651 research outputs found

    Philippine Rice Information System: Operations Manual, Volume 1

    Get PDF

    Philippine Rice Information System: Operations Manual, Volume 2

    Get PDF

    Conceptual Architecture and Service-oriented Implementation of a Regional Geoportal for Rice Monitoring

    Get PDF
    Agricultural monitoring has greatly benefited from the increased availability of a wide variety of remote-sensed satellite imagery, ground-sensed data (e.g., weather station networks) and crop models, delivering a wealth of actionable information to stakeholders to better streamline and improve agricultural practices. Nevertheless, as the degree of sophistication of agriculture monitoring systems increases, significant challenges arise due to the handling and integration of multi-scale data sources to present information to decision-makers in a way which is useful, understandable and user friendly. To address these issues, in this article we present the conceptual architecture and service-oriented implementation of a regional geoportal, specifically focused on rice crop monitoring in order to perform unified monitoring with a supporting system at regional scale. It is capable of storing, processing, managing, serving and visualizing monitoring and generated data products with different granularity and originating from different data sources. Specifically, we focus on data sources and data flow, and their importance for and in relation to different stakeholders. In the context of an EU-funded research project, we present an implementation of the regional geoportal for rice monitoring, which is currently in use in Europe’s three largest rice-producing countries, Italy, Greece and Spain

    Remote sensing bio-control damage on aquatic invasive alien plant species

    Get PDF
    Aquatic Invasive Alien Plant (AIAP) species are a major threat to freshwater ecosystems, placing great strain on South Africa’s limited water resources. Bio-control programmes have been initiated in an effort to mitigate the negative environmental impacts associated with their presence in non-native areas. Remote sensing can be used as an effective tool to detect, map and monitor bio-control damage on AIAP species. This paper  reconciles previous and current research concerning the application of remote sensing to detect and map bio-control damage on AIAP species. Initially, the spectral characteristics of bio-control damage are  described. Thereafter, the potential of remote sensing chlorophyll content and chlorophyll fluorescence as  pre-visual indicators of bio-control damage are reviewed and synthesised. The utility of multispectral and  hyperspectral sensors for mapping different severities of bio-control damage are also discussed. Popular  machine learning algorithms that offer operational potential to classify bio-control damage are proposed. This paper concludes with the challenges of remote sensing bio-control damage as well as proposes  recommendations to guide future research to successfully detect and map bio-control damage on AIAP  species

    A study on geospatial technology for detecting and mapping of Solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton crop

    Get PDF
    Detection of crop stress is one of the major applications of remote sensing in agriculture. Many researchers have confirmed the ability of remote sensing techniques for detection of pest/disease on cotton. The objective of the present study was to evaluate the relation between the mealybug severity and remote sensing indices and development of a model for mapping of mealybug damage using remote sensing indices. The mealybug-infested cotton crop had a significantly lower reflectance (33%) in the near infrared region and higher (14%) in the visible range of the spectrum when compared with the non-infested cotton crop having near infrared and visible region reflectance of 48 % and 9% respectively. Multiple Linear regression analysis showed that there were varying relationships between mealybug severity and spectral vegetation indices, with coefficients of determination (r2) ranging from 0.63 to0.31. Model developed in this study for the mealybug damage assessment in cotton crop yielded significant relationship (r2=0.863) and was applied on satellite data of 21st September 2009 which revealed high severity of mealybug and it was low on 24th September 2010 which confirmed the significance of the model and can be used in the identification of mealybug infested cotton zones. These results indicate that remote sensing data have the potential to distinguish damage by mealybug and quantify its abundance in cotton

    Remote sensing of biotic stress in crop plants and its applications for pest management

    Get PDF
    Not AvailableRemote sensing (RS) of biotic stress is based on the assumption that stress interferes with photosynthesis and physical structure of the plant at tissue and canopy level, and thus affects the absorption of light energy and alters the refl ectance spectrum. Research into vegetative spectral refl ectance can help us gain a better understanding of the physical, physiological and chemical processes in plants due to pest and disease attack and to detect the resulting biotic stress. This has important implications to effective pest management. This review provides an overview of detection of various biotic stresses in different crops using various RS platforms. Previous work pertaining to the use of RS technique for assessing pest and disease severity using different RS techniques is briefl y summerized. The available sources of ground based, airborne and satellite sensors are presented along with various narrow band vegetation indices that could be used for characterizing biotic stress. Using relevant examples, the merits and demerits of various RS sensors and platforms for detection of pests and diseases are discussed. Pest surveillance programs such as fi eld scoutings are often expensive, time consuming, laborious and prone to error. As remote sensing gives a synoptic view of the area in a non-destructive and noninvasive way, this technology could be effective and provide timely information on spatial variability of pest damage over a large area. Thus remote sensing can guide scouting efforts and crop protection advisory in a more precise and effective manner. With the recent advancements in the communication, aviation and space technology, there is a lot of potential for application of remote sensing technology in the fi eld of pest management.Not Availabl

    Development and Evaluation of Unmanned Aerial Vehicles for High Throughput Phenotyping of Field-based Wheat Trials.

