average saving increases up to 40% if
comparing to the case in which both routers run at 1GHz.

6.6 Summary

In this chapter, we approached the problem of monitoring NoC based systems. Based
on the study, presented in section 3, of the most common events detectable inside
and through the communication subsystem, we proposed the utilization of a config-
urable multipurpose monitoring probe to detect information related to a large number
of events.We discussed an efficient and automatic collection and storage of the infor-
mation generated by the probes, and we evaluated the intrusiveness of the monitoring
system, as well as the costs in terms of area, energy and traffic overhead of the pro-
posed system. The resulting overhead can be considered reasonable given the provided
service at network level both for profiling and run-time management purposes.

The work discussed in this chapter was presented in two conferences [195, 231].
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Chapter 7

Fault tolerance

As previously discussed in chapter 3, new methodologies and architectural solutions
should be explored in order to deal with malfunctions and failures due to the unrelia-
bility of complex devices and interconnects realized with new CMOS deep-submicron
technologies. As shown in the motivation chapter, the network interface (NI) repre-
sents a critical point for the realization of a fault tolerant NoC. NIs interface IP cores
to the overall system. Faulty NIs can cause errors that may affect the transmission of
information within the NoC, as well as isolate the whole IP from the rest of the system,
thus generating a massive and unwanted extension of the fault-affected area.

This chapter focuses on the proposal and evaluation of architectural methodologies
to make NIs resistant to temporary and permanent faults. We will consider NoCs im-
plementing a wormhole flow-control, and a source based routing. When a new packet
is created, the NI’s lookup table (LUT) provides, as routing information to be inserted
in the header, a sequence of bits that encodes the path used by the packets to reach the
destination node in the NoC. The length of this information segment depends on the
dimension of the NoC and on its topology. At each router encountered along the path,
a few bits of the sequence are employed for requesting the desired output port. After
the use of the output port is granted, such bits are discarded, and the header of the
packet is updated [9]. In the chapter we make the assumption that faults are local to
the individual functional block of the NI; given the heterogeneity of such blocks, we ac-
cept distributions of multiple faults within an NI, imposing the single fault assumption
within for the individual functional block. We consider mutually independent faults,
and assume that the time between two consecutive faults hitting the same compo-
nent is sufficiently long to apply at run-time the proposed online reconfiguration fault
tolerant techniques described in this chapter.

The remainder of this chapter is organized as follows. Section 7.1 discusses con-
tributions of this work with respect to the state of the art. Section 7.2 presents the
proposed fault tolerant architectural solutions for the components of the NI, while
section 7.3 discusses online error detection and run-time reconfiguration policies. Sec-
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tions 7.4 and 7.5 describe the evaluation of the proposed NI architectures, showing
that our solution is able to increase the fault tolerance of the NI to values close to
those obtained for a reference standard triple modular redundancy (TMR) implemen-
tation. While adding a limited overhead with respect to a baseline NI architecture, our
solutions achieve an area saving of up to 48% with respect to the TMR implementation,
as well as a significant energy reduction.

7.1 Contributions with respect to the state of the art

The work presented in this chapter can be considered complementary to previous work
about fault tolerance in NIs and NoC, as presented in chapter 4. With respect to it, we
address not only the "hard" faults in the link connecting the core to the NI, but we pro-
posed a solution able to deal with "hard" and "soft" faults in all the main architectural
elements of the NIs. In this work, we address tiled architectures (such as for instance
the one in [3]), in which the link between core and NI can be considered as part of
the node’s circuits and signals, and treated accordingly with standard fault tolerant
techniques. For this type of NI architecture, a careful analysis of the fault tolerant ca-
pabilities of the NI has not been performed up to now; often, a "collapsing" of NI and
core is adopted as far as faults are concerned. This work provides an evaluation of pos-
sible architectural techniques to be used for increasing fault tolerance characteristics
of the NI’s main components, and, therefore, of the overall NoC.

The main contributions of this chapter are:

• The proposal and evaluation of a fault tolerant two-level architectural approach
for NI’s components identified as most sensitive to faults, i.e., FIFOs or buffers,
the lookup table (LUT), and the Finite State Machines (FSMs) driving NI’s oper-
ations. The solutions proposed and discussed require a limited amount of redun-
dancy and yet are able to mitigate the effects of both temporary and permanent
faults in the NI.

• The proposal and discussion of online reconfiguration strategies for the fault
tolerant components, activated as a consequence of fault detection.

• A methodology for the exploration of fault tolerant architectures by taking their
survivability as one of the cost metrics.

7.2 Proposed NI fault tolerant approaches

Goal of this work is to improve NI’s resilience by increasing fault tolerant capabilities
of its basic blocks. As shown in chapter 3, in our fault model errors are mainly due to
faults concerning the Lookup Table (LUT), FIFOs, and the Finite State Machines (FSM)
controlling the adaptation protocol in the OCP adapter and the NI back-end operations
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Figure 7.1. Overview of the proposed LUT architecture.

(data packetization/depacketization, routing and control flow). We therefore focus on
these building blocks. These NI’s components are mainly composed of memory cells
(SRAM or Flip-Flops) and they are particularly subjected to both "soft" and "hard" faults
[63, 65].

The solutions presented here for implementing these basic components are based
on the use of Error Correcting and Detecting codes [61], in combination with limited
redundancy, and a limited use of TMR. More specifically, additional logic and compo-
nents of the NI, which represent a not significant part of the overall NI architecture area
(in our implementations, around the 4% for a NI of a 16-node NoC), are implemented
using TMR.

7.2.1 Lookup table

In a source-based implementation of the NI, a LUT is employed for retrieving the rout-
ing path associated with the address specified in a transaction [10]. Faults in the
information stored into the LUT may generate mainly Routing Path Errors, which rep-
resent the majority of the errors appearing in the fault injection campaign presented
in chapter 3.

As baseline architecture, we consider a LUT implemented as a combination of a
non programmable Content-Addressable Memory (CAM) [182] and RAM or a set of
registers (labeled Configurable LUT in figure 7.1). Without loss of generality, in this
chapter we refer to a register-based implementation. The CAM contains hard-coded
the address boundaries of the memory-mapped components of the NoC. When initiat-
ing a new transaction, the most significant bits (MSBs) of the operation address are
compared with the values coded into the lines of the CAM. The position of the CAM line
matching the input address is used to select the register in which is stored the output
of the lookup operation, i.e., the routing path to reach the destination node mapped to
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the input address. Routing path information are stored into the LUT’s registers at boot
time or after topology reconfigurations.

