479 research outputs found

    Use of an Active Canopy Sensor Mounted on an Unmanned Aerial Vehicle to Monitor the Growth and Nitrogen Status of Winter Wheat

    Get PDF
    Using remote sensing to rapidly acquire large-area crop growth information (e.g., shoot biomass, nitrogen status) is an urgent demand for modern crop production; unmanned aerial vehicle (UAV) acts as an effective monitoring platform. In order to improve the practicability and efficiency of UAV based monitoring technique, four field experiments involving different nitrogen (N) rates (0–360 kg N ha−1 ) and seven winter wheat (Triticum aestivum L.) varieties were conducted at different eco-sites (Sihong, Rugao, and Xinghua) during 2015–2019. A multispectral active canopy sensor (RapidSCAN CS-45; Holland Scientific Inc., Lincoln, NE, USA) mounted on a multirotor UAV platform was used to collect the canopy spectral reflectance data of winter wheat at key growth stages, three growth parameters (leaf area index (LAI), leaf dry matter (LDM), plant dry matter (PDM)) and three N indicators (leaf N accumulation (LNA), plant N accumulation (PNA) and N nutrition index (NNI)) were measured synchronously. The quantitative linear relationships between spectral data and six growth indices were systematically analyzed. For monitoring growth and N nutrition status at Feekes stages 6.0–10.0, 10.3–11.1 or entire growth stages, red edge ratio vegetation index (RERVI), red edge chlorophyll index (CIRE) and difference vegetation index (DVI) performed the best among the red edge band-based and red-based vegetation indices, respectively. Across all growth stages, DVI was highly correlated with LAI (R2 = 0.78), LDM (R2 = 0.61), PDM (R2 = 0.63), LNA (R2 = 0.65) and PNA (R2 = 0.73), whereas the relationships between RERVI (R2 = 0.62), CIRE (R2 = 0.62) and NNI had high coefficients of determination. The developed models performed better in monitoring growth indices and N status at Feekes stages 10.3–11.1 than Feekes stages 6.0–10.0. To sum it up, the UAV-mounted active sensor system is able to rapidly monitor the growth and N nutrition status of winter wheat and can be deployed for UAV-based remote-sensing of crops

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Machine learning and big data techniques for satellite-based rice phenology

    Get PDF
    New sources of information are required to support rice production decisions. To cope with this challenge, studies have found practical applications on mapping rice using remote sensing techniques. This study attempts to implement a methodology aimed at monitoring rice phenology using optical satellite data. The relationship between rice phenology and reflectance metrics was explored at two levels: growth stages and biophysical modifications caused by diseases. Two optical moderate-resolution missions were combined to detect growth phases. Three machine-learning approaches (random forest, support vector machine, and gradient boosting trees) were trained with multitemporal NDVI data. Analytics from validation showed that the algorithms were able to estimate rice phases with performances above 0.94 in f-1 score. Tested models yielded an overall accuracy of 71.8%, 71.2%, 60.9% and 94.7% for vegetative, reproductive, ripening and harvested categories. A second exploration was carried out by combining Sentinel-2 data and ground-based information about rice disease incidence. K-means clustering was used to map rice biophysical changes across reproductive and ripening phases. The findings ascertained the remote sensing capabilities to create new information about rice for Colombia’s conditions

    MACHINE LEARNING AND BIG DATA TECHNIQUES FOR SATELLITE-BASED RICE PHENOLOGY MONITORING

    Get PDF
    New sources of information are required to support rice production decisions. To cope with this challenge, studies have found practical applications on mapping rice using remote sensing techniques. This study attempts to implement a methodology aimed at monitoring rice phenology using optical satellite data. The relationship between rice phenology and reflectance metrics was explored at two levels: growth stages and biophysical modifications caused by diseases. Two optical moderate-resolution missions were combined to detect growth phases. Three machine-learning approaches (random forest, support vector machine, and gradient boosting trees) were trained with multitemporal NDVI data. Analytics from validation showed that the algorithms were able to estimate rice phases with performances above 0.94 in f-1 score. Tested models yielded an overall accuracy of 71.8%, 71.2%, 60.9% and 94.7% for vegetative, reproductive, ripening and harvested categories. A second exploration was carried out by combining Sentinel-2 data and ground-based information about rice disease incidence. K-means clustering was used to map rice biophysical changes across reproductive and ripening phases. The findings ascertained the remote sensing capabilities to create new information about rice for Colombia’s conditions