    Get PDF
    Growing demands for increased global yields are driving researchers to develop improved crops, capable of securing higher yields in the face of significant challenges including climate change and competition for resources. However, abilities to measure favourable physical characteristics (phenotypes) of key crops in response to these challenges is limited. For crop breeders and researchers, current abilities to phenotype field-based experiments with sufficient precision, resolution and throughput is restricting any meaningful advances in crop development. This PhD thesis presents work focused on the development and evaluation of Unmanned Aerial Vehicles (UAVs) in combination with remote sensing technologies as a solution for improved phenotyping of field-based crop experiments. Chapter 2 presents first, a review of specific target phenotypic traits within the categories of crop morphology and spectral reflectance, together with critical review of current standard measurement protocols. After reviewing phenotypic traits, focus turns to UAVs and UAV specific technologies suitable for the application of crop phenotyping, including critical evaluation of both the strengths and current limitations associated with UAV methods and technologies, highlighting specific areas for improvement. Chapter 3 presents a published paper successfully developing and evaluating Structure from Motion photogrammetry for accurate (R2 ≥ 0.93, RMSE ≤ 0.077m, and Bias ≤ -0.064m) and temporally consistent 3D reconstructions of wheat plot heights. The superior throughput achieved further facilitated measures of crop growth rate through the season; whilst very high spatial resolutions highlighted both the inter- and intra-plot variability in crop heights, something unachievable with the traditional manual ruler methods. Chapter 4 presents published work developing and evaluating modified Commercial ‘Off the Shelf’ (COTS) cameras for obtaining radiometrically calibrated imagery of canopy spectral reflectance. Specifically, development focussed on improving application of these cameras under variable illumination conditions, via application of camera exposure, vignetting, and irradiance corrections. Validation of UAV derived Normalised Difference Vegetation Index (NDVI) against a ground spectrometer from the COTS cameras (0.94 ≤ R2 ≥ 0.88) indicated successful calibration and correction of the cameras. The higher spatial resolution obtained from the COTS cameras, facilitated the assessment of the impact of background soil reflectance on derived mean Normalised Difference Vegetation Index (NDVI) measures of experimental plots, highlighting the impact of incomplete canopy on derived indices. Chapter 5 utilises the developed methods and cameras from Chapter 4 to assess the impact of nitrogen fertiliser application on the formation and senescence dynamics of canopy traits over multiple growing seasons. Quantification of changes in canopy reflectance, via NDVI, through three select trends in the wheat growth cycle were used to assess any impact of nitrogen on these periods of growth. Results showed consistent impact of zero nitrogen application on crop canopies within all three development phases. Additional results found statistically significant positive correlations between quantified phases and harvest metrics (e.g. final yield), with greatest correlations occurring within the second (Full Canopy) and third (Senescence) phases. Chapter 6 focuses on evaluation of the financial costs and throughput associated with UAVs; with specific focus on comparison to conventional methods in a real-world phenotyping scenario. A ‘cost throughput’ analysis based on real-world experiments at Rothamsted Research, provided quantitative assessment demonstrating both the financial savings (£4.11 per plot savings) and superior throughput obtained (229% faster) from implementing a UAV based phenotyping strategy to long term phenotyping of field-based experiments. Overall the methods and tools developed in this PhD thesis demonstrate UAVs combined with appropriate remote sensing tools can replicate and even surpass the precision, accuracy, cost and throughput of current strategies

    Alkynyl N-BODIPYs as Reactive Intermediates for the Development of Dyes for Biophotonics

    Get PDF
    A new approach for the rapid multi-functionalization of BODIPY dyes towards biophotonics is reported. It is based on novel N-BODIPYs, through reactive intermediates with alkynyl groups to be further derivatized by click chemistry. This approach has been exemplified by the development of new dyes for cell bio-imaging, which have proven to successfully internalize into pancreatic cancer cells and accumulate in the mitochondria. The in vitro suitability for photodynamic therapy (PDT) was also analyzed and confirmed our compounds to be promising PDT candidates for the treatment of pancreatic cancer
    • …
    corecore