12 research outputs found

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Structural Health Monitoring (SHM) systems in aircraft: wing damage detection employing guided waves techniques

    Get PDF
    The doctoral thesis provides a detailed description of the implementation of methodologies and technologies based on ultrasonic guided waves for Structural Health Monitoring (SHM) on wing structural elements made of composite materials for BVID or hidden flaws detection. The developed methodologies have been first technologically integrated and applied on small scale structural elements, unstiffened and stiffened plates. Subsequently the SHM system was integrated on a full scale wing box demonstrator in order to perform the delamination detection. The implemented SHM system is capable to control a network of surface mounted piezoelectric transducers, to perform Electromechanical Impedance measurement at each transducer, to check the reliability as well as the bonding strength, and to perform an active guided wave screening

    NASA Tech Briefs, January 1999

    Get PDF
    Topics include: special coverage sections on sensors and data acquisition and sections on electronic components and circuits, electronic software, materials, mechanics, bio-medical physical sciences, book and reports, and a special section of Photonics Tech Briefs

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Development of modal analysis methodologies for the identification of aerospace structures in operating conditions

    Get PDF
    Operational modal analysis differs from traditional experimental modal analysis in that it only requires information of the output responses and the modal parameters (in terms of natural frequencies damping ratios and mode shapes) are estimated under the assumption of white noise excitation. It presents several advantages including the availability of modal properties of structure in operation thus representing a closer picture of the structure and its boundary conditions (which are not that easy to realize in laboratory conditions). However, lack of input excitation force information presents several challenges as well as the proper estimation of the frequency response functions and the accurate evaluation of modal parameters in presence of harmonic components in the excitation. Several methodologies have been developed in the last years as described in this thesis and the main purpose of the research is to assess their application in aerospace such as the rotorcraft technology and the environmental testing. Solutions to the main operational modal analysis limitations are suggested and the implementation of the related algorithms allows the application on several test cases after their validation. Taking advantages of this improving in the experimental analysis capabilities, a demanding application within the rotorcraft technology is carried out. Starting from the already developed Active Pitch Link prototype (based on the Smart Spring concept), its use for vibration reduction on rotating blade is numerically and experimentally investigated, thanks to the intensive use of the operational modal analysis for the identification of the real system properties that give the necessary information for the tuning of the numerical model, that in turn suggests the operative test conditions

    Brillouin Echoes for Advanced Distributed Sensing in Optical Fibres

    Get PDF
    Brillouin scattering is particularly efficient and attractive for the implementation of strain and temperature distributed sensing in optical fibres. Recently a trend has been observed that modern advanced applications require a substantial step towards better spatial resolution, while preserving temperature/strain precision over a long range. For this purpose the state of the art does not satisfy all these requirements. In this thesis we present a radically new approach named Brillouin Echoes distributed sensing (BEDS) that allows covering these requirements. In the first part, we propose an updated configuration of the classical existing Brillouin sensor for time domain analysis allowing drastic noise reduction. Then we investigate the limitations (due to non-linear effects) of the classical Brillouin sensor in terms of long distance range measurements. The identified nonlinear effects are pump depletion due to SBS itself, self-phase modulation (SPM), modulation instability (MI), which occurs only in fibres presenting an anomalous dispersion at the pump wavelength and Raman scattering (RS). We propose the modeling of the pump depletion effect to obtain analytical expressions that are useful for the proper design of a BOTDA sensor and for the determination of a very small depletion. The model confirmed by experimental measurements is informative on the conditions maximizing the depletion effect; therefore a standard configuration can be defined to test the value of the depletion in the set-up. Furthermore, we demonstrate that SPM-induced spectral broadening can have a significant effect on the measured effective gain linewidth. Modeling and experiments have undoubtedly demonstrated that the effective gain linewidth can easily experience a two-fold increase in standard conditions when the pulse intensity profile is Gaussian. We showed that the problem can be practically circumvented by using a clean rectangular pulse with very sharp rising and falling edges. The theoretical and experimental analysis of the undesirable effects of MI and forward RS in distributed BOTDA sensors systems gives a simplified expression to predict the critical power for a given distance range. MI turns out to be the dominant nonlinear limitation since it shows the lowest critical power, but it is less critical since it can be avoided to a wide extent by using the fibre in the normal dispersion spectral region such as a DSF in the C-band. On the other hand Raman scattering can be avoided only by limiting the optical pump power and therefore is the ultimate nonlinear limitation in a distributed sensing system. Under similar conditions RS shows a critical power ∼5 times larger than MI. In the second part, we present the new approach Brillouin echo distributed sensing (BEDS) which has proved to be a powerful solution to realize sub-metric spatial resolutions in Brillouin distributed measurements. We have demonstrated both theoretically and experimentally that an optimized configuration is reached when the optical wave is π-phase shifted. The experimental tests have shown a spatial resolution down to 5 cm, with a clear margin for further improvement down to a real centimetric spatial resolution. This optimized configuration produce the best contrast independently of the pulse intensity, with a factor 2 of improvement compared to other techniques based on the same approach (dark pulse, bright pulse). This extends the dynamic range by 3 dB, which corresponds in standard loss conditions to a 5 km extension of the sensing range. An analytical developed model has proved to be an excellent tool not only for optimizing the pumping scheme but also in post-processing the measured data. Finally the potentialities of BEDS technology provide solutions in real contexts. Using the BEDS technology in landslide monitoring at laboratory scale, for the first time it became possible to observe the failure propagation in laboratory scale with an accurate precision. Furthermore, using BEDS we have proposed and demonstrated the possibility of mapping geometrical structure fluctuations along a photonic crystal fibre (PCF). Both long- and short-scale longitudinal fluctuations in the Brillouin frequency shift have been identify and quantify. Observation of Brillouin linewidth broadening in PCF fibre through distributed measurement of the Brillouin gain spectrum using BEDS has allowed fundamental understanding of SBS in PCF fibre and in their design in view of applications to optical-strain/temperature sensing