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Digital phenotyping and genotype-to-phenotype (G2P) models to predict complex traits in cereal crops

    Get PDF
    The revolution in digital phenotyping combined with the new layers of omics and envirotyping tools offers great promise to improve selection and accelerate genetic gains for crop improvement. This chapter examines the latest methods involving digital phenotyping tools to predict complex traits in cereals crops. The chapter has two parts. In the first part, entitled “Digital phenotyping as a tool to support breeding programs”, the secondary phenotypes measured by high-throughput plant phenotyping that are potentially useful for breeding are reviewed. In the second part, “Implementing complex G2P models in breeding programs”, the integration of data from digital phenotyping into genotype to phenotype (G2P) models to improve the prediction of complex traits using genomic information is discussed. The current status of statistical models to incorporate secondary traits in univariate and multivariate models, as well as how to better handle longitudinal (for example light interception, biomass accumulation, canopy height) traits, is reviewe

    Hyperspectral Remote Sensing of Crop Canopy Chlorophyll and Nitrogen: The Relative Importance of Growth Stages

    Get PDF
    Remote sensing plays an important role in monitoring vegetation dynamics, and has been recognized as a reliable tool for monitoring biochemical and biophysical variations of agricultural crops, such as plant biomass, height, chlorophyll (Chl) and nitrogen (N). Nitrogen is one of the most essential elements in agro-ecosystems because of its direct role in determining crop yield and vegetation productivity, as well as its association with global N and carbon cycles. Canopy remote sensing of plant biochemical (e.g., N) and biophysical parameters (e.g., biomass) is often discussed separately. However, crop canopy structural characteristics and plant morphophysiological variations at different growth stages cause a confounding effect on the analysis and interpretation of the canopy spectral data. This study aimed to (1) understand the underlying mechanisms of canopy structural dynamics (mainly plant biomass and green leaf area) that impact the retrieval of canopy Chl and N at different growth stages, and (2) develop new algorithms and narrow band vegetation indices that may improve the estimation of Chl and N using hyperspectral data collected in the field and simulated by radiative transfer models (RTMs). To achieve the objectives, barley and rice experiments were conducted in Germany and China, respectively, from experimental plots to farmer fields; both empirical and physical models were employed but with an emphasis on the empirical methods. Results suggest that canopy hyperspectral data allow for the estimation of canopy Chl and N. However, with the advance of growth stages, plant growth rate is much faster than the rate at which N is accumulated in the plant mass until the stage of full heading (canopy closure), which results in a decrease of N concentration — the N dilution effect. Thus, growth stages have a significant effect on the correlation between the optical and biological traits of the crop canopy compared to the differences in crop cultivars and types. This effect is confirmed by five years of experimental data of barley and rice crops. Accordingly, empirical models based on different vegetation indices can be calibrated, before and after the canopy closure, which allows for the monitoring of canopy Chl and N status through the entire growing season. This study also suggests that multivariate models such as partial least squares (PLS) and support vector machines (SVM) are relatively resistant to the influence of growth stages and can be used to improve the estimation of canopy Chl and N compared to univariate models based on vegetation indices. To devise a simple approach for the estimation of canopy Chl and N status that is relatively insensitive to the confounding effect of canopy structural characteristics, new vegetation indices, the Ratio of Reflectance Difference Indices (RRDIs), were developed based on the multiple scatter correction (MSC) theory. This type of indices conceptually eliminates the linear influence caused by the confounding effect of multiple scattering and soil background as well as their interactions; therefore, RRDI weakens the effect of canopy structural variations on the analysis of canopy spectra when estimating biochemical variations. For example, the RRDI derived from the red edge (RRDIre) wavelengths proved to be a robust indicator of canopy Chl and N in both barley and rice crops with different cultivars and for the simulated data by RTMs. Therefore, the method is useful for improving the estimation of canopy biochemical parameters. This study improves the understanding of remote estimation of canopy Chl and N status by considering the dynamical co-variations between plant biomass and N across different growth stages and suggests the potential to improve the ability of canopy hyperspectral data to monitor the canopy biogeochemical cycles of agro-ecosystems using remote sensing. Additionally, this study indicates that hyperspectral vegetation indices based on water absorption bands are useful for the detection of crop diseases at the canopy level
    corecore