Figure 7.1 shows the architecture proposed for increasing the fault tolerance of
the LUT. For the sake of clarity, in figure 7.1 we only show the architectural elements
related to the lookup operation. We implemented a two-level approach which employs
Error Correcting and Detecting Codes and a limited amount of architectural redun-
dancy, allowing us to deal with both temporary and permanent faults in the LUT. Path
information are stored by using a Single Error Correcting and Double Error Detecting
(SECDED) Hsiao code [232] that is able to correct up to one error and detect up to two
errors in each LUT’s register. A Hsiao encoder encodes the information when writing
the register, while a decoder decodes it after lookup.

The Error Correcting Code (ECC) corrects single-bit soft errors as well as hard ones.
However, a hard error will recur every time the bad cell of the register is used, and,
as hard errors accumulate, the device may become slowly unusable. In order to pro-
vide architectural redundancy to the LUT, we included in the design a certain number
of spare registers that are meant to substitute LUT’s registers in which the number of
faults is higher than one, and that cannot therefore be anymore employed for storing
correctly the routing information. These spare registers are of critical importance be-
cause a defective LUT register will cause an entire core not to be reachable from that
NI. A bit in a Status register specifies whether a specific register of the LUT is working
or faulty, by selecting either the nominal of the spare register. Spare registers are sim-
ply addressed through the least significant bits (LSBs) of the addressing signals. We
implemented the Status register, as well as all the control logic, by using TMR. Spare
registers can be employed for substituting faulty LUT’s registers both during the post-
manufacturing testing phase and at run-time for online faults due to the wear-out of
the device.

The use of row/column substitution is a well known technique extensively used
in industry for dealing with hard errors in RAM memories [233]. Similarly, ECCs are
employed for error correction and detection in large memories. However, for relative
small storage elements such as the LUT of the NI, the usage of these techniques must
be carefully planned and adapted to a constrained environment, in order to avoid
the large overhead associated with them. Moreover, lines substitution is mainly used
for replacing elements found faulty during the off-line testing, while in our case, as
explained in detail in section 7.3, we address substitution at run-time.

The presented LUT architecture allows protecting the NI from Routing Path Errors

by detecting and correcting the degradation of the routing information, both in the case
of temporary and permanent faults. Routing Path Errors are also avoided by protecting
the control registers of the LUT through their TMR implementation, reducing the prob-
ability of selecting the wrong routing path register associated to an input destination
address.
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Figure 7.2. Overview of the proposed FIFO architecture.

Figure 7.3. Integration of the proposed FIFO architecture within an NoC link imple-

menting error correction and detection.

7.2.2 FIFOs

FIFO queues in NIs are used for decoupling computation from communication, in order
to prevent the stall of the IP blocks due to the communication interconnect, and for
allowing a separate implementation and optimization of the two system components
[5]. Different FIFOs implementations have been proposed in the literature [198, 234].
Our baseline architecture is a register-based synchronous FIFO circular buffer, but the
same considerations hold also for FIFOs implemented by using Dual-Port RAMs. We
consider a FIFO whose data-path is equal to the flit’s dimension (data and control
signals). As figure 7.2 shows, in addition to the storage elements, logic is needed for
managing the pointer to the element to be extracted (read pointer), the pointer to
the first available position in the FIFO (write pointer), and for implementing control
signals notifying whether the FIFO is full (Full) and whether at least one element is
present in the FIFO (Exists). The read and write pointers are implemented as counters
which are updated depending on the write or read operation performed on the FIFOs.

The implementation of fault tolerant FIFOs has been recently addressed by related
work on NoCs. In [235], a reconfigurable buffer is proposed, which can borrow ele-
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ments from FIFOs in the neighboring router’s ports, at the cost of an increased wiring
complexity. The solution addresses however only permanent faults in the FIFO’s slots,
without discussing methods for detecting them online. Authors in [236] propose a
buffer architecture that can intelligently adapt its operations for using as much as pos-
sible the least leaky slots, in order to react to process variations in the component.
The buffer keeps a list of slots, populated offline, which is pre-classified in order of
"leakiness". While providing a solution to process variation and energy consumption,
the buffer does not address however protection from either temporary or permanent
faults.

Figure 7.2 shows the architecture of the FIFO presented in this chapter for increas-
ing fault tolerance in the NI. Similarly to the solution discussed for the LUT, the archi-
tecture presented employs a two-level approach. Information in FIFOs is encoded, one
flit at the time, by using a SECDED Hsiao code. In order to deal with permanent faults
in the component, we propose a FIFO architecture exploiting the intrinsic redundancy
of the stages in the FIFO. In this way, we are able to provide also for this component a
graceful degradation of the performance during its operations. As shown in figure 7.2,
we associate with each slot of the FIFO an Offset register, which stores the offset to be
added to the calculation of the next value of the read and write pointers for obtaining
the next working slot in the FIFO. In the case of a completely non faulty FIFO, values
stored in the Offset register are all set to 0 (next working slot is the one immediately
following). In the presence of faulty slots, the register stores the value to be added in
the calculation of next pointers’ values for skipping them. The number of bits needed
for encoding values stored in the Offset register varies accordingly to the number of ad-
jacent slots that can be faulty at the same time. The Offset register, as well as the logic
for generating the read and write pointers and the control signals are implemented in
TMR.

Figure 7.3 shows the integration of the proposed FIFO architecture in an NoC im-
plementing error correction and detection in the links connecting NoC’s components
[149]. With respect to the reference architecture [149], information is encoded before
being inserted into the FIFO, and checked for errors when extracted from it. If no
errors are detected, the coded information is directly sent through the link, bypassing
in this way the encoding step before the link transmission needed in the reference ar-
chitecture. Similarly, in the case of a single error, the coded information is corrected
and directly transmitted. At the receiving NI, flits are checked for errors, corrected,
and copied encoded in the receiving FIFO. When extracted from the FIFO, the decoder
decodes the flits and provides them to the NI and the core.

