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Abstract 

Remote sensing plays an important role in monitoring vegetation dynamics, and has been 

recognized as a reliable tool for monitoring biochemical and biophysical variations of agricultural 

crops, such as plant biomass, height, chlorophyll (Chl) and nitrogen (N). Nitrogen is one of the 

most essential elements in agro-ecosystems because of its direct role in determining crop yield 

and vegetation productivity, as well as its association with global N and carbon cycles. Canopy 

remote sensing of plant biochemical (e.g., N) and biophysical parameters (e.g., biomass) is often 

discussed separately. However, crop canopy structural characteristics and plant 

morphophysiological variations at different growth stages cause a confounding effect on the 

analysis and interpretation of the canopy spectral data. This study aimed to (1) understand the 

underlying mechanisms of canopy structural dynamics (mainly plant biomass and green leaf area) 

that impact the retrieval of canopy Chl and N at different growth stages, and (2) develop new 

algorithms and narrow band vegetation indices that may improve the estimation of Chl and N 

using hyperspectral data collected in the field and simulated by radiative transfer models (RTMs). 

To achieve the objectives, barley and rice experiments were conducted in Germany and 

China, respectively, from experimental plots to farmer fields; both empirical and physical models 

were employed but with an emphasis on the empirical methods. Results suggest that canopy 

hyperspectral data allow for the estimation of canopy Chl and N. However, with the advance of 

growth stages, plant growth rate is much faster than the rate at which N is accumulated in the 

plant mass until the stage of full heading (canopy closure), which results in a decrease of N 

concentration — the N dilution effect. Thus, growth stages have a significant effect on the 

correlation between the optical and biological traits of the crop canopy compared to the 

differences in crop cultivars and types. This effect is confirmed by five years of experimental data 

of barley and rice crops. Accordingly, empirical models based on different vegetation indices can 

be calibrated, before and after the canopy closure, which allows for the monitoring of canopy Chl 

and N status through the entire growing season. This study also suggests that multivariate models 

such as partial least squares (PLS) and support vector machines (SVM) are relatively resistant to 

the influence of growth stages and can be used to improve the estimation of canopy Chl and N 

compared to univariate models based on vegetation indices. 

To devise a simple approach for the estimation of canopy Chl and N status that is relatively 

insensitive to the confounding effect of canopy structural characteristics, new vegetation indices, 

the Ratio of Reflectance Difference Indices (RRDIs), were developed based on the multiple 

scatter correction (MSC) theory. This type of indices conceptually eliminates the linear influence 

caused by the confounding effect of multiple scattering and soil background as well as their 
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interactions; therefore, RRDI weakens the effect of canopy structural variations on the analysis of 

canopy spectra when estimating biochemical variations. For example, the RRDI derived from the 

red edge (RRDIre) wavelengths proved to be a robust indicator of canopy Chl and N in both 

barley and rice crops with different cultivars and for the simulated data by RTMs. Therefore, the 

method is useful for improving the estimation of canopy biochemical parameters.  

This study improves the understanding of remote estimation of canopy Chl and N status by 

considering the dynamical co-variations between plant biomass and N across different growth 

stages and suggests the potential to improve the ability of canopy hyperspectral data to monitor 

the canopy biogeochemical cycles of agro-ecosystems using remote sensing. Additionally, this 

study indicates that hyperspectral vegetation indices based on water absorption bands are useful 

for the detection of crop diseases at the canopy level.  
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Zusammenfassung 

Fernerkundung spielt eine wichtige Rolle für das Monitoring der Vegetationsdynamik und 

wurde als zuverlässiges Werkzeug für die Beobachtung von biochemischen und biophysikalischen 

Unterschieden in Agrarpflanzen, wie z.B. Pflanzenbiomasse, Chlorophyll (Chl), und Stickstoff (N), 

erkannt. Stickstoff ist aufgrund seiner direkten Rolle in der Ertragsbestimmung von Feldfrüchten 

und in der Vegetationsproduktivität, als auch in seiner Verbindung mit globalen Stickstoff- und 

Kohlenstoffflüssen, eines der wesentlichen Elemente im Agrarökosystem. Die Fernerkundung des 

Stickstoffstatus der Pflanzen und anderer biochemischer Merkmale wird häufig getrennt 

behandelt, weil es aufgrund von strukturellen und biophysikalischen Eigenschaften in Feldfrüchten 

und morphophysiologischen Variationen von Pflanzen zu unterschiedlichen Entwicklungsstadien 

am Verständnis der wechselseitigen Effekte mangelt. Diese Studie bezweckt (1) die 

zugrundeliegenden Mechanismen zu verstehen, wie die strukturelle Dynamik von 

Pflanzenbiomasse und grüner Blattfläche die Gewinnung von Chlorophyll und Stickstoff im 

Bestand beeinflusst, und (2) neue Schmalband Vegetationsindizes aus hyperspektralen Daten, die 

im Feld erhoben und durch Strahlungstransportmodelle (RTM) simuliert worden sind, zu 

entwickeln.  

Um diese Ziele zu erreichen, wurden Experimente an Gerste und Reis jeweils in 

Deutschland und China von der Versuchs- bis zur Feldskala durchgeführt und hauptsächlich 

empirische aber auch physikalische Modelle verwendet. Einhergehend mit einem fortschreitenden 

Entwicklungsstadium, ist das Wachstum von Kulturpflanzen größer als der Anstieg in der 

Akkumulationsrate von Stickstoff in der Pflanzenbiomasse, bis zu dem Stadium des 

Bestandsschlusses. Dies führt zu einer schnellen Abnahme der Stickstoffkonzentration und somit 

zu einer Stickstoffreduzierung. Dadurch haben Entwicklungsstadien einen signifikanten Einfluss auf 

den Zusammenhang zwischen optischen und biologischen Merkmalen im Feldfruchtbestand, im 

Gegensatz zu Unterschieden zwischen Kultursorten und Feldfrüchten. Dieser Einfluss wird durch 

experimentelle Daten aus fünf Jahren im Gersten- und Reisanbau bestätigt. Dementsprechend 

können empirische Modelle, die auf unterschiedlichen Vegetationsindizes basieren, jeweils vor 

und nach dem Bestandsschluss kalibriert werden, was das Monitoring von dem Chl- und N-Status 

für die gesamte Wachstumsperiode zulässt. Diese Studie legt den Schluss nahe, dass multivariate 

Modelle wie z.B. Partial Least Squares (PLS) und Support Vector Machine (SVM) verhältnismäßig 

resistent gegenüber Einflüssen von Entwicklungsstadien sind, und dass sie die Schätzung von Chl 

und N im Bestand gegenüber Modellen, die auf Vegetationsindizes basieren, verbessern können. 

Um einen einfachen Ansatz für die Schätzung von dem Chl- und N-Status zu entwickeln, der 

relativ unempfindlich gegenüber den wechselseitigen Effekten der Struktureigenschaften im 
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Bestand ist, wurde ein neuer Vegetationsindex, Ratio of Reflectance Difference Index (RRDI), 

basierend auf der Strategie einer multiplen Streuungskorrektur (MSC) entwickelt. Dieser Index 

eliminiert konzeptionell den linearen Einfluss, der durch den wechselseitigen Effekt zwischen 

multipler Streuung und Bodenhintergrund, als auch durch ihre Interaktionen verursacht wird und 

mindert somit den Einfluss auf die strukturellen Variationen im Bestand bei der Analyse von 

Spektren zur Schätzung von biochemischen Variationen. So hat sich z. B. der RRDI, der hier auf 

den Bereich des Red Edge angepasst wurde (RRDIre), als robuster Chl- und N-Indikator im 

Bestand, sowohl in Gerste als auch in Reis mit unterschiedlichen Kultursorten, sowie für die 

durch RTM simulierten Daten erwiesen. Daher ist die Methode für die Verbesserung der 

Abschätzung von biochemischen Merkmalen aus dem Bestand nützlich. 

Diese Studie verbessert das Verständnis der Fernerkundung von dem Chl- und N-Status 

unter Berücksichtigung von dynamischen Kovariationen zwischen Pflanzenbiomasse und Stickstoff 

für unterschiedliche Entwicklungsstadien und zeigt das Potential der Verbesserung der 

Leistungsfähigkeit von hyperspektralen Daten zum Monitoring von biogeochemischen Zyklen in 

Agrarökosystemen durch die Fernerkundung. Darüber hinaus zeigt diese Studie, dass 

hyperspektrale Vegetationsindizes, die auf Wasserabsorptionsbändern basieren, für die Detektion 

von Pflanzenkrankheiten auf Bestandsebene nützlich sind. 
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CHAPTER 1  

General introduction 

 

 

 Remote sensing for crop monitoring: Basics 1.1

Precision agriculture (PA) is a farming management concept that aims to optimize inputs, 

reduce costs and environmental impacts and meet the increasing environmental, economic, food, 

market and public pressure on arable agriculture (Stafford, 2000). The basis of PA — the spatial 

and temporal variability in soil and crop factors within a field — has become increasingly difficult 

to take account of within-field variability without the development of technologies for observing, 

measuring and responding to the variability (Stafford, 2000; Zhang et al., 2002). Remote Sensing 

(RS), Geographic Information Systems (GIS) and Global Positioning Systems (GPS) provide the 

potential to observe, measure and map the within-field spatial variability and define a decision 

support system (DSS) for responding to the variability and decision making for management of 

the entire farm (Bareth, 2009). With this goal, PA requires crop monitoring in a timely fashion to 

be able to quantify within-field variability and identify key phenological phenomena with greater 

precisions, both spatially and temporally (Hatfield et al., 2008). However, traditional 

laboratory-based measurements, i.e., plant- and soil-tests, are destructive, time-consuming and 

costly; therefore, it is difficult to track the dynamics of crop growth through rapid and repeated 

measurements with high spatial and temporal resolutions (Atzberger, 2013). Thus, RS — the 

science of obtaining information about objects or phenomena from a distance without coming 

into physical contact with them (Elachi & van Zyl, 2006) — provides an attractive and 

non-destructive method of monitoring crop growth dynamics and measuring the within-field 

spatial variability at a high frequency. 

RS instruments/sensors gather information by measuring the electromagnetic radiation that 

is absorbed, emitted or reflected by an object in various spectral regions (Elachi & van Zyl, 2006). 

There are two types of RS sensors: passive (e.g., radiometer and imaging radiometer) and active 

(e.g., laser, lidar and radar). Passive sensors only sense radiation emitted by the object being 

sensed or reflected by the object from a source (e.g., sunlight) other than the sensor, active 

sensors transmit a pulse of energy to the object and then measure the radiation that is reflected 

or backscattered from the object (NASA Earth Observatory). Accordingly, RS methods can be 

grouped into two types: passive and active remote sensing. RS techniques can also be divided into 

different classes according to different standards (Elachi & van Zyl, 2006); for example, 
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multispectral and hyperspectral methods can be differentiated by spectral resolution or by 

different sensor carriers, such as airborne, satellite and unmanned aerial vehicles (UAV), and 

near-ground platforms (Elachi & van Zyl, 2006; Weng, 2011). More recently, a new method for 

measuring of sun-induced chlorophyll fluorescence (Meroni et al., 2009) has received increasing 

interest in the RS community and can be categorized as a passive remote sensing method. 

Because this dissertation focuses mainly on passive remote sensing with an emphasis on 

hyperspectral narrow band data that were collected at the near ground level using 

spectroradiometers, the RS methods discussed herein fall primarily into this scope. 

RS methods have become widely used in PA for monitoring and understanding plant in situ 

growth status and variability and detecting many environmental stresses (Gausman et al., 1969; 

Mulla, 2013; Pinter et al., 2003). Generally, the applications of remote sensing in agriculture crop 

monitoring can be categorized into the following three groups: (1) biochemical trait monitoring, 

e.g., leaf pigments (Gitelson & Merzlyak, 2004), leaf water content (Ustin et al., 1998), plant 

nitrogen (N) content (Osborne et al., 2002) and other nutrient statuses or deficiencies (Ayala-Silva 

& Beyl, 2005); (2) biophysical trait monitoring, e.g., plant height (Tilly et al., 2013), leaf angle 

distribution (Biskup et al., 2007), leaf area index (LAI) (Wiegand & Richardson, 1990; Xavier & 

Vettorazzi, 2004), plant biomass production (Aase & Siddoway, 1981) and crop yield (Serrano et al., 

2000); and (3) crop growth anomalies, e.g., crop diseases (Huang et al., 2007), pests (Mirik et al., 

2012) and weed stresses (Goel et al., 2003) as well as crop lodging detection (Ogden et al., 2002).  

Hyperspectral remote sensing (HRS, also known as imaging spectroscopy) is a relatively new 

technology that can provide detailed spectral information that often has more than hundreds of 

continuously narrow bands (Thenkabail et al., 2012). HRS is being primarily investigated for the 

detection and identification of terrestrial vegetation (van der Meer & de Jong, 2001), which 

facilitates the applications of aforementioned RS methods in PA with high spectral resolution. 

Green vegetation characterizes unique spectral signatures through the visible (VIS) to shortwave 

infrared (SWIR) spectrum (Figure 1-1) by absorbing in the red and blue wavelengths and 

atmospheric water absorption bands in SWIR range and, reflecting in the green wavelength and 

near infrared (NIR) range (Figure 1-1). Generally, changes in leaf/plant chlorophyll concentration 

often produce spectral shifts near 700 nm of the VIS, which is known as the red edge, and 

variations in the leaf/canopy structures, plant nitrogen, cellulose, lignin, starch and water contents 

as well as other properties form the reflectance spectra over different wavelengths (van der Meer 

& de Jong, 2001). Therefore, HRS provides the potential for capturing information about plant 

biochemical and biophysical characteristics. The following sections describe the links between 

spectral features and individual leaf, plant and vegetation characteristics. 
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Figure 1-1: The reflectance spectrum of green vegetation (Source: Elowitz, 2014).  

Plant Pigments: Photosynthetic pigments (mainly chlorophylls and carotenoids) capture 

light in the process of photosynthesis and convert light energy to carbohydrates (Govindjee & 

Krogmann, 2004). Chlorophyll is the most important pigment required for photosynthesis and has 

the maximum absorption of light at approximately 450 and 670 nm, which characterizes the blue 

and red troughs and the green peak in the reflectance of the visible (VIS, 380-750 nm) spectrum 

(Lichtenthaler, 1987)(see Figure 1-1). In addition to chlorophyll, the amount of anthocyanins, 

carotenoids and xanthophylls in leaves/plants governs the absorption in the visible spectrum 

(Davies, 2004). Therefore, variation in these pigments provides unique reflectance signature that 

allow for the leaf and canopy level sensing of the leaf pigments. For example, a loss of chlorophyll 

in leaves leads to a red edge shift toward the blue part of the spectrum (van der Meer & de Jong, 

2001). Numerous absorption features have been identified for different pigments and foliar 

chemical components (Curran, 1989). However, the absorption features of different pigments and 

chemical components are often similar and overlapping (Figure 1-2); therefore, a single 

absorption feature is difficult to be isolated to relate directly to the amount of specific 

biochemical contents (Kokaly & Clark, 1999). Compared to the majority of light energy (>80%) 

absorbed by green leaves, only a very small part (≈2%) is emitted as leaf fluorescence (Buschmann, 

2007), which allows for the characterization of the physiological (photosynthetic) activity of 

plants. Simultaneous measurement of the red and far-red chlorophyll fluorescence emitted by 
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leaves as a result of the light absorbed from the ultraviolet (UV) to VIS range permits the 

estimation of chlorophyll variations (Buschmann, 2007). 

 

Figure 1-2: Absorption spectra of photosynthetic pigments show how these pigments add to 
the range of wavelengths of light that are useful in photosynthesis (Source: Koning, 1994). 

Nitrogen: N is the most important, limiting nutrient element for plant growth and grain 

production. It is a major component of chlorophyll and part of all amino acids that comprise 

proteins (Wagner, 2012). The most abundant N-bearing compound in green leaves accounts for 

30 to 50 percent of the total N, and it has absorption features at 1500, 1680, 1740, 1940, 2050, 

2170, 2290 and 2470 nm (Elvidge, 1990). However, in fresh leaves, the absorption of N 

compounds is not very strong and is generally masked by water absorption (Kumar et al., 2001). 

The total leaf N content is known to be related to the rate of CO2 assimilation and content of 

chlorophyll (Evans, 1983); thus, N plays a key role in photosynthesis. Normally, plants with an 

adequate supply of nitrogen have a dark green color as a result of high concentrations of 

chlorophyll, which is associated with vigorous vegetative growth. Conversely, N deficiency will 

lead to reduced plant growth and chlorophyll concentrations and is often characterized by the 

yellowing (chlorosis) of leaves (Beegle, 2013). Therefore, N deficiency often reduces the 

absorption in the VIS portion and yields high leaf reflectance at green bands near 550 nm (Yoder & 

Pettigrew-Crosby, 1995). 
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Water: Absorption by leaf water is dominant in the NIR (750-1000 nm) to SWIR 

(1000-2500 nm) spectral range (Ustin et al., 2012). Leaf reflectance in the SWIR region, 

predominantly beyond 1300 nm, increases as an effect of leaf dehydration (Knipling, 1970). 

Therefore, a reflectance increase in this range allows for the investigation of leaf drought stress. 

The reflectance sensitivity (changes in leaf reflectance over wavelength relative to its turgid state) 

to leaf water content has been identified in this range and is greatest in the water absorption 

bands near 1450, 1920 and 2500 nm (Carter, 1991). In addition to the water absorption bands, 

leaf dehydration may also lead to high reflectance sensitivity in the VIS bands near the absorption 

maxima of chlorophyll (480 and 680 nm) (Carter, 1991). 

Biomass, LAI and Yield: Plant biomass is an important indicator of the crop population, 

growth and gross primary production (Gnyp et al., 2014a; Peng & Gitelson, 2011), and LAI is one of 

the most important structural parameters for studying vegetation status in response to biological 

and physical processes (Chen & Cihlar, 1996). In agro-ecosystems, biomass and LAI are 

quantitative measures of the crop yield potential and play important roles in making in-season 

decisions for crop management (Li et al., 2010a; Serrano et al., 2000). At the canopy level, biomass 

and LAI have relatively great effects on the NIR reflectance than on the VIS range. High amount of 

biomass and large LAI often produce higher reflectance in the NIR and SWIR bands (Casanova et 

al., 1998; Vargas et al., 2002). Therefore, these bands are often used for plant biomass and LAI 

modeling and yield forecasting (Jégo et al., 2012; Thenkabail et al., 2000). 

Diseases, Weeds and Lodging: Plant diseases have significant impacts on physiological 

functions and may result in severe losses of crop yields (Barkley et al., 2014). For individual leaves, 

disease stresses appear to affect the VIS reflectance more than the NIR range because chlorophyll 

is sensitive to physiological disturbances (Knipling, 1970). At the canopy level, however, disease 

stresses influence morphological traits and lead to smaller leaves/plants and biomass production, 

and severe stem-based diseases can cause crop lodging (Gröll, 2008). In a developed canopy, 

disease infection may vary at different leaf layers and is difficult to detect from the top canopy. 

Weeds and lodging (often caused by wind or rain damages) are common phenomena that reduce 

crop yield (Seelan et al., 2003). Additionally, weed species often easily out-compete agricultural 

crops for resources (e.g., sunlight, soil nutrients and water), which affects the crop growth and 

reduces the yield (Herrmann et al., 2013; Mirik et al., 2013). These field anomalies provide 

spectrally distinguishable information relative to normal/healthy crop canopies (Hatfield & Pinter, 

1993; Lamb & Brown, 2001). 

The aforementioned crop characteristics have direct and/or indirect links with the 

absorption and/or reflectance spectra, which offers many opportunities to monitor these crop 
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characteristics using HRS that collects spectral data with high spectral resolution (Thenkabail et al., 

2012). In addition to the requirement for spectral resolution, PA requires high spatial and 

temporal resolution to detect within-field variability and track key phenological phenomena 

(Stafford, 2000). These three requirements are the pillars that allow RS to play a key role in PA. 

 Remote sensing for crop monitoring: Methods 1.2

Methods used in agricultural remote sensing for crop monitoring fall into two broad groups: 

empirical and physical. Empirical methods attempt to explore the statistical relationships between 

crop growth traits and canopy spectra (Aparicio et al., 2002). By contrast, physical methods 

attempt to determine the underlying mechanisms that generate the empirical relationships to 

understand the causality principles (Dorigo et al., 2007).  

1.2.1 Empirical/statistical methods 

Among empirical methods, vegetation indices are widely used in a number of investigations 

that retrieve vegetation characteristics (Eitel et al., 2008; Gitelson et al., 1996; Oppelt & Mauser, 

2004; Perry et al., 2012). Vegetation indices are derived from combinations of electromagnetic 

bands that are correlated with specific vegetation features (Bannari et al., 1995). The wide use of 

vegetation indices in applications of agricultural crop monitoring is because of its simplicity. In 

past decades, a broad range of vegetation/spectral indices have been empirically or 

semi-empirically developed (Peñuelas et al., 1995a). Most of these indices use the chlorophyll 

absorption bands and NIR range or their related band combinations (Barton, 2012), whereas 

some studies also suggest the usefulness of SWIR bands (Koppe et al., 2010; Thenkabail et al., 

2013). 

Vegetation indices can be classified into three classes (Daughtry et al., 2000): (1) intrinsic 

indices, such as the simple ratio (SR) or ratio vegetation index (RVI), normalized difference 

vegetation index (NDVI), chlorophyll absorption in reflectance index (CARI) (Kim et al., 1994) 

and its variants such as MCARI (Daughtry et al., 2000) and TCARI (Haboudane et al., 2002); (2) 

soil-line related indices, such as the soil-adjusted vegetation index (SAVI) (Huete, 1988) and its 

modifications such as TSAVI (Baret et al., 1989) and OSAVI (Rondeaux et al., 1996); and (3) 

atmospherically corrected indices, such as the atmospherically resistant vegetation index (ARVI) 

(Kaufman & Tanre, 1992). Table 1-1 lists some of the important vegetation indices and 

applications for specific biochemical or biophysical parameters
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Table 1-1: Spectral vegetation indices and their applications for specific vegetation 
characteristics. 
Index Formula Application Reference 
Intrinsic indices 
DVI RNIR-Rred, 

Rgreen-Rred 
Biomass, water Tucker (1979) 

NDVI (RNIR-Rred)/(RNIR+Rred) LAI, yield Wiegand & Richardson 
(1990b) 

NDWI (R857-R1241)/(R857+R1241) Water Gao (1996) 
NPCI (R680-R430)/(R680+R430) Chlorophyll Peñuelas et al. (1994) 
SR, RVI RNIR/Rred 

 
LAI, biomass Casanova et al. (1998); 

Jordan (1969) 
 R824/R1225 Biomass Koppe et al. (2010) 
WBI R900/R970 Water Peñuelas et al. (1994; 

1997) 
CIg (RNIR/Rgreen)-1 Chlorophyll Gitelson et al. (2003a) 
CAI ∫R600-735 *R(EQ) Chlorophyll Oppelt (2002) 
CARI R700 /R670*√ [(a*670+R670+b)²]/√(a²+1) Chlorophyll Kim et al. (1994) 
MCARI [(R700-R670)-0.2*(R700-R550)]*(R700/R670) Chlorophyll Daughtry et al. (2000) 
TCARI 3*[(R700-R670)-0.2*(R700-R550)*(R700/R670)] Chlorophyll Haboudane et al. (2002) 
PSRI (R678-R500)/R750 Plant senescence Merzlyak et al. (1999) 
Soil-line vegetation indices 
SAVI (1+0.5)*(RNIR-Rred)/(RNIR+Rred+0.5) LAI, biomass Huete (1988) 
TSAVI a*(RNIR-a*Rred-b)/(Rred+a*RNIR-a*b) LAI Baret et al. (1989) 

OSAVI (1+0.16)*(R800−R670)/(R800+R670+0.16) LAI, vegetation 
cover 

Rondeaux et al. (1996) 

EVI 2.5*[(RNIR-Rred)/((RNIR)+(6*Rred)-(7.5*Rblue)+1)] LAI Huete et al. (2002) 
Atmospherically adjusted indices 
ARVI (RNIR-Rrb)/(RNIR+Rrb), Rrb=Rred-p(Rblue-Rred), p=1 Vegetation fraction Kaufman & Tanre (1992) 
VARI (Rgreen-Rred)/(Rgreen+Rred-Rblue) Vegetation fraction Gitelson et al. (2002) 

ARVI: atmospherically resistant vegetation index; 
CAI: chlorophyll absorptions integral, EQ= envelope quotient, see details in Oppelt (2002); 
CARI: chlorophyll absorption ratio index, [a= (R700-R550)/150; b = R550-(a*550)]; 
CIg: chlorophyll index (green model); 
DVI: difference vegetation index; 
EVI: enhanced vegetation index; 
MCARI: modified chlorophyll absorption in reflectance index; 
NDVI: normalized difference vegetation index; 
NDWI: normalized difference water index; 
NPCI: normalized pigment chlorophyll ratio index; 
OSAVI: optimized soil-adjusted vegetation index; 
PSRI: plant senescence reflectance index; 
RVI, ratio vegetation index, also known as SR; 
SAVI: soil adjusted vegetation index; 
SR: simple ratio, also known as RVI; 
TSAVI: transformed soil-adjusted vegetation index, a, b are the soil line coefficients; 
TCARI: transformed chlorophyll absorption in reflectance index; 
VARI: visible atmospherically resistant indices; 
WBI: water band index.  

In terms of canopy biochemistry, almost all of the vegetation indices for pigments are still 

sensitive to a certain degree to soil background and canopy structural properties (Daughtry et al., 

2000; Haboudane et al., 2002). The MCARI and OSAVI were combined as the slope of MCARI vs. 

OSAVI (MCARI/OSAVI) to cancel out the background effect on the canopy spectra (Daughtry et 
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al., 2000). Later, TVARI/OSAVI was proposed to further increase the sensitivity to chlorophyll, 

particularly for low contents of chlorophyll (Haboudane et al., 2002). Although a number of 

investigations have demonstrated the improvement of these vegetation indices for chlorophyll, 

they still have limitations for the lower vegetation cover (e.g., LAI) conditions (Haboudane et al., 

2008). 

In terms of vegetation biophysical traits, a series of vegetation indices have been developed 

and modified to enhance their responsiveness to LAI variations. Haboudane et al. (2004) 

developed a modified triangular vegetation index (MTVI2) that was a good indicator of green LAI 

and less sensitive to chlorophyll content. This index is a modified form of the triangular 

vegetation index (TVI), which is calculated as the area of the triangule defined by the green peak, 

chlorophyll absorption minimum, and NIR shoulder (Broge & Leblanc, 2001). MTVI2 replaces the 

NIR shoulder at 750 nm with the reflectance at 800 nm, which is more sensitive to changes in the 

leaf and canopy structures, and further incorporates a soil adjustment factor for resistance to the 

soil background (Haboudane et al., 2004; Huete, 1988). 

Vegetation indices are also widely used to access several abiotic and biotic stresses, including 

salinity stress (Hackl et al., 2013; Naumann et al., 2009), drought stress (Gutiérrez-Rodríguez et al., 

2004; Zhang et al., 2012) and pest damage (Peñuelas et al., 1995b; Prabhakar et al., 2013). The 

photochemical reflectance index (PRI) (Gamon et al., 1992) has received increased interest in 

recent studies for a range of plant stresses (Garbulsky et al., 2011; Inoue & Peñuelas, 2006; Zinnert 

et al., 2012). The PRI tracks the action of the xanthophyll cycle that converts xanthophyll 

pigments from epoxidized to deepoxidized states to avoid damage to the photosynthetic 

apparatus under excess light conditions; therefore, it is correlated with the efficiency of 

photosynthesis (Gamon et al., 1992) and stressed plants can be detected by PRI because they 

often have low photosynthetic radiation use efficiency (RUE) (Peñuelas et al., 1995b). 

In addition to vegetation indices, more sophisticated multivariate models, such as the 

stepwise multiple linear regression (MLR) (Curran et al., 2001; Kokaly & Clark, 1999) and more 

exhaustive MLR methods (Thenkabail et al., 2000; 2002), principal component analysis (PCA) 

(Atzberger et al., 2010; Thenkabail et al., 2004), partial least squares (PLS) (Hansen & Schjoerring, 

2003; Nguyen & Lee, 2006; Yu et al., 2013a), artificial neural network (ANN) (Atzberger, 2004; 

Miao et al., 2006), and support vector machines (Verrelst et al., 2012), are becoming more widely 

used in remote sensing applications because of the rapid improvement of computer performance. 

These empirical methods have been largely investigated in agricultural remote sensing 

studies, and applied different vegetation indices alone and in combination. However, the 

performances of these indices and models are dependent on crop phenological development and 
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management practices (Hatfield & Prueger, 2010). Some researchers suggest the use of multiple 

vegetation indices (see Table 1-1 for descriptions) for different crop characteristics and growth 

stages (Hatfield & Prueger, 2010): (a) simple ratios for biomass, (b) NDVI for intercepted 

photosynthetically active radiation (PAR), (c) SAVI for LAI at early growth stages, (d) EVI for LAI 

at later stages, (e) CIg for leaf chlorophyll, (f) NPCI for chlorophyll during later stages, and (g) 

PSRI to quantify plant senescence. There appears to be a trade-off in selecting vegetation indices 

or multivariate methods because both spectral indices and multivariate models have their 

advantages and disadvantages (Atzberger et al., 2010). Therefore, multiple and integrated methods 

are required to best capture crop traits through the whole growing season to obtain the 

dynamics of crop development. There are additional spectral analysis methods such as techniques 

for extracting red edge position (Dawson & Curran, 1998; Guyot & Baret, 1988; Miller et al., 1990; 

Pu et al., 2003) and continuum removal analysis (Huang et al., 2004). All of these empirical 

methods have demonstrated the usefulness and potential of remote sensing applications in 

agriculture, although the underlying mechanisms are still not fully understood. 