    A Novel Structural Health Monitoring Method for Full-Scale CFRP Structures

    Get PDF
    Polymer-based composite materials are used to manufacture ultra-light panels, massively introduced in the last decades in the aeronautical industry, as a potential solution to reduce the energy consumption and combustion emissions. Safety being the main concern in aeronautical applications, structural monitoring is essential. However, the currently used survey techniques are not usually adapted to these new materials, and potential improvements are constantly being investigated. New Structural Health Monitoring (SHM) systems have emerged during the last years as an interesting option. A SHM system is based on a precise damage detection strategy, and yields information about structural integrity. Moreover, in spite of their exceptionally high mechanical performances, polymer-based composite materials are more vulnerable than metallic alloys when confronted to aggressive environmental ageing factors. The main motivation of this thesis is then to set the basic foundations of a novel, complete, reliable, robust, fast and low-cost SHM system to be applied to full-scale composite structures. In order to address the ageing characterization problem, a standard method for artificial weathering has been developed. This thesis has focused on the influence of three factors: temperature, relative humidity and UV radiation, and their synergetic interaction. The goal of artificial ageing is to subject the specimens to controlled ageing protocols, in order to observe changes in the elastic properties. Depending on the protocol, the extent of the ageing can reach a degradation of 15 % of the elastic moduli. Concerning data acquisition, the PVDF technology offers an alternative. Proving the survivability of PVDF sensors was essential to justify their integration in a composite structure. The validation has been carried out by comparing the ability of PVDF sensors to provide quality signals, which can prove to be as accurate as those from non-aged sensors (accelerometers). In order to measure the elastic properties, vibrational behaviour could provide information about the internal properties of composite structure. Indeed, structural stiffness is related to the eigenfrequencies, with the mass as an intermediary. However, the orthotropic nature of composites makes this problem more complex, and requires an identification algorithm. The method adopted in this thesis minimizes the difference between experimental and FE simulation results in order to identify the best estimation of the elastic properties. The eigenfrequencies and the mode shapes vehicle information about the internal health of the structure. Concerning the acquisition of structural data, operational modal analysis (OMA) methods were privileged, because of their attributes of robustness and rapidity. The use of OMA has been justified by the difficulty to classic structural perform tests. The frequency domain decomposition (FDD) variant technique uses the notion of singular value decomposition (SVD) to extract the necessary information exclusively from the output sensors. As part of the feature extraction solution, the optimal placement problem (OSP) has been extensively addressed in the current state-of-the-art. Among the different approaches, the effective independence (EI) method was successfully adapted to this specific case. Taking into account the results and observations in the development of the different tools, a global SHM method has been proposed

    Continuous Wave and Pulsed Erbium-Doped Fiber Lasers for Microwave Photonics Applications

    Full text link
    El objetivo de esta tesis es el diseño, fabricación y caracterización de láseres de fibra como fuentes ópticas compactas con aplicaciones de fotónica de microondas, como son la generación de ondas en la banda de microondas-milimétricas y la conversión analógico-digital asistida ópitcamente. Las prestaciones de la tecnología electrónica en estas aplicaciones están limitadas para frecuencias de trabajo de decenas de GHZ. En este contexto, la tecnología óptica ha encontrado aplicaciones potenciales con el fin de extender las especificaciones de sistemas de microondas tradicionales. En particular, los láseres de de fibra se presentan como fuentes ópticas fiables de coste reducido las cuales están ganando interés como soluciones compactas en comparación con láseres de estado sólido. Esta tesis presenta el desarrrollo de un láser de fibra de realimentación distribuida capaz de emitir en dos longitudes de onda en régimen continuo para la generación de señales de microondas por fotomezclado. La cavidad óptica está constituida por una red de difracción de Bragg grabada en una fibra dopada con erbio, en la que se aplican dos desfases puntuales. La sintonización dinámica de la diferencia de frecuencia de los dos modos emitidos se lleva a cabo mediante el empleo de dos actuadores piezoeléctricos controlados por una fuente de tensión continua. Tras la fotodetección de la salida del láser se obtiene una señal de microondas con un rango de sintonización continuo de 0.12-7 GHz. La máxima frecuencia de sintonización viene limitada por el ancho de banda espectral de la red de difracción. Por ello, se ha estudiado una segunda configuración del láser con el fin de incrementar el rango de sintonización. La implementación de dos cavidades de realimentación distribuida con diferentes frecuencias de emisión en la misma fibra dopada permite un control más versátil de las frecuencias de emisión de ambos modos ópticos. Esta fuente altamente compacta y sencilla es capaz de proporcionar unVillanueva Ibáñez, GE. (2012). Continuous Wave and Pulsed Erbium-Doped Fiber Lasers for Microwave Photonics Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17801Palanci

    Satellite power system: Engineering and economic analysis summary

    Get PDF
    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed
    corecore