By implementing the proposed architecture, we protect the NI from the corruption
of the information stored into the FIFO. Functional errors such as Corrupt Data Errors,
Routing Path Errors, and Control Flow Errors, due to faults in the FIFO slots storing, re-
spectively, body flits, the header flit, or control flow information, are therefore avoided
or significantly reduced.
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7.2.3 FSMs

Protocol adaptation and NI kernel operations make use of Finite State Machines for
controlling the correct behavior of the NI. The current state of the FSM is stored in a
state register. A bit flip in one of the flip-flops of the state register of the FSM may
generate unexpected results, or, even worse, bring the system to an indefinite state or
to a crash.

Different techniques, based on some level of either hardware or information redun-
dancy, have been proposed for reducing the sensitivity to faults of FSMs [237]. Due
to the limited number of states needed both for the OCP protocol implementation and
the NI kernel operations [8], FSMs in our baseline implementation are relatively small
Moore state machines.

In our study, we adopt the SECDED Hsiao code for storing the state information of
the FSM, and compare this technique with different implementations. In the discussed
architecture, after calculating the next state of the FSM, the information is passed to
a Hsiao encoder and stored in the state register. A decoder is used when retrieving
the information about the state in the following clock cycle. Single errors in the state
register are directly corrected by the decoder, while in the case of the detection of a
double error, the FSM goes to a reset state, in order to avoid indefinite states in the
system, while a warning signal is issued to communicate it to the NI and the core. A
fault tolerant implementation of the FSM allows protecting the system from Corrupt

Protocol Conversion Errors.

7.3 Error detection and reconfiguration policies

As previously presented, the solutions proposed are provided of a certain level of ar-
chitectural redundancy for substituting elements (registers) permanently faulty. We
employ the error-detecting characteristics of the Hsiao code for detecting permanent
faults in the modules and for activating online reconfiguration by substituting at run-
time the faulty elements with spare working ones. In this section, reconfiguration
policies for the several modules are presented.

7.3.1 Lookup table

Figure 7.4 presents two possible reconfiguration policies that may be applied when
detecting permanent faults in the LUT. We defined a conservative and a non conservative

reconfiguration policy, which represent different trade-offs between the amount of off-
line time needed for reconfiguring the LUT, the time for recalculating the routing path
stored in faulty registers, and the time for checking if the fault is permanent. In the
reconfiguration flow presented in figure 7.4, a LUT is considered as working if, for each
possible destination node, a register (either nominal or spare) where no faults have
been detected exists. A LUT is partially working when one or more registers employed
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(a) Conservative policy

(b) Non conservative policy

Figure 7.4. Diagrams describing the reconfiguration policies applied when detecting

errors in the LUT.

for the lookup have one permanent fault: the LUT can still be used for providing a
corrected routing information to the packet, thanks to the error correcting capabilities
of the Hsiao decoder. A LUT is non working if it has more than one permanent fault in
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at least one of the register, and no working spare registers are available for substituting
it. In this case, the NI is not able to provide correct routing information for the packet
directed to the NoC’s node associated with the faulty register. The NI should be put
offline, or the node memory-mapped to the address associated with faulty register
should not be targeted anymore by the NI’s communications.

As shown in figure 7.4(a), in the case of the conservative policy a system with work-

ing LUT reacts at the detection of a single error in one of the register by performing a
check to determine if the error was caused by a permanent fault. The check consists
in copying the information read from the LUT’s i register, corrected by the SECDED
decoder (C[LUT(i)]), into the same LUT register (LUT(i)). After copying the corrected
data into the LUT, if the register still presents an error, the fault is considered as per-
manent. If no spare registers are available, the LUT is still used, but considered as
partially working. In the case that working spare elements are still available, the LUT
is reconfigured by enabling the use of the associated spare register, and still considered
as working.

The detection of a double error requires to recalculate the routing path associated
with the erroneous LUT register. The information recalculated is then copied in the
register and checked again for errors. In the case of a confirmed double error, and of
the not availability of spare registers, the LUT is considered as not working.

The non conservative policy shown in figure 7.4(b) reacts at the detection of a dou-
ble error. It works as follows: in the case of detection of a single error, the correction
capabilities of the SECDED are used for correcting single errors occurring during the
following lookups; at detection of a double error, a check on the type of error is per-
formed by recalculating the routing path stored into the LUT line, as done in the case
of the conservative policy. As with the previous policy, in the case of a confirmed double
error and if not spare lines are available, the system is considered as not working.

7.3.2 FIFOs

As described for the case of the LUT, policies can be defined for initiating the reconfig-
uration of FIFOs in the case of the detection of single or double errors in one of the
FIFO’s slot.

Figure 7.5 shows the conservative policy for the FIFO. A partially working FIFO has
all the slots with at least one permanent error, but it still can be used because of the
correcting capabilities of the SECDED code. The FIFO is not working when for at least
one slot is not possible to skip all the adjacent faulty slots.

After detection of a single error by the FIFO’s output decoder, the index of the faulty
slot is recorded. When the same FIFO’s slot is read again, it will contain a new flit. If
the decoder finds again an error, the fault is considered to be permanent. The offset

register is appropriately configured in order to skip in the following FIFO’s operations
the slot containing the permanent fault. In the case of detection of a double error,
the slot is similarly checked for determining whether the error is a temporary or a
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Figure 7.5. Diagram describing the conservative reconfiguration policies applied

when detecting errors in the FIFO.

permanent one. In this case, the system should however flush the FIFO and reissue the
packet, or rely on higher level data correction at the application level.

Similarly to the case of the LUT, a non conservative policy for the management of
the reconfiguration of the FIFO tolerates the presence of a single error, while initiating
the reconfiguration - therefore requesting a data retransmission or a reissuing of the
packet - only at the detection of a double error.

Policies similar to those presented for the LUT and the FIFO could also apply to
FSMs, for which the detection of a single error and double faults activates a check
on the correctness of the information stored in the following FSM states on the status
register, in order to determine if the fault is permanent or transitory.

7.3.3 Implementation of the policies

The reconfiguration policies are implemented as software routines running on the pro-
cessor of the NoC’s tile. When an error is detected, an interrupt request is generated
by the NI. Additional signals specify the location of the fault (LUT, FIFOs, FSM, addi-
tional TMR components) and the type of error (single, double). When the interrupt is
processed, the processor calls an interrupt handler, which reads the fault information
and implements the reconfiguration policy for the component generating the interrupt
request. The NI’s interface to the core was extended to support the programming of
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the configurable elements of the components, such as the Offset register of the FIFOs,
and the Status register of the LUT.