1.2.2 Physical models 

Physically based radiative transfer (RT) models have been developed to improve the 

understanding of the interaction between light and leaves/plants and other canopy structural 

properties (Jacquemoud et al., 2009). During last three decades, a number of RT models have 

been developed and widely used; for example, the leaf level RT models PROSPECT (Jacquemoud 

& Baret, 1990) and LIBERTY (Dawson et al., 1998) and the canopy level model SAIL (Verhoef, 

1984). 

To monitor crop biochemical and physical properties, physical models can be run in both 

forward and inverse modes (Jacquemoud et al., 2000). Running RT models in the forward mode 

allows for the generation of a large database that covers a wide range of combinations of input 

variables that control the resulting reflectance spectra (Féret et al., 2011). In this mode, the 

variables of the biochemical or biophysical properties responding to the reflectance bands can be 

studied, which is useful for identifying and refining spectral indices that are more robust for 

estimating vegetation biochemical or physical parameters of interest (continued in section 1.2.3). 

Running RT models in the inverse mode offers the potential of retrieving crop characteristics 

from hyperspectral reflectance data with a range of 400-2500 nm. A good example is the 

inversion of the coupled leaf and canopy model PROSAIL (PROSPECT+SAIL) (Jacquemoud & 

Baret, 1990; Jacquemoud, 1993; Verhoef, 1984). Normally, the inversion of PROSAIL can be 

conducted in three ways (Jacquemoud et al., 2006): (1) numerical inversion (Botha et al., 2007), (2) 

look-up table (LUT) (Darvishzadeh et al., 2012) and (3) supervised learning approaches, e.g., ANN 
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(Atzberger, 2004) and SVM (Camps-Valls et al., 2006). Each method for model inversion has its own 

advantages and disadvantages (Richter et al., 2009). Some studies have suggested that LUT and 

supervised learning approaches are more computationally efficient than the numerical inversion 

(Richter et al., 2011; Weiss et al., 2000). 

1.2.3 Integration of empirical and physical methods 

To combine empirical and physical methods, simulations of large datasets of leaf and canopy 

reflectance spectra obtained by forward running the RT models have been used to develop and 

refine vegetation/spectral indices for retrieving crop biochemical and physical contents at both 

the leaf (Féret et al., 2011; le Maire et al., 2004) and canopy levels (Broge & Leblanc, 2001; 

Haboudane et al., 2008). For example, canopy reflectance (CanRefl) can be simulated by the 

PROSAIL model with 13 input parameters: chlorophyll content (Cab), carotenoids (Car), leaf 

equivalent water thickness (Cw), dry matter content (Cm), leaf area index (LAI), average leaf 

angle (ALA), hot spot parameter (Hspot), fraction of diffuse incident radiation (skyl), soil 

reflectance (Rs), solar zenith angle (θs), view zenith angle (θv) and relative azimuth angle (φsv), 

which are shown in Eq. (1-1): 

 

 , , , , , , , , , ,( , ),ab ar w m stru spot s s v svPROSAIL CCanRef C C C N LAI ALA H skl yl R     (1-1) 

 

Figure 1-3 illustrates how the simulated canopy reflectance changes with the LAI variations. 

The main advantages of the combined mode is its role in developing, modifying and testing various 

spectral features and vegetation indices for specific vegetation traits of interest and understanding 

how the distinct biochemical and biophysical characteristics affect the canopy reflectance 

(Haboudane et al., 2004; Jacquemoud et al., 2009; Salas & Henebry, 2014). 
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Figure 1-3: Effect of LAI variations on canopy reflectance simulated by PROSAIL model 
(Cab=30 µg cm-2, Car=0 Cw=0.01 cm, Cm=0.005 g cm-2, Nstru=1.5, ALA=spherical, Hspot=0.25, 
skyl=0.23, θs=30°, θv=0°, φsv=0°). 

 Introduction to the study areas 1.3

1.3.1 Study area for rice experiments 

The study area for the rice experiments is located in the Sanjiang Plain, which is the largest 

marsh area in Northeast China. The Sanjiang Plain is an alluvial plain within the Songhua River 

Basin that is located in the northeastern part of Heilongjiang Province (Figure 1-4). The Sanjiang 

Plain was originally dominated by marshes and was converted to agricultural production land 

within the last six decades (Yao et al., 2012). It is rich in natural resources and has become one of 

the biggest grain production bases in China. The plain results from the alluviation of the Heilong, 

Songhua and Wusuli Rivers, which earned the plain its name of “Sanjiang” meaning “three rivers” 

in Chinese. The Sanjiang Plain has a generally flat topography that declines from the southwest to 

northeast with a slope gradient of approximately 1:5000 – 1:10000 (Cao, Y et al., 2012). The most 

abundant soils are wet black clays that offer high concentrations of organic matter and nutrients 

and are favorable for agricultural production (Yao et al., 2012; Zhou & Tong, 2005). 
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The climate in the Sanjiang Plain is a temperate continental monsoon type with very cold 

winters and warm summers that has an annual mean temperature of 1.9 °C and a monthly mean 

temperature in July and January of 22 and -21 °C, respectively (Sun & Song, 2008). The annual 

mean precipitation is approximately 500-600 mm, which is concentrated in June to August and 

accounts for more than 60% of the annual precipitation. The characteristic of a hot rainy season is 

suitable for high quality rice and high-oil soybean growth. Over the last two decades, large scale 

rice farming has become the dominant land use in the region and is increasingly important in 

supplying the food market with commercial rice of high quality. 

 

Figure 1-4: Rice experiment location in the Sanjiang Plain, Heilongjiang Province, China. 

1.3.2 Study area for barley experiments 

The study site for the barley experiments is located in the Institute of Crop Science and 

Resource Conservation – Horticulture Science (Institut für Nutzpflanzenwissenschaften und 

Ressourcenschutz (INRES) - Gartenbauwissenschaft), University of Bonn, Germany. The institute 

(latitude 50.72999 º, longitude 7.0754 º, 70 m.a.s.l.,) is located in the city of Bonn and the soil is 

sandy loam with a Nmin value of 20 kg·N·ha−1 (BGR, 1995; Yu et al., 2012). Bonn is located in the 

southwest region of the federal state of North Rhine-Westphalia (NRW) (Figure 1-5) and it has 
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an area of 141.2 square kilometers that extends from both sides of the Rhine River. The left-bank 

districts constitute approximately three-quarters of the total area (Figure 1-5). 

 

Figure 1-5: Barley experiment location in Bonn, North Rhine-Westphalia (NRW), Germany.  

Bonn is one of the warmest regions in Germany because of its Atlantic-maritime climate. It 

has an annual average temperature of 10.3 °C and a monthly average temperature in July and 

January of 18.7 and 2.0 °C, respectively. The average annual precipitation is 669 mm (source: 

www.wetteronline.de). Figure 1-6 presents an overview (photographs were taken by a Lumix 

DMC-GF3 (Panasonic Corporation) camera mounted on an unmanned aerial vehicle (UAV), and 

the panorama for each date was mosaicked from 18 images) of the experimental fields on two 

different dates in 2012. 
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Figure 1-6: Panoramas of the experimental plots located at the INRES-Horticulture, University 
of Bonn (courtesy of Dr. Andreas Bolten and taken with a Lumix DMC-GF3 camera mounted on 
an UAV platform). 
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 Scientific questions and research objectives 1.4

Remote sensing has long been studied in agriculture for crop growth monitoring; however, 

challenges remain regarding PA because of the rising concern for food security (Chen et al., 2011; 

Gebbers & Adamchuk, 2010). One of the challenges is the “up-scaling” or transfer of quantitative 

relationships derived from small scales to large scales (Zarco-Tejada et al., 2001), from leaf to 

canopy, field to regional levels. Canopy spectra are not only determined by leaf/plant biochemical 

and biophysical traits but are also affected by canopy closure, soil/water backgrounds and other 

factors, as well as their interactions (van der Meer & de Jong, 2001). Leaf spectra cannot be 

directly applied to the canopy level because they have quantitative and qualitative differences 

(Hunt et al., 2013; Knipling, 1970). Therefore, the canopy and leaf spectral properties might be 

very different even when their constituent leaves have similar spectral properties (Blackburn, 

1998a). Many factors have been confirmed as affecting the performances of RS methods when 

up-scaling leaf level relationships to the canopy level (Zarco-Tejada et al., 2001; 2005). However, 

the specific and complete effects that these factors will have either alone or in combination, on 

the performance are not well understood. The dynamic response of the canopy spectra to crop 

growth status and the changes in response with crop growth, senescence and phenological 

features must be qualitatively and quantitatively determined.  

Chlorophyll and N are the two biochemical parameters that are of primary interest to both 

RS and agronomy (Li et al., 2008; Pinter et al., 2003); however, the estimation of chlorophyll and N 

from the canopy level is affected by canopy structures and soil background. Therefore, one of the 

biggest challenges facing remote sensing is how to decouple spectral contributions of canopy 

biochemical traits (e.g., chlorophyll and N) from the canopy biophysical traits (e.g., structures, leaf 

angle and area) (Jacquemoud et al., 2009), although a complete decoupling of the contribution of 

biochemical and structural properties in canopy spectra is difficult and might be impossible in 

nature. Because hyperspectral canopy sensing of chlorophyll and N are the main goals of this 

study, this dissertation will attempt to improve the estimation of chlorophyll and nitrogen by 

weakening the confounding effects of structural properties (mainly biomass variations). 

The feasibility of the remote sensing of N is based on a consensus that N is related to 

chlorophyll (Perry et al., 2012; Schlemmer et al., 2005). However, most of the investigations are 

straightforward and skip the step that links chlorophyll to N when modeling N from spectral 

measures, which can be explained by the involvement of chlorophyll with the leaf/plant mass and 

N in a complex organism (Figure 1-7), although this retains uncertainties when driving a model to 

indirectly estimate N from the spectrally modeled chlorophyll. A sufficient amount of N ensures 

the effective biosynthesis of chlorophyll and thus the photosynthesis efficiency (Taub & Lerdau, 
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2000), which can maintain rapid plant growth and carbon assimilation for a high biomass 

production. However, the rapid increase of plant mass can lead to the dilution of chlorophyll and 

N per plant mass (Figure 1-7). Therefore, the use of spectrally modeled chlorophyll to estimate 

the N status might be less effective than modeling N directly from the response spectra.  

By assuming that the N status can be predicted directly from the leaf and plant optical traits, a 

large number of studies have demonstrated the strong link between spectral features and leaf and 

plant N status at both the leaf and canopy levels (Li et al., 2008; Schlemmer et al., 2013; Smith & 

Martin, 2001). These studies show the large potential of remote sensing for crop N management 

and have promoted the development of crop sensors for field N management. Some researchers 

have even initiated the application of satellite remote sensing to understand the N cycling of 

ecosystems (Ollinger et al., 2008), which suggests the potential to “watch” the N cycle of earth 

from the air and space (Figure 1-7). 

Therefore, we must improve our understanding of the links between canopy optical traits 

and crop N status and determine the approach that is more applicable for the remote sensing of 

N status. For this purpose, a synchronous and dynamic comparison must be performed between 

the correlation of canopy spectra and crop N and the correlation of canopy spectra and 

chlorophyll. Dynamic monitoring of the relationships is required because the leaf reflectance 

cannot be related to leaf chlorophyll concentrations when the heterogeneity of the chlorophyll 

distribution is unknown (Barton, 2001). Similarly, a relatively low N concentration might not 

result in a chlorophyll loss, and the green leaf N content represented only about 30% of shoot N 

in a wheat crop at the beginning of the grain-filling period (Gastal & Lemaire, 2002). Therefore, the 

remote estimation of N variability cannot be based solely on its relationship with chlorophyll.  
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Figure 1-7: A schematic diagram shows the indirect remote estimation of nitrogen (N) using 

spectrally modeled chlorophyll (Chl) and the direct remote estimation of N using canopy spectra. 

Precision crop protection is an important subject of PA and becomes increasingly difficult 

with the enlargement of fields and intensive mechanization (Oerke et al., 2010; Stafford, 2000). 

Another goal of this study is to detect crop diseases with hyperspectral data. Common sense 

dictates that diseases will cause chlorophyll functional disturbances; therefore, crop diseases are 

more likely to affect the canopy spectral signals at chlorophyll absorption bands. However, some 

studies have found that spectral features in the SWIR range might be more useful for detecting 

leaf diseases of apple trees (Delalieux et al., 2009). Accordingly, diseases may have specific effects 

on the spectral traits of water absorption bands compared to the chlorophyll absorption bands. 

Additionally, the question of whether disease infections will have an earlier effect on crop 

biomass, chlorophyll and N status than canopy spectra characteristics must be studied. Answers 

to these questions allow for the selection of disease-sensitive spectral bands and vegetation 

indices for crop disease early warning. 
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This thesis is based on five years of canopy-level hyperspectral data collected in field 

experiments and attempts to extend to answer the above questions by extending our 

understanding of the remote sensing of agricultural crops through the integration of empirical and 

physical methods. Briefly, the main objectives of this thesis are to improve the hyperspectral 

canopy mapping of crop biochemical parameter (mainly chlorophyll and N) and detect crop 

diseases. More specifically, it aims to: 

 Develop and validate hyperspectral remote sensing methods for the estimation of crop 

chlorophyll and N status; 

 Investigate the influence of growth stages and phenological development on the 

relationships between canopy spectra features and crop biological traits; 

 Develop vegetation indices that can help decouple the contributions of crop biochemical 

and structural properties to canopy spectra and improve the canopy sensing of 

biochemical parameters; and 

 Identify the spectral features and vegetation indices that are sensitive to diseases and 

develop methods for disease detection. 

 Thesis outline 1.5

This thesis comprises of seven chapters that begin with a general introduction in Chapter 1*, 

followed by four main chapters (Chapters 2-5) that act as standalone articles that have been 

published or submitted for publication in peer-reviewed journals. These articles address the 

specific objectives related to this thesis and are based on rice (Chapters 2 and 3) and barley 

(Chapters 4 and 5) experiments. Chapter 6 presents some additional data to evaluate and validate 

the results of the early phase of the whole work. Finally, Chapter 7 provides a general discussion 

on the results, summarizes the main findings, and defines the limitations of this study as well as 

the prospects for future study. Chapters 2-7 are briefly summarized in the following sections: 

Chapter 2 explores the influence of growth stages on the relationships between the 

vegetation indices and canopy N status. Because canopy closure (usually at the heading stage) 

results in a reverse trend of correlations, the narrow 2-band SRs, NDVIs as well the multi-band 

models were optimized before and after canopy closure. This approach proved to be able to 

improve the estimation of canopy N status of rice. 

Chapter 3 attempts to design a conceptual model/index called the Ratio of Reflectance 

Difference Index that can reduce the influence of growth stage, canopy structural variations and 

soil backgrounds to improve the estimation of canopy biochemical parameters (mainly 

                                                 
* Bibliography of Chapter 1 is included in the General references (page 181).  
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chlorophyll). This conceptual index showed improved robustness in relating to the chlorophyll 

content and it was compared with the partial least squares (PLS) model for estimation of the 

chlorophyll variation in farmer fields, with the results showing that they have comparable 

performances.  

Chapter 4 focuses on the chlorophyll estimation and detection of barley leaf diseases using 

hyperspectral and fluorescence indices. Canopy hyperspectral data were able to detect disease 

symptoms that precede significant losses of chlorophyll that result from disease. Multivariate 

models such as PLS and support vector machines (SVM) were also compared, with the results 

showing that PLS and SVM improved the estimation of chlorophyll concentration compared to 

hyperspectral and fluorescence indices. 

Chapter 5 combines the empirical and physical methods and includes a large number of the 

vegetation indices and multivariate models used in previous chapters. Using hyperspectral data 

collected in the field and simulated by radiative transfer models (RTMs), the potential of the 

conceptual model/index RRDI was further explored by linking it to the multiple scatter 

correction theory (MSC). This conceptual model produced a comparable performance to the 

multivariate models. 

Chapter 6 presents additional results from the barley crop experiments to validate the 

preliminary conclusions made in the previous chapters and verify our hypothesis that 

hyperspectral vegetation indices based on water absorption bands might be useful for detecting 

barley diseases. The results corroborated previous results observed in rice crops and 

demonstrated the usefulness of water absorption bands for disease detection. 

Chapter 7 provides a general discussion of the objectives and results of this thesis, and 

focuses primarily on (1) the importance of growth stages in remote sensing crop chlorophyll and 

N status, (2) potential of decoupling canopy spectral co-variations that result from leaf/plant 

biochemical and biophysical characteristics, (3) uses of vegetation indices at different growth 

stages with different degrees of canopy closure, and (4) uncertainties in disease detection. Finally, 

the main conclusions and outlook are presented. 
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Abstract 

The influence of morphophysiological variation at different growth stages on the 

performance of vegetation indices for estimating plant N status has been confirmed. However, 

the underlying mechanisms explaining how this variation impacts hyperspectral measures and 

canopy N status are poorly understood. In this study, four field experiments involving different N 

rates were conducted to optimize the selection of sensitive bands and evaluate their performance 

for modeling canopy N status of rice at various growth stages in 2007 and 2008. The results 

indicate that growth stages negatively affect hyperspectral indices in different ways in modeling 

leaf N concentration (LNC), plant N concentration (PNC) and plant N uptake (PNU). Published 

hyperspectral indices showed serious limitations in estimating LNC, PNC and PNU. The newly 

proposed best 2-band indices significantly improved the accuracy for modeling PNU (R2 = 

0.75-0.85) by using the lambda by lambda band-optimized algorithm. However, the newly 

proposed 2-band indices still have limitations in modeling LNC and PNC because the use of only 

2-band indices is not fully adequate to provide the maximum N-related information. The 

optimum multiple narrow band reflectance (OMNBR) models significantly increase the accuracy 

for estimating the LNC (R2 = 0.67-0.71) and PNC (R2 = 0.57-0.78) with six bands. Results suggest 

the combinations of center of red-edge (735 nm) with longer red-edge bands (730-760 nm) are 

very efficient for estimating PNC after heading, whereas the combinations of blue with green 

bands are more efficient for modeling PNC across all stages. The center of red-edge (730-735 

nm) paired with early NIR bands (775-808 nm ) are predominant in estimating PNU before 

heading, whereas the longer red-edge (750 nm) paired with the center of “NIR shoulder” 

(840-850 nm) are dominant in estimating PNU after heading and across all stages. The OMNBR 

models have the advantage of modeling canopy N status for the entire growth period. However, 

the best 2-band indices are much easier to use. Alternatively, it is also possible to use the best 

2-band indices to monitor PNU before heading and PNC after heading. This study systematically 

explains the influences of N dilution effect on hyperspectral band combinations in relating to the 

different N variables and further recommends the best band combinations which may provide an 

insight for developing new hyperspectral vegetation indices. 

Keywords: Hyperspectral index; Nitrogen status; Rice; Heading stage; N dilution effect; 

Stepwise multiple linear regression; Lambda by lambda band-optimized algorithm 
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 Introduction 2.1

Rice production in the Northeast China Plain, a high-latitude northern environment, plays an 

important role in ensuring food security in step with Chinese population growth. However, an 

effective method or tool is absent for in-season nitrogen (N) fertilizer management of the paddy 

rice in the northeast plain of China, and most farmers over apply N fertilizer depending on their 

own experiences (Miao et al., 2011). The traditional soil-based testing methods widely used for 

upland crops are not suitable for N recommendations in paddy rice fields due to the flooding and 

complexity of N cycling in the rice paddy soil during the rice growing period (Dobermann et al., 

2003). Even before flooding, the available soil-N test is not accurate enough to lead to confident 

recommendations for N fertilizer applications (Russell et al., 2006). Particularly in large scale field 

management in the Northeast China Plain, soil and plant based point measurements are difficult 

to meet the need of real-time N fertilizer management (Dobermann et al., 2003; Yang et al., 2003). 

Remotely based canopy reflectance estimation of rice N status may provide an opportunity for 

greater precision of N management and for reducing N loading into underground water on the 

large scale farms of the Northeast China Plain. 

The development of precision agriculture and remote sensing techniques has enabled us to 

estimate crop N status in a field or even on a regional scale. In recent decades, a chlorophyll 

meter has been widely used to estimate crop N status to promote N management of rice (Huang 

et al., 2008; Peng et al., 1995). However, the chlorophyll meter method is time consuming for a 

regional measurement and may lose sensitivity at a high chlorophyll level (Ciganda et al., 2009; 

Steele et al., 2008). As a better alternative, spectral reflectance measurements have been proposed 

to detect crop N stress and to quantify N amounts (Hansen & Schjoerring, 2003; Read et al., 2002; 

Reyniers et al., 2006; Yoder & Pettigrew-Crosby, 1995). Read et al. (2002) found that leaf chlorophyll 

and N concentration are more closely associated with canopy-level reflectance (obtained from full 

canopies) than leaf-level reflectance (obtained from individual leaves), which differed with each 

other in the spectral band combinations with maximum sensitivity to plant N status. The 

inconsistencies indicate that the distribution of chlorophyll and N within individual leaves may be 

heterogeneous (Barton, 2001; Ciganda et al., 2009). Thus, an important uncertainty remains when 

N or chlorophyll status of individual leaves are used to represent that of a canopy (Ciganda et al., 

2009). Since N status of individual leaves may not adequately represent the nutrient condition of 

whole plants, it is not accurate enough to evaluate canopy N status and guide the N fertilization of 

crops.  

Canopy N status is more important to indicate growth conditions of a crop than leaf N 

status which mainly involves the information of individual leaves. Plant N concentration (PNC) has 
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been commonly used as an effective indicator of crop canopy N status, and different threshold 

values have been established for different crops (Fageria, 2009). Canopy-level reflectance 

measurements have been used for estimating the PNC as reported in recent studies (Lee et al., 

2008; Li et al., 2010; Stroppiana et al., 2009). Stroppiana et al. (2009) proposed an optimal 

normalized difference index that is highly correlated to the PNC of rice (R2 = 0.65), and they also 

evaluated the published indices which only explained 33% of the variance by the best performing 

one. Li et al. (2010) evaluated the performance of 77 published indices and found that only 35% of 

the variance in PNC of winter wheat was explained by the best performing published vegetation 

index across site-years and growth stages, whereas 59% of the variation was explained by their 

newly proposed index. These results reveal that the best performing indices and optimum band 

combinations in deriving canopy N status vary for different crops and growth stages. Plant N 

uptake (PNU) indicates N accumulation of plant per unit area and is an important indicator for 

assessing canopy N status. However, probably due to the difficulty in collecting plant samples of 

rice, most reports on rice mainly focused on the leaf N uptake and limited studies have been 

undertaken to estimate rice PNU (Xue et al., 2004). 

To date, most of the recent studies for estimating N of rice were conducted to determine 

leaf N status (Nguyen & Lee, 2006; Xue et al., 2004; Yi et al., 2007; Zhu et al., 2007; 2008), whereas 

a limited number of studies have been carried out to determine plant N status (Stroppiana et al., 

2009). Furthermore, reported results have been inconsistent. For example, an NDVI (1220, 710 

nm), which was reported by Zhu et al. (2007), was most highly correlated with rice leaf N 

concentration (LNC) of individual leaves (R2 = 0.79) across all growth stages. Only 44% of the 

individual leaf LNC variation was explained across all stages tested by Tian et al. (2011), and this 

NDVI was very poorly related to PNC (R2 = 0.10), before the heading stage, as reported by 

Stroppiana et al. (2009). It was been noted that LNC was closely related to vegetation indices at 

each single stage rather than across all growth stages (Xue et al., 2004). Thus, inference can be 

made that these inconsistencies were due to not only the growth stages but also the limitation of 

band counts used for these indices, because all of the above mentioned indices are 2-band indices 

that often constrain the regression analysis (Thenkabail et al., 2000). However, the underlying 

mechanism to explain the influence of growth stages on remotely estimating canopy N status of 

rice and the difference between LNC- and PNC-determination has not been systematically 

addressed and reported in the literature. Therefore, the objective of the present study is to find 

out how growth stages dynamically influence the performance of hyperspectral indices and the 

combinations of sensitive narrow bands. We also attempt to identify the best 2-band vegetation 

indices and construct multi-band models to derive canopy N concentration and uptake at specific 

growth periods. 
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 Materials and methods 2.2

2.2.1 Experimental sites 

The field experiments were carried out in 2007 and 2008 in the area of Jiansanjiang Branch 

Bureau (JBB, 46°49′42"-48°13′58" N, 132°31′26"-134°22′26" E, the map shown in Figure 2-1), 

Heilongjiang Bureau of Agricultural Reclamation (HBAR), Heilongjiang province, northeast China. 

The climate in the Sanjiang Plain is cool-temperate sub-humid continental monsoon, with very 

cold winters and warm summers. The annual average temperature, precipitation, and solar 

amounts are 1-2 °C, 500-600 mm and 2300-2600 hours, respectively. The climatic characteristics 

are suitable for many field crops (e.g. rice, soybeans, wheat and corn) which have only one 

harvest per year. As the most widely planted crop in this area, rice is irrigated using groundwater 

during the entire growing season. The soil characteristics of different experimental sites (Qixing 

and Keyansuo experiment stations of JBB, Figure 2-1) across two growing seasons/years are 

summarized in Table 2-1. 

 

Figure 2-1: Location of the experimental sites Qixing and Keyansuo, Jiansanjiang Branch 
Bureau, Heilongjiang Bureau of Agricultural Reclamation, Heilongjiang province, China. 
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Table 2-1: Soil chemical properties (0-30 cm soil layer) of two experimental stations, 
2007-2008. 

Exp. Site Year Organic matter Available N Olsen-P NH4OAC-K 
   g kg-1 mg kg-1 mg kg-1 mg kg-1 
1 Qixing 2007 35.6 97 25 147 
2 Keyansuo 2007 31.5 130 32 89 
3 Qixing 2008 32.9 175 37 121 
4 Keyansuo 2008 35.1 157 30 133 

2.2.2 Experimental design 

2.2.2.1 Experiments 1 and 2 

Experiments 1 and 2 were performed from March to October in 2007 at Qixing and 

Keyansuo experiment stations respectively with the same experimental design. The rice cultivar 

Kongyu131, the major cultivar grown in the area of JBB, was used in this study. Three-leaf-old rice 

seedlings were transplanted in mid May with the transplanting density of 0.12 by 0.30 m with 4-5 

plants per hill. Seven N rates (0, 60, 75, 90, 105, 120, and 150 kg N ha−1) of urea were applied, 

and then the total N rate was distributed in three time splits: 40% was applied before 

transplanting, 30% in the period of seedling establishment, and 30% at the booting stage. In 

addition, 60 kg ha−1 P2O5 as triple super-phosphate and 75 kg ha−1 K2O as potassium sulfate were 

applied mixed with the first-split N application for all the treatment plots. The plots of 

experiments 1 and 2 were all arranged in a randomized complete block design with four 

replications. The individual plot size was 5 by 8 m. Field management, such as irrigation, weeding 

and pesticide applications, followed the local standard practices of JBB rice production. 

2.2.2.2 Experiments 3 and 4 

Experiments 3 and 4 were conducted at Qixing and Keyansuo experiment stations in 2008 

but in different locations than experiments 1 and 2. With the same transplanting strategy, same 

rice cultivar (Kongyu131) and the analogous experimental design the experiments were carried 

out from March to October of 2008. Five N rates (0, 35, 70, 105 and 140 kg N ha−1) of urea were 

applied, and the total N rate was distributed to three time splits: 45% was applied before 

transplanting, 20% at the period of seedling establishment and 35% at the booting stage. For all 

the plots, 60 kg ha−1 P2O5 of triple super-phosphate and 45 kg ha−1 K2O of potassium sulfate were 

applied mixed with the first-split N application. An additional 30 kg K2O ha-1 was applied at the 

booting stage. The experiment plots were all arranged in a randomized complete block design 

with four replications. Each plot size was 10 by 10 m. Other management practices were carried 

out according to the local standard practices of JBB rice production. 
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2.2.3 Hyperspectral reflectance measurement 

From a distance of 30 cm above the rice canopy, hyperspectral reflectance was measured 

between 10:00 and 14:00 local time under clear and cloudless conditions, with the ASD 

QualitySpec® Pro spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) for 

experiments 1 and 2 in 2007 and the ASD FieldSpec® 3 spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, CO, USA) for experiments 3 and 4 in 2008, respectively. The ASD 

QualitySpec® Pro spectroradiometer was configured with Visible and NIR spectral range (350 - 

1800 nm) and 1.4 nm sampling interval between 350 and 1050 nm, 2 nm sampling interval 

between 1000 and 1800 nm. The QualitySpec® Pro was operated with 3 nm and 10 nm spectral 

resolution at 700 nm and 1400 nm respectively. Slightly different, the ASD FieldSpec® 3 

spectroradiometer was configured with the spectral range from 350nm to 2500 nm, 1.4 nm 

sampling interval between 350 and 1050, 2 nm sampling interval between 1000 and 2500 nm, and 

with 3 nm spectral resolution at 700 nm, 10 nm spectral resolution at 1400 and 2100 nm. 

Hyperspectral data were subdivided into 1 nm band width by using a self-driven interpolation 

method of the ASD spectroradiometers and then saved to the connecting PC. The field of view 

of the both ASD spectroradiometers used in this study is 25 degrees. The diameter for each 

measurement was approximately 14 cm, which covers an area of canopy for each spectrum of 

approximately 150 cm2 from a measuring distance of 30 cm. Prior to the rice canopy reflectance 

measurement, calibration measurements included a dark current and reflectance of a white 

spectralon reference panel. The reflectance measurements were executed consecutively for five 

random locations per plot and then averaged for the mean of the five repetitions. Table 2-2 

shows the acquisition dates of spectral measurements and plant sampling according to the BBCH 

codes (Lancashire et al., 1991). 

Table 2-2: Determination dates of both canopy reflectance and rice sampling. 

Exp. Transplanting Days after transplanting (BBCH code) 

1 May 15 (13)   47 (43) 55 (52) 77 (61)  

2 May 24 (13) 24 (25) 32 (30) 47 (41) 54 (52)   

3 May 21 (13)  37 (32) 47 (41) 63 (54) 74 (61) 88 (75) 

4 May 29 (13)  32 (30) 40 (39) 56 (52) 67 (59) 79 (73) 

Principal growth stage Tillering Stem elongation Booting Heading Flowering Filling 

2.2.4 Plant sampling and measurements 

Immediately after canopy reflectance measurements, above ground biomass of rice was 

sampled at random locations where plants were scanned with an approximate area of 0.18 m2 (5 

hills×0.12 m×0.30 m/ hill) per plot. The rice plant samples of experiments 1 and 2 were separated 
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into leaves and stems. For experiments 3 and 4, samples were left as whole plants because the use 

of plant N concentration is more precise for the N fertilizer recommendation (Flowers et al., 

2003). All of the samples were cleaned, oven-dried for 30 minutes at 105 °C and later at 70°C to a 

constant weight, then weighted, ground, and their Kjeldahl-N determined. Subsequently, the plant 

N uptake (kg ha-1) was determined by multiplying plant N concentration and dry biomass weight.  

2.2.5 Vegetation indices and data analysis 

2.2.5.1 Published hyperspectral vegetation indices 

Recently, many vegetation indices (VIs) have been developed to evaluate the N status of 

crops based on leaf and canopy level reflectance. Reviewing recent reports involving different VIs, 

and considering the characteristics of different VIs and rice canopy reflectance in the present study, 

we selected three types of published vegetation indices with the best performance, including the 

ratio vegetation index, the normalized difference vegetation index and the combined vegetation 

index, to estimate the canopy N status of rice as listed in Table 2-3. The band selection for each 

index was deliberately implemented by involving different spectral range for blue, red, green, red 

edge and NIR. 

Table 2-3: Published vegetation indices used in this study. 
Index Equation Reference 

Simple ratio (SR)   
 SR1 R800/R675 Jordan (1969) 

 SR2 R810/R560 Xue et al. (2004) 

 SR3 R750/R710 Zarco-Tejada et al. (2001) 

 SR4 R750/R700 Gitelson & Merzlyak (1996) 
Normalized difference index  
 NDVI (R800-R680)/(R800+R680) Blackburn (1998) 
 GNDVI (R801-R550)/(R801+R550) Daughtry et al. (2000) 

 ND705 (R750-R705)/(R750+R705) Sims & Gamon (2002) 

 mSR705 (R750-R445)/(R705-R445) Sims & Gamon (2002) 
 MTCI (R750-R710)/(R710-R680) Dash & Curran (2004) 
 NDVI[503,483] (R503-R483)/(R503+R483) Stroppiana et al. (2009) 
 NDVI[565,533] (R565-R533)/(R565+R533) Tian et al. (2011) 
 NDVI[1220,710] (R1220-R710)/(R1220+R710) Zhu et al. (2007) 
Combined index   
 OSAVI (1+0.16)(R800-R670)/(R800+R670+0.16) Rondeaux et al. (1996) 
 MCARI [(R700-R670)-0.2*(R700-R550)](R700/R670) Daughtry et al. (2000) 

 MCARI[705,750] [(R750-R705)-0.2*(R750-R550)](R750/R705) Wu et al. (2008) 

 TCARI 3*[(R700-R670)-0.2*(R700-R550)(R700/R670)] Haboudane et al. (2002) 
 TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 

 TCARI/ OSAVI[705,750] TCARI/OSAVI[705, 750] Wu et al. (2008) 
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2.2.5.2 Computing 2-band indices using the lambda by lambda 

band-optimized algorithm 

In order to further check the influences of band combinations and growth stages on the 

performance of vegetation indices in deriving canopy N status, two classes of indices were 

calculated involving all possible 2-band combinations from 400 to 1200 nm: simple ratio index 

(SR= R1/R2) and normalized difference index (NDI= (R1-R2)/(R1+R2)). The computation, “lambda 

by lambda R2 contour” mapping and statistical analyses were done with the MATLAB 7.0 software 

(The MathWorks, Inc., Natick, MA). 

2.2.5.3 Optimum multiple narrow band reflectance (OMNBR) models 

It is known that 2-band indices often constrain the regression analysis and that multiple 

hyperspectral narrow bands can provide additional information (Thenkabail et al., 2000). Thus, the 

OMNBR models (Thenkabail et al., 2000) were identified using a multiple stepwise linear 

regression method called the maximum R2 improvement (MAXR) method in SAS (SAS Institute 

Inc.). The MAXR method tries to find the “best” 1-band model, the “best” 2-band model, and so 

forth, producing the highest R2 in relation to dependent variables (N variables in this study). The 

MAXR procedure begins by finding the 1-band model that produces the highest R2. Then another 

band, the one that yields the greatest increase in R2, is added. Once the 2-band model is obtained, 

each of the bands in the model is compared to each band not in the model. The MAXR process 

continues comparing all possible switches until no switch can increase the R2 and considers the 

switch that produces the highest R2 as the “best” 2-band model. Another band is then added to 

the model, and the comparing-and-switching process is repeated to find the “best” 3-band model, 

and so forth (SAS Institute Inc., 2008). The band count to be used for the “best” n-band model was 

discreetly determined to avoid “over-fitting” and is discussed in the results section. 

 Results 2.3

2.3.1 Variation in LNC, PNC and PNU and biomass 

The LNC in the experimental fields ranged between 1.72% and 3.84% with a CV value of 16.7% 

during tillering to heading stage while it varied from 0.80 to 3.12% with a CV value of 28.4% 

during the heading to filling stage (Table 2-4). Similar to LNC, the variation of PNC after heading 

was greater than that before heading, indicating that canopy N concentration is easy to be 

remotely derived during heading to filling stage. The LNC and PNC decreased with advance of 

growth stages due to the dilution effect as mentioned by Lemaire et al. (2008). The dilution effect 

for PNC was more obvious and yielded higher variation across all stages compared to LNC. 
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Table 2-4: Descriptive statistics of nitrogen status and biomass in different growing stages rice 
under different N levels. 

Growth stages and years n Min Max Mean SD CV (%) 

Leaf N concentration in 2007 (%)       
 Tillering to heading (BBCH 13-60) 153 1.72  3.84  2.76  0.46  16.7  
 Heading to filling (BBCH 51-80) 144 0.80  3.12  2.02  0.57  28.4  
 All pooled data 297 0.80  3.84  2.38  0.68  28.5  
Leaf dry weight in 2007 (t ha-1)       
 Tillering to heading (BBCH 13-60) 153 0.09  1.89  0.79  0.45  56.6  
 Heading to filling (BBCH 51-80) 144 0.57  2.16  1.21  0.29  24.0  
 All pooled data 297 0.09  2.16  0.96  0.44  46.3  
Plant N concentration in 2008 (%)       
 Tillering to heading (BBCH 13-60) 120 1.16  3.35  2.24  0.46  20.4  
 Heading to filling (BBCH 51-80) 120 0.75  2.18  1.43  0.36  25.3  
 All pooled data 240 0.75  3.35  1.85  0.62  33.3  
Plant dry weight in 2008 (t ha-1)       
 Tillering to heading (BBCH 13-60) 120 0.14  9.92  2.90  2.37  81.7  
 Heading to filling (BBCH 51-80) 120 2.85  18.3 9.60  3.72  38.7  
 All pooled data 240 0.14  18.3 6.32  4.97  78.6  
Plant N uptake in 2007 and 2008 (kg N ha-1)      
 Tillering to heading (BBCH 13-60) 273 3.1 205.6  45.4  33.9  74.7 
 Heading to filling (BBCH 51-80) 264 18.6  303.0  96.2  49.7  51.6  
 All pooled data 537 3.1 303.0  69.2  51.3  74.1  
Plant dry weight in 2007 and 2008 (t ha-1)       
 Tillering to heading (BBCH 13-60) 273 0.09  9.92  1.72  1.91  111.3  
 Heading to filling (BBCH 51-80) 264 0.57  18.30  4.98  4.87  97.8  
 All pooled data 537 0.09  18.30  3.33  4.25  127.8  

SD, standard deviation;  
CV, coefficient of variation. 

Across growth stages, sites, and years, PNU in the experimental fields ranged from 3.1 to 

205.6 kg N ha-1 with a mean of 45.4 kg N ha-1 during tillering to heading stage. During heading to 

filling, PNU varied from 18.6 to 303.0 kg N ha-1 with a mean value of 96.2 kg N ha-1 and CV of 

51.6% (Table 2-4). The plant dry weight ranged from 0.09 to 9.92 t ha-1 with a CV of 111.3% 

during tillering to heading, and 0.57 to 18.30 t ha-1 with a CV of 97.8% during heading to filling. 

Both PNU and plant dry weight yielded larger variation before heading compared to that after 

heading. This is also in agreement with the changing patterns of the tiller count (Figure 2-2). 

Overall, PNU and plant dry weight yielded very high variation across all growth stages, sites and 

years with CVs of 74.1% and 127.8 % respectively. 
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Figure 2-2: Seasonal changes in the number of tillers of rice at seven nitrogen levels for 
Experiment 1 in 2007. N0, N60, N75, N90, N105, N120 and N150 represent the seven nitrogen 
rates of 0, 60, 75, 90, 105, 120 and 150 kg N ha-1 respectively. 

2.3.2 Relationships between published VIs and rice N status 

In order to understand how growth stages influence hyperspectral vegetation indices in 

relation to canopy N status, we reviewed many published hyperspectral indices. We plotted the 

indices versus the three N variables in scatter plots to examine the relationships within all of the 

data sets. The three best performing and representative vegetation indices that correlated for the 

three N variables are shown in Figure 2-3. It is shown that LNC and PNC were better related to 

published indices SR1 and MTCI, respectively, after heading. In contrast, PNU was better 

correlated with the published index MTCI before heading, whereas PNU was poorly correlated 

after heading (Figure 2-3). In comparison, the published indices yielded lower R2 across all stages. 

Table 2-5 shows the correlation analyses for all the published indices relating to the three N 

variables in the three stage-divisions (before and after heading and across all stages, totally nine 

cases). The best published indices explained 50% and 75% of the variation in LNC and PNC after 

the heading stage, respectively, whereas only 35% and 30% of the variation was explained before 

heading. In contrast, 84% of the variation in PNU before heading and 27% of the variation after 

heading could be explained by the best published indices. Across all stages, R2 generally decreased 

for all published indices relating to LNC, PNC and PNU (Table 2-5). Results also showed that the 

R2 for the published indices relating to PNU were generally higher than those were related to 

LNC and PNC. 
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Overall, all the published spectral indices failed in explaining the variation in LNC in all three 

stage-divisions (R2 ≤ 0.50) and were very poorly correlated to PNC before heading (R2 ≤ 0.30). 

The spectral indices also had poor relationships with PNU after heading (R2 ≤ 0.27) and across all 

stages (R2 ≤ 0.53). Spectral indices provided good accuracy only in two cases that correlated 

closely with PNC after heading (R2 ≥ 0.70) and PNU before heading (R2 ≥ 0.8). 

2.3.3 Identifying new 2-band vegetation indices using the lambda by lambda 

band-optimized algorithm 

Since published VIs correlated well with LNC and PNC after heading, and were better 

associated with PNU before heading, it was decided to test the effects of growth stages on the 

performance of vegetation indices and optimum band combinations related to canopy N. We 

examined all the possible 2-band combinations from 400 to 1200 nm in the SR and NDI formulae 

and correlated them with LNC, PNC and PNU in the three stage-divisions. It is obvious that 

either linear or nonlinear relationships exist between VIs and the N status (Figure 2-3). Thus, both 

linear and nonlinear models were implemented for the lambda by lambda band-optimized 

algorithm. The lambda by lambda R2 contour plots for nonlinear models are demonstrated in 

Figure 2-4 and Figure 2-5 by the total nine cases. The lambda by lambda R2 contour plots for linear 

models are not presented because they showed almost the same patterns as the nonlinear 

models. Figure 2-4 and Figure 2-5 show that 2-band combinations for SR and NDI type indices 

both varied in three stage-divisions and for three N variables.  

Similar to published vegetation indices, the best 2-band SRs and NDIs derived from lambda 

by lambda R2 contour plots produced lower R2 related to LNC. R2 for SRs and NDIs relating to 

PNC and LNC after heading was higher than before heading (Figure 2-4 and Figure 2-5). 
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Figure 2-4: Lambda by lambda R2 Contour plots showing the coefficient of determination (R2) 
for the exponential relationships between canopy N status and narrow band NDI calculated from 
all possible 2-band combinations in the range of 400-1200 nm for nine cases. The letters of a, b, c, 
d, e, f, g, h and i stand for each different case of: (a) Leaf N concentration before heading in 2007, 
(b) Leaf N concentration after heading in 2007, (c) All data for leaf N concentration in 2007, (d) 
Plant N concentration before heading in 2008, (e) Plant N concentration after heading in 2008, (f) 
All data for plant N concentration in 2008, (g) Plant N uptake before heading in 2007 and 2008, (h) 
Plant N uptake after heading in 2007 and 2008, (i) All data for plant N uptake in 2007 and 2008, 
respectively. 
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Figure 2-5: Lambda by lambda R2 Contour plots showing the coefficient of determination (R2) 
for the exponential relationships between canopy N status and narrow band SR calculated from 
all possible 2-band combinations in the range of 400-1200 nm for nine cases. The letters of a, b, c, 
d, e, f, g, h and i stand for each different case of: (a) Leaf N concentration before heading in 2007, 
(b) Leaf N concentration after heading in 2007, (c) All data for leaf N concentration in 2007, (d) 
Plant N concentration before heading in 2008, (e) Plant N concentration after heading in 2008, (f) 
All data for plant N concentration in 2008, (g) Plant N uptake before heading in 2007 and 2008, (h) 
Plant N uptake after heading in 2007 and 2008, (i) All data for plant N uptake in 2007 and 2008, 
respectively. 
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In agreement with the findings of Xue et al. (2004), growth stages influenced the relationships 

between vegetation indices and leaf N concentration before heading. In comparison, the best SRs 

and NDIs relating to PNU were concentrated in: (i) the red-edge bands (700-760 nm) paired with 

the red-edge to NIR bands (700-1100 nm) and, (ii) green bands (500-590 nm) paired with 

red-edge to NIR bands (700-1100 nm) (Figures 2-4g, h, i and 2-5g, h, i). These two “hot zones” 

were also apparent for PNC after heading. However, the green bands were shifted to the bands 

centered on 600 nm (570-630 nm, Figures 2-4e and 2-5e). In addition, blue bands (450-495 nm) 

paired with shorter green bands (500 nm), longer green bands (580-600 nm) or red-edge bands 

(700-720 nm) (Figures 2-5e, f and 2-6e, f) also yielded highest R2 for PNC. The highest R2 for LNC 

were concentrated in the red-edge bands (700-760 nm) paired with the red-edge to NIR bands 

(700-1100 nm), followed by blue to green bands (450-520 nm) paired with red-edge to NIR bands 

(740-1000 nm) (Figures 2-4b and 2-5b).  

Table 2-6 summarizes the best performing SRs and NDIs obtained from the lambda by 

lambda R2 contour plots for both linear and nonlinear models. SRs and NDIs generally constitute 

the same band combinations and did not result in a significant difference in each individual case 

(Table 2-6). However, nonlinear exponential models yielded a significant increase in R2 than linear 

models for PNU after heading and across all stages. The newly proposed 2-band indices SR 

(758,854, also the NDI with same bands) and SR (550,715) yielded a significant increase in R2 by 

48% and 23% respectively after heading and across all stages in modeling PNU (Table 2-6) 

compared with published indices. It is also worth noting that SR (730, 808) even performed 

better than the 3-band index MTCI, which is the best performing published index that we 

reviewed in this study. Figure 2-6 illustrates the above three newly proposed indices that had the 

best performance in modeling PNU respectively in the three stage-divisions. The SR (730, 808) 

was linearly related to PNU before heading, whereas SR (758, 854) and SR (550, 715) were 

exponentially related to PNU respectively after heading and across all stages.
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2.3.4 Identifying the OMNBR models using multiple linear regression 

analysis 

Both the optimum 2-band indices and published indices failed to explain a large proportion 

of the variation in LNC in all three stage-divisions (R2 ≤ 0.52, Tables 2-5 and 2-6) and PNC before 

heading (R2 ≤ 0.39). Therefore, a stepwise multi-variable selection technique was implemented to 

find multi-band combinations relating to canopy N status. The OMNBR indices were identified by 

selecting the best 1-band, 2-band, …, n-band models with the multiple linear regression analysis 

implemented with MAXR in SAS (SAS Institute Inc., 2008). Results show that R2 increases with the 

increase of the band count for the OMNBR models (Figure 2-7). For LNC the R2 increased 

significantly until the sixth band was selected. Beyond six bands, the R2 increase with the addition 

of each band was small (Figure 2-7a). For PNC after heading and across all stages, the R2 

increased significantly until the fourth band was used for the model. Beyond four bands, no 

significant improvement in R2 was observed, except in the case across all stages where the 8-band 

model yielded a jump in R2 (Figure 2-7b). For PNC before heading the R2 increased significantly 

until nine bands, by which the 9-band model explained 67% of the variation (Figure 2-8d). The 

OMNBR models explained more variation in LNC and PNC with fewer band counts after heading 

than before heading or across all stages (Figure 2-7a, b). In contrast, the OMNBR models 

explained more variation in PNU with fewer band counts before heading and across all stages 

than after heading (Figure 2-7c). For PNU after heading the R2 increased significantly until five 

bands were used for the OMNBR model. In comparison, the best 2-band model explained 80% of 

the variation in PNU before heading (Figure 2-7c). Overall, band counts of 4 to 6 are preferable 

for constructing OMNBR models with an ideal suppression effect on “over-fitting”, except in the 

case for PNC before heading where a 9-band model is more acceptable (Figure 2-7b). For 

demonstration, the best 1- to 6-band models and their corresponding bands are shown in Table 

2-7.



40
 

R
em

ot
el

y 
de

te
ct

in
g 

ca
no

py
 n

itr
og

en
 c

on
ce

nt
ra

tio
n 

an
d 

up
ta

ke
 o

f p
ad

dy
 r

ic
e 

in
 t

he
 N

or
th

ea
st

 C
hi

na
 P

la
in

 

C
H

A
P

T
E

R
 2

 

Fi
gu

re
 2

-7
: 

Pl
ot

s 
of

 t
he

 b
an

d 
co

un
t 

fo
r 

th
e 

be
st

 n
-b

an
d 

(n
=

 1
-1

0)
 m

od
el

s 
ve

rs
us

 R
2  

va
lu

es
 f

or
 e

ve
ry

 N
 v

ar
ia

bl
es

, (
a)

 L
ea

f 
N

 c
on

ce
nt

ra
tio

n,
 (

b)
 P

la
nt

 N
 

co
nc

en
tr

at
io

n 
an

d 
(c

) 
Pl

an
t 

N
 u

pt
ak

e.
 

N
um

be
r 

of
 b

an
ds

0
2

4
6

8
10

12

R
2

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

B
e

fo
re

 h
e

a
d

in
g

A
ft

e
r 

h
e

a
d

in
g

A
ll 

d
a

ta

N
u

m
b

er
 o

f 
ba

n
ds

0
2

4
6

8
10

12

R
2

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

B
e

fo
re

 h
e

a
d

in
g

A
ft

e
r 

h
e

a
d

in
g

A
ll 

d
a

ta

N
um

be
r 

of
 b

an
ds

0
2

4
6

8
1

0
1

2

R
2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

B
ef

or
e 

he
ad

in
g

A
fte

r 
he

ad
in

g
A

ll 
da

ta

a
b

c



Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain 

CHAPTER 2 
41 

 

 

 

Figure 2-8: The best 6-band OMNBR models for LNC before heading (a), after heading (b) and 
across all stages (c) and the best 9-band OMNBR model for PNC before heading (d). Red and 
blue dash lines show the 95% confidence intervals and mean values, respectively. Letter Y 
denotes the dependent variable (LNC or PNC) in every multiple linear regression model. The 
units for LNC and PNC are percent (%). 
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Table 2-7: Optimum multiple narrow band reflectance (OMNBR) models. 

Model 
Leaf N Concentration (LNC) 

 Plant N Concentration 
(PNC) 

 
Plant N Uptake (PNU) 

Before 
Heading 

After 
Heading 

All  
Stages 

 Before 
Heading 

After 
Heading 

All  
Stages 

 Before 
Heading 

After 
Heading 

All  
Stages 

Best 1-Band Model         

R2 0.31 0.28 0.26  0.27 0.50 0.43  0.45 0.19 0.37 

Band R1008 R685 R414  R817 R703 R727  R690 R538 R403 

Best 2-Band Model         

R2 0.39 0.54 0.46  0.41 0.71 0.67  0.81 0.48 0.75 

Band R939 R419 R426  R1108 R735 R487  R731 R580 R758 

 
R967 R666 R601  R1197 R751 R619  R775 R586 R847 

Best 3-Band Model         

R2 0.43 0.56 0.51  0.42 0.76 0.68  0.82 0.67 0.78 

Band R420 R403 R426  R577 R536 R485  R731 R567 R406 

 R937 R419 R602  R1108 R735 R487  R794 R582 R757 

 R967 R669 R701  R1182 R737 R620  R1123 R952 R847 

Best 4-Band Model          

R2 0.53 0.60 0.61  0.49 0.77 0.72  0.83 0.72 0.80 

Band R483 R403 R591  R440 R400 R470  R731 R567 R406 

 
R602 R418 R632  R444 R732 R580  R807 R582 R446 

 
R937 R663 R671  R1108 R735 R1140  R1123 R680 R752 

 
R1033 R686 R706  R1167 R738 R1150  R1154 R901 R847 

Best 5-Band Model         

R2 0.65 0.63 0.64  0.52 0.78 0.74  0.84 0.75 0.82 

Band R627 R403 R593  R431 R400 R487  R732 R605 R406 

 R671 R418 R601  R440 R405 R576  R806 R616 R446 

 R717 R663 R632  R444 R732 R1121  R1010 R648 R756 

 R1095 R686 R672  R1107 R735 R1139  R1109 R745 R845 

 R1195 R942 R706  R1179 R738 R1150  R1123 R838 R921 

Best 6-Band Model         

R2 0.67 0.71 0.67  0.57 0.78 0.75  0.84 0.76 0.82 

Band R601 R403 R592  R440 R400 R486  R680 R605 R406 

 
R627 R440 R600  R444 R405 R487  R738 R616 R439 

 
R672 R656 R627  R672 R407 R576  R807 R648 R756 

 
R717 R1020 R672  R680 R732 R1121  R1010 R750 R845 

 
R1095 R1038 R720  R1116 R735 R1139  R1109 R834 R918 

 
R1195 R1125 R1054  R1167 R738 R1150  R1139 R903 R939 

Percent increase over best SR and NDI         

 29 19 23  18 3 7  -1 1 4 

The best n-band (n=1-10) OMNBR models were obtained using the MAXR algorithm in SAS software (SAS 
Institute Inc.). The best 1-band, …, 6-band models and their corresponding reflectance (R) bands are 
presented. For models with same band count, bold values show the highest R2 among three stage-divisions. 
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For LNC and PNC before heading, the first best band determined by the MAXR method 

were NIR bands at 1008 nm and 817 nm respectively, whereas after heading it selected a red 

(685 nm) and red-edge (703 nm) band (Table 2-7), indicating that growth stages influence the 

selection of sensitive bands. With addition of one red band (671 nm), the 5-band model increased 

the R2 by 0.12 in modeling LNC before heading compared to the 4-band model, and the 4-band 

model for all stages increased the R2 by 0.10 compared to the 3-band model. The adjacent red 

bands (660-690 nm) were always used in the OMNBR models for modeling LNC after heading 

(Table 2-7). 

The violet bands (430-450 nm) were most frequently used for modeling PNC before heading, 

whereas the red-edge bands (700-740 nm) were predominant after heading. In comparison, the 

blue (470-480 nm) and green bands (570-580 nm) were always used for modeling PNC across all 

stages in the best 4- to 6-band models. 

The center of red-edge (731 nm) and the early NIR (775-810 nm) were dominant in 

modeling PNU before heading, whereas the longer red-edge (750 nm) and the center of NIR 

(840-850 nm) were predominant for all stages. In comparison, green bands were more frequently 

used in modeling PNU after heading.  

The best 6-band OMNBR models significantly improved the R2 for modeling LNC before (R2 

= 0.67) and after heading (R2 = 0.71) and across all stages (R2 = 0.67) compared to 2-band SRs 

and NDIs and published indices. The 9-band model explained 67% the variation in PNC before 

heading (Figure 2-8, Table 2-7). They significantly increased the R2 respectively by 29%, 19%, 23% 

and 28% respectively (Tables 2-5, 2-6 and 2-7). 

 Discussion 2.4

Growth stages significantly influence the performance of hyperspectral indices for estimating 

canopy N status of rice. As illustrated in Figure 2-3, two clusters of points were observed before 

and after heading when LNC and PNC were plotted versus investigated indices. The LNC and 

PNC were linearly related to spectral indices after the heading stage, when more variation in 

LNC and PNC could be explained by spectral indices compared to before the heading stage 

(Table 2-5). During the early stages in rice fields, canopy reflectance is often confused by soil 

(Haboudane et al., 2002; Huete, 1988) and water (Shibayama et al., 1993), which commonly results 

in poor association with canopy chlorophyll or N concentration. It was noted that the rate of the 

above-ground biomass production exceeds the rate of N uptake by plants before heading when 

the biomass dominates canopy reflectance (Mistele & Schmidhalter, 2008). In contrast, the 

increase in biomass becomes slower and the “dilution effect” ends after heading when plant N 
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dominates canopy reflectance. Thus, PNC is relatively easily evaluated using spectral indices 

following the heading stage. Consistent with previous results, Li et al. (2010) reported that PNC 

of winter wheat and spectral indices are more closely related at later growth stages (R2 = 57%) 

than at early stages (R2 = 43%). Results show a great potential for monitoring N concentration at 

later stages to improve the grain quality of rice, similar to Ryu et al. (2011) who reported on 

integrating remote sensing and GIS for estimating protein content of brown rice before harvest. 

However, yield is determined by crop condition at the earlier stages of growth, so it is also 

mandatory to provide farmers with N status before heading in order to supply appropriate rates 

of fertilizers based upon an accurate assessment of plant N requirements and deficiencies 

(Haboudane et al., 2002). The most encouraging result is that PNU was strongly linearly related to 

the hyperspectral indices before the heading stage, when 85% of the variation in PNU was 

explained by the best performing newly proposed SR(760, 808), followed by the published index 

MTCI (R2 = 0.84) (Tables 2-5 and 2-6). Due to the contribution of biomass (Table 2-4) and 

canopy structure (Figure 2-2) before the heading stage and given that PNU is the combination of 

biomass and N concentration, PNU is more closely associated with hyperspectral indices before 

the heading stage. Our results suggest that, to monitor rice canopy N status for the entire growth 

stages, we could use hyperspectral indices to estimate canopy N uptake before heading and 

canopy N concentration after heading. 

Interestingly, more variation in LNC than in PNC was explained before heading stage by the 

published hyperspectral indices (Table 2-5, Figure 2-3). This could have resulted from the 

inconsistency of the temporal rice canopy development pattern (Bridhikitti & Overcamp, 2012), 

and reveals again that growth stages have significant influences on the performance of 

hyperspectral indices for estimating N concentration, and especially larger influences on PNC. 

Before the heading stage, variation in biomass (CV= 81.7%) and canopy structure of whole plants 

is greater than that of individual leaves (CV = 56.6%, Table 2-4), especially the top canopy leaves 

because N can be remobilized from shaded leaves at the bottom of the canopy to leaves at the 

top (Lemaire et al., 2008). Thus, less variation in PNC was explained by the hyperspectral indices 

before heading compared to LNC. The influence of the N dilution effect makes it difficult to 

provide the maximum N-related physiological information with the use of only 2-band spectral 

indices. Therefore, multi-band indices are required to be used to provide the maximum 

information relating to PNC. It is apparent that the multi-band models significantly increased the 

R2 in the comparison with the OMNBR models presented in Table 2-7. In addition, even with the 

same number of bands, 6-band models explained 10% more of the variation in LNC than that in 

PNC before heading, confirming that LNC is more easily captured than PNC by reflectance 

measures before heading. However, after the heading stage, when the canopy is closed, PNC 
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related information can be much more readily captured by the canopy hyperspectral 

characteristics than that before heading. The use of fewer bands may also provide the maximum 

N-related information. This is affirmed by our results that the best 2-band SR (Table 2-6) 

explained 75% of the variation in PNC after heading, only slightly lower than the best 3- to 6-band 

OMNBR models (76%-78% Table 2-7). 

The main advantage of the use of the lambda by lambda band-optimized algorithm is that it 

can systematically search for the most sensitive 2-band combinations as SR- and NDI-like indices 

in relation to crop variables of interest. The band combinations of red-edge bands (700-750 nm) 

paired with “NIR shoulder” (780-940 nm) were mostly closely related to PNU and PNC. 

Therefore, published indices composed of reflectance at the shoulder of NIR (750nm) with 

reflectance at 700-710 nm (red edge) were most closely related to PNC after heading and PNU 

before heading. For instance, SR3 (Zarco-Tejada et al., 2001), SR4 (Gitelson & Merzlyak, 1996), 

MTCI (Dash & Curran, 2004), mSR705 (Sims & Gamon, 2002) and TCARI/OSAVI[705, 750] (Wu et 

al., 2008), which were all composed of reflectance at both 750 nm and 700-710 nm, performed 

better in deriving PNC and PNU than other indices. The results further confirm that the red 

bands (670-680 nm) substituted by red edge (700-750 nm) bands significantly improve the 

predictive power in deriving crop canopy N related parameters (Tarpley et al., 2000; Wu et al., 

2008). The best SRs and NDIs relating to PNC after heading were exclusively composed of two 

red-edge bands, whereas across all stages they were exclusively the blue paired with green bands. 