7.4 Implementation results

In this section, we evaluate the architectural solutions presented in previous sections.
In our evaluation, a baseline architecture is the reference architecture that does not im-
plement any fault tolerant strategy. TMR architectures are implemented by employing
TMR techniques. A SECDED architecture employs the Hsiao code for detecting and cor-
recting errors, without implementing any architectural redundancy. We call FT those
architectures employing the solutions previously described.

Without loss of generality, in our experiments we refer to an NoC with a square-
mesh topology, and we employ routers with up to 5 output ports. We assume full
connectivity between the cores, i.e., each core is able to communicate with all the
other cores. We target an NoC architecture implementing a source-based routing. Each
router encountered along the path to the destination node employs 3 bits of the routing
path for selecting the desired output port [10]. For the considered NoC topology, we
imposed the condition that the farthest reachable core is at 2

p
n− 1 hops, where n is

the number of nodes of the NoC. The number of routing bits needed for encoding the
path is therefore equal to 3(2

p
n− 1). We consider a 34-bit data-path (32 bits for the

data of the flit, and 2 bits for control signals).
We implemented components and NI in VHDL, and synthesized them by using

Synopsys Design Compiler. We targeted the Nangate 45nm CSS typical open cell tech-
nology library [67]. Results shown were obtained by targeting the synthesis to a clock
frequency of 500MHz. By using Synopsys Power Compiler, we obtained an estimation
of the energy consumption associated with the operations performed by the compo-
nents and the NI.

7.4.1 Lookup table

Figure 7.6 shows the area (in mm2) of different implementations of the LUT, by vary-
ing the dimension of of the mesh, and, therefore, the number of registers needed for
storing the routing information. The data length of the LUT’s registers is equal to
3(2
p

n − 1) for the baseline and the TMR implementation. In the implementations
employing error correcting codes, namely SECDED and FT, the LUT’s registers store
along the routing path information also the parity bits. Given a number of bits d used
for coding the path in each line of the RAM, the number of parity bits used for the
SECDED is equal to r + 1, where r is the minimum number satisfying the inequation
2r ≥ d + r + 1.

In the case of the FT architecture, we present results for implementations with
number of spare lines equal to n, n

2
, and n

4
(named FT(n), FT(n/2), and FT(n/4),
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Figure 7.6. Area, energy consumption, and critical path of the different LUT architec-

tures, while varying the dimension of the NoC.

respectively).

With respect to the baseline architecture, the FT architecture introduces an area
overhead which varies with the dimension of the NoC. For the evaluated configura-
tions, the maximum overhead was observed for the smaller NoC, i.e., the 3x3 mesh.
Values of maximum overhead are 200%, 139%, and 110%, for a number of redundant
registers respectively equal to n, n

2
, and n

4
. The area overhead decreases with the di-

mension of the NoC (136%, 78%, and 50% for the three FT implementations, in the
case of a 8x8 mesh). The reduction of the overhead is due to the fact that the number
of parity bits used for implementing the SECDED code is constant (equal to 7) in the
configurations analyzed after the one with 25 nodes, and that the circuits for imple-
menting the decoder and the encoder are shared by all the registers of the LUT. This
overhead can be considered however acceptable, in particular if compared to the area
measured for the TMR architecture. In the case of a the 8x8 mesh, our solution achieves
a saving of up 50%, when considering for instance the FT(n/4) implementation.

As shown in figure 7.6(b), the energy (in pJ) shows trends similar to those obtained
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when evaluating the area. When considering the FT implementation of the LUT, the
maximum overhead (237%) with respect to the baseline implementation is obtained
for the 3x3 topology, while obtaining a maximum saving of around the 51% with
respect to the TMR (8x8 topology). Similarly to the values measured for the area,
the maximum overhead can be observed for smaller topologies, while the saving with
respect to the TMR implementation increases with the dimension of the NoC.

Figure 7.6(c) shows the length of the critical path for the different LUT’s imple-
mentations, by varying the number of nodes in the NoC. As the figure shows, while
reducing the amount of area and energy consumption, the FT architectures increase
the critical path of the component. This is manly due to the fact that both in the
SECDED and in the FT implementations a decoder, which in general is synthesized as
a tree of XOR [69], is added to the critical paths of the LUT for decoding the informa-
tion stored using the code. For high-speed circuits, a TMR implementation is therefore
preferable, at a higher cost in terms of area and energy consumption.

7.4.2 FIFOs

In the case of the FIFOs, we analyzed area and energy overhead while varying the
number of slots. In the SECDED and the FT architectures, information stored into FIFOs
is encoded with a (41,34) SECDED Hsiao code. In the case of the FT architecture, we
present results for implementations able to skip m− 1, m

2
, and m

4
faulty slots (named

FT(m-1), FT(m/2)), and FT(m/4), respectively). m is the number of the total slots of
the FIFO.

Figure 7.7 shows results obtained for the FIFO. The maximum overhead was ob-
tained for smaller configurations, i.e., for the case of FIFOs with 4 slots. Values of
maximum overhead are 98%, 83%, and 83%, respectively for the FT(m-1), FT(m/2),
and FT(m/4)) implementations. The area overhead decreases with the number of slots
(85%, 76%, and 65% for the three FT implementations, in the case of a 32-slot FIFO).
With respect to the TMR implementation, the maximum saving in area (46%) is ob-
tained in the case of a 32-slot FT(m/2) implementation.

In the case of the FIFO, the maximum energy overhead with respect to the baseline

implementation is 149% (8-slot FT(m-1)), while the maximum energy saving with
respect to the TMR implementation is 38% (4-slots FT(m/4)).

Figure 7.6(c) shows the length of the critical path for the different FIFO imple-
mentations. As already observed for the case of the LUT, the use of SECDED and FT

architectures increases the critical path of the component.

7.4.3 FSMs

Information in state registers of the FSMs in the SECDED implementation is encoded
using a (7,3) SECDED Hsiao code.
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Figure 7.7. Area, energy consumption, and critical path of the different FIFO archi-

tectures, while varying the number of slots.

Table 7.1 shows synthesis results obtained for the implementation of the FSMs. As
it is possible to notice, values reported for the SECDED and the TMR implementations
are comparable. As also discussed in [69], this is due to the fact that for registers of
small dimension the encoder and the decoder used for implementing error correction
and detection generate an area and energy overhead which is of the same order of the
one obtained with a TMR implementation.

7.4.4 Network interface

Figure 7.8 shows synthesis results for the overall NI. The baseline NI was implemented
by employing baseline version of FSM, FIFOs, and LUT. The SECDED NI employs
SECDED versions of the FSM, FIFOs, and LUT, while a TMR implementation of the
remaining components of the NI. The FT(min) configuration employs the FT(n/4) LUT
and FT(m/4) FIFOs, while the max configuration the FT(n) LUT and FT(m-1) FIFOs.
All the architectures employ 8-slot FIFOs. For the FSM, we considered the SECDED im-
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Table 7.1. Area, energy, and critical path obtained by synthesizing the four imple-

mentations of the FSMs.

Baseline SECDED TMR
Area [µm2] 112.3 160.7 166.0
Energy [pJ] 0.060 0.110 0.149
Critical path [ns] 0.46 0.76 0.55
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Figure 7.8. Area of different NI architectures, while varying the dimension of the

NoC.

plementation, while the remaining NI’s components were implemented by using TMR.
In general, the maximum area overhead can be observed for NoCs with smaller

dimension, and it decreases when increasing the number of nodes in the topology. For
a 3x3 NoC, the overhead was measured to be around 77% for FT(min) and 105% for
FT(max). The maximum saving with respect to a TMR implementation was measured
for the 8x8 NoC (48% for FT(min) and 23% for FT(max)).

7.5 Survivability

In order to evaluate the effectiveness of the proposed solutions, we measured their
survivability, defined as the probability of producing correct behavior in the presence
of faults. We create a high level model of the NI and of its components in C++. The
model simulates the behavior of each component at the occurrence of a new fault, by
evaluating whether it is able to survive the fault or it produces an error. We evaluated
the behavior of the system when a certain number of consecutive faults affects storage
cells and circuit components. Each component of the NI is modeled by considering
synthesis results about area and number of flip-flops in the design. By employing these
models, we inject a defined number of faults in the component. Each single fault
is injected at random time and in random position over the area. Injected faults are
mutually independent, and enough time is left to the system to recover from the effects
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Figure 7.9. Survivability of the LUT for different NoC dimensions, while varying the

number of injected faults.

of the fault, if any. For each fault, we simulate the behavior of the component and
determine if with the injected sequence of faults it can be still considered error-free.
For each amount of injected faults, we repeat the experiment 1000 times. Therefore,
we count the number of times over the total experiments in which after the defined
number of injected faults the errors generated in the component was non correctable
or non detectable.

7.5.1 Lookup table

Figure 7.9 shows the survivability for the LUT, by varying the number of injected faults,
in the case of different NoC dimensions. As the graphs shows, our solutions provide
a survivability comparable to the TMR, while showing a significant improvement with
respect to a SECDED implementation. For a relatively low number of injected faults, FT

implementations are also able to provide better results that the TMR implementation.
When the number of errors is too high, the TMR implementation of the NI provides
however a better survivability. These results can be obtained thanks to the fact that
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Figure 7.10. Survivability of the FIFO for different dimensions, while varying the

number of injected faults.

FT implementations are able to correct up to two faults as long as enough redundant
resources are available, while TMR implementations will only correct one fault. For
higher numbers of errors, the number of spare resources available will not be sufficient
for masking the fault. As figure 7.9 shows, the behavior of the survivability of the FT

implementations with respect to the TMR implementation varies with the dimension
of the NoC (i.e., of the LUT) and with the amount of redundancy. This fact can be
explained by considering that for LUTs with bigger dimensions the probability of having
a configuration leading to error-affected results for a given amount of injected faults is
lower than in the case of smaller implementations. The survivability of the FT solutions
outperforms the one obtained for the SECDED implementation. As shown in figure
7.6(a) and 7.6(b), this is achieved at the cost of an additional overhead in area and
energy consumption (in average both of around the 96%, 53% and 29%, for the FT(n),
FT(n/2), and FT(n/4) implementation, respectively).
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injected faults.

7.5.2 FIFOs

Results of the analysis of the survivability for the FIFO architectures are shown in fig-
ure 7.10. In the figure, we show simulation results for different FIFO architectures
by varying the number of slots and the number of faults injected. As obtained for the
case of the LUT, for a relatively small number of errors the FT architectures outperform
the TMR implementation. For reasons similar to those presented for the LUT, when
increasing the number of slots in the FIFO and, therefore, its dimension, this result can
be observed for a higher number of injected faults. The survivability of the FT solu-
tions outperforms the one obtained for the SECDED implementation. The overhead in
area and energy consumption of the FT implementations with respect to the SECDED
implementation increases with the number of slots, and it was measured in a 32-slot
configuration to be around 48% for the FT(m-1), 40% for the FT(m/2), and 32% for
the FT(m/4) implementation.

7.5.3 FSMs

Figure 7.11 shows the results of the survivability analysis for the FSM. A TMR imple-
mentation is more resistant to faults than the SECDED implementation, confirming the
fact that for the small registers of the FSM the use of error correcting and detecting
codes is not convenient.

7.5.4 Network interface

In order to evaluate the survivability of the overall NI, we explore its resistance to
faults when varying the implementation of its components. We performed an exhaus-
tive multi-objective design space exploration of the several alternative NI architectures
obtainable by combining the different implementations of the NI’s components, as enu-
merated in table 7.2. We evaluated area and survivability of the configurations for a
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Table 7.2. Design space for the NI.

Component Architecture
LUT BAS, TMR, SECDED, FT(n), FT(n/2), FT(n/4)
FIFO BAS, TMR, SECDED, FT(m-1), FT(m/2), FT(m/4)
FSM BAS, TMR, SECDED
other BAS, TMR
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Figure 7.12. NI architecture exploration for different numbers of faults injected.

fixed number of injected faults. In the table, BAS refers to the baseline implementa-
tion, while the meaning of the other terms are the those previously presented in this
section. In the exploration, we fixed to 16 the dimension of the NoC (a 4x4 mesh), and
to 8 the number of slots of the two FIFOs of the NI.

Figures 7.12 show the results of the exploration when imposing a number of in-
jected faults equal to 10, 20, and 30, respectively. Figures show also the Pareto points
of the exploration. The Pareto configurations are those that in the design space explo-
ration minimize the area and maximize the survivability of the NI. In the figures, we
called α the point of the Pareto set with minimum area. Obviously, it corresponds to
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Table 7.3. Characteristics and configurations of the α, ω, and λ Pareto points for

different amounts of injected faults.

(a) 10 injected faults

Architecture Metrics

Point LUT FIFO FSM other area (mm2) surv. (%)

α BAS BAS BAS BAS 0.0070 0.0
ω FT(n) FT(m-1) TMR TMR 0.0150 99.5
λ FT(n/4) FT(m/4) TMR TMR 0.0120 98.5

(b) 20 injected faults

Architecture Metrics

Point LUT FIFO FSM other area (mm2) surv. (%)

α BAS BAS BAS BAS 0.0070 0.0
ω FT(n) FT(m-1) SECDED TMR 0.0150 95.9
λ FT(n/4) FT(m/2) TMR TMR 0.0124 88.4

(c) 30 injected faults

Architecture Metrics

Point LUT FIFO FSM other area (mm2) surv. (%)

α BAS BAS BAS BAS 0.0070 0.0
ω FT(n) FT(m/2) SECDED TMR 0.0146 87.3
λ FT(n) FT(m/2) SECDED TMR 0.0146 87.3

the NI architecture composed of the baseline implementation of all the components.
As figures shows, its survivability is however 0%. ω is the Pareto point presenting the
highest survivability. For 10 injected faults, ω is given by the NI architecture obtained
when employing the FT(n) LUT, the FT(m-1) FIFOs, and by implementing the remain-
ing components in TMR. For 20 injected faults, ω is given by NI architectural config-
uration similar to the one obtained for 10 injected faults, which employs a SECDED
implementation for the FSMs. For 30ω is given by an NI architecture composed of the
FT(n) LUT, the FT(m/2) FIFOs, SECDED FSMs, and other components implemented in
TMR.

Among the set of the obtained Pareto points, we selected those maximizing the
product of survivability and 1

area
(λ in the figures). The configuration corresponding

to λ varies with the amount of injected faults. For 10 injected faults, the NI composed
of an FT(n/4) LUT, FT(m/4) FIFOs, and a TMR implementation of the remaining com-
ponents maximizes the chosen criteria. For 20 injected faults, the maximum value is
obtained when employing an FT(n/4) LUT, FT(m/2) FIFOs, together with a TMR im-
plementation of the remaining components. For 30 injected faults, as 7.12(c) shows,
the ω point is the one the maximize the selection criteria. Table 7.3 summarizes values
measured for area and survivability, as well the architectural configurations, of the α,
ω, and λ Pareto points.

In should be noticed that for the fault configurations presented, none of the NI
architectures included in the Pareto sets employs TMR implementations for the LUT
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and the FIFOs. On the other hand, our FT architectures represents the best choice for
the implementation of LUTs and FIFOs. These results where expected when observing
in figure 7.9 and 7.10 the trend of the survivability of the single NI’s components.

7.6 Summary

This chapter presented a study on the implementation of fault tolerant network inter-
faces. Chapter 3.3, by performing a fault injection campaign on the NoC components,
demonstrated how the NI could be the main source of errors in the NoC, in particu-
lar when the number of nodes in the network increases. Soft and hard errors in the
NI could cause an unwanted behavior that may create unrecoverable situations in the
NoC, such as deadlock or livelock conditions. Based on the NI functional fault model
proposed and discussed in chapter chapter 3.3, in this chapter we proposed new ar-
chitectural solutions based on the use of error correcting and detecting codes and a
limited amount of redundancy, and discussed policies for the reconfiguration of the
components, which should be applied at the detection of errors. In our experiments,
we obtained a saving of up to 48% in the area overhead, as well as a significant energy
reduction, with respect to an alternative standard hardware TMR implementation of
the NI, while maintaining a similar level of robustness to faults.

The work described in this chapter was published in [238, 239, 240].
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Chapter 8

Conclusions and future work

In this dissertation, we demonstrate the possibility to provide system-level services
to an NoC-based platform by enhancing the architecture of network interfaces with
dedicated hardware/software modules. These modules, by working in parallel with
protocol translation and data transmission, are able to support the high-level services
at a relatively low cost in area and energy consumption. In this work, we focused in
particular of three services: security, NoC monitoring, and fault tolerance.

In the first two chapters after the introduction, we introduced the reference NoC-
based MPSoC architecture considered in this work, and we presented the motivations
for focusing on the three mentioned services, based on experimental evaluations and
quantitative results. In section 3.1, we presented an overview of security threats that
may affect NoCs, as well as more general embedded systems, in particular showing
how, without a mindful hardware design, simple software fallacies can give an attacker
the possibility to access critical information, as well as disrupting significantly the ser-
vices provided by the platform. Section 3.2 discusses motivations for implementing a
monitoring system in the NoC that could help significantly both in understanding at
design time the platform behavior, and in optimizing at run-time resource utilization.
In section 3.3, we presented results of a fault injection campaign that we performed
on the elements of the NoC (i.e. routers and network interfaces), demonstrating that
network interfaces are critical elements from the point of view of the fault tolerance
of the overall NoC, and that appropriate methodologies should be applied for their
design.

In the three following chapters, we described the implementation steps and design
choices for providing the system with the three above mentioned services, by adding
custom modules to a baseline reference network interface architecture presented in
chapter 2.

In particular, in chapter 5 we proposed a data protection mechanism for preventing
illegal accesses to protected memory blocks in NoC-based architecture. The proposed
mechanism is based on the use of dedicated hardware modules (called Data Protec-
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tion Units) embedded within the network interface, that guarantee secure accesses to
memory and/or memory-mapped peripherals by enforcing access control rules specify-
ing the way in which an IP initiating a transaction to a shared memory in the NoC can
access a memory block. We evaluated the proposed mechanism in terms of the area
and energy consumption overhead in the case of two different architectures, show-
ing a relatively low hardware implementation cost which is directly dependent on the
number of IPs in the system and on the number of memory blocks to be protected. We
therefore enhanced the protection system by proposing a methodology for the run-time
management of the DPUs. Moreover, in the same chapter, we proposed a monitoring
system, based on the DPUs, that can be employed for detecting attempts of illegal
access to protected memory blocks as well as Denial-of-Service attacks.

In chapter 6, we re-targeted the monitoring system in order to deal with the de-
tection of events happening within the NoC, and for providing support information for
understanding system behavior and optimizing resource utilization. We detailed the
implementation of a programmable multipurpose probe, that, embedded within the NI,
can provide to a central management unit information about throughput and latency
of NoC transactions, as well as utilization of buffers in NI and routers. We evaluated
the intrusiveness of the monitoring system, as well as the cost in terms of area, en-
ergy and traffic overhead. The resulting overhead can be considered reasonable given
the provided network level service both for profiling and for run-time management
purposes.

The work described in chapter 7 deals with the design of fault tolerant network in-
terfaces. New architectural solutions for the implementation of the main components
on the NI were proposed, by applying a combination of error detecting and correcting
codes and a limited amount of redundancy. Reconfiguration policies were proposed for
exploiting architectural redundancy at run-time. Experimental results showed a signif-
icant reduction of area and energy consumption with respect to an alternative standard
hardware Triple Modular Redundancy implementation of the NI, while maintaining a
similar level of robustness to faults.

In this dissertation, we mainly focused on the evaluation of the support for the de-
scribed single services. However, synergies can be found between the building compo-
nents of the hardware/software support for minimizing the overhead in those designs
in which more than one service is provided. All the services have in fact in common
the propriety of monitoring a specific characteristic of the NoC, and to distribute the
collected information to the global system in order to adapt the configuration or the
behavior of the platform accordingly to its new run-time conditions. A part from the
possibility of applying some of the studied fault tolerant techniques to the single build-
ing blocks composing the security and monitoring services, a common subsystem for
collecting and distributing the information detected by the security and monitoring
probes, as well as the presence of faults in the NI components, is likely to be shared
amongst the services. Similarly, adaptation and configuration strategies can be de-
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cided on the same service management core (either called NSM or PMU previously in
the dissertation).

Future activities that it is possible to foreseen as follow-up of the work presented in
this dissertation are described next, divided accordingly to the three high-level services
studied:

• Security: securing completely an NoC-based MPSoC is an unlikely feasible and
challenging task, due to the possible vulnerabilities brought by increasing new
functionalities offered by modern complex multiprocessor platforms, and by the
increased connectivity of new embedded platforms, which offers attackers ad-
ditional means to access remotely the device. While this dissertation proposed
possible solutions that may help in this task, still work can be done in the di-
rection of enhancing security in NoC platforms. For instance, future work may
involve the analysis of traffic behaviors of possible attacks and the integration
of the monitoring system with software strategies to detect possible security
threats. An integration of the presented probes with other hardware monitors
should also be analyzed, with the aim to implement a hardware/software based
Intrusion Detection System for NoCs. The identification of malicious patterns in
NoC traffic and operations represents however an open research topic. While
some ideas have been proposed in [17, 122, 123], a clear and efficient solution
for the problem is still missing - actually the identification of unnatural traffic
behaviors is still an open research problem also in the domain of data networks
[241, 242]. However, being NoC traffic and operations, with respect to data
networks, limited in terms of connections and actors involved in the communi-
cation, “intrusion detection” techniques based on profiling of NoC activities could
represent an interesting research direction to be explored.

• NoC monitoring: the work presented in this dissertation mainly focused on the
monitoring of NoC activities. However, in order to have a complete overview of
the architecture behavior at system level, data collected by the proposed mon-
itoring system should be considered jointly with monitoring data coming from
hardware probes located within processing and storage elements. Future work
should therefore go in the direction of providing a comprehensive system-level
monitoring system for NoC-based MPSoCs that could help developers in the op-
timization, both at design time and at run-time, of the usage of system resources.

• Fault tolerance: the presented fault tolerant architectures increase fault tol-
erance of the NI at a relatively low area and energy consumption overhead;
however, the main drawback of the proposed techniques is represented by the
increased critical path of the designs. Alternative pipelined versions of the archi-
tectures can be implemented, increasing however the latency of the communica-
tion. As the techniques proposed focus on the basic architectural components of
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the NI (LUT, FIFOs, FSMs), we can foresee extension of similar techniques also
to NoC routers, composed in general of the same type of elements. Similarly, the
methodology applied in section 7.5 for selecting the best architectural configura-
tion for the NI can be generalized and extended to the overall NoC, by providing
a way for including fault tolerance - in our specific case the survivability of the
system - as optimization parameter to be employed in the early design space
exploration phase.



Appendix A

Glossary

• 3GPP. 3rd Generation Partnership Project.

• BE. Best Effort.

• CAM. Content Addressable Memory.

• CMP. Chip Multiprocessors.

• DEMA. Differential Electromagnetic Analysis.

• DES. Data Encryption Standard.

• DFA. Differential Fault Analysis.

• DFVS. Dynamic Frequency and Voltage Scaling.

• DoS. Denial-of-Service.

• DoSP. Denial-of-Service Probe.

• DPA. Differential Power Analysis.

• DPU. Data Protection Unit.

• DRM. Digital Right Management.

• DSP. Digital Signal Processor.

• EM. Electromagnetic.

• EMA. Electromagnetic Analysis.

• EXEC. Execution Time.

• FIFO. First Input First Output.
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• FPMAC. Floating-Point Multiply-Accumulator.

• FPGA. Field-Programmable Gate Array.

• FSM. Finite State Machine.

• I2I. Initiator to Initiator.

• I2T. Initiator to Target.

• IAP. Illegal Access Probe.

• IP. Intellectual Propriety.

• JTAG. Join Test Action Group.

• LSB. Least Significant Bit.

• LUT. Lookup Table.

• MAF. Maximal Aggressor Fault.

• MMS. Multimedia Messaging Service.

• MMU. Memory Management Unit.

• MPSoC. Multiprocessor System-on-Chip.

• MSB. Most Significant Bit.

• NI. Network Interface.

• NoC. Network-on-Chip.

• NSM. Network Security Manager.

• NTP. Network Time Protocol.

• OCP. Open Core Protocol.

• OCP-IP. Open Core Protocol International Partnership.

• PE. Processing Element.

• PMU. Probes Management Unit.

• QoS. Quality-of-Service.

• SECDED. Single Error Correcting and Double Error Detecting.

• SEMA. Single Electromagnetic Analysis.
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• SER. Soft Error Rate.

• SEU. Single Event Upset.

• SMT. Simultaneous Multithreading.

• SCM. Secure Configuration Manager.

• SoC. System-on-Chip.

• SPA. Simple Power Analysis.

• T2I. Target to Initiator.

• TCAM. Ternary Content Addressable Memory.

• TMR. Triple Modular Redundancy.

• VLIW. Very Long Instruction Word.
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Author’s publications

International Journals

1. O. Derin, E. Diken, and L. Fiorin, "A Middleware Approach to Achieving Fault-
tolerant of Kahn Process Networks on Networks on Chips". In International Jour-
nal of Reconfigurable Computing, vol. 2011, Article ID 295385, 15 pages, 2011.

2. L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, "Secure Memory
Accesses on Networks-on-Chip". In IEEE Transactions on Computers, Sept. 2008.

Book Chapters

1. L. Fiorin, G. Palermo, C. Silvano, and M. Sami, "Security in NoC". In "Networks-
on-Chips: Theory and Practice", Fayez Gebali and Haytham Elmiligi (Editors),
Taylor & Francis Group, LLC, 2009.

International Conferences, Symposia and Workshops

1. P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin, L. Fiorin, and M.
Sami, "System Adaptivity and Fault-tolerance in NoC-based MPSoCs: the MAD-
NESS Project Approach". In proceedings of the 15th EUROMICRO Conference
on Digital System Design Architectures, Methods and Tools (DSD’12). Sept. 5-8,
2012, Izmir, Turkey.

2. L. Fiorin, A. Ferrante, K. Padarnitsas, and F. Regazzoni, "Security Enhanced Linux
on Embedded Systems: a Hardware-accelerated Implementation". In proceed-
ings of the 17th Asia and South Pacific Automation Conference (ASP-DAC 2012).
Jan. 30 - Feb. 2, 2012, Sydney, Australia.
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3. E. Cannella, L. Di Gregorio, L. Fiorin, M. Lindwer, P. Meloni, O. Neugebauer, and
A. Pimentel, "Towards an ESL Design Framework for Adaptive and Fault-tolerant
MPSoCs: MADNESS or not?". In proceedings of the 9th IEEE/ACM Symposium
on Embedded Systems For Real-time Multimedia (ESTIMedia 2011). Oct. 13-14
2011, Taipei, Taiwan.

4. L. Fiorin, L. Micconi, and M. Sami, "Design of Fault Tolerant Network Interfaces
for NoCs". In proceedings of 14th EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools (DSD’11). Aug. 31 - Sept. 2, 2011,
Oulu, Finland.

5. O. Derin, D. Kabakci, and L. Fiorin, "Online Task Remapping Strategies for Fault-
tolerant Network-on-Chip Multiprocessors Monitoring System for NoCs". In pro-
ceedings of the 5th ACM/IEEE International Symposium on Networks-on-Chip
(NOCS 2011). May 1-4, 2011, Pittsburgh, Pennsylvania, USA.

6. L. Fiorin, G. Palermo, and C. Silvano, "A Monitoring System for NoCs". In pro-
ceedings of the Third International Workshop on Network on Chip Architectures
(NoCArc’2010). Dec. 4, 2010, Atlanta, Georgia, USA.

7. L. Fiorin, A. Ferrante, K. Padarnitsas, and S. Carucci, "Hardware-assisted Security
Enhanced Linux in Embedded Systems: a Proposal". In proceedings of the 5th
Workshop on Embedded Systems Security (WESS’10). Oct. 24, 2010, Scottsdale,
Aritzona, USA.

8. S. Lukovic, P. Pezzino, and L. Fiorin, "Stack Protection Unit as a step towards
securing MPSoCs". In proceedings of the 24th IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS’10). Apr. 19-23, 2010, Atlanta, Georgia,
USA.

9. L. Fiorin, G. Palermo, and C. Silvano, "MPSoCs Run-Time Monitoring through
Networks-on-Chip". In proceedings of the 2009 Conference on Design, Automa-
tion & Test In Europe (DATE’09), Apr. 20 - 24, 2009, Nice, France.

10. L. Fiorin, G. Palermo, and C. Silvano, "A Security Monitoring Service for NoCs".
In proceedings of the Sixth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS’08), Oct. 19 - 24,
2008, Atlanta, Georgia, USA.

11. S. Lukovic and L. Fiorin, "An Automated Design Flow for NoC-based MPSoCs on
FPGA". In proceedings of the 19th IEEE/IFIP International Symposium on Rapid
System Prototyping. June 2-5, 2008, Monterey, CA, USA.

12. L. Fiorin, S. Lukovic, and G. Palermo, "Implementation of a Reconfigurable Data
Protection Module for NoC-based MPSoC". In proceedings of the 22nd IEEE
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International Parallel & Distributed Processing Symposium (IPDPS’08). April 14-
15, 2008, Miami, Florida, USA.

13. L. Fiorin, G. Palermo, S. Lukovic, and C. Silvano, "A Data Protection Unit for NoC-
based Architectures". In proceedings of the Fifth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’07),
Sept. 30 - Oct. 5, 2007, Salzburg, Austria.

14. L. Fiorin, C. Silvano, and M. Sami, "Security Aspects in Networks-on-Chips:
Overview and Proposals for Secure Implementations". In proceedings of 10th
EUROMICRO Conference on Digital System Design Architectures, Methods and
Tools (DSD’07), Aug. 29 - 31 2007, Lübeck, Germany.

Patents

1. V. Catalano, R. Locatelli, M. Coppola, C. Silvano, G. Palermo, L. Fiorin, "Pro-
grammable data protection device, secure programming manager system and
process for controlling access to an interconnect network for an integrated cir-
cuit". US Patent no. US 8,185,934.

2. V. Catalano, R. Locatelli, M. Coppola, C. Silvano, G. Palermo, L. Fiorin, "Pro-
grammable data protection device, secure programming manager system and
process for controlling access to an interconnect network for an integrated cir-
cuit". European Patent Application no. 07301411.0 - 2413.

Other publications

1. O. Derin, L. Fiorin, M. Sami, P. Meloni, S. Secchi, and L. Raffo , "Fault-tolerance
of Kahn Process Networks on NoC-based heterogeneous multicore embedded
architectures". Presented at Intel European Research and Innovation Conference
(ERIC). Sept. 21-22, 2010, Braunschweig, Germany.

Submitted for publication

1. P. Meloni, G. Tuveri, E. Cannella, O. Derin, T. Stefanov, L. Fiorin, L. Raffo, and
M. Sami, "A System-level Approach to Adaptivity and Fault-tolerance in NoC-
based MPSoCs: the MADNESS Project". Submitted to Elsevier Microprocessors
and Microsystems (MICPRO).

2. L. Fiorin, and G. Palermo, and C. Silvano, "A Configurable Monitoring Infrastruc-
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