This result suggests that red-edge bands are sensitive to PNC after heading, whereas the blue and 

green bands are sensitive to PNC across all stages. A recent study conducted before heading by 

Stroppiana et al. (2009) also found that the blue and green bands (483, 503 nm) provided the best 

performance for deriving PNC using the lambda by lambda band-optimized algorithm. Therefore, 

combinations of blue with green bands are very useful for estimating PNC. This is also in 

agreement with the OMNBR models that both the blue bands (470-490 nm) and green bands 

(570-580 nm) were used for the best 4- to 6-band models for modeling PNC across all stages 

(Table 2-7). Moreover, in the OMNBR models for PNC after heading, red-edge bands were used in 

every model with 50-100% proportion of total band count. In particular, the red-edge band at 735 

nm was always used in the best 2- to 6-band models, indicating that the red-edge bands are very 

effective for estimating PNC after heading.  

Although hyperspectral data have been widely used for rice N monitoring (Nguyen et al., 

2006; Stroppiana et al., 2009; Tian et al., 2011; Xue et al., 2004; Zhu et al., 2007), research is still 

limited by our knowledge of how to use hyperspectral data to directly estimate the PNU of rice 

at specific growth periods. Newly selected 2-band SRs and NDIs significantly increase R2 in 

relating to PNU as compared to published vegetation indices. Particularly, the indices composed of 
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red-edge at around 750 nm paired with NIR at around 850 nm (e.g. SR/NDI (758, 854), Table 2-6) 

yielded more than 40% increase in R2 for modeling PNU after heading compared to published 

indices. This band combination was also the best combination for PNU across all stages in the 

linear model (Table 2-6), and was always used in the best 2- to 6-band OMNBR models for PNU 

across all stages and the 5- and 6-band OMNBR models after heading (Table 2-7). This indicates 

that the combinations of longer red-edge (750 nm) paired with the “center” of NIR shoulder (850 

nm) are very efficient for modeling PNU after heading and across all stages. In comparison, the 

combinations of the “center” of red-edge (730 nm) paired with early NIR band (at around 800 nm) 

both yielded the best SR (Table 2-6) and the best 3- to 6-band OMNBR models (Table 2-7) for 

PNU before heading. Thus, the combinations of the center of red-edge paired with early NIR can 

provide high accuracy for modeling PNU at early growth stages. The best performances of 2-band 

SRs and NDIs were achieved by using nonlinear exponential models for the PNU after heading 

and across all stages (Table 2-6). This is consistent with the study in predicting LAI and biomass 

(Thenkabail et al., 2000), indicating that the biomass variation dominates PNU and its relation to 

hyperspectral reflectance. Although the lambda by lambda band-optimized algorithm provides an 

insight on the selection of sensitive bands, results of contour plots sometimes may mislead us into 

selecting improper 2-band combinations and indices. The best 2-band combinations for PNC 

before the heading stage were determined as SR/NDI (1142, 1150) in the wavebands of far-NIR. 

However, these bands are dominated by water and organic compounds of which cellulose, lignin, 

starch and protein (van Der Meer & de Jong, 2001), are not correlated directly to N status, 

demonstrating that variation of canopy structure and N dilution effect constrains the 

band-optimized algorithm before heading. Thus, the indices composed of these 2-band 

combinations should not have consistent relationships with N status. Ignoring the exception in 

these bands (Figures 2-4d, f and 2-5d, f), it is clear that indices composed of reflectance at the 

shoulder of NIR with reflectance at red edge were closely correlated with canopy N status.  

Although the best performing SRs and NDIs increased the R2 compared to the published 

indices, limitation still exists when we used the 2-band SRs and NDIs for modeling LNC and PNC. 

This may be due to the use of only 2-band indices that constrain the regression analysis 

(Thenkabail et al., 2000), and cannot overcome the N dilution effect to provide the maximum 

N-related information. Using stepwise multi-band selection algorithm to construct the OMNBR 

models, 67%-71% of the variation in LNC was explained with 6-band models for all three stage 

divisions. In agreement with the findings of Thenkabail et al. (2000; 2004), the stepwise multiple 

regression analysis is very effective for selecting multiple sensitive bands. It is worth noting that 

the red maximum absorption bands (671, 672, and 680 nm) were always used for modeling both 

LNC and PNC before heading (Table 2-7), whereas the red-edge bands were either not used or 
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“later and lesser” (SAS Institute Inc.) switched in models than the red bands. This confirms that 

for modeling LNC and PNC before heading the red bands are more efficient than red-edge bands 

(Kanke et al., 2012). Moreover, with the addition of these N-related bands (671, 672, 680 nm, Table 

2-7) the OMNBR models significantly increased the accuracy for modeling N, suggesting again that 

the N dilution effect significantly constrains the performance of 2-band SRs, NDIs and published 

indices before heading. Once these N-related bands were involved in the models, the N dilution 

effect can be overcome and N-related information can be maximized by the OMNBR models. 

Therefore, to overcome the influence by the N dilution effect, the stepwise multiple regression 

analysis based OMNBR models should be used. However, there is a likelihood of multi-band 

models being over-fitted (Blackburn, 1998). To avoid over-fitting the OMNBR models, Thenkabail et 

al. (2000) suggested a M/N evaluation criteria (M= band count, N= number of observations) in 

which this ratio should not exceed 0.15-0.20. In this study, all of the OMNBR models did not 

break the criteria with one to ten bands (M/N < 0.12). The band count used for modeling PNU 

before heading is in agreement with the study in predicting biomass (Thenkabail et al., 2004) that 

using more than three or four bands only yielded an insignificant increase in modeling accuracy. 

This reaffirms the large impact of biomass on canopy reflectance before heading, since the 

minimum PNU is dependent on the maximum crop biomass (Lemaire et al., 2008). The results 

reveal the importance of using multi-band models to overcome the negative influence of the N 

dilution effect especially, for specific growth periods and different agricultural crop variables. 

Many studies aim to develop indices closely related to N or chlorophyll that are not 

influenced by canopy structure, LAI, biomass, soil background etc. (Baret & Guyot, 1991; 

Haboudane et al., 2002; Huete, 1988; Qi et al., 1994; Rondeaux et al., 1996; Stroppiana et al., 2009). 

However, almost no one index provides consistent predictive abilities under different conditions 

and limited studies have focused on how to improve their use for estimating N and chlorophyll at 

specific growth periods. Using 2-band hyperspectral indices before the heading stage, more than 

80% of the variation in PNU was explained even by the leaf chlorophyll indices (SR3, 

TCARI/OSAVI [705, 750], MTCI and mSR705, Tables 2-5 and 2-6). This suggests not only that 

reflectance estimates for chlorophyll can be used to estimate the N status (Filella & Peñuelas, 1994; 

Peñuelas & Filella, 1998), but also the importance of improving our knowledge for better 

understanding both the physiological and biophysical characteristics of plants to benefit N 

management using hyperspectral measures. Although the 2-band indices have limitations, they are 

easy to use compared to the multi-band OMNBR models. It is feasible to choose the best SRs and 

NDIs for monitoring PNU at early stages and PNC at later stages. The OMNBR models should be 

used as a compensatory method when the SRs and NDIs cannot provide satisfactory accuracy 

under given conditions. The two techniques for band optimization can be integrated for precision 
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N management over the entire growth period.  

 Conclusions 2.5

In this study, hyperspectral narrow band reflectance measures were collected on paddy rice 

canopy across six critical growth stages in two growing seasons. Two techniques for band 

optimization were used to thoroughly examine all possible 2-band and multi-band models relating 

to N variables. Specifically, the lambda by lambda band-optimized algorithm was used to select the 

2-band SRs and NDIs, and a stepwise multiple linear regression method was implemented to 

obtain the OMNBR models. The performances of both techniques were compared by always 

covering three growth stage-divisions and three N variables (LNC, PNC and PNU), totally nine 

cases. The most important conclusions that can be drawn from this study are as follows: 

(i) The N dilution effect negatively influences the selection of sensitive bands and their 

performance in modeling canopy N status. 

(ii) Best 2-band SRs or NDIs increased the R2 significantly in modeling PNU (R2 ≥ 0.75). 

However, they still failed to explain the LNC (R2 ≤ 0.52) and PNC before heading (R2 ≤ 

0.39). 

(iii) The OMNBR models significantly increased R2 for modeling LNC and PNC compared to 

the best performing SRs and NDIs.  

(iv) Combinations of the center of Red-edge at 735 nm with other longer red-edge bands 

(730-760 nm) are very efficient for modeling PNC after heading, whereas the 

combinations of blue with green bands are more efficient across all stages. 

(v) Combinations of the center of red-edge (730-735nm) paired with early NIR bands 

(775-808 nm) are predominant in estimating PNU before heading, whereas longer 

red-edge (750 nm) paired with the center of NIR shoulder (840-850 nm) are dominant 

after heading and across all stages. 

(vi) Red absorption maximum bands (670-680 nm) are predominant in modeling LNC, 

whereas they are important before heading for estimating PNC. 

To summarize, the N dilution effect dynamically influences two- and multi-band combinations 

in different ways for LNC, PNC and PNU. The lambda by lambda band-optimized algorithm is 

useful for identifying the best 2-band indices and can improve the performance for estimating 

canopy N. However, this method still has limitations because the N dilution effect makes it 

difficult to provide the maximum N-related information with the use of only 2-band hyperspectral 

indices, particularly for modeling LNC and PNC before heading. The multi-band OMNBR models 

provide significant improvement in modeling canopy N using multiple N related bands. However, 

the OMNBR models do not offer the simplicity of 2-band SR or NDI type models (Thenkabail et 
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al., 2000). Thus, a “lambda cubic” algorithm (or to say “lambda by lambda by lambda”) or even a 

higher dimensional band-optimized algorithm should be useful to identify new hyperspectral 

indices that involve multiple bands and are less dependent on the N dilution effect. Alternatively, 

new “stage-adjusted” hyperspectral vegetation indices may be developed to minimize the 

influence by growth stages. The primary results of the present study provide a useful reference 

base for further research on canopy N concentration and N uptake estimation, and remains to be 

validated in future studies. 
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Summary 

In this study field experiments were conducted to test the ability of optimized spectral indices 

and partial least squares (PLS) to estimate leaf chlorophyll (Chl) content of rice from 

non-destructive canopy reflectance measurements. We integrated techniques involving the 

optimization of narrow band spectral indices and the detection of red edge position to optimize 

one type of spectral indices: the Ratio of Reflectance Difference Index (RRDI) for the estimation of 

leaf Chl content. The optimized RRDI = (R745-R740)/ (R740-R700) accounted for 62%-72% of the 

variation in leaf Chl content with RMSE of 4.59-4.89 µg/ cm2. Compared to spectral indices, PLS 

improved the estimation of leaf Chl content, yielding R2 and RMSE of 0.85 and 3.22 µg/ cm2, 

respectively. Finally, the model based on RRDI and the PLS model were further validated by an 

independent dataset collected in farmer fields. RRDI and PLS models yielded acceptable accuracy 

with R2 of 0.49 and 0.55, respectively, and RMSE of 5.47 and 5.13 µg/ cm2. Our results suggest the 

potential to optimize spectral indices and also the significance of PLS technique for mapping canopy 

biochemical variations. 

Zusammenfassung 

Abschätzung von Chlorophyll im Blatt von Reis mit Hilfe von Spektralindizes und Partial Least Squares. 

In dieser Studie wurden Feldversuche durchgeführt, um die Fähigkeit von optimierten 

Spektralindizes und Partial Least Squares (PLS) in der Abschätzung vom Chlorophyllgehalt im Blatt 

von Reis aus nicht destruktiven Reflexionsmessungen zu prüfen. Wir integrierten Techniken, die 

die Optimierung von Spektralindizes mit engen Bandbreiten und zur Detektion der Red-Edge 

Position involvieren, um einen Typ der Spektralindizes zu optimieren: Ratio of Reflectance 

Difference Index (RRDI) für die Abschätzung vom Chlorophyllgehalt im Blatt. Der optimierte 

RRDI= (R745-R740)/ (R740-R700) erklärte 62%-72% von der Variabilität im Chlorophyllgehalt im Blatt 

mit einem RMSE von 4.59-4.89 µg/ cm2. Verglichen mit Spektralindizes verbesserte PLS die 

Abschätzung vom Chlorophyllgehalt im Blatt mit einen RMSE jeweils von 0.85 und 3.22 µg/ cm2. 

Letztendlich wurden das Model basierend auf RRDI und das PLS Model weiter mit einem 

unabhängigen Datensatz, der auf Feldern von Landwirten erhoben worden ist, validiert. RRDI und 

PLS Modele erbrachten eine akzeptierbare Genauigkeit mit jeweils einem R² von 0.49 und 0.55 und 

einem RMSE von 5.47 und 5.13 µg/ cm2. Unsere Ergebnisse unterstreichen das Potential für die 

Optimierung von Spektralindizes aber auch die Bedeutung von PLS für die Bestandskartierung von 

biochemischen Variationen. 
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 Introduction 3.1

Rice is one of the main agricultural crops in Northeast China. The Sanjiang Plain is well known 

for large scale farming in China and is becoming more and more important in supplying the food 

market with commercial rice of high quality (Yao et al., 2012). For a high-yield and 

environment-friendly agricultural development, real-time monitoring of the growth status of rice is 

crucial to this region.  

Remote sensing is increasingly being used in agricultural applications owing to its potential for 

noninvasively gathering information over larger areas (Atzberger, 2013; Mulla, 2013). Hyperspectral 

remote sensing of crop nutrient status is mainly based on the estimation of leaf chlorophyll (Chl), 

which absorbs and converts solar light to biochemical energy and thus often serves as an indicator 

of plant stresses (Filella & Peñuelas, 1994). Recent studies have shown great potential of 

hyperspectral remote sensing for the estimation of leaf chlorophyll (Zarco-Tejada et al., 2001), plant 

nitrogen (N) (Yu et al., 2013), leaf area index (LAI) (Darvishzadeh et al., 2009), biomass (Gnyp et al., 

2013; 2014; Koppe et al., 2012) and for disease detection (Delalieux et al., 2009; Laudien & Bareth, 

2006; Laudien et al., 2006). 

The red edge (ca. 680-750 nm) of spectra is of particular interest for estimating leaf 

chlorophyll content (Filella & Peñuelas, 1994; Main et al., 2011). The red edge position (λRE) is 

defined as the wavelength of the peak (local maximum) on the first derivative reflectance spectra 

(Horler et al., 1983). Generally, λRE shifts to longer wavelengths with the increase of Chl content 

(Filella & Peñuelas, 1994). Several studies have found that two or more peaks in red edge can be 

derived from the derivative spectra (Horler et al., 1983; Zarco-Tejada et al., 2002). Horler et al. (1983) 

suggested that the first peak at around 700 nm is determined mainly by chlorophyll content while 

the second peak at around 725 nm is governed more by scattering effects.  

Recent studies have shown that optimized narrow band spectral indices perform better than 

broad band indices for the estimation of Chl and LAI (Darvishzadeh et al., 2008; 2009). In most of 

these studies narrow band indices take the forms of Simple Ratio (SR) and Normalized Difference 

Vegetation Index (NDVI) to find the best band combinations. Yu et al. (2012) found that the 

optimized SR- and NDVI-like indices have similar sensitive bands and provide equal ability to 

estimate Chl. 

The objective of this study is to estimate leaf Chl content of rice by optimizing spectral indices 

and using partial least squares (PLS). 
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 Material and methods 3.2

3.2.1 Study area, experimental and farmer fields 

The study area is located in the Sanjiang Plain, Heilongjiang Province, China. Sanjiang Plain was 

originally dominated by marshes and it was converted to agricultural production land since last six 

decades (Yao et al., 2012). The climate in this region is cool-temperate subhumid continental 

monsoon, with very cold winters and warm summers. The climatic characteristics of Sanjiang Plain 

are suitable for rice, soybeans, wheat, and corn crops, and rice farming has become dominant land 

use in this region since last two decades. More information about the Sanjiang Plain has been 

described elsewhere (Gnyp et al., 2013; Yao et al., 2012; Yu et al., 2013). In this study, two field 

experiments (Expt. 1 and Expt. 2) were conducted, and 14 farmer fields were selected for data 

collection. 

Expt. 1: The N rate experiment was conducted at two sites: Qixing and Keyansuo 

experimental stations with a same experimental design in 2008. A randomized complete block 

design with four replications including five N rates (0, 35, 70, 105 and 140 kg N ha-1 as urea) was 

applied at both stations, where a local rice cultivar Kongyu131 was planted. 60 kg ha-1 P2O5 (as triple 

super-phosphate) and 75 kg ha-1 K2O (as potassium sulfate) were applied to ensure the supply of 

other nutrients. All plots had the same size of 100 m2 (10 by 10 m). 

Expt. 2: Similar design with Expt. 1, Expt. 2 was conducted under five N levels that used 70% of 

each of the five rates of Expt. 1, respectively. The same cultivar Kongyu131 and same amount of P- 

and K-fertilizers were used. 

Farmer fields: In addition to the experimental fields, 14 farmer fields managed by two farmers 

were selected for data collection, which is to be used as the validation dataset. The same cultivar 

Kongyu131 was planted in those farmer fields. 

3.2.2 Spectral measurement 

Hyperspectral reflectance data was measured from a height of 30 cm above the rice canopy 

under clear sky conditions within 2 hours of solar noon, using the FieldSpec 3 spectroradiometer 

(Analytical Spectral Devices, Inc., Boulder, CO, USA) connected to a fiber foreoptic that has a 25 

degree field-of-view. The FieldSpec 3 spectroradiometer operates in the 350–2500 nm spectral 

region and has a spectral resolution of 3 nm at 700 nm, 10 nm at 1400 and 2100 nm. The detailed 

description of FieldSpec 3 can be found in (Gnyp et al., 2013). Hyperspectral reflectance data in 1 

nm steps were automatically outputted by the spectroradiometer. We used the reflectance data of 

350-900 nm in this study due to the specific interest in Chl. 



58 Estimate leaf chlorophyll content of rice using spectral indices and partial least squares 

CHAPTER 3 
 

 

3.2.3 Leaf chlorophyll measurement 

On the same day of spectral measurements, leaf chlorophyll was measured using a SPAD-502 

(Konica Minolta, Inc.) chlorophyll meter. In those spectroradiometer-scanned plants, a total of 

10-15 newest fully expanded leaves were selected for recording SPAD values. For each leaf, 3 

replicates were recorded in the middle of leaf base to tip and then averaged. Finally, SPAD values 

were transformed to the area based leaf chlorophyll content (Chl, μg/cm2) using an empirically 

calibrated function commonly used in remote sensing studies (Atzberger et al., 2003; Darvishzadeh et 

al., 2008; Markwell et al., 1995). 

3.2.4 Reflectance indices 

A NDVI-like index: The Normalized reflectance difference index (NRDI, Eq. (3-1)) was 

optimized using a lambda-by-lambda band optimization method, which has been widely used in 

recent studies (Darvishzadeh et al., 2008; 2009; Yu et al., 2013). 

 1 2

1 2

R R
NRDI

R R
 

 





  (3-1) 

where Rλ is the reflectance at the wavelength λ. 

To test whether we can further improve the robustness of optimized indices, we made a 

hypothesis, which assumes that Rc is the reflectance in response primarily to chlorophyll and is a 

function of the wavelength λ, i.e., ( )cR f  . However, due to effects of soil, water background and 

phenological development, measured canopy reflectance (R) can be further assumed as a function 

of Rc that has multiplicative and additive factors a and b across wavelengths, respectively (Eq. (3-2)

). 

 

 * ( )R a f b    (3-2) 

 

Although such a linear hypothesis is rare in nature, we expect that it might reduce adverse 

effects. With measured reflectance, Rc could be calculated by eliminating the factors a and b 

following Eq. (3-3), 

 

 ( - ) /cR R b a   (3-3) 

 

However, a and b are difficult to determine, an alternative approach to eliminate a and b is to 

use the ratio of reflectance difference as shown in Eq. (3-4), 
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Finally, we define the Ratio of Reflectance Difference Index (RRDI, Eq. (3-5)): 
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, for which λ 1-4 are random wavelengths to be optimized for the estimation of Chl. 

3.2.5 PLS model 

In addition to the optimization of spectral indices, PLS was also used to estimate Chl in this 

study. PLS has the advantage that the precision of the model improves with the increasing number 

of variables and observations (Wold et al., 2001). To optimize the number of factors (latent 

variables), leave-one-out cross validation was used to test the significance of the increase in the 

predicted residual sum of squares (PRESS) (van der Voet, 1994). 

 Results 3.3

3.3.1 NRDI optimization 

All possible 2-band combinations of λ1 and λ2 were examined for the correlation with Chl. 

Figure 3-1A shows the lambda-by-lambda R2 plot for the NRDIs. The highest R2 values were 

yielded by the red edge bands paired with NIR bands. 

Figure 3-1B shows the best NRDI with λ1 and λ2 respectively at 745 and 740 nm, which 

yielded the highest R2. The best NRDI= (R745-R740)/ (R745+R740) accounted for 70% of the variation 

in Chl with RMSE of 4.8 µg/ cm2 (Figure 3-1B). 

 



60 Estimate leaf chlorophyll content of rice using spectral indices and partial least squares 

CHAPTER 3 
 

 

 

Figure 3-1: (A) Lambda-by-lambda R2 plot showing the performance of different band 
combinations of λ1 and λ2 for the optimization of NRDI. (B) Scatter plot showing the relationship 
between Chl and the best 2-band combination of λ1 and λ2 derived from Figure 3-1A. 

3.3.2 Red edge position 

The red edge position (λRE) was determined as the maximum of the first derivative of the 

reflectance. Figure 3-2 shows that λRE ranged from 700 to 740 nm and yielded significant difference 

only when N rate was higher than 105 kg/ha. The N rates of 105 and 140 kg/ha led to the λRE shift 

to longer wavelengths and yielded higher values of λRE compared to the low-N rates. 

 

 

Figure 3-2: Boxplot showing the changes in red edge position (λRE) between different N rates. 

To investigate the response of λRE to Chl variations, Chl was plotted as a function of λRE. Figure 

3-3 shows that λRE was positively related to Chl. The highest value of λRE, ca. 740 (nm), 

corresponded to the highest Chl content that was 65 µg/ cm2 approximately. 
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Figure 3-3: Leaf chlorophyll content (Chl, µg/cm2) plotted as a function of the red edge 
position (λRE). 

3.3.3 RRDI optimization 

The RRDI was optimized based on the best λ1 and λ2 of NRDI. All possible combinations of 

λ3 and λ4 were further examined for the correlation with Chl. Figure 3-4 shows that RRDI 

generously increased the sensitivity to Chl across the whole wavelength range compared to NRDI 

(cf. Figure 3-1A). 

One of the significantly hot zones for λ3 vs. λ4 locates in the wavelengths of 700-740 nm, 

which agrees well with the range of λRE (Figure 3-2 and Figure 3-3). Therefore, the λ3 vs. λ4 were 

determined as 740 and 700 nm, respectively, for the best RRDI. 

 

Figure 3-4: Lambda-by-lambda R2 plot showing the performance of different band 
combinations of λ3 vs. λ4 for the RRDI. White rectangle highlights the red edge range of 700-740 
nm. 

The best RRDI= (R745-R740)/ (R740-R700) accounted for 72% of the variation in Chl with RMSE of 

4.59 µg/ cm2 (Table 3-1). 
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Expt. 2 dataset was used to test the reliability of the best NRDI and RRDI for the estimation 

of Chl. Results show that NRDI and RRDI accounted for 60% and 62% of the variation in Chl, 

respectively, with RMSE of 4.77 and 4.63 µg/ cm2 (Table 3-1).  

3.3.4 Chl estimation for farmer fields 

Regression models based on RRDI and NRDI were calibrated using the pooled data of two 

experiments and were applied to farmer fields for the estimation of Chl.  

Figure 3-5 shows the calibration results for RRDI and NRDI. RRDI and NRDI accounted for 

65% and 62% of the variation in Chl of pooled data (Expt.1+2), respectively. 

 

 

Figure 3-5: (A) RRDI model based on the pooled experimental data (Expt. 1+2). (B) NRDI 
model based on the pooled data. 

Table 3-1 summarizes both the calibration and validation results for farmer fields. The R2 for 

the predicted Chl by RRDI and NRDI against the measured Chl were 0.49 and 0.45, respectively, 

with RMSE of 5.47 and 5.68 µg/ cm2 (Figure 3-6A, B and Table 3-1). 

3.3.5 Chl estimation for farmer fields using PLS model 

PLS model was also calibrated using the pooled data of two experiments. Results showed that 

PLS model accounted for 85% of the variation in Chl (Table 3-1) with RMSE of 3.22 µg/ cm2.  
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The calibrated PLS model was further used to estimate the Chl of farmer fields. Figure 3-6C 

shows that R2 for the predicted Chl by PLS against the measured Chl was 0.55 with RMSE of 5.13 

µg/ cm2. 

PLS model accounted for a larger portion of the variation in Chl of both experimental and 

farmer fields and yielded lower RMSE compared to the univariate regression models based on 

NRDI and RRDI (Table 3-1 and Figure 3-6). 

Table 3-1: Results of R2 and RMSE (µg/cm2) for different datasets using NRDI= (R745-R740)/ 
(R745+R740), RRDI= (R745-R740)/ (R740-R700) and PLS model. 

Dataset Description n 
 NRDI   RRDI   PLS 

R2 RMSE  R2 RMSE  R2 RMSE 

Expt. 1 Optimize  

Indices 

160  0.70 4.80  0.72 4.59    

Expt. 2 Test  

Indices 

80  0.60 4.77  0.62 4.63    

Expt. 1+2 Model  

Calibration 

240  0.62 5.10  0.65 4.89  0.85 3.22 

Farmer fields Model  

Validation 

70  0.45 5.68  0.49 5.47  0.55 5.13 

n, number of observations 
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Figure 3-6: Scatter plots showing the measured by predicted values of Chl using (A) RRDI, (B) 
NRDI and (C) PLS models calibrated on the pooled data of two experiments (Expt. 1+2). Dashed 
line is the 1:1 line. 

 Discussion 3.4

The lambda-by-lambda band optimization method has been used to optimize NDVI- and 

SR-like indices for the estimation of canopy characteristics in different species (Darvishzadeh et al., 

2008; 2009; Yu et al., 2012; 2013). However, the potential of linking red edge characteristics to the 

optimization of NDVI- or SR-like indices have not been fully explored. As shown in the 

lambda-by-lambda R2 plots, the RRDI optimization increases the sensitivity over the entire 

wavelengths compared to NRDI (Figure 3-1 and Figure 3-4). In addition to the significant zone at 

red edge range, the range for NIR vs. red edge (e.g., 760-820 vs. 720 nm) also showed the best 

performance. However, the NIR range is governed primarily by LAI (Darvishzadeh et al., 2008), thus 

the red edge might be more appropriate for Chl estimation. 
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The best RRDI= (R745-R740)/ (R740-R700) could be considered as the ratio of derivative of 

reflectance at 740 nm (i.e., dλ740 = (λ745 - λ740)/5) and the relative change in the red edge positions. 

Similarly, Lee et al. (2008) found that the derivative of reflectance at 735 nm could be used to 

estimate rice N. Soil background is one of the main factors that affect the hyperspectral remote 

sensing of leaf chlorophyll. Darvishzadeh et al. (2008) optimized the SAVI2 type indices to estimate 

Chl and found that it yielded equivalent accuracy in terms of RMSE compared to narrow band 

NDVI, i.e., NRDI in this study. However, the optimization of SAVI2 type indices requires the 

soil-line coefficients, which are difficult to determine for this study due to the flooding environment 

of rice field. Our results suggest that RRDI seems to be able to reduce to some extent the effects 

of soil, water background and phonological development compared to NRDI. 

As expected, PLS outperformed both the optimized NRDI and RRDI and resulted in lower 

RMSE. Both NRDI and RRDI showed the underestimation of high Chl values compared to PLS 

model (Figure 3-6). This corroborates the suggestion to use PLS for the full spectrum analysis 

(Atzberger et al., 2003). However, the determination of sensitive bands and optimization of spectral 

indices might be useful as an early indicator of plant physiological status and potential stresses 

before a more precisely quantitative approach made by full spectrum analysis. 

Considering that spectral indices serve simplicity and compatibility to different sensors having 

different resolutions or even a few discrete wavelength bands, the optimization of spectral indices 

still has practical value for applications of remote sensing in agriculture. Robust spectral indices will 

also contribute to the development of end-user-friendly crop sensors. Better development and 

validation of more complex, but more reliable, indices could be also achieved by integrating more 

rigorous cross-validation or bootstrap techniques (Richter et al., 2012). 

 Conclusions 3.5

The red edge plays a crucial role in the estimating chlorophyll (Chl), suggests potential to use 

red edge bands for the optimization of spectral indices. Two indices based on red edge: the 

Normalized Reflectance Difference Index (NRDI= (R745-R740)/ (R745+R700)) and the Ratio of 

Reflectance Difference Index (RRDI= (R745-R740)/ (R740-R700)) are robust indicators of leaf Chl 

content of rice (R2= 0.60-0.72, RMSE= 4.59-5.1µg/ cm2) according to experimental data. They 

showed acceptable performance for mapping the Chl variation in farmer fields, yielding RMSE of 

5.68 and 5.47 µg/ cm2, respectively, although the partial least squares (PLS) model delivered higher 

accuracy (RMSE= 5.13 µg/ cm2). The results show the potential of mapping canopy biochemical 

traits through the optimization of spectral indices and other feature reduction techniques such as 

PLS. 
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Abstract 

Leaf diseases, such as powdery mildew and leaf rust, frequently infect barley plants and 

severely affect the economic value of malting barley. Early detection of barley diseases would 

facilitate the timely application of fungicides. In a field experiment, we investigated the 

performance of fluorescence and reflectance indices on (1) detecting barley disease risks when no 

fungicide is applied and (2) estimating leaf chlorophyll concentration (LCC). Leaf fluorescence and 

canopy reflectance were weekly measured by a portable fluorescence sensor and 

spectroradiometer, respectively. Results showed that vegetation indices recorded at canopy level 

performed well for the early detection of slightly-diseased plants. The combined reflectance index, 

MCARI/TCARI, yielded the best discrimination between healthy and diseased plants across seven 

barley varieties. The blue to far-red fluorescence ratio (BFRR_UV) and OSAVI were the best 

fluorescence and reflectance indices for estimating LCC, respectively, yielding R2 of 0.72 and 0.79. 

Partial least squares (PLS) and support vector machines (SVM) regression models further 

improved the use of fluorescence signals for the estimation of LCC, yielding R2 of 0.81 and 0.84, 

respectively. Our results demonstrate that non-destructive spectral measurements are able to 

detect mild disease symptoms before significant losses in LCC due to diseases under natural 

conditions. 
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 Introduction 4.1

Techniques for monitoring plant physiological and healthy status and their spatiotemporal 

variation will benefit more precise and target-oriented crop management. Cereal leaf diseases such 

as powdery mildew and leaf rust frequently infect barley plants and affect the economic value of 

malting barley. Chlorophyll plays a crucial role for the photosynthetic processes including light 

harvesting and energy conversion, and thus the content of chlorophyll is a potential indicator of a 

range of stresses (Zarco-Tejada et al., 2002). Early detection of crop diseases and accurate 

assessment of chlorophyll variations are important to help crop managers to efficiently make 

applications of agrochemicals and fertilizers (Bürling et al., 2010; Delalieux et al., 2007). 

Active fluorescence techniques allow the sensing of plant physiological changes and are less 

affected by weather conditions than the passive ones (Chappelle et al., 1984a; Tremblay et al., 2012). 

The intensity of chlorophyll fluorescence emitted by plants is governed by both the photosynthetic 

activity and chlorophyll concentration (Chappelle et al., 1984b). Red and far-red chlorophyll 

fluorescence and blue-green fluorescence (BGF) signals can be used for the detection of plant 

stresses as they often change before visible symptoms are detectable, for example water deficiency 

and heat stresses often lead to an increase in BGF and chlorophyll fluorescence, respectively (Lang 

et al., 1996; Leufen et al., 2013; Lichtenthaler, 1996).  

Spectrally resolved fluorescence signals are typically expressed in the form of fluorescence 

ratios in order to be less dependent on instruments, on the intensity of exciting light and the 

distance of fluorescence detection (Buschmann, 2007; Lejealle et al., 2010). The red/far-red 

chlorophyll fluorescence ratio (RF/FRF) is determined primarily by the in vivo chlorophyll content, 

of which the high amount has more reabsorption of RF while little effect on the FRF (Gitelson et al., 

1998; Lichtenthaler & Rinderle, 1988; Lichtenthaler & Babani, 2004). Hence, the decline in 

chlorophyll content caused by biotic or abiotic stresses often result in an increase of RF/FRF 

(Lichtenthaler & Miehé, 1997; Lichtenthaler & Babani, 2004). In contrast, Gitelson et al. (1999) 

suggested that the inverse form as far-red/red fluorescence ratio (FRF/RF) might be more precise 

for quantifying the chlorophyll in a wide range. Although fluorescence indices allow the 

non-invasive estimation of chlorophyll content, it is often unavoidable that they are nonlinearly 

related to chlorophyll content and lose the sensitivity when chlorophyll reaches a certain level 

(Babani & Lichtenthaler, 1996; Gitelson et al., 1999; Lichtenthaler et al., 2005). Therefore, 

comprehensive algorithms might be useful to improve the use of fluorescence signals in such 

situations. Partial least squares (PLS) (Wold et al., 2001a) and support vector machines (SVM) 

(Vapnik, 1995) have been widely used in hyperspectral remote sensing studies (Hansen & 

Schjoerring, 2003; Plaza et al., 2009). The partial least squares (PLS) method has the desirable 
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property that solves not only the problem of strong co-linearity but also the problem of regression 

singularity due to small sample size and high dimension of predictive variables (Wold et al., 2001a). 

PLS is particularly relevant in the situation where modeling data consist of many predictors relative 

to the number of observations (Atzberger et al., 2010). Atzberger et al. (2010) highlighted the 

advantage of PLS in dealing with multi-collinearity over stepwise multiple linear and principal 

component regressions, even when the number of observations was smaller than the number of 

predictive variables. The support vector machines (SVM) method has been widely used for 

classification problems (Mountrakis et al., 2011; Plaza et al., 2009; Römer et al., 2011; Zheng et al., 

2010) and for retrieving biophysical parameters (Durbha et al., 2007; Sun et al., 2012). For 

non-linear problems in particular, the SVM transforms the nonlinearity into a linear regression via 

mapping the original input space to a high dimensional feature space (Vapnik, 1998). 

Blue/red (BF/RF) and blue/far-red (BF/FRF) fluorescence ratios and combined fluorescence 

indices also allow to detect various stresses (Bürling et al., 2011; Lang et al., 1996) such as water 

(Leufen et al., 2013) and nitrogen (N) deficiencies (Agati et al., 2013; Lejealle et al., 2010; Zhang et al., 

2012) and to monitor changes in chlorophyll and polyphenols (Cerovic et al., 2008; Lejealle et al., 

2010). However, studies on detecting cereal diseases or estimating chlorophyll content of barley 

plants are scarce. Buschmann & Lichtenthaler (1998) reported that maize plants grown without 

nitrogen yield higher blue-green fluorescence and also the higher values of the fluorescence ratios 

BF/FRF and BF/RF. Langsdorf et al. (2000) also found that BF/RF and BF/FRF ratios are the most 

sensitive indicators to distinguish different N treatments. As aforementioned, fluorescence indices 

for chlorophyll are of potential for detecting diseases, as well as for estimating leaf N content since 

leaf chlorophyll is related to leaf N content (Cartelat et al., 2005; Tremblay et al., 2012). However, 

how early fluorescence indices can sense cereal diseases is not well known as diseases may precede 

significant losses in chlorophyll or N (Zarco-Tejada et al., 2000). Furthermore, under natural 

conditions the changes in fluorescence signals/indices in response to foliar diseases are usually 

caused by cross infections. 

Recent studies have made progress on detecting diseases and nutrient stresses by 

hyperspectral remote sensing (Agati et al., 2013; Delalieux et al., 2009a; 2009b; Miphokasap et al., 

2012). Reflectance indices have been suggested for detecting diseases such as apple leaf scab 

disease under well controlled conditions (Delalieux et al., 2009a; 2009b). However, the 

discriminatory performances are often affected by plant phenological development (Delalieux et al., 

2009b). Therefore, comparisons between different hyperspectral indices are still needed to 

determine which method is most appropriate and which index is most reliable across phenological 

stages for the early detection of plant diseases, as well as between different fluorescence indices. 
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The objective of this study was (i) to investigate the performance of fluorescence and 

reflectance indices for detecting diseases in seven varieties of field grown barley and (ii) to estimate 

leaf chlorophyll concentration (LCC) using these indices, and PLS and SVM methods. 

 Materials and methods 4.2

4.2.1 Experimental design 

The field experiment of barley (Hordeum vulgare) was conducted at the Institute of Crop 

Science and Resource Conservation (INRES-Horticultural Science, 50.7299 º N, 7.0754 º E; 70 

m.a.s.l.), University of Bonn, Germany. The soil is sandy loam with the Nmin value of 20 kg N ha-1. 

The annual average precipitation and temperature are 669 mm and 10.3 °C, respectively. The 

experiment was organized as a completely randomized block with three replications and a plot size 

of 6 m2 (4 × 1.5 m) for each variety and fungicide treatment. Ten rows of barley plants sown with 

a density of 320 seeds per square meter were grown in each plot. The experimental design 

included seven barley varieties (Belana, Marthe, Scarlett, Iron, Sunshine, Barke and Bambina) and 

two fungicide variants (with fungicide and without fungicide).  

For the treatment group with fungicide, plants were regularly sprayed with protective or 

curative fungicides over the entire experimental period, while for the treatment group without 

fungicide no fungicides were sprayed. The seven commercial varieties of malting barley were sown 

on March 24th 2010. All plots were fertilized immediately after sowing with ammonium nitrate 

(NH4+-N) at the rate of 100 kg N ha-1. 

For the plants of without fungicide plots the infections were generally mild and showed only a 

few punctiform symptoms due to the unfavorable climatic conditions to pathogens at the study site 

in 2010. 

4.2.2 Fluorescence measurements 

Random plants were preselected and marked prior to the implementation of treatment design 

of fungicide. From these plants, six uppermost fully expanded flag leaves were randomly sampled, 

stored in a cold box and immediately transported into the lab for the fluorescence measurements. 

The fluorescence recordings were carried out at the beginning of June up to July at weekly intervals 

on five dates; June 9th (77 DAS, days after sowing), June 15th (83 DAS), June 22th (90 DAS), June 29th 

(97 DAS) and July 6th (104 DAS). A multi-parametric fluorescence sensor, Multiplex® 3 (Ben 

Ghozlen et al., 2010), was used in this study for the recording of fluorescence signals. Barley leaves 

were placed on a black anodized plate for measuring the fluorescence indices at room temperature 
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in the lab. The mean readings of the six leaves of each plot served as the representative of each 

plot. Table 4-1 presents the ten fluorescence indices that were investigated in this study. 

Table 4-1: Fluorescence indices used in this study. 
Index Description Formula 

SFR_G Simple Fluorescence Ratio (green excitation) FRF_G/ RF_G 

SFR_R Simple Fluorescence Ratio (red excitation) FRF_R/ RF_R 

BFRR_UV Blue-to-Far Red Fluorescence Ratio (UV excitation) BGF_UV/ FRF_UV 

FER_RUV Fluorescence Excitation Ratio (red & UV excitation) FRF_R/ FRF_UV 

FLAV Flavonols log(FER_RUV) 

FER_RG Fluorescence Excitation Ratio (red & green excitation) FRF_R/ FRF_G 

ANTH Anthocyanins log(FER_RG) 

NBI_G Nitrogen Balance Index (SFR_G / FER_RUV) FRF_UV/ RF_G 

NBI_R Nitrogen Balance Index (SFR_R / FER_RUV) FRF_UV/ RF_R 

FERARI Fluorescence Excitation Ratio Anthocyanin Relative Index log(1/FRF_R) 

4.2.3 Hyperspectral reflectance measurements 

Prior to leaf sampling, canopy reflectance was measured within two hours of solar noon using 

QualitySpec® Pro (June 9th, and June 15th) and FieldSpec® 3 (June 22th, June 29th and July 6th) 

spectrometers from a distance of 1 m above the canopy. The same white reference panel 

(Spectralon) was used for calibrations for both spectrometers before spectral measurement in the 

field. In addition, our unpublished results of cross calibration showed that the reflectance 

difference is negligible, especially for the wavelengths shorter than 1000 nm because both 

spectrometers were configured with the same type of detectors (ASD Inc.). The detailed 

configurations of the spectrometers were described elsewhere (Yu et al., 2012). For each of the 

experiment plots, six reflectance spectra were measured at six random locations within the plot. 

Finally, reflectance data with 1 nm steps was output for further analysis. Table 4-2 shows the ten 

reflectance indices used in this study. 

Table 4-2: Reflectance indices used in this study. 
Index Formula Reference 

PSSRa R800/ R680 Blackburn (1998) 

ZM R750/ R710 Zarco-Tejada et al. (2001) 

NPQI (R415 – R435)/ (R415 + R435) Peñuelas et al. (1995) 

PRI (R531 – R570)/ (R531 + R570) Gamon et al. (1992) 

MCARI [(R700−R670)−0.2*(R700−R550)]*(R700/R670) Daughtry et al. (2000) 

TCARI 3*[(R700−R670)−0.2*(R700−R550)*(R700/R670)] Haboudane et al. (2002) 

OSAVI (1+0.16)*(R800−R670)/(R800+R670+0.16) Rondeaux et al. (1996) 
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MCARI/OSAVI MCARI/OSAVI Daughtry et al. (2000) 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 

MCARI/TCARI MCARI/TCARI 
Based on Daughtry et al. (2000); Haboudane et 

al. (2002) 

4.2.4 Leaf sampling and chlorophyll determination 

After the fluorescence recordings, the six leaf samples of each plot were immediately frozen, 

free-dried, grounded and stored in the dark at room temperature for the determination of their 

chlorophyll content. The total chlorophyll content of each sample was extracted from 50 mg 

lyophilized material by 5 ml methanol, which was then filled up to 25 ml. After extraction, the 

absorbance of the extracts was measured with a UV-VIS spectrophotometer (Perkin-Elmer, 

Lambda 5, Massachusetts, USA) and the leaf chlorophyll concentration (LCC) was finally 

determined. 

4.2.5 Data analysis 

4.2.5.1 Binary Logistic Regression 

To detect diseases in the without-fungicide treatment group, binary classification with logistic 

regression was performed. This method was successfully used in previous studies for detecting 

scab disease in apple leaves (Delalieux et al., 2007; 2009a). Logistical regression was implemented 

to examine the ability of each of the fluorescence and reflectance indices (Tables 4-3 and 4-2) for 

detecting the event of interest (disease). Accordingly, the with- and without-fungicide treatment 

groups correspond respectively to 0 (healthy) and 1 (diseased) in the response variable that 

represents health status.  

The c-statistic was used to evaluate the discriminatory performance of different indices. The 

c-value is equivalent to the area under the receiver-operating-characteristic (ROC) curve, and it 

ranges from 0.5 to 1. The minimum (0.5) and maximum (1) correspond to randomly guessing and 

perfectly discriminating the response, respectively. The general rule that considers: 0.7 ≤ c < 0.8 as 

acceptable discrimination; 0.8 ≤ c < 0.9 as excellent discrimination; and c ≥ 0.9 as outstanding 

discrimination (Hosmer & Lemeshow, 2000) was used to evaluate the discriminatory performance. 

4.2.5.2 Partial Least Squares Regression 

The partial least squares (PLS) method was originally developed by the econometrician 

Herman Wold (1966), for use in econometrics for modeling of multivariate time series (Wold, 

2001b). The widely used PLS regression (PLSR), which is the simplest PLS approach for linear 
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multivariate modeling, has the advantage that the precision of the model improves with the 

increasing number of variables and observations (Wold et al., 2001a). 

The predictive and response variables are considered as two blocks of variables in the PLSR 

method (Wold et al., 1989; 2001a). The key technique implemented in PLSR is to extract the latent 

variables (also called factors or components), which serve as new predictors and regress the 

response variables on these new predictors (Rosipal & Krämer, 2006). These new predictors 

(hereafter referred to as factors) are expected to explain the variation not only of the response 

variables but also the predictive variables. How much variation can be explained depends on how 

many factors are extracted. The more factors that are extracted the more variation can be 

explained. However, extracting too many factors increases the risk of model overfitting problem 

(i.e. tailoring the model too much to the training data, leading to the detriment of predicting future 

observations) (SAS Institute Inc., 2008). Cross validation is a powerful approach to determine the 

number of extracted factors through minimizing the prediction error (predicted residual sum of 

squares, PRESS). However, using the number of factors that yield the minimum in PRESS might also 

lead to some degree of overfitting (Haaland & Thomas, 1988). Although various cross validation 

methods are available, one goal is always preferred that not only a minimum number of factors be 

selected, but also the risk of overfitting is minimized. To achieve this goal, the statistical model 

comparison method proposed by van der Voet (1994) is implemented. The PLSR model 

implemented in this study was carried out using the SAS 9.2 software package (SAS Institute Inc.)  

4.2.5.3 Support Vector Regression 

The support vector machines (SVM) method is a universal theory of machine learning 

developed by Vapnik (1995). The main advantage of SVM is its ability to construct a linear function 

(e.g. classification/regression model) in a high dimensional feature space, where problems of 

non-linear relations of the training data in the original low dimensional space can be represented, 

transformed and solved. The support vector regression (SVR) is the implementation of SVM 

method for regression and function approximation (Smola & Schölkopf, 2004) and its standard 

concept and formulation are briefly described as follows: 

Given a training set {( ix , iy ), . . . , ( lx , ly )}, where n
ix   is a feature vector and y  is 

the target output (response variable). Assume that there is a linear function: 

ˆ ( ) ,  ,  ny f x x b b         (4-1) 

where ŷ is the prediction of iy , ω is the weight vector and b is the bias. We suppose in Eq. (4-1) 

the difference between ŷ and y is always extremely small in term of each ix , i.e., the function f(x) 
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is powerful to predict y. Hence, in order to solve this linear problem of Eq. (4-1) SVR requires the 

solution of the following optimization problem: 

21
minimize

2
subject to ( ) ,  0i iy x b



      
 (4-2) 

Note that the tacit assumption in Eq. (4-2) was that such a function f(x) does actually exist and 

that f(x) approximates all pairs ( ix , iy ) of the training set with the ε precision (Smola & Schölkopf, 

2004). This optimization method using ε-insensitive loss function is the widely known ε-SVR 

(Vapnik, 1998), which is shown with a schematic in Figure 4-1. Only the points outside the shaded 

ε-insensitive tube are called support vectors, which are penalized, and will contribute to the 

optimization solution (Smola & Schölkopf, 2004). 

 

Figure 4-1: Schematic of linear support vector regression (SVR) and the - insensitive loss 
function (circles with black outline are support vectors). 

Generally, when ε is under a reasonable range, the optimization problem is considered to be 

feasible. However, in practical application, it may not be feasible due to different kinds of noises and 

uncertainty. In this context, the slack variables i  and i
  were introduced to permit an 

otherwise that some instances ix  being out of the ε precision, and then the optimization problem 

of Eq. (4-2) can be represented as the formulation of the standard form of SVR by Vapnik (1995) as 

follow: 





 



 



( )f x
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where ( ix , iy  ) has its corresponding i  and i
 , respectively, which denotes the deviation of 

predicted value above +ε and below −ε (Figure 4-1). The parameter C is a constant to determine 

the tradeoff between the model complexity and the training errors (Yang et al., 2006). In addition 

to the ε-SVR, ν-SVR and some other kinds of SVRs, they vary in the optimization of the 

corresponding parameters. 

Furthermore, based on kernel functions the training data will be mapped into feature space to 

apply the regression algorithm. Commonly used kernels include linear, polynomial, radial basis 

function (RBF) and sigmoid. In this study, the ε-SVR model was implemented in MATLAB R2010a 

(The MathWorks, Inc.) with the LIBSVM tool (Chang & Lin, 2011). 

4.2.5.4 Model Validation 

The performance of regression models for the estimation of LCC was evaluated by comparing 

the differences in the coefficients of determination (R2) and root mean square error (RMSE) in 

predictions. The higher the R2 and the lower the RMSE the higher the precision and accuracy of the 

model to predict LCC. The RMSE values were calculated according to Eq. (4-4), 

2

1

1
ˆ( )

n

i
i

RMSE y y
n 

   (4-4) 

where iy  and ŷ are the measured and the predicated values of LCC, respectively, and n is the 

number of samples. 

 Results 4.3

4.3.1 Leaf chlorophyll concentration (LCC) 

Results of the repeated-measures ANOVA show that both fungicide and variety influenced 

LCC (Table 4-3). The effect of fungicide treatment on LCC was independent of barley variety (p = 

0.12), and vice versa. Sampling date had a significant effect on LCC (p < 0.0001), as well as an 

interaction with fungicide treatment (p < 0.01). The interaction between the sampling date and 
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variety was not statistically significant (p = 0.17), and the interaction among sampling date, fungicide 

treatment and variety was not statistically significant (p = 0.96, Table 4-3).  

Table 4-3: Results of repeated-measures ANOVA performed against the leaf chlorophyll 
concentration (LCC) of barley. 

Source DF F P 

Fungicide 1 17.63 0.0002 

Variety 6 17.10 <.0001 

Fungicide × Variety 6 1.85 0.1244 

Date 4 246.98 <.0001 

Date × Fungicide 4 3.50 0.0099 

Date × Variety 24 1.31 0.1731 

Date × Fungicide × Variety 24 0.54 0.9588 

As expected, LCC was higher on the first two sampling dates (77 and 83 DAS) and decreased 

as plants aged, irrespective of fungicide treatments (Figure 4-2). Across all varieties, LCC did not 

show significant differences between the with- and without-fungicide treatments until the last two 

sampling dates (97 and 104 DAS), where the LCC was lower in the without-fungicide treatment 

than the with-fungicide. 

 

Figure 4-2: Box-and-whiskers plots showing the differences between the with- and 
without-fungicide treatments across varieties for each sampling date. Significant differences were 
observed at the last two sampling dates (*, p < 0.05; **, p < 0.01). 

4.3.2 Discriminatory performances of fluorescence and hyperspectral 

indices 

Table 4-4 shows the discriminatory performance of the ten fluorescence indices in 

discriminating between the with- and without-fungicide treatments. Only few indices performed 

acceptable (c ≥ 0.7) discrimination for each variety on different sampling dates. 
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Table 4-4: The c statistic showing the performance of fluorescence indices in discriminating 
between the with- and without-fungicide treatments (bold font highlights c-values that are not 
less than 0.8). 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

77 SFR_G 0.51 0.58 0.62 0.56 0.64 0.70 0.54 0.52 

 SFR_R 0.56 0.61 0.60 0.52 0.61 0.67 0.50 0.50 

 BFRR_UV 0.69 0.54 0.55 0.54 0.53 0.70 0.62 0.55 

 FER_RUV 0.53 0.56 0.51 0.47 0.53 0.73 0.53 0.51 

 FLAV 0.54 0.56 0.51 0.53 0.54 0.73 0.54 0.51 

 FER_RG 0.57 0.54 0.54 0.54 0.52 0.63 0.57 0.52 

 ANTH 0.56 0.54 0.54 0.55 0.52 0.62 0.57 0.53 

 NBI_G 0.51 0.50 0.52 0.60 0.52 0.65 0.47 0.52 

 NBI_R 0.51 0.52 0.50 0.57 0.52 0.68 0.47 0.52 

 FERARI 0.73 0.53 0.60 0.73 0.65 0.72 0.73 0.56 

83 SFR_G 0.55 0.65 0.58 0.83 0.55 0.65 0.52 0.61 

 SFR_R 0.53 0.65 0.54 0.86 0.59 0.65 0.47 0.62 

 BFRR_UV 0.52 0.57 0.62 0.81 0.58 0.67 0.72 0.59 

 FER_RUV 0.62 0.58 0.57 0.87 0.54 0.53 0.64 0.55 

 FLAV 0.63 0.58 0.57 0.87 0.55 0.53 0.64 0.55 

 FER_RG 0.72 0.55 0.60 0.67 0.55 0.64 0.56 0.54 

 ANTH 0.72 0.53 0.59 0.66 0.55 0.63 0.56 0.55 

 NBI_G 0.64 0.68 0.61 0.70 0.49 0.50 0.60 0.49 

 NBI_R 0.67 0.67 0.60 0.71 0.50 0.51 0.61 0.51 

 FERARI 0.70 0.54 0.71 0.52 0.68 0.70 0.75 0.58 

90 SFR_G 0.52 0.62 0.79 0.61 0.77 0.66 0.55 0.60 

 SFR_R 0.54 0.60 0.81 0.60 0.76 0.67 0.51 0.61 

 BFRR_UV 0.59 0.54 0.58 0.62 0.60 0.54 0.83 0.54 

 FER_RUV 0.50 0.59 0.73 0.53 0.50 0.63 0.79 0.51 

 FLAV 0.51 0.59 0.73 0.57 0.53 0.63 0.79 0.51 

 FER_RG 0.82 0.68 0.68 0.61 0.62 0.70 0.46 0.62 

 ANTH 0.81 0.68 0.67 0.60 0.62 0.71 0.48 0.62 

 NBI_G 0.58 0.66 0.54 0.64 0.60 0.47 0.78 0.54 

 NBI_R 0.53 0.66 0.56 0.62 0.61 0.55 0.78 0.53 

 FERARI 0.65 0.67 0.54 0.58 0.57 0.82 0.89 0.64 

97 SFR_G 0.63 0.54 0.65 0.55 0.63 0.67 0.69 0.61 

 SFR_R 0.64 0.52 0.65 0.54 0.66 0.68 0.69 0.62 

 BFRR_UV 0.82 0.71 0.55 0.65 0.64 0.66 0.88 0.65 

 FER_RUV 0.61 0.64 0.68 0.68 0.62 0.58 0.72 0.56 
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 FLAV 0.61 0.64 0.68 0.68 0.62 0.58 0.72 0.56 

 FER_RG 0.52 0.50 0.53 0.50 0.51 0.64 0.54 0.53 

 ANTH 0.52 0.49 0.54 0.51 0.51 0.64 0.54 0.53 

 NBI_G 0.65 0.61 0.57 0.67 0.60 0.70 0.79 0.60 

 NBI_R 0.63 0.62 0.58 0.64 0.59 0.69 0.78 0.59 

 FERARI 0.78 0.80 0.62 0.53 0.74 0.67 0.84 0.63 

104 SFR_G 0.58 0.65 0.57 0.58 0.56 0.47 0.61 0.53 

 SFR_R 0.56 0.63 0.55 0.56 0.53 0.54 0.63 0.51 

 BFRR_UV 0.79 0.54 0.52 0.57 0.61 0.69 0.63 0.61 

 FER_RUV 0.67 0.50 0.66 0.54 0.72 0.67 0.53 0.59 

 FLAV 0.67 0.50 0.65 0.50 0.72 0.67 0.55 0.59 

 FER_RG 0.65 0.55 0.49 0.54 0.60 0.70 0.67 0.57 

 ANTH 0.65 0.55 0.48 0.54 0.60 0.70 0.67 0.57 

 NBI_G 0.56 0.57 0.48 0.46 0.65 0.57 0.42 0.54 

 NBI_R 0.62 0.58 0.51 0.45 0.67 0.62 0.61 0.55 

 FERARI 0.66 0.54 0.52 0.52 0.61 0.59 0.69 0.57 

Table 4-5 shows the performance of the ten hyperspectral indices in discriminating between 

the with- and without-fungicide treatments. In most cases, reflectance indices performed significant 

discrimination (c ≥ 0.8), particularly at later stages. MCARI/TCARI performed best in early stages 

when across all varieties and yielded acceptable discrimination (c = 0.73) on the first sampling date 

(77 DAS). 

Table 4-5: The c statistic showing the performance of hyperspectral indices in discriminating 
between the with- and without-fungicide treatments (bold font and shaded background highlight 
c-values that are not less than 0.8 for each variety and for all varieties, respectively). 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

77 PSSRa 0.45 0.61 0.52 0.77 0.70 0.80 0.68 0.50 

 ZM 0.60 0.72 0.55 0.71 0.67 0.84 0.80 0.57 

 NPQI 0.76 0.62 0.72 0.69 0.67 0.79 0.82 0.68 

 PRI 0.64 0.56 0.49 0.55 0.58 0.55 0.58 0.46 

 MCARI 0.72 0.80 0.59 0.52 0.65 0.87 0.92 0.61 

 TCARI 0.65 0.68 0.52 0.54 0.69 0.84 0.83 0.53 

 OSAVI 0.72 0.56 0.54 0.63 0.54 0.68 0.45 0.52 

 MCARI/OSAVI 0.74 0.81 0.59 0.44 0.65 0.86 0.90 0.62 

 TCARI/OSAVI 0.59 0.69 0.51 0.60 0.70 0.84 0.82 0.54 

 MCARI/TCARI 0.99 0.90 0.70 0.59 0.56 0.88 0.89 0.73 

83 PSSRa 0.59 0.70 0.82 0.99 0.87 0.95 0.85 0.59 

 ZM 0.49 0.80 0.77 0.98 0.80 0.94 0.70 0.53 
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 NPQI 0.71 0.57 0.63 0.61 0.55 0.65 0.74 0.61 

 PRI 0.63 0.49 0.82 0.86 0.90 0.75 0.86 0.69 

 MCARI 0.85 0.68 0.68 0.54 0.65 0.93 0.79 0.66 

 TCARI 0.71 0.49 0.58 0.57 0.68 0.98 0.58 0.55 

 OSAVI 0.58 0.62 0.78 0.73 0.74 0.64 0.70 0.59 

 MCARI/OSAVI 0.86 0.74 0.64 0.56 0.69 0.93 0.78 0.65 

 TCARI/OSAVI 0.69 0.62 0.52 0.65 0.77 0.98 0.54 0.52 

 MCARI/TCARI 1.00 0.88 0.95 0.73 0.51 0.81 0.96 0.80 

90 PSSRa 0.82 0.51 0.98 1.00 1.00 0.73 1.00 0.77 

 ZM 0.65 0.62 0.95 1.00 0.92 0.85 1.00 0.71 

 NPQI 0.96 0.74 0.96 0.84 0.58 0.77 0.97 0.78 

 PRI 0.86 0.70 0.98 1.00 1.00 0.65 1.00 0.86 

 MCARI 1.00 0.75 0.98 0.71 0.55 0.89 0.70 0.80 

 TCARI 0.92 0.70 0.84 0.55 0.65 0.90 0.55 0.66 

 OSAVI 0.95 0.69 1.00 1.00 0.93 0.65 0.97 0.83 

 MCARI/OSAVI 0.99 0.75 0.90 0.49 0.56 0.88 0.56 0.72 

 TCARI/OSAVI 0.71 0.71 0.50 0.78 0.76 0.90 0.71 0.53 

 MCARI/TCARI 1.00 0.81 1.00 0.90 0.80 0.77 1.00 0.83 

97 PSSRa 0.82 0.85 1.00 0.95 0.93 0.97 0.99 0.88 

 ZM 0.88 0.81 1.00 1.00 0.95 0.94 1.00 0.88 

 NPQI 0.52 0.80 0.85 0.86 0.78 0.88 0.88 0.76 

 PRI 0.73 0.88 0.94 0.96 0.96 0.89 0.98 0.89 

 MCARI 0.51 0.65 0.90 0.74 1.00 0.84 0.71 0.73 

 TCARI 0.77 0.59 0.67 0.63 0.93 0.51 0.50 0.54 

 OSAVI 0.77 0.78 1.00 0.99 0.99 0.99 1.00 0.87 

 MCARI/OSAVI 0.69 0.52 0.66 0.49 0.97 0.66 0.62 0.56 

 TCARI/OSAVI 0.83 0.70 0.74 0.64 0.76 0.72 0.82 0.67 

 MCARI/TCARI 0.76 0.86 1.00 0.74 0.77 0.97 0.93 0.82 

104 PSSRa 0.77 0.93 1.00 0.99 0.86 0.98 0.96 0.90 

 ZM 0.80 0.94 1.00 1.00 0.84 0.98 0.97 0.91 

 NPQI 0.72 0.83 0.89 0.90 0.75 0.96 0.86 0.82 

 PRI 0.85 0.84 0.62 0.94 0.84 0.90 0.87 0.78 

 MCARI 0.78 0.91 1.00 0.94 0.99 0.97 0.93 0.88 

 TCARI 0.79 0.88 1.00 0.87 0.96 0.89 0.86 0.85 

 OSAVI 0.80 0.94 1.00 0.99 0.93 0.99 0.97 0.91 

 MCARI/OSAVI 0.74 0.71 0.97 0.78 0.94 0.60 0.50 0.70 

 TCARI/OSAVI 0.50 0.54 0.85 0.50 0.75 0.80 0.78 0.52 

 MCARI/TCARI 0.73 0.91 1.00 0.98 0.83 0.98 0.96 0.88 
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On the first two sampling dates (77 and 83 DAS), SFR_R and MCARI/TCARI yielded the 

highest c-value compared to other fluorescence and reflectance indices, respectively. Figure 4-3 

shows the ROC curves for the best performing fluorescence index (SFR_R) and reflectance index 

(MCARI/TCARI) on 83 DAS. MCARI/TCARI and SFR_R yielded the c-value of 0.80 and 0.62, 

respectively. 

 

Figure 4-3: ROC plot shows the performances of MCARI/TCARI and SFR_R for the 
discriminating between the with- and without-fungicide treatments at the second sampling date 
(DAS 83). The area under ROC curves is 0.80 and 0.62 for MCARI/TCARI and SFR_R, 
respectively. 

 

Figure 4-4 shows the performance of MCARI/TCARI on discriminating between the with- and 

without-fungicide treatments on each sampling date. The without-fungicide treatment yielded 

significant lower values of MCARI/TCARI than the with-fungicide treatment.  
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Figure 4-4: Box-and-whiskers plots showing the significant performance of MCARI/TCARI on 
discriminating between the with- and without-fungicide treatments. Significant (p< 0.01) 
differences between the with- and without-fungicide treatments were observed on each sampling 
date across all varieties (circle and plus signs show the means of the with- and without-fungicide 
treatments, respectively). 

4.3.3 Relationships between LCC and fluorescence and hyperspectral 

indices 

To compare the performance of different indices for estimating LCC, we divided the whole 

data into two parts: calibration data consisting of four varieties (Belana, Marthe, Scarlett and Iron) 

and validation data consisting of another three varieties (Sunshine, Barke and Bambina). 

Based on the calibration data, correlation analysis was performed to examine the associations 

between LCC and the fluorescence and reflectance indices across all sampling dates. As shown in 

Figure 4-5, all the fluorescence indices were significantly correlated with the LCC across the 

sampling dates and varieties (p < 0.0001). The BFRR_UV, SFR_R and NBI_R were the best indices 

correlating with LCC (Figure 4-5c, b and i). All reflectance indices were significantly correlated 

with LCC, with the exception of TCARI (p = 0.49, Figure 4-5p) and MCARI/OSAVI (p = 0.50, 

Figure 4-5r). 
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Figure 4-5: Scatter plots showing the relationships between LCC with (a-j) the ten 
fluorescence indices and (k-t) ten reflectance indices used in this study for the calibration data 
set. 

4.3.4 Estimation of LCC 

4.3.4.1 Polynomial Regression Model 

Based on the trend of scatter points, second order polynomial regression was used to fit 

regression models for the three best fluorescence indices (Figure 4-6a-c) and three best 

reflectance indices (Figure 4-6d-f). The validation data set was used to examine the performance of 

the six indices in predicting LCC. Table 4-6 shows the results of the model calibration and 

validation for each index.

2 3 4 5

0.5

1

1.5

2
x 10

4

r  = 0.61
p < .0001

a

SFR_G

LC
C

 (
g

/g
)

2 4 6

r  = 0.67
p < .0001

b

SFR_R
0 1 2 3

r  = -0.80
p < .0001

c

BFRR_UV
0 5 10

r  = -0.43
p < .0001

d

FER_RUV
0.5 1

r  = -0.45
p < .0001

e

FLAV

1.5 2 2.5 3

0.5

1

1.5

2
x 10

4

r  = -0.66
p < .0001

f

FER_RG

LC
C

 (
g

/g
)

0.2 0.3 0.4

r  = -0.66
p < .0001

g

ANTH
0 1 2 3

r  = 0.59
p < .0001

h

NBI_G
0 0.5 1 1.5

r  = 0.67
p < .0001

i

NBI_R
0.5 1 1.5 2

r  = -0.54
p < .0001

j

FERARI

0 50

0.5

1

1.5

2
x 10

4

r  = 0.75
p < .0001

k

PSSRa

LC
C

 (
g

/g
)

0 5 10

r  = 0.78
p < .0001

l

ZM
-0.2 -0.1 0

r  = 0.74
p < .0001

m

NPQI
-0.2 0 0.2

r  = 0.85
p < .0001

n

PRI
0 0.2 0.4

r  = 0.51
p < .0001

o

MCARI

0 0.1 0.2

0.5

1

1.5

2
x 10

4

r  = -0.06
p = 0.49

p

TCARI

LC
C

 (
g

/g
)

0 0.5 1

r  = 0.85
p < .0001

q

OSAVI
0 0.2 0.4

r  = 0.06
p = 0.50

r

MCARI/OSAVI
0 0.2 0.4

r  = -0.73
p < .0001

s

TCARI/OSAVI
0.5 1 1.5 2

r  = 0.79
p < .0001

t

MCARI/TCARI



86
 

In
ve

st
ig

at
io

n 
of

 le
af

 d
is

ea
se

s 
an

d 
es

tim
at

io
n 

of
 c

hl
or

op
hy

ll 
co

nc
en

tr
at

io
n 

in
 s

ev
en

 b
ar

le
y 

va
ri

et
ie

s 
us

in
g 

flu
or

es
ce

nc
e 

an
d 

hy
pe

rs
pe

ct
ra

l i
nd

ic
es

 

C
H

A
P

T
E

R
 4

 

Fi
gu

re
 4

-6
: 

Fi
tt

in
g 

se
co

nd
 o

rd
er

 p
ol

yn
om

ia
l r

eg
re

ss
io

n 
m

od
el

s 
to

 t
he

 c
al

ib
ra

tio
n 

da
ta

 fo
r 

(a
) 

SF
R

_R
, (

b
) 

BF
R

R
_U

V
, (

c)
 N

BI
_R

, (
d

) 
Z

M
, (

e)
 P

R
I a

nd
 (

f)
 

O
SA

V
I a

nd
 v

al
id

at
in

g 
ea

ch
 o

f t
he

 in
di

ce
s 

fo
r 

pr
ed

ic
tin

g 
LC

C
 u

si
ng

 t
he

 in
de

pe
nd

en
t 

va
lid

at
io

n 
da

ta
. 

1
2

3
4

5
6

0

0.
51

1.
52

x 
10

4

S
F

R
_R

LCC (g/g)

 

a

M
od

el

F
it

95
%

 C
I

V
al

id
at

io
n

0
0.

5
1

1.
5

2
2.

5
B

F
R

R
_U

V

 

b
M

od
el

F
it

95
%

 C
I

V
al

id
at

io
n

0
0.

5
1

1.
5

N
B

I_
R

 

c

M
od

el

F
it

95
%

 C
I

V
al

id
at

io
n

0
2

4
6

8
0

0.
51

1.
52

x 
10

4

ZM

LCC (g/g)

 

d

M
od

el

F
it

95
%

 C
I

V
al

id
at

io
n

-0
.1

5
-0

.1
-0

.0
5

0
0.

05
P

R
I

 

e

M
od

el

F
it

95
%

 C
I

V
al

id
at

io
n

0.
2

0.
4

0.
6

0.
8

1
O

S
A

V
I

 

f
M

od
el

F
it

95
%

 C
I

V
al

id
at

io
n



Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and 
hyperspectral indices 

CHAPTER 4 

87 

 

 

For the calibration data set, SFR_R, BFRR_UV and NBI_R accounted for 57%, 73% and 52% of 

the variation in LCC, respectively (Table 4-6). ZM, PRI and OSAVI accounted for 74%, 75% and 

72% of the variation in LCC, respectively.  

For the validation data set, SFR_R, BFRR_UV and NBI_R models yielded the R2 of 0.46, 0.72 

and 0.42, respectively. ZM, PRI and OSAVI models yielded the R2 of 0.76, 0.75 and 0.79, 

respectively. Figure 4-7 shows the comparison between the measured and predicted values of LCC 

using each of these six indices. BFRR_UV was the best fluorescence index for predicting LCC 

among the fluorescence indices (Figure 4-7b). OSAVI was the best reflectance index for predicting 

LCC among the reflectance indices (Figure 4-7f). 

Table 4-6: Results of LCC estimations in calibration and validation data sets using SFR_R, 
BFRR_UV, NBI_R, ZM, PRI, OSAVI, partial least squares regression (PLSR) and support vector 
regression (SVR) (RMSEc and RMSEv represent root mean square errors for calibration and 
validation, respectively). 

Model Descriptions 

Calibration Validation 

R2 RMSEc (µg/g) R2 RMSEv (µg/g) 

SFR_R Polynomial 0.57 1927.3 0.46 1863.8 

BFRR_UV Polynomial 0.73 1524.0 0.72 1376.3 

NBI_R Polynomial 0.52 2040.6 0.42 1952.3 

ZM Polynomial 0.74 1500.9 0.76 1283.5 

PRI Polynomial 0.75 1471.8 0.75 1319.5 

OSAVI Polynomial 0.72 1549.0 0.79 1155.5 

PLSR 6 Factors 0.84 1188.1 0.81 1111.0 

SVR RBF kernel 0.86 1094.9 0.84 1021.9 
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4.3.4.2 PLSR and SVR models 

Although fluorescence indices showed acceptable results, SFR_R and NBI_R still failed to 

account for a large portion (R2 < 0.5) of the variation in LCC (Table 4-6). Therefore, multivariate 

regression methods were performed to improve the accuracy in estimating LCC using 

fluorescence signals. 

PLSR and SVR models were constructed using all the available fluorescence signals/indices. 

They explained 84% and 86% of the variation in LCC of calibration data, respectively (Table 4-6). 

For the validation data, PLSR and SVR yielded R2 of 0.81 and 0.84, respectively. Figure 4-8 shows 

that the consistencies between the measured and predicted values of LCC were very high and 

close to the 1:1 line. SVR slightly outperformed PLSR model for predicting LCC in the calibration 

and validation data sets. PLSR and SVR models were superior to the fluorescence and reflectance 

indices (Table 4-6). 

 

Figure 4-8: Measured-by-predicted values of LCC showing the validation results of (a) PLSR 
model and (b) SVR model in predicting the LCC of the validation data set. Solid and dashed lines 
show the best linear fit and 1:1 lines, respectively. 
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responding to diseases that were mild in this study. Some of the fluorescence indices (recorded on 

detached leaves) could distinguish between the with- and without-fungicide treatments on the first 

two sampling dates for some varieties individually, suggesting that fluorescence indices may 

observe chlorophyll functioning changes that precede significant losses of LCC (Zarco-Tejada et al., 
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2000). Fluorescence indices did not show consistent performance for different varieties on 

different dates (Table 4-4), which is due not only to the effect of phenological development 

(Delalieux et al., 2009b) but also to variety variations and the mild disease symptoms. Reflectance 

indices generally showed good performance for distinguishing between the with- and 

without-fungicide plots (Tables 4-4 and 4-5). The difference might be related not only to the 

sensitivity of different indices but also to the measuring methods: while the fluorescence 

measurement was performed on individual leaves, the reflectance was done from the canopy and 

could have detected the infections in the leaves of lower layers. 

MCARI/TCARI, which is the combination of the Modified Chlorophyll Absorption in 

Reflectance Index (MCARI) (Daughtry et al., 2000) and the Transformed Chlorophyll Absorption in 

Reflectance Index (TCARI) (Haboudane et al., 2002), showed promising performance for 

discrimination and differentiation between the with- and without-fungicide treatments (Table 4-5). 

MCARI was developed for minimizing effects of non-photosynthetic materials (Daughtry et al., 

2000), based on which TCARI was proposed to counteract the effect of soil background on 

MCARI (Haboudane et al., 2002). Since diseases affect the absorbed photosynthetically active 

radiation and thus the radiation use efficiency by leaves, MCARI/TCARI is reasonably expected to 

detect physiological changes due to diseases, as well as the natural senescence of plant materials. 

The plants of without-fungicide treatment are also expected to accelerate the senescence process 

compared to the with-fungicide treatment. 

BFRR_UV, as a blue/far-red fluorescence ratio (BF_UV/FRF_UV, Table 4-1) is considered as a 

robust indicator of plant stresses (Lichtenthaler & Miehé, 1997), however provided excellent (c ≥ 

0.8) discrimination for only one variety (Bambina) on the third and fourth sampling dates (90 and 97 

DAS) (Table 4-4). Again, this might be due to that fluorescence measurements were performed on 

individual leaves rather than the canopy level, as well as for other fluorescence indices. 

4.4.2 Estimation of LCC 

Several studies have consistently shown that RF/FRF is a good inverse indicator of the 

chlorophyll content (Buschmann, 2007; Lichtenthaler et al., 2005; Ounis et al., 2001). However, our 

results show that BF/FRF (BFRR_UV) yielded the highest correlation with LCC (Figure 4-5c), 

suggesting that the BF/FRF (BFRR_UV) can serve as an indicator of the leaf chlorophyll. Similarly, 

Heisel et al. (1996) found that the BF/FRF (F440/F740) and BF/RF (F440/F690) were more sensitive 

to the growth conditions than the most frequently used chlorophyll fluorescence ratio RF/FRF 

(F690/F740).  

SFR_G and SFR_R, the FRF/RF ratios that are suggested as chlorophyll indicators by Gitelson et 

al. (1999), were positively correlated to LCC (Figure 4-6a and b) but yielded lower correlation 



Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and 
hyperspectral indices 

CHAPTER 4 

91 

 

 

coefficients as compared to BFRR_UV. This is probably due to (i) different varieties were served as 

model calibration and validation data sets, (ii) same amount of N fertilizer for each variety. The 

given conditions could have caused the inconsistency with the previous studies (Lejealle et al., 2010; 

Zhang et al., 2012). On the other hand, results are consistent to some degree with previous study 

that the reflectance indices comprised of blue-green and far-red wavelengths are efficient for 

estimating chlorophyll when across barley varieties (Yu et al., 2012). Thus, results reveal that the 

blue to far-red fluorescence ratio (BF/FRF) might be more useful for modeling LCC across crop 

varieties. Far-red fluorescence excitation ratios FER_RG and ANTH were also closely related to 

LCC, which suggests the potential for simultaneously monitoring both chlorophylls and 

anthocynins using chlorophyll fluorescence (Agati et al., 2005).  

PLS is known as an efficient tool to solve the collinear problems of multivariate statistical 

analysis (Hansen & Schjoerring, 2003; Wold et al., 2001a). Apparently, the fluorescence indices are 

collinear since the fluorescence ratios are all derived from the measured fluorescence signals 

(Table 4-1). Results show that PLSR model provided higher prediction accuracy as compared to the 

best fluorescence index BFRR_UV (Table 4-6). Generally, calibration data is expected to have the 

minimum in predicted residual sum of squares (PRESS). However, a model with fewer factors is 

always preferred to alleviate the risk of over-fitting. Therefor, 6 factors were extracted for 

implementing the PLSR model because it satisfied not only the requirement of minimizing PRESS, 

but also the necessity of statistical tests for none significant increase in the PRESS (van der Voet, 

1994). 

SVM has theoretically the advantage for high dimensional data. Similar with previous study 

(Ben Ghozlen et al., 2010), nonlinear problems of fluorescence indices also occurred in this study 

(Figure 4-6). However, it is critical to determine the proper kernel function in order to produce a 

good performance and also weaken the complexity of model selection. In this study, the RBF 

kernel was preferred because RBF kernel outperformed linear and polynomial kernels (data not 

shown). In addition, RBF kernel not only can handle the case when the relations between dependent 

variables and predictors are nonlinear but also has fewer numerical difficulties (Hsu et al., 2003). 

It is difficult to make a fair comparison between the SVM and the PLS methods. There are 

more factors and parameters to be carefully considered for the SVM and PLS models as compared 

to a simple regression method. In this study, SVR model only slightly outperformed PLSR model 

(Table 4-6 and Figure 4-8). Although the consistent result has also been addressed in other studies 

(Borin et al., 2006; Thissen et al., 2004; Yu et al., 2008), this does not mean that SVR is always the 

best choice because SVR optimization is relatively slow and complicated compared to PLSR 
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(Thissen et al., 2004). Overall, SVR and PLSR both seem to be powerful to improve the use of 

fluorescence signals in estimating LCC. 

The relative error of estimation was about 10% for PLSR and SVR, which is low from the 

practical point of view. The polynomial models using the fluorescence index BFRR_UV was about 

13%, which is applicable in practices. However, the multivariate models such as PLS and SVM might 

be more reliable for future scenarios, where which index is the best choice remains to be studied 

as shown in the preceding discussion. As the “full spectrum” methods, PLS and SVM not only can 

deal efficiently with the strong multi-collinearity problem but also consider covariance to the 

model response/dependent variable(s) (Atzberger et al., 2010) when extracting regression factors 

and support vectors, respectively. Therefore, they are expected to be better adapted to deal with 

potential confounding factors compared to a simple index-based approach (Atzberger et al., 2010).  

 Conclusions 4.5

There is a time lag between the occurrence of barley diseases and significant losses of leaf 

chlorophyll concentration (LCC). Hyperspectral reflectance indices showed good discrimination 

between healthy and slightly-diseased barley plants that precede significant losses in LCC. A 

combination of MCARI and TCARI (MCARI/TCARI) showed a promising performance on early 

detecting diseases across seven barley varieties. Reflectance indices generally showed good 

performance on predicting LCC (R2 = 0.75 - 0.79). The blue to far-red fluorescence ratio, 

BFRR_UV, also performed well for predicting LCC (R2 = 0.72) compared to other fluorescence 

indices. However, the BFRR_UV vs. LCC relationship was nonlinear, which still constrained the 

accuracy for LCC estimation. PLSR and SVR models overcome the nonlinear problem, significantly 

increased the accuracy in estimating LCC (R2 > 0.81). 

The possible shortage of this study is that fluorescence signals were measured on individual 

leaves while hyperspectral reflectance were measured on canopy level, thus a meaningful 

comparison between the fluorescence and reflectance indices is not possible. Future studies should 

consider performing canopy level fluorescence and hyperspectral measurements for cross 

comparisons, for example mounting the fluorescence sensor on a wheeled platform (Lejealle et al., 

2010).  

Further studies on different species under different environmental conditions remain to be 

undertaken to explore the full potential of fluorescence and hyperspectral remote sensing for 

detecting and identifying crop diseases, which would facilitate the fungicide-specific management in 

precision agriculture. 
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Abstract 

Monitoring in situ chlorophyll (Chl) content in agricultural crop leaves is of great importance 

for stress detection, nutritional state diagnosis, yield prediction and studying the mechanisms of 

plant and environment interaction. Numerous spectral indices have been developed for 

chlorophyll estimation from leaf- and canopy-level reflectance. However, in most cases, these 

indices are negatively affected by variations in canopy structure and soil background. The 

objective of this study was to develop spectral indices that can reduce the effects of varied 

canopy structure and growth stages for the estimation of leaf Chl. Hyperspectral reflectance data 

was obtained through simulation by a radiative transfer model, PROSAIL, and measurements 

from canopies of barley comprising different cultivars across growth stages using 

spectroradiometers. We applied a comprehensive band-optimization algorithm to explore five 

types of spectral indices: reflectance difference (RD), reflectance ratio (RR), normalized 

reflectance difference (NRD), difference of reflectance ratio (DRR) and ratio of reflectance 

difference (RRD). Indirectly using the multiple scatter correction (MSC) theory, we hypothesized 

that RRD can eliminate adverse effects of soil background, canopy structure and multiple 

scattering. Published indices and multivariate models such as optimum multiple band regression 

(OMBR), partial least squares regression (PLSR) and support vector machines for regression (SVR) 

were also employed. Results showed that the ratio of reflectance difference index (RRDI) 

optimized for simulated data significantly improved the correlation with Chl (R2 = 0.98, p < 

0.0001) and was insensitive to LAI variations (1-8), compared to widely used indices such as 

MCARI/OSAVI (R2 = 0.64, p < 0.0001) and TCARI/OSAVI (R2 = 0.74, p < 0.0001). The RRDI 

optimized for barley explained 76% of the variation in Chl and outperformed multivariate models. 

However, the accuracy decreased when employing the indices for individual growth stages (R2 < 

0.59). Accordingly, RRDIs optimized for open and closed canopies improved the estimations of 

Chl for individual stages before and after canopy closure, respectively, with R2 of 0.65 (p < 0.0001) 

and 0.78 (p < 0.0001). This study shows that RRDI can efficiently eliminate the effects of 

structural properties on canopy reflectance response to canopy biochemistry. 
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 Introduction 5.1

The chlorophylls, chlorophyll a and b, are the most important antenna pigments of 

photosynthesis, enabling plants to power the biosphere via the oxygenic conversion of light 

energy to chemical energy (Richardson et al., 2002). From the perspective of precision agriculture, 

leaf chlorophyll content is of significant interest because chlorophyll content can be directly 

related to plant stresses and senescence (Gitelson & Merzlyak, 1994a; Merzlyak et al., 1999; 

Peñuelas & Filella, 1998) and leaf nitrogen (N) status (Cartelat et al., 2005; Moran et al., 2000). For 

example, plant stresses that involve N or water deficiencies often lead to adverse effects on the 

amount of chlorophyll plants produce (Schlemmer et al., 2005). Therefore, determination of 

chlorophyll content can provide important information about plant stress, nutritional state and 

relationships between plants and their environment, and consequently will be of great importance 

in agricultural field management (Zarco-Tejada et al., 2004). 

Wet chemical methods have long been used as a standard technique for chlorophyll 

determination, although it is relatively time consuming and requires destructive sampling, and 

thus does not permit measurement of changes in pigments over time for the same leaves. The use 

of portable chlorophyll meters (e.g., SPAD) has been proposed as a non-destructive technique for 

leaf chlorophyll determination and is widely used in agricultural studies (Cartelat et al., 2005; Filella 

et al., 1995; Martínez & Guiamet, 2004; Miao et al., 2009; Steele et al., 2008; Takebe et al., 1990). 

However, most commercially available chlorophyll meters only measure a small leaf spot (point 

measurement) and might lose sensitivity at high chlorophyll levels (Ciganda et al., 2009; Steele et al., 

2008). Therefore, both wet chemical and chlorophyll meter methods present problems for 

achieving the purpose of in-time measurement of chlorophyll on regional and global scales.  

Advances in remote sensing technology offer the potential for linking remote sensing 

measurements to leaf and canopy biochemical characteristics in a reliable and operational way on 

a large scale. Spectral indices are considered as quantitative measurements indicating the vigor of 

vegetation (Bannari et al., 1995). For decades, hyperspectral remote sensing applications 

described in the literature succeed in deriving the relationships between leaf-level reflectance and 

crop variables of interest (e.g., chlorophyll, water and N) by identifying spectral indices (Blackburn, 

1998a; Datt, 1998; Gitelson et al., 2003; 2006; Peñuelas et al., 1995a; Sims & Gamon, 2002). 

Although spectral indices derived from leaf-level hyperspectral measurements in the laboratory 

have shown the strong link to chlorophyll, the relationships are frequently lower in precision and 

accuracy when these indices are used for canopy-level studies (Asner & Martin, 2008; Zarco-Tejada 

et al., 2004). For agricultural canopies at early growth stages, soil background and variations in 

canopy structure have a large effect on canopy reflectance signals (Daughtry et al., 2000; 
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Haboudane et al., 2002; Zarco-Tejada et al., 2005). Existing chlorophyll indices developed from leaf 

level or closed canopies might not be appropriate for open canopies at early growth stages. 

However, the crop vegetative growth phase accompanying with lower LAI is the critical stage for 

fertilization for high yield. Therefore, understanding the capability of existing spectral indices for 

estimating chlorophyll of agricultural crops at early growth stages is essential for the operational 

utility of remote sensing in precision agriculture, which will also benefit the design of new 

vegetation indices in such a context. 

Reflectance signals are responsive to both structural and biochemical properties and often 

respond inseparably to biochemical and structural variations in a given ecosystem due to 

co-variation (Haboudane et al., 2008; Jacquemoud et al., 2009; Ustin et al., 2009), which complicates 

the remote retrieval of biochemical information when structural properties vary. Previous studies 

have shown special efforts on developing pigment sensitive indices at leaf and canopy levels, 

respectively. At the leaf level, multiple scattering induced by leaf internal and surface structures 

interferes with the retrieval of leaf chemistry, for which special efforts have been put into 

developing leaf pigment indices that can eliminate the leaf structural effects. Among those, 

Peñuelas et al. (1995a) developed the structure insensitive pigment index (SIPI) that minimizes the 

confounding effects of leaf surface and internal structure for the estimation of the ratio of 

carotenoids and chlorophyll a concentrations. Datt (1998; 1999a) used a semi-empirical method, 

multiple scatter correction (MSC), to eliminate multiple scattering effects, and consequently 

improved the estimation of chlorophyll. Similarly, incorporating an additional reference band into 

indices such as reflectance simple ratio or normalized difference vegetation index (NDVI), also 

allows the elimination of leaf structure effect, and improves the estimation of leaf chlorophyll 

(Gitelson et al., 2003; Sims & Gamon, 2002). In contrast, at the canopy level, special efforts have 

been put into developing indices by incorporating the soil line concept (Huete, 1988; Rondeaux et 

al., 1996) and taking into account non-photosynthesis materials (Daughtry et al., 2000; Kim et al., 

1994). These indices aim to minimize effects of soil background and non-photosynthesis materials, 

e.g., modified chlorophyll absorption in reflectance index (MCARI) developed by Daughtry et al. 

(2000) and its variant form as transformed chlorophyll absorption in reflectance index (TCARI) 

proposed by Haboudane et al. (2002). Further, Haboudane et al. (2002; 2008) combined the 

soil-line index OSAVI (Rondeaux et al., 1996) with TCARI to form TCARI/OSAVI that aims to 

increase the sensitivity to chlorophyll and resist LAI variations. Despite significant improvements 

on the estimation of pigments, soil-line and combined indices are still sensitive to some degree to 

soil background and LAI variations as indicated in recent studies, particularly when LAI is lower 

than 3 (Haboudane et al., 2008; Zarco-Tejada et al., 2005). Notably, the two focus areas for 

developing indices at both leaf and canopy levels are in consensus at the one point that aims to 
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maximize the sensitivity to biochemistry while minimizing structural effects. Insights from these 

studies, at the leaf level that eliminate within-leaf multiple scattering effects and at the canopy 

level that minimizes effects of soil background and LAI variations, might be integrated to design 

indices that are conceptually insensitive to the confounding effects of soil background, canopy 

3-D structure and multiple scattering within leaves as well as between multiple leaf layers, from 

canopy opening to canopy closure (Baret et al., 1992; Jacquemoud et al., 2009; Ustin et al., 2009). 

Given the essential demand for simplicity when applying remote sensing in agriculture, such a 

simple approach that can eliminate confounding effects of those structural properties have great 

practical merit. Thus, whether existing indices can efficiently reduce the structural effects, and to 

what extent those effects can be eliminated by designing a spectral index remains to be further 

studied. 

Previous studies have made progress in hyperspectral remote sensing of leaf chlorophyll and 

N in agricultural crops (Daughtry et al., 2000; Haboudane et al., 2002; 2004; Hansen & Schjoerring, 

2003; Inoue et al., 2012; Mutanga et al., 2003) and many of them were performed on the canopy 

level. However, these studies were mainly undertaken in controlled conditions of varied N rates 

that are very different from farmer field management conditions and environments. It is evident 

that, unlike that for N rate experiments, farmers must not deliberately apply varied N rates in 

their fields, especially an obviously deficient rate like that in many studies. Spectral indices 

generally can account for a large portion of the variation in chlorophyll for leaves having large 

chlorophyll variations owing to distinct N gradients. However, considering that the aim of 

precision agriculture is to detect and minimize subtle variations within the field, these indices 

might not be able to account for the same portion of the variation in chlorophyll for the leaves 

having small chlorophyll variations for which N is evenly applied. Recently, Haboudane et al. (2008) 

found that wheat leaf chlorophyll with a narrow range (41.92–69.68 μg/cm2) was not able to be 

accurately accounted for by the spectral index TCARI/OSAVI, yielding a R2 of 0.29, whereas the 

R2 was 0.73 for corn leaf chlorophyll with a wide range (24.00–63.78 μg/cm2). Hence, here is not 

a critique on remote sensing studies that employ N rate experiments. On the contrary, this 

uncertainty leads to an important yet unanswered question that under more natural conditions 

without artificial nutrient deficiency levels, how can leaf chlorophyll be remotely estimated as 

consistently well as that in N rate experiments by canopy reflectance? It is particularly critical in 

the context of varied cultivars and different growth stages that generate changing canopy 

structure and ground coverage conditions, which might mask to some degree the spectral 

differences responding to subtle variation in canopy biochemistry. 

Our objective was to develop spectral indices for the estimation of leaf chlorophyll that are 

insensitive to variations of canopy structure and soil background as well as multiple scattering 
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using canopy-level hyperspectral data. In this paper, new and published indices (Table 5-1) are 

examined using simulated data, by radiative transfer models, and field measured data at different 

growth stages. The performances of spectral indices in predicting chlorophyll are also compared 

with those commonly used multivariate techniques, i.e., multiple linear regression (MLR), partial 

least squares (PLS) and support vector machines (SVM).  

 Materials and methods 5.2

We describe in this section the datasets (barley and synthetic), methods for data collection/ 

simulation and analysis, published spectral indices (Table 5-1), hypothesis and method for 

optimizing spectral indices and, the multivariate regressions used in this study.  

5.2.1 Barley dataset 

5.2.1.1 Study site and experimental design 

The study area of barley experiment is located at the Institute of Crop Science and Resource 

Conservation (INRES-Horticultural Science, latitude 50.72999 º, longitude 7.0754 º; 70 m.a.s.l.; 

sandy loam soil; soil Nmin value of 20 kg N ha-1; annual average precipitation of 669 mm, average 

temperature of 10.3 °C), University of Bonn, Germany. The field experiment with seven 

commercial barley (Hordeum vulgare L.) cultivars (Belana, Marthe, Scarlett, Iron, Sunshine, Barke 

and Bambina) was conducted from March to July 2010. These cultivars have significantly different 

leaf geometrical characteristics, as well as canopy structure. The experiment was organized as a 

completely randomized block design with six replications and a plot size of 6 m2 (1.5 x 4 m) for 

each cultivar. All barley cultivars were sown with a density of 320 seeds per square meter. All 

plots were fertilized directly after sowing with ammonium nitrate (NH4-N) at the same rate of 

100 kg N ha-1. 

5.2.1.2 Canopy spectral measurements 

Canopy reflectance was measured with QualitySpec® Pro and FieldSpec® 3 spectroradiometers 

(Analytical Spectral Devices Inc., Boulder, CO, USA). QualitySpec® Pro and FieldSpec® 3 were 

used for the 1st to 4th measuring dates and the 5th to 7th measuring dates, respectively. The 

measurements were always carried out between 10:00 and 14:00 local time (GMT+1) under clear 

sky conditions throughout the growing season, with a distance of 1 m above the canopy and a 

field-of-view (FOV) of 25°. 
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The QualitySpec® Pro spectroradiometer was configured with a spectral range of 350-1800 

nm and a sampling interval of 1.4 nm for 350-1050 nm and 2 nm for 1000-1800 nm with a 

resolution of 3 nm and 10 nm at 700 nm and 1400 nm, respectively. Slightly different, the 

FieldSpec® 3 spectroradiometer was configured with a spectral range for 350 nm to 2500 nm, a 

sampling interval of 1.4 nm for 350-1050 nm and 2 nm for 1000-2500 nm, and with a spectral 

resolution of 3 nm at 700 nm and 10 nm at 1400 and 2100 nm. Both instruments automatically 

provide reflectance data with complete wavelength-channels (1 nm steps) using a cubic 

interpolation method (Analytical Spectral Devices Inc.). Prior to barley canopy reflectance 

measurements, a white Spectralon (Labsphere, Inc.) reference panel was used for baseline (white 

reference) measurement, allowing the ASD software to adjust instrument gain for optimal 

performance and also to determine dark-offsets for automatic subtraction from reflectance 

calculations (Analytical Spectral Devices Inc.). White references were collected approximately 

every 15 minutes. Six locations per plot were measured and then averaged as a mean spectrum 

for each plot. In this study, we used reflectance data in the wavelength range of 350-900 nm with 

a re-sampling interval of 5 nm (i.e., 350, 355, 360, …, through to 900 nm). 

5.2.1.3 Leaf chlorophyll measurements 

From the spectroradiometer-scanned locations of each plot, ten intact “newest fully 

expanded leaves” (i.e., flag leaves when flag leaf was fully expanded) were randomly collected on 

18 May, 27 May, 9 June (since then flag leaf was sampled), 15 June, 22 June, 29 June and 6 July, at 

the BBCH growth stages (Lancashire et al., 1991) 32, 39, 51, 55, 61, 73, and 83, respectively, and 

were lyophilized immediately after collection, then grounded and stored in the dark at room 

temperature. The 1st to 7th measuring dates were in those growth stages as follows: stem 

elongation (BBCH 32, 39), beginning and middle of heading (BBCH 51, 55) that has the highest 

degree of canopy closure, beginning of flowering (BBCH 61), early milk (BBCH 73) and early 

dough (BBCH 83) stages, respectively. The newest fully expanded leaf/ flag leaf, is the most 

powerful green tissue that captures light and contributes significantly to grain filling, thus it is 

critically important in determining grain yield and quality. Also, the newest fully expanded leaf is 

more likely to represent plant nutrient status, since N can be remobilized from old leaves to new 

leaves (Lemaire et al., 2008). Therefore, the newest fully expanded leaves were sampled at each 

measuring date. 

Chlorophyll content for each plot was extracted from 50 mg lyophilized material of the ten 

leaves with 5 ml methanol and filled up to 25 ml. After extraction, the absorbance of extracts was 

measured with a UV-VIS spectrophotometer (Perkin-Elmer, Lambda 5, Massachusetts, USA) and 
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then chlorophyll was determined and presented on a dry biomass basis as the total chlorophyll 

concentration (Chl, μg/g). 

For further analyses, we divided the barley dataset into two subsets that comprise 

completely different barley cultivars: the barley #1 subset of four cultivars (Belana, Marthe, 

Scarlett and Iron, n=168) and the barley #2 subset of three cultivars (Sunshine, Barke and 

Bambina, n=126). 

5.2.2 Synthetic dataset 

A synthetic dataset was generated by forward running the PROSAIL model (Jacquemoud et al., 

2009), which is a coupling of the leaf radiative transfer model PROSPECT (Jacquemoud & Baret, 

1990) and the canopy model SAIL (Verhoef, 1984). PROSAIL simulates canopy reflectance for a 

wavelength range of 400-2500 nm with 1 nm steps. In this study, the synthetic dataset was 

simulated using the latest version of the PROSAIL model, PROSPECT-5 (Feret et al., 2008) + 

4SAIL (Verhoef et al., 2007), with a range of input parameters as listed in Table 5-2. Finally, 43200 

spectra were simulated by covering all possible combinations of the input parameters. Similarly to 

the measured spectra, simulated reflectance data ranging from 400 nm to 900 nm with a 

re-sampling interval of 5 nm were used for further analyses. 

Table 5-2: PROSAIL model parameters that were used in this study to simulate the 43200 
canopy reflectance spectra for the synthetic dataset (other six fixed parameters are: solar zenith 
angle=30°; view zenith angle=0°; view azimuth angle=0°; spherical leaf angel; hot spot size=0.15; 
fraction of diffuse incident radiation is 0.23 for clear sky based on François et al. (2002)). 

Parameter Minimum Maximum Step 

Cab (µg/cm²) 10 100 10 

N 1.1 1.9 0.2 

EWT (cm) 0.004 0.024 0.004 

LMA (g/cm²) 0.002 0.012 0.002 

LAI (m²/m²) 1 8 1 

Psoil 0 1 0.5 

Cab, leaf chlorophyll content 
N, leaf structure parameter 
EWT, equivalent water thickness 
LMA, leaf mass per area 
LAI, leaf area index 
Psoil, soil moisture parameter 

5.2.3 Data analysis 

In this section we present the descriptive statistics analysis to show the variation in 

chlorophyll (hereafter referred to as Chl followed by the unit for each dataset) in different 
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growth stages (Table 5-3), and describe the theoretical and hypothetical basis for developing 

spectral indices that are conceptually insensitive to effects of canopy structure, soil background 

and multiple scattering. Descriptions of multivariate methods are also included. 

Table 5-3: Descriptive statistics for leaf chlorophyll (Chl) of barley at each growth stage 
indicated with BBCH codes, and for the synthetic dataset simulated by the PROSAIL model using 
the input parameters described in Table 5-2. 

Dataset BBCH n Minimum Maximum Range Mean SD CV 

Barley: Chl (µg/g) All 294 2512.23 15128.02 12615.79 10862.51 2541.52 23.40 

 32 42 11133.64 14563.31 3429.66 13077.71 774.29 5.92 

 39 42 9822.90 11929.36 2106.46 11058.69 516.26 4.67 

 51 42 10191.50 15128.02 4936.52 12326.47 1228.61 9.97 

 55 42 9848.23 14365.16 4516.93 12296.85 1077.00 8.76 

 61 42 8208.50 13859.44 5650.94 11373.66 1255.45 11.04 

 73 42 5897.46 13831.37 7933.91 10052.99 1585.66 15.77 

 83 42 2512.23 10899.70 8387.47 5903.91 1736.62 29.41 

  

Synthetic: Chl (µg/cm2) All 43200 10.00 100.00 90.00 55.00 28.72 52.22 

n, number of samples/simulations 
SD, standard deviation 
CV, coefficient of variation 

5.2.3.1 Theoretical background and hypothesis  

The theory of the multiple scatter correction (MSC, also called multiple signal correction) 

(Geladi et al., 1985; Martens & Naes, 1989), originally developed for NIR data, is a widely used 

transformation method that compensates for additive and/or multiplicative scatter effects in 

spectral data. The MSC method assumes that the light scatter and the chemical information can 

be mathematically differentiated, and the scatter for each sample is considered as a linear 

deviation from an ideal or a “standard” sample (Isaksson & Kowalski, 1993). For each individual 

spectrum, or sample, the MSC model can be expressed as, 

  ( 1,..., ; 1,..., )ml m m l mlx a b x e m N l W       (5-1) 

where m  is the measured sample number and l  is the wavelength number. The constant ma  

and mb  respectively represent the additive and multiplicative effects for the sample m . The lx  

is the “standard” value at l  wavelength and, mle  is the residual corresponding to all other 

effects in the spectrum that cannot be modeled by an additive and multiplicative constant (Næs et 

al., 2002). After simple operations, the scatter corrected spectrum will have the general form, 
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 , ( ) /ml corrected ml m mx x a b    (5-2) 

i.e., most of the variation due to the scatter is eliminated from the spectra, where ,ml correctedx  

then remains only the variation representing the chemical information. It must be noted that, 

most often, the mean spectra are used as the “standard” values by averaging over the samples at 

the l th wavelength as follows, 

 
1

1 N

l ml
m

x x
N 

    (5-3) 

However, in reality, the ideally “standard” sample does not exist, and hence that MSC would 

deliver different results even for the same spectrum if the MSC model was calibrated using 

different datasets (Datt, 1999a; Maleki et al., 2007). 

Thus, in this study, we would neither perform the transformation of Eq. (5-2) nor use the 

mean spectra as Eq. (5-3) to correct the canopy multiple scattering, whereas it is obvious from 

Eqs. (5-1) and (5-2) that a formation of a ratio of reflectance difference (RRD) as Eq. (5-4) will 

also eliminate the scatter factors a and b, without knowing the exact values of a and b, and thus it 

has the advantage of being independent of the lx  of calibration datasets, 

 , ,

, ,

=   ( ; )j corrected k correctedj k

i h i corrected h corrected

R RR R
RRD h i j k

R R R R


  

 
  (5-4) 

where h, i, j, and k represent random wavelength bands over the full spectral range. Similarly, at 

leaf level, Peñuelas et al. (1995a) proposed the structure insensitive pigment index SIPI= 

(R800-R445)/ (R800-R680) as a function of the relative composition of carotenoid and chlorophyll a, 

which used the same formula as Eq. (5-4). Also, a 3-band index (R850-R710)/ (R850-R680) was 

developed by Datt (1999a; 1999b) for predicting leaf chlorophyll content, which provides equally 

a best performance in both scatter corrected and uncorrected spectra measuring from leaf stacks. 

Therefore, at the canopy level in this study, we hypothesized that a RRD type spectral index 

would be a better indicator of chlorophyll and is less sensitive to the confounding effects of soil 

background, canopy structure and multiple scattering. It should be noted that the RRD type 

indices proposed in previous studies employ three bands only, thus the use of four bands might 

increase the sensitivity to chlorophyll since Eq. (5-4) does not necessarily limit the use to only 

three bands. 
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5.2.3.2 Exploring the optimal indices 

With the hypothesis that RRD eliminates the confounding effects of soil background, canopy 

structure and multiple scattering, we used a “lambda-by-lambda” band-optimization (LLBO) 

algorithm increasingly used for optimization of spectral indices (Darvishzadeh et al., 2008; Hansen 

& Schjoerring, 2003; le Maire et al., 2008; Peñuelas et al., 1995a; Thenkabail et al., 2000; 2004; Yu et 

al., 2013) to determine the best band combinations for RRD type indices. To date, reflectance 

simple-ratios and NDVI-like indices are mostly used in remote sensing. Reflectance ratios were 

calculated by dividing the reflectance in a reference band insensitive to pigment content to the 

reflectance in a band highly sensitive to pigment content (Datt, 1998; Sims & Gamon, 2002), or 

vice versa, wherein NDVI subtracts rather than divides (Sims & Gamon, 2002). Similarly, to 

explore the best band combinations for RRD, we would determine first two reference bands, and 

then another two bands using the LLBO algorithm. In addition, another four types of spectra 

indices that are often used in remote sensing would likewise be studied. To distinguish the new 

NDVI-like indices from the commonly used forms of NDVI, we designated these indices as 

normalized reflectance difference index (NRDI) in this paper, and finally optimized the following 

five types of reflectance-based indices,  

1) Reflectance difference index (RDI); 

2) Reflectance ratio index (RRI); 

3) Normalized reflectance difference index (NRDI); 

4) Difference of reflectance ratio index (DRRI); 

5) Ratio of reflectance difference index (RRDI). 

Names of the five types of indices were given mathematically, and the formulae are shown in 

Table 5-1, including some previously developed indices that have analogous forms, as well as 

several combined indices in hybrid forms (Table 5-1).  
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5.2.3.3 Optimum multiple band regression (OMBR) 

The optimum multiple band regression (OMBR) model (Thenkabail et al., 2000; 2002), uses a 

piecewise band-optimized method, the maximum R2 improvement technique (SAS Institute Inc., 

2008), to select the “best” one-variable model, the “best” two-variable model, and so forth, 

which takes the form:  

 
1

N

j j
j

Y a R C


    (5-5) 

where Y is the dependent variable in the OMBR model, i.e., leaf Chl in this study; jR  is the 

reflectance at wavelength j; ja  is the coefficient for reflectance at wavelength j; C is the constant 

term. The OMBR model was run in SAS software package using the MAXR procedure (SAS 

Institute Inc.). The MAXR procedure begins by finding the one-band model that produces the 

highest R2. Then another band, the one that yields the largest increase in R2, is added. Once the 

two-band model is obtained, each of the bands in the model is compared to each band not in the 

model. This process continues comparing all possible switches until no switch can increase the R2 

and considers the switch that produces the highest R2 as the “best” two-band model. Another 

band is then added to the model, and the comparing-and-switching process is repeated to find the 

“best” three-band model, and so forth (SAS Institute Inc., 2008). It should be noted that the MAXR 

method differs from that generally referred to as the “stepwise” method in that many more 

models are evaluated with MAXR, which considers all switches before making any switch (SAS 

Institute Inc., 2008).  

5.2.3.4 Partial least squares regression (PLSR) 

The partial least squares regression (PLSR) method has the advantage that the precision of 

the model improves with an increasing number of variables and observations (Wold et al., 2001). 

The PLSR reduces full-spectrum data to a small set of independent latent variables, or factors, 

which serve as new predictors and regresses the response variables on these new predictors 

(Rosipal & Krämer, 2006). To determine the number of factors used in the PLSR model, 

leave-one-out cross validation was used to compute the predicted residual error sum of squares 

(PRESS), and the T-square test (van der Voet, 1994) was applied for testing the significance of 

incremental changes in PRESS. PLSR implemented in this study was carried out using the SAS 9.2 

software package (SAS Institute Inc.) 
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5.2.3.5 Support vector regression (SVR) 

The support vector machines (SVM) technique is a universal theory of machine learning 

developed by Vapnik (1995) originally for pattern recognition and classification (Vapnik, 1998). 

Support vector regression (SVR) is the implementation of the SVM method for regression and 

function approximation (Smola & Schölkopf, 2004). In this study, SVR models were implemented 

using the LIBSVM toolbox (Chang & Lin, 2011). 

5.2.3.6 Model accuracy 

The performances of the different spectral indices and multivariate models were evaluated 

by comparing the differences in the coefficients of determination (R2) and root mean square 

error (RMSE) in predictions. The higher the R2 and the lower the RMSE, the better the precision 

and accuracy the index or model provides. The RMSE values were calculated as follow: 

 2

1

1
ˆ( )

n

m m
m

RMSE y y
n 

    (5-6) 

where y and ŷ are the measured and the predicated values of Chl, respectively, and n is the 

number of samples. 

 Results 5.3

In the section 5.3.1, general purpose models that do not take account of the effect of growth 

stage are described. In contrast, growth stage specific models concerning the effect of growth 

stage are described in the section 5.3.2. Since the synthetic dataset includes no growth stage 

information, section 5.3.2 focuses mainly on the barley dataset. 

5.3.1 General purpose models 

For the synthetic dataset, the optimization of RRDI was an automatic routine running 

without a priori knowledge of wavelengths. The best bands i and j determined in optimizing RRI 

(Ri and Rj) were used directly for the optimization of RRDI as the link in formulae (Table 5-1) and 

computational efficiency, which also demonstrates that the results are reproducible when using 

PROSAIL simulated data. 

One might have expected the automatic routine to be consistent with the prior knowledge 

of wavelengths of field measured spectra. Hence, to verify whether the automatic routine agrees 

with a prior knowledge, we manually selected the reference bands h and k based on the prior 
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knowledge of canopy reflectance characteristics (section 5.3.1.3) for which the barley #1 dataset 

was used. 

Finally, the barley #2 dataset were used to validate the best indices determined by synthetic 

and barley #1 datasets. Multivariate methods were used as a reference for assessing the 

performances of spectral indices based on the barley (barley #1 and 2) dataset. 

5.3.1.1 Published indices 

Results of correlation and regression analyses for relationships between published indices 

(Table 5-1) and Chl for synthetic and barley #1 datasets are shown in Table 5-4. The 

performances of published indices were different for synthetic and barley #1 datasets. The best 4 

indices for synthetic dataset were REIP, TCARI, MTCI and EPI, which explained 76%, 78%, 78% 

and 80% of the variation in Chl (µg/cm2), respectively. The best 4 indices for barley #1 dataset 

were PRI, PSRI, ND705 and NDVI, which explained 69%, 70%, 70% and 73% of the variation in 

Chl (µg/g), respectively. The widely used TCARI/ OSAVI accounted for 74% of the variation in 

Chl (µg/cm2) for synthetic dataset, whereas it was not correlated significantly with Chl (µg/g) for 

barley #1 dataset (R2 = 0.003, p = 0.52). Similarly, TCARI, OSAVI, NDVI and PSRI also showed 

very large discrepancies of accuracy between synthetic and barley #1 datasets Table 5-4. 

5.3.1.2 Optimization of indices for synthetic dataset without prior 

knowledge 

The LLBO algorithm was used to determine the best band combinations for the five types of 

indices (Table 5-1). The sensitivity of different band combinations was indicated according to the 

values of R2 of Pearson Correlation. Figure 5-1 shows the lambda-by-lambda R2 contour (LLRC) 

plots for different types of indices, for which the best band combinations are shown in Table 5-5. 

As expected, the best bands for RRI and NRDI were identical due to their inherent relationships, 

NRDI= (RRI−1)/ (RRI+1) or NRDI = (1−RRI)/ (1+RRI). They explained 91% and 88% of the 

variation in Chl (µg/cm2), respectively. 
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Table 5-4: Results of regression analysis for relationships between published indices (Table 
5-1) and leaf chlorophyll (Chl). Chl is presented on the bases of area (μg/cm²) and dry mass (μg/g) 
for Synthetic and Barley #1 datasets, respectively. 

Type Index 
Synthetic  Barley #1 

R2 RMSE (μg/cm²) p-value  R2 RMSE (μg/g) p-value 

RD R800−R680 0.003 28.67 <.0001  0.39 2126.8 <.0001 
R705−R505 0.74 14.74 <.0001  0.51 1914.0 <.0001 

RR PSSRa 0.14 26.59 <.0001  0.47 1979.0 <.0001 
R750/R710 0.63 17.51 <.0001  0.52 1892.1 <.0001 
R740/R720 0.68 16.34 <.0001  0.57 1777.2 <.0001 

NRD NDVI 0.06 27.88 <.0001  0.73 1407.1 <.0001 
ND705 0.58 18.66 <.0001  0.70 1501.0 <.0001 
PRI 0.68 16.17 <.0001  0.69 1510.3 <.0001 

DRR PSRI 0.07 27.65 <.0001  0.70 1499.5 <.0001 
CIred edge 0.65 17.08 <.0001  0.40 2106.8 <.0001 
CIgreen 0.57 18.79 <.0001  0.43 2055.3 <.0001 

RRD SIPI 0.14 26.62 <.0001  0.64 1641.8 <.0001 
EPI 0.80 12.99 <.0001  0.53 1859.0 <.0001 
mSR705 0.61 17.99 <.0001  0.51 1899.3 <.0001 
MTCI 0.78 13.60 <.0001  0.47 1980.8 <.0001 

Hybrid REIP 0.76 13.99 <.0001  0.44 2043.3 <.0001 
CARI 0.72 15.14 <.0001  0.21 2423.6 <.0001 
MCARI 0.70 15.83 <.0001  0.24 2372.5 <.0001 
TCARI 0.78 13.44 <.0001  0.003 2717.2 0.52 
OSAVI 0.03 28.30 <.0001  0.67 1567.3 <.0001 
MCARI/OSAVI 0.64 17.24 <.0001  0.57 1786.6 <.0001 
TCARI /OSAVI 0.74 14.64 <.0001  0.05 2650.4 0.003 

Bold font indicates the indices yielding the highest correlations. 
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Figure 5-1: Lambda-by-lambda R2 contour plots show the sensitivity of different band 
combinations to Chl (μg/cm2) for the synthetic dataset (n= 43200). Subplots a, b and c show the 
sensitivity for RDI, RRI and NRDI, respectively. Subplots d, e and f show the sensitivity for DRRI, 
3-band RRDI and 4-band RRDI, respectively, using reference bands k at 700 nm and h at 515 nm. 
Subplots g, h and i show the sensitivity for DRRI, 3-band RRDI and 4-band RRDI, respectively, 
using reference bands k at 515 nm and h at 700 nm. The synthetic dataset was generated by 
PROSAIL simulation (Table 5-2). Color scale bars are different between subplots. 

Wavelength i (nm)

W
av

el
en

gt
h 

j (
nm

)

RDI = R
j
 - R

i

 

 

a)

400 600 800
400

500

600

700

800

900

0

0.2

0.4

0.6

0.8

Wavelength i (nm)

RRI = R
j
 / R

i

 

 

b)

400 600 800
400

500

600

700

800

900

0

0.2

0.4

0.6

0.8

Wavelength i (nm)

NRDI = (R
j
 - R

i
)/(R

j
 + R

i
)

 

 

c)

400 600 800
400

500

600

700

800

900

0

0.2

0.4

0.6

0.8

Wavelength i (nm)

W
av

el
en

gt
h 

j (
nm

)

DRRI = (R
j
 - R

k
)/ R

i
; k = 515

 

 

g)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8

Wavelength i (nm)

W
av

el
en

gt
h 

j (
nm

)

DRRI = (R
j
 - R

k
)/ R

i
; k = 700

 

 

d)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8

Wavelength i (nm)

RRDI = (R
j
 - R

k
)/(R

i
 - R

k
); k = 515

 

 

h)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8

Wavelength i (nm)

RRDI = (R
j
 - R

k
)/(R

i
 - R

h
); k = 515; h = 700

 

 

i)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8

Wavelength i (nm)

RRDI = (R
j
 - R

k
)/(R

i
 - R

k
); k = 700

 

 

e)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8

Wavelength i (nm)

RRDI = (R
j
 - R

k
)/(R

i
 - R

h
); k = 700; h = 515

 

 

f)

400 600 800
400

500

600

700

800

900

0.2

0.4

0.6

0.8



11
6 

O
pt

im
iz

in
g 

sp
ec

tr
al

 in
di

ce
s 

to
 r

ed
uc

e 
ef

fe
ct

s 
of

 s
oi

l b
ac

kg
ro

un
d 

an
d 

ca
no

py
 s

tr
uc

tu
re

 fo
r 

th
e 

es
tim

at
io

n 
of

 le
af

 c
hl

or
op

hy
ll 

of
 b

ar
le

y 
at

 d
iff

er
en

t 
gr

ow
th

 s
ta

ge
s 

C
H

A
P

T
E

R
 5

 

T
ab

le
 5

-5
: 

Be
st

 b
an

d 
co

m
bi

na
tio

ns
 fo

r 
ea

ch
 t

yp
e 

of
 in

di
ce

s 
de

te
rm

in
ed

 fo
r 

sy
nt

he
tic

 a
nd

 b
ar

le
y 

#
1 

da
ta

se
ts

 a
s 

in
di

ca
te

d 
in

 F
ig

ur
e 

5-
1 

an
d 

Fi
gu

re
 5

-3
, 

re
sp

ec
tiv

el
y,

 u
si

ng
 t

he
 la

m
bd

a-
by

-la
m

bd
a 

ba
nd

-o
pt

im
iz

at
io

n 
al

go
ri

th
m

. 

In
de

x 
Ba

nd
 c

ou
nt

 
Sy

nt
he

tic
 

Ba
rl

ey
 #

1 

k 
h 

O
pt

im
iz

ed
 F

or
m

 
R2  

R
M

SE
 

(μ
g/

cm
²)

 
p-

va
lu

e 
k 

h 
O

pt
im

iz
ed

 F
or

m
 

R2  
R

M
SE

 
(μ

g/
g)

 
p-

va
lu

e

R
D

I
2 

~
 

~
 

R 7
05

 –
 R

61
5 

0.
81

 
12

.4
 

<
.0

00
1 

~
 

~
 

R 4
85

 −
 R

45
0 

0.
74

 
13

83
.3

 
<

.0
00

1 
~

 
~

 
R 6

15
 –

 R
70

5 
0.

81
 

12
.4

 
<

.0
00

1 
 

~
 

~
 

R 4
50

 −
 R

48
5 

0.
74

 
13

83
.3

 
<

.0
00

1 
R

R
I

2  
~

 
~

 
R 5

15
 / 

R 7
00

 
0.

91
 

8.
5 

<
.0

00
1 

 
~

 
~

 
R 6

40
 / 

R 7
25

 
0.

75
 

13
72

.0
 

<
.0

00
1 

N
R

D
I 

2 
~

 
~

 
(R

70
0−

R 5
15

)/
(R

70
0+

R 5
15

) 
0.

88
 

10
.0

 
<

.0
00

1 
 

~
 

~
 

(R
73

5−
R 6

60
)/

(R
73

5+
R 6

60
) 

0.
75

 
13

72
.8

 
<

.0
00

1 
~

 
~

 
(R

51
5−

R 7
00

)/
(R

51
5+

R 7
00

) 
0.

88
 

10
.0

 
<

.0
00

1 
 

~
 

~
 

(R
66

0−
R 7

35
)/

(R
66

0+
R 7

35
) 

 
D

R
R

I 
3 

70
0 

~
 

(R
51

5−
R 7

00
)/

R 5
65

 
0.

92
 

8.
4 

<
.0

00
1 

 
73

0 
~

 
(R

72
5−

R 7
30

)/
R 7

65
 

0.
76

 
13

37
.8

 
<

.0
00

1 
51

5 
~

 
(R

70
0−

R 5
15

)/
R 5

65
 

0.
92

 
8.

4 
<

.0
00

1 
 

54
0 

~
 

(R
57

0−
R 5

40
)/

R 7
30

 
0.

76
 

13
45

.3
 

<
.0

00
1 

R
R

D
I 

3  
70

0 
~

 
(R

57
0−

R 7
00

)/
(R

51
5−

R 7
00

) 
0.

94
 

7.
2 

<
.0

00
1 

 
73

0 
~

 
(R

55
5−

R 7
30

)/
(R

55
0−

R 7
30

) 
0.

75
 

13
48

.2
 

<
.0

00
1 

51
5 

~
 

(R
52

5−
R 5

15
)/

(R
53

5−
R 5

15
) 

0.
96

 
5.

9 
<

.0
00

1 
 

54
0 

~
 

(R
57

0−
R 5

40
)/

(R
72

5−
R 5

40
) 

0.
76

 
13

45
.9

 
<

.0
00

1 
4  

70
0 

51
5 

(R
61

5−
R 7

00
)/

(R
55

5−
R 5

15
) 

0.
98

 
4.

0 
<

.0
00

1 
 

73
0 

54
0 

(R
73

5−
R 7

30
)/

(R
78

5−
R 5

40
) 

0.
76

 
13

27
.2

 
<

.0
00

1 
51

5 
70

0 
(R

50
5−

R 5
15

)/
(R

67
5−

R 7
00

) 
0.

96
 

5.
5 

<
.0

00
1 

 
54

0 
73

0 
(R

57
0−

R 5
40

)/
(R

39
5−

R 7
30

) 
0.

76
 

13
42

.7
 

<
.0

00
1 

T
ild

e 
sy

m
bo

ls
 in

di
ca

te
 t

he
 a

bs
en

ce
 o

f r
ef

er
en

ce
 b

an
ds

 k
 a

nd
/o

r 
h 

in
 c

er
ta

in
 t

yp
es

 o
f i

nd
ic

es
. 

Bo
ld

 fo
nt

 h
ig

hl
ig

ht
s 

th
e 

be
st

 c
or

re
la

tio
ns

. 



Optimizing spectral indices to reduce effects of soil background and canopy structure for the estimation of leaf chlorophyll of barley 
at different growth stages 

CHAPTER 5 

117 

 

 

The best bands i and j inherited from RRI were further used to determine the best RRDI, as 

well as DRRI. As expected, optimized RRDIs were the best indices to correlate with Chl (µg/cm2) 

and accounted for 94-98% of the variation in Chl (µg/cm2) for the synthetic dataset (Table 5-5). 

Figure 5-2 shows the scatterplots of Chl (µg/cm2) with three widely used chlorophyll indices, CI 

red-edge, MCARI/OSAVI and TCARI/OSAVI, as well as the best RDI, RRI, NRDI, DRRI and RRDI. 

Apparently, CI red-edge was very sensitive to LAI variations as Figure 5-2a shows a highly scattered 

relationship. MCARI/OSAVI and TCARI/OSAVI relatively resisted LAI variations and yielded 

nonlinear relationships (Figure 5-2b and c), which still scatter (point span) to some degree at each 

LAI level and show saturations for middle-to-high Chl (40-100 µg/cm2). The best RDI, RRI, NRDI 

and DRRI yielded robust correlations with Chl (µg/cm2), with R2 of 0.81 (p < 0.0001), 0.91 (p < 

0.0001), 0.88 (p < 0.0001), and 0.92 (p < 0.0001), respectively (Table 5-5), but the relationships 

still slightly scatter at each LAI level (Figure 5-2d-g). The best RRDI= (R615−R700)/ (R555−R515) was 

most robustly and linearly related to Chl (µg/cm2) with R2 of 0.98 (p < 0.0001) and was most 

insensitive to LAI variations (Table 5-5 and Figure 5-2h). 

5.3.1.3 Canopy reflectance characteristics of barley (“prior knowledge”) 

Canopy reflectance varied over the spectral range from visible to NIR (Figure 5-3a) and 

showed both additive and multiplicative effects (Figure 5-3b), suggesting the confounding effects 

of soil background, canopy structure and multiple scattering on canopy reflectance data across 

the seven growth stages. Coefficient of variation (CV) is considered as a good means of 

comparing the variation among different variables (e.g. wavelengths). The CV curve shows that 

canopy reflectance at 660-680 nm yielded the highest CV, followed by reflectance at 490-500 nm 

(Figure 5-3c). In contrast, wavelength range for red edge to NIR showed lower CV. This result 

agrees well with a previous canopy-level (airborne) survey that the red edge to NIR range yielded 

lower CV than visible bands (Collins, 1978), despite the fact that visible bands showed lower 

standard deviations (Figure 5-3d). Reflectance at red edge (730 nm) showed the lowest CV, 

followed by reflectance at 530-550 nm of green, which yielded a broad “trough” in the CV curve. 

The two “troughs” at around 540 and 730 nm were also noticed in the canopy-level study by 

Collins (1978). In contrast, reflectance measured on leaf stacks yielded a local peak of CV near 550 

nm, while was a trough near 680 nm (Datt, 1999a). This inconsistency suggests that the variation 

in canopy reflectance over wavelengths measured in the field differs from that of reflectance 

measured on leaf stacks, again highlighting the effects of soil background, canopy structure and 

multiple scattering on canopy-level reflectance. 
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Figure 5-2: Leaf chlorophyll (Chl, µg/cm2) plotted as a function of three published chlorophyll 
indices, (a) CI red edge, (b) MCARI/OSAVI and (c) TCARI/OSAVI and (d-h) the best RDI, RRI, NRDI, 
DRRI and RRDI determined for the synthetic dataset, where canopy reflectance spectra were 
simulated by the PROSAIL model with LAI ranging from 1 to 8 by 1 at each step. 
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Correlation analysis was performed by sequentially correlating the value of reflectance at 

each wavelength against Chl (µg/g) and plotting the R2 against all wavelengths. The R2 curve shows 

a very similar pattern with the CV curve in which reflectance at 660-680 nm of red showed 

maximum sensitivity to Chl (µg/g), followed by reflectance at 490-500 nm of blue (Figure 5-3c). 

Reflectance at 730 nm yielded the lowest R2 and showed a deep trough in the R2 curve, while 

reflectance at 530-550 nm of green bands also showed a dip. This result agrees with previous 

study using canopy-level reflectance (Blackburn, 1998b). 

5.3.1.4 Optimization of indices for barley dataset with the “prior 

knowledge” 

Figure 5-4 shows the LLRC plots for Chl (µg/g) vs. RD, RR, NDR, DRR and RRD type indices 

based on barley #1 dataset, which generated broader “hot zones” relative to the synthetic 

dataset (Figure 5-1). Notably, for synthetic and barley #1 datasets, LLRC plots for RDI and NRDI 

both show diagonally symmetrical patterns (Figure 5-1a and c and Figure 5-4a and c), whereas RRI 

produced asymmetrical patterns (Figure 5-1b and Figure 5-4b). The asymmetrical pattern for RRI 

indirectly agrees with previous studies that reciprocal reflectance at certain wavelengths could be 

very useful for chlorophyll quantification (Gitelson et al., 1996; 2003), since an RRI and its 

reciprocal (i.e., two symmetric points above and below the diagonal) could yield significantly 

different values of R2 (Figure 5-1b and Figure 5-4b). 

Across all growth stages, higher CV suggests the higher degree of variation in reflectance at 

certain wavelengths, which are more likely to co-vary with changing ground coverage and 

structural properties. Accordingly, wavelengths at 730 nm and 540 nm that yielded the local 

minima of CV were used as the reference bands k and h for the optimizations of DRRI and RRDI. 

As expected, LLRC plots for DRRI and RRDI that used the reference band k at 540 nm (Figure 

5-4g) show significantly different patterns from the use of k at 730 nm (Figure 5-4d), as well as for 

reference band h. Table 5-5 summarizes the best band combinations derived from all of the LLRC 

plots in Figure 5-4. 

Optimized RD, RR, NRD, DRR and RRD type indices slightly improved the correlation and 

yielded smaller RMSEs compared to published indices that have analogous forms (Table 5-4 and 

Table 5-5). Among these, the 4-band RRDI = (R735-R730)/ (R785-R540) yielded the highest correlation 

(R2 =0.76, p < 0.0001) with Chl (µg/g). Figure 5-5 shows the relationships between the Chl (µg/g) 

and best RRDIs and DRRIs for the barley #1 dataset. 
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Figure 5-4: Lambda-by-lambda R2 contour plots showing the sensitivity of different band 
combinations to leaf Chl (μg/g) of barley. Subplots a, b and c show the sensitivity for RDI, RRI and 
NRDI, respectively. Subplots d, e and f show the sensitivity DRRI, 3-band RRDI and 4-band RRDI, 
respectively, using reference bands k at 730 nm and h at 540nm. Subplots g, h and i show the 
sensitivity for DRRI, 3-band RRDI and 4-band RRDI, respectively, with reference bands k at 540 
nm and h at 730 nm. Results were generated using the barley #1 dataset (n=168). Color scale 
bars are different between subplots.  
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Interestingly, the three best indices: the DRRI= (R570-R540)/R730, the 3-band RRDI= 

(R570-R540)/ (R725-R540) and the 4-band RRDI= (R570-R540)/ (R395-R730) showed remarkable 

consistency in band combinations (Table 5-5 and Figure 5-5), which are very close to the form of 

photochemical reflectance index (PRI= (R531−R570)/(R531+R570)) (Gamon et al., 1992; Peñuelas et al., 

1995b). Although PRI was originally proposed for the assessment of photosynthetic light use 

efficiency (LUE), recent studies have shown that PRI is also significantly related to leaf total 

chlorophyll (Moran et al., 2000; Nakaji et al., 2006; Weng et al., 2009), especially when PRI is 

measured over a long time span or across species (reviewed by Ustin et al., 2009). Accordingly, 

we incorporated one additional reference band at 730 nm into PRI to be a PRI-like 3-band RRDI= 

(R531-R570)/ (R531-R730) and, found that this 3-band RRDI improved the correlation (R2 = 0.75, p < 

0.0001) with Chl (μg/g) and lowered the RMSE (1356.7 μg/g) compared to PRI (R2 = 0.69, p< 

0.0001, RMSE=1510.3 μg/g) (Figure 5-6 and Table 5-4). This further confirms our hypothesis and 

also suggests the usefulness of prior knowledge of wavelengths. Clearly, structural differences of 

the canopies and background effects (soil color, moisture, shadows etc.) still preclude the 

operational use of PRI at the canopy scale (Peñuelas et al., 2011). The PRI-like 3-band RRDI used 

here might not ensure the success of assessment of LUE, but the method is expected to apply to 

the optimization of spectral indices for LUE assessment. 

 

Figure 5-6: Plot of the PRI-like RRDI= (R531-R570)/ (R531-R730) as a function of leaf Chl (μg/g) 
based on the barley #1 (calibration) dataset (n=168). Solid and dash lines indicate the linear fit and 
95% confidence intervals of prediction, respectively. 

Given the fact that both additive and multiplicative effects existed in canopy-level reflectance 

and that reflectance for each sample was approximately linear with the empirically assumed 

“standard” as Eq. (5-3) (Figure 5-3b), the RRDI was thus expected to eliminate both additive and 

multiplicative effects according to our hypothesis. 
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5.3.1.5 Cross validation of spectral indices 

The top ranked 4 published indices for synthetic (REIP, TCARI, MTCI and EPI) and barley #1 

(PRI, PSRI, ND705 and NDVI) datasets (Table 5-4) and top ranked 4 optimized indices for each 

dataset (Table 5-5) were cross-validated and further evaluated by the barley #2 dataset. Cross 

validation between synthetic and barley #1 datasets showed that accuracy generally decreased for 

the validation (Table 5-6). Results also showed that the best index calibrated by barley #1 (RRDI= 

(R735−R730)/ (R785−R540)) performed better in predicting Chl (µg/g) for barley #2 than the index 

calibrated by the synthetic dataset (RRDI= (R615−R700)/ (R555−R515)), the former and the latter 

accounted for 76% and 45% of the variation in Chl (µg/g) for barley #2 dataset, respectively 

(Table 5-6).   

5.3.1.6 Multivariate models 

OMBR models 

 We constructed best 1- to 4-band OMBR models to compare with spectral indices. For the 

calibration step using the barley #1 dataset, 1- to 4-band OMBR models explained 72-77% of the 

variation in Chl (µg/g) for the barley #1 dataset. The more band counts used in an OMBR model, 

the more of the variation in Chl (µg/g) was explained by the model (Table 5-7). The 4-band 

OMBR model only marginally increased the R2 by 0.01 compared with the best 4-band RRDI 

(Table 5-5 and Table 5-7). For the validation step using barley #2 dataset, the 2-band OMBR 

model provided the best performance in predicting Chl (µg/g) with R2 of 0.74 (p < 0.0001) and 

RMSE of 1184.8 μg/g, whereas the 4-band OMBR model provided relatively lower accuracy with 

R2 of 0.69 (p < 0.0001) and RMSE of 1292.2 μg/g (Table 5-7). Clearly, the 4-band OMBR model 

was over-fitted. This suggests that uncertainty remains for an OMBR model that has higher 

calibration accuracy when it is used for independent observations. Our results showed that the 

2-band OMBR model was preferred in terms of validation accuracy. 
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PLSR models 

 We applied leave-one-out cross validation to determine the optimal number of factors to be 

used in PLSR models. Results showed that 7 factors yielded the minimum of the prediction error 

(PRESS). Generally, the number of factors that yields the minimum PRESS is used to calibrate a 

PLSR model. However, using the number of factors which yields the minimum in PRESS can also 

lead to some overfitting (Haaland & Thomas, 1988). Therefore, we implemented the T-square 

test (van der Voet, 1994) and found that use of no less than 3 factors did not significantly increase 

the PRESS (Figure 5-7). Consequently, we constructed two PLSR models for Chl (µg/g) prediction 

with 3 and 7 factors, respectively. They explained 73% and 78% of the variation in Chl (µg/g) for 

the barley # 1 dataset, respectively (Table 5-7). However, for the validation step using the barley 

#2 dataset, the PLSR model with 3 factors explained more of the variation in Chl (µg/g) (R2= 0.73, 

p < 0.0001) and yielded lower RMSE (1195.1 μg/g) than the model with 7 factors (R2= 0.68, p < 

0.0001, RMSE= 1297.5 μg/g), highlighting that using the number of factors which produces the 

minimum PRESS to calibrate a PLSR model might lead to some decrease in accuracy when used 

for predicting future observations. Clearly, in this study, 3 factors was a better choice to calibrate 

the PLSR model. 

Table 5-7: Optimum multiple band regression (OMBR), partial least squares regression (PLSR) 
and support vector regression (SVR) models for the predictions of Chl (μg/g) for Barley #1 
(calibration) and Barley #2 (validation) datasets. 

Model Barley #1 dataset (n=168)  Barley #2 dataset (n=126) 

  R2 RMSE (μg/g) p-value  R2 RMSE (μg/g) p-value 

OMBR Band count        

 1 0.72 1420.8 <.0001  0.71 1231.9 <.0001 

 2 0.74 1385.0 <.0001  0.74 1184.8 <.0001 

 3 0.76 1342.3 <.0001  0.68 1301.9 <.0001 

 4 0.77 1312.7 <.0001  0.69 1292.2 <.0001 

PLSR Factors        

 3 0.73 1410.8 <.0001  0.73 1195.1 <.0001 

 7 0.78 1267.7 <.0001  0.68 1297.5 <.0001 

SVR Kernel        

 RBF 0.76 1233.7 <.0001  0.73 1197.6 <.0001 

 Linear 0.81 1176.4 <.0001  0.67 1330.0 <.0001 

 Polynomial 0.72 1435.5 <.0001  0.68 1311.9 <.0001 

n, number of samples 
Bold font indicates the best performance for each type of model in terms of model validation. 
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Figure 5-7: Results of Leave-One-Out Cross-Validation (LOOCV) and T-square significance 
test showing the optimal number of factors for constructing the PLSR model. 

SVR models 

In this study, we constructed three SVR models, one with a radial basis function (RBF), a 

linear and a polynomial kernel respectively. Generally, the RBF kernel is preferred for SVR, 

because it can handle the case where the relations between dependent variables and predictors 

are nonlinear, and it also has fewer numerical difficulties (Hsu et al., 2003). By the “grid search” 

on C and γ using cross validation (Figure 5-8), the SVR model with RBF kernel was optimized for 

Chl (µg/g) prediction. Results showed that RBF-, linear- and polynomial-SVR models explained 

76%, 81% and 72% of the variation in Chl (µg/g), respectively, with RMSEs of 1233.7, 1176.4 and 

1435.5 μg/g for the calibration step using the barley #1 dataset (Table 5-7). Although the 

linear-SVR model explained relatively more of the variation in Chl (µg/g) than the other two SVR 

models, for the validation step using the barley #2 dataset RBF-SVR model outperformed the 

linear and polynomial models and explained 73% of the variation in Chl (µg/g) with the lowest 

RMSE (1197.6 μg/g). Therefore, RBF-SVR was the best model in terms of accuracy for both the 

calibration (barley #1) and validation (barley #2) datasets in this research. 
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Figure 5-8: Contour-line plot shows the result of the “grid-search” approach to determining 
the best parameters C and gamma (γ) for the SVR model using cross-validation. 

5.3.1.7 Comparing RRDI with multivariate models 

Generally, spectral indices offer more simplicity in term of operational use in remote sensing 

than multivariate models (Thenkabail et al., 2000). The RRDI, which used both two reference 

bands k and h at 730 nm and 540 nm respectively, was the best index in this study based on the 

barley #1 dataset (Table 5-5). If the RRDI could outperform the multivariate models, it would be 

of great potential for using RRD type indices at the canopy scale in precision agriculture. For this 

purpose, the RRDI was compared with multivariate models for predicting Chl (µg/g) using the 

barley #2 dataset consisting of completely different barley cultivars. 

Figure 5-9 shows the comparisons of measured and predicted Chl (µg/g) values by best RRDI, 

OMBR, PLSR and SVR models. The RRDI model produced the highest R2 (0.76, p < 0.0001) and 

lowest RMSE (1141.5 μg/g), and it outperformed OMBR, PLSR and SVR models. Although 

multivariate models were able to explain more of the variation in Chl (µg/g) with lower RMSE in 

the calibration step using the barley #1 dataset (Table 5-7), they might be tailored too much (i.e., 

over-fitting) to the calibration dataset and thus were inferior to the RRDI model when they were 

used for the validation dataset (barley #2). In addition, the distribution of RRDI predicted values 
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was closer to the distribution of destructively measured values of Chl (µg/g) than was the 

distribution of Chl (µg/g) predicted by multivariate models (histograms in Figure 5-9).  

Figure 5-10 shows the scatterplots of RRDI predicted Chl (µg/g) as a function of OMBR, 

PLSR and SVR predicted Chl (µg/g) for barley #2 dataset. RRDI predicted Chl (µg/g) values 

agreed very well with the Chl (µg/g) values predicted by the three multivariate models, suggesting 

the reliability of RRDI in predicting Chl. In terms of consistency, SVR was the best, followed by 

PLSR and OMBR models (Figure 5-10). Therefore, multivariate models are also powerful to verify 

the robustness of univariate models based on spectral indices. In addition, multivariate models 

have the advantage of using one calibration model to estimate multiple dependent variables such 

as canopy chemicals (e.g., Asner & Martin, 2008). 

5.3.2 Growth stage specific models 

In section 5.3.1, optimized indices for the synthetic dataset showed robust relationships with 

Chl (µg/cm2) (Figure 5-2). However, the scatterplots for the barley dataset show relatively large 

variability despite the high correlations (Figure 5-5, Figure 5-6 and Figure 5-9), suggesting the 

poor predictive ability for individual stages. Therefore, indices were optimized for each growth 

stage and different stage spans. 

5.3.2.1 Published indices vs. Chl in each growth stage 

Regression analysis for published indices with barley Chl (µg/g) was performed for each 

growth stage. Results showed that all published indices failed to account for the variation in Chl 

(µg/g) for individual stages such as BBCH 32, 39, 51, 55, 61 and 73 (R2 ≤ 0.27), with the exception 

of BBCH 83 stage where R740/ R720 explained 55% of the variation in Chl (µg/g) (Table 5-8).  
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Figure 5-9: Scatter and histogram plots showing the measured leaf Chl (μg/g) as a function of 
predicted Chl by (a) RRDI= (R735-R730)/ (R785-R540), (b) OMBR, (c) PLSR and (d) SVR models and 
distributions of both measured and predicted values for the barley #2 (validation) dataset (n=126). 
Solid, dash and dotted lines indicate linear fits, 1:1 lines and confidence intervals of prediction, 
respectively. 
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5.3.2.2 Optimization of indices for specific growth stages 

The best RRI and RRDI were determined for each single stage using the LLBO algorithm. 

Table 5-9 shows the best band combinations and corresponding R2 values. The optimized RRIs 

yielded moderate correlations in BBCH 32, 39, and 83 with R2 of 0.45, 0.41 (p < 0.0001) and 0.59, 

respectively, whereas the correlations were very poor for other stages (R2 ≤ 0.32, Table 5-9). 

With the automatic optimization routine for RRDI optimization (described in section 5.3.1), best 

RRDIs improved the R2 for each growth stage compared to RRIs (Figure 5-11a). Notably, the 

correlations were still poor in BBCH 39, 55, 61 and 73 stages (R2 ≤ 0.40) (Table 5-9). However, 

BBCH 39 is the critical stage for fertilization for high yield, BBCH 55 and 61 are the middle 

heading and early flowering stages, where a small amount of fertilizer is often applied to regulate 

within-field variations. 

To improve the estimation of Chl (µg/g) in these stages, we optimized indices for all possible 

cases of growth stage spans respectively in the forward- and backward-cumulative ways (see also 

descriptions in Table 5-9). Similarly to single stage, the best RRI and RRDI were determined for 

each of the stage spans using the LLBO algorithm. The R2 and the best band combinations for RR 

and RRD are shown in Table 5-9. The forward-cumulative (BBCH 32-39) method significantly 

improved the correlations before BBCH 51. Optimized RRI and RRDI yielded an increase of R2 by 

0.24 and 0.43, respectively, relative to the single stage (BBCH 39) method (Figure 5-11b and 

Table 5-9). Figure 5-12a shows the relationship between Chl (µg/g) and the RRDI optimized for 

BBCH 32-39 (R2 = 0.65, p < 0.0001). Notably, RRDI outperformed RRI with an increase of R2 by 

0.24 (Figure 5-11b and Table 5-9). In contrast, the backward-cumulative method improved the 

correlations more significantly after BBCH 51. Optimized RRIs and RRDIs yielded an increase of 

R2 by 0.43-0.63 relative to the single stage method for BBCH 55, 61 and 73 (Table 5-9).  
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Interestingly, the correlations always decreased when BBCH 51 was included in the forward- 

and backward-cumulative methods (Figure 5-11b), which suggests that emerged spikelets have a 

large effect on the behavior of canopy reflectance since the BBCH 51 stage is the beginning of the 

heading stage (Appendix A, Figure 5-A1). Figure 5-12b shows the relationship between Chl (µg/g) 

and the RRDI optimized for BBCH 55-83 (R2 = 0.78, p < 0.0001). Notably, the optimized RRDIs 

only slightly improved the R2 relative to the optimized RRIs when using the backward-cumulative 

method (Figure 5-11b), suggesting the improvement of RRD relative to RR might become smaller 

after canopy closure (BBCH > 50). 

 

Figure 5-12: Relationships for leaf Chl (µg/g) vs. best RRDIs determined for (a) BBCH 32-39 and 
(b) BBCH 55-83 for the barley dataset using the lambda-by-lambda band-optimization algorithm. 
Solid and dotted lines indicate the linear fit and 95% confidence intervals of prediction, 
respectively. 

 Discussion 5.4
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positively interpreted as enhancing the reflectance signals responding to leaf biochemical 

information (e.g. Asner, 1998; Asner & Martin, 2008), it can also be considered as the noise source 

since scattering of light by plant or leaf layers is highly anisotropic (e.g. Li et al., 1995). Like the 

latter, we considered the confounding effects of soil background, canopy structure and multiple 
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effects across cultivars over growth stages (Figure 5-3b), and thus it can be eliminated by 

optimizing the RRD type indices based on the MSC theory. Theoretically, the apparent canopy 

reflectance might not be a simple linear function of the ideal “standard” as described in Eq. (5-1). 

However, a nonlinear hypothesis seems to be too complicated to determine since an ideally 

standard sample that allows reflectance to respond purely to the variation in canopy biochemistry 

is not measurable in reality. Therefore, we assumed that a large proportion of the confounding 

effects due to the structural properties are linearly eliminable. Apparently, such a linear 

hypothesis is simple, and it works in simulated and measured spectral data, suggesting that the 

hypothesis and method used here could be applied to other canopies. 

5.4.2 Band optimization: green and red edge bands 

In optimizing RRDI for the synthetic dataset with the automatic routine, reference bands at 

red edge (700 nm) and green (515 nm) wavelengths were determined for the best RRI and were 

further used for optimizing RRDI. Interestingly, for the barley dataset, reference bands at 730 nm 

and 540 nm were used according to variation analysis as described in section 5.3.1.3, suggesting a 

certain degree of consistency in wavelengths between the automatic routine and the use of a 

prior knowledge. Reflectance at 730 nm showed not only lower CV than visible bands (Figure 

5-3c), but also a lower standard deviation than the NIR plateau (Figure 5-3d), suggesting that 

reflectance at 730 nm might be less affected by canopy structural variations across barley cultivars 

over growth stages. In previous studies, it has also been noted that spectral bands at around 730 

nm often result in minimum reflectance differences between varied N rates at both leaf (Daughtry 

et al., 2000) and canopy levels(Bajwa et al., 2010). In addition, reflectance at around 730 nm also 

has a more consistent crop-to-soil ratio at different growth stages than other wavelength bands 

as shown in Thenkabail et al. (2000). These results suggest that red edge bands have a low degree 

of co-variation relative to other wavelengths under different conditions when structural 

properties vary. On the other hand, the spectral band at around 540 nm, which has been long 

known as the absorption minima of chlorophylls and carotenoids (reviewed in Ustin et al., 2009), 

also showed significantly different characteristics with other wavelength bands in this study, 

yielding local minima of CV in reflectance (Figure 5-3c). Moreover, Gitelson et al. (2006) found that 

the optimum position of spectral band ( 1 ) that is maximally sensitive to absorption by the total 

chlorophyll in the 1 1
1 2 3[ ( ) ( ) ] ( )R R R      model (Gitelson et al., 2003) was in either the 

green (530-540 nm) or red edge (700-730 nm) ranges. Collectively, both previous studies and our 

results suggest the usefulness of green and red edge bands in designing spectral indices as they 

respond to Chl variations while they co-vary less with structural variations. 
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5.4.3 Improvement of RRD type indices relative to other types of indices 

Results of different types of indices optimized for the synthetic dataset revealed that RRDI 

significantly improved the correlation with Chl (µg/cm2) relative to other types of indices (Table 

5-5 and Figure 5-2). According to our hypothesis, RDI and RRI solely eliminate additive and 

multiplicative effects, respectively. Although NRDI eliminated the multiplicative effect, the 

additive effect was strengthened by the “normalized” transformation from RDI to NRDI. To 

balance out the strengthening of the additive effect in the denominator of NRDI, the most 

significant hot zones shifted to red edge and NIR range (Figure 5-4c), where the lowest CVs were 

produced (Figure 5-3c), when optimizing the NRDI. 

Although optimized RDI, RRI, NRDI and DRRI all yielded high correlations with Chl, they 

only partially eliminated the additive and/or multiplicative effects (i.e., a and b in Eq.(5-1)) 

compared to RRDI (see also formulae in Table 5-1). The relationships with Chl (µg/cm2) still 

scatter to different degrees at different LAI levels (Figure 5-2). In contrast, RRDI yielded a more 

robust relationship that subtly scatters only when LAI= 1 (Figure 5-2h). At the leaf level, Sims & 

Gamon (2002) modified the RR and NRD type indices to reduce leaf surface (specular) effect by 

subtracting a reference band at 445 nm (mSR705, see Table 5-1). At the canopy level, le Maire et 

al. (2008) also optimized the mSR type (RRD) indices with a very similar blue band at 450 nm 

although they found no improvement relative to NRD and RR. This might be due to the 

inappropriate use of R450 in mSR (RRD) when scaling-up to canopy level as suggested by our 

results where R450 did not yield local minimum of CV compared to red edge and green bands 

(Figure 5-3c). In contrast, the use of red edge and green bands showed improvement relative to 

RRI or NRDI (Table 5-5 and Figure 5-2), highlighting that the structural effects at leaf and canopy 

levels affect leaf- and canopy-level reflectance in different ways over wavelengths. 

5.4.4 Connections with previous studies 

 The optimized indices showed interesting characteristics of wavelengths. For the barley data, 

RRDI= (R735−R730)/ (R785−R540) was the best index for the estimation of Chl (µg/g). One could 

have noticed that the numerator (R735-R730) can be considered as the numerator of a backward 

first-difference transformation as D735= (R735-R730)/Δλ (Dawson & Curran, 1998). Similarly, Zhao et 

al. (2005) found that leaf Chl was highly and linearly correlated with the first derivative (dR/dλ) at 

730 or 740 nm. Also, the first derivative of canopy reflectance at 735 nm was found to be a good 

indicator of plant N concentration of rice (Lee et al., 2008). More recently, a ratio of first 

derivatives of reflectance at 740 and 522 nm (D740/D522) also showed improvement in mapping 

canopy N of rice (Inoue et al., 2012). Based on laboratory leaf reflectance data, Vogelmann et al. 

(1993) also found that a ratio of the first derivative at 705 and 715 nm (D715/D705) was highly 
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correlated with total chlorophyll content while it was much less affected by leaf biomass and 

background condition than NDVI or simple ratio indices (RR). Therefore, our results indirectly 

agree well with previous studies that a ratio of reflectance first-derivatives can also eliminate both 

additive and multiplicative effects, and is thus closely related to Chl and is insensitive to the effects 

of soil background and structural variations. 

The hypothesis and method used here indirectly elucidate the mechanisms for the successful 

application of derivative-transformed spectral indices in previous studies. In addition, our method 

is not limited to the sensors measuring continuous wavelengths compared to the derivative 

analysis method. RRD type indices eliminate the additive effect without employing derivative 

transformation and they reduce both additive and multiplicative effects without applying the MSC, 

suggesting that RRDI optimization has the advantage of simplicity in hyperspectral remote sensing 

of canopy biochemistry. 

5.4.5 Effects of crop type, growth stage and the range of variation in Chl 

 Published and optimized indices calibrated by the synthetic dataset failed to account for a 

large portion of the variation in Chl of barley, suggesting there is a large effect of crop type on 

spectral indices. This is consistent with the study on corn and wheat by Haboudane et al. (2008) at 

a local scale. However, on a large regional scale, a dataset comprising several crop types might 

also increase the convergence of canopy reflectance/ indices responding to Chl (e.g. Houborg & 

Boegh, 2008), suggesting the effect of crop type is also dependent on the scale of specific studies. 

The negative effect of crop type might be expected to be negligible when a dataset is large and 

general enough such as at large ecosystem scales (Ollinger, 2011). 

Optimization for each single stage was not able to account for a large portion of the 

variation in Chl for some of the growth stages individually, which suggests the large effect of 

growth stage. Furthermore, the decrease in accuracy when heading stage (BBCH 51) was 

included in the forward- and backward-cumulative methods suggests, more particularly, the effect 

of canopy closure and ear emerging in the heading stage (BBCH 50-60). Supposing open and 

closed canopies are two functional types that are optically distinguishable (Ustin & Gamon, 2010), 

forward- and backward-cumulative methods are able to improve the accuracy for Chl estimation 

for growth stages before and after canopy closure (heading stage), respectively. This fits well into 

agricultural practices before and after heading for “yield dressing” and “quality dressing” purposes, 

respectively. Particularly, the improvement seems to be more useful before canopy closure 

where the effect of soil background is more pronounced (Figure 5-11b). 

On the other hand, decreased accuracy for each single stage is due not only to the effect of 

growth stage, but also to the small range of variation in Chl for individual stages (Table 5-3). As 
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also shown in our results, the larger the variation in Chl for a dataset, the more of the variation in 

Chl of the dataset is accounted for (Table 5-3, Table 5-4, and Table 5-5); and the larger the 

variation in Chl within a single stage, the more of the variation in Chl of the single stage is 

accounted for (Table 5-8 and Table 5-9), suggesting the challenge to remote detection and 

estimation of the subtle variation in Chl in the context of precision agriculture (Haboudane et al., 

2008). 

Effects of growth stage, crop type and the range of variation in Chl should be taken into 

account when applying remote sensing in precision agriculture. Canopy reflectance responds to 

narrow and wide ranges of variation in Chl differently over wavelengths, which is still not fully 

explored due to the complexity of canopy structural properties in respond to environmental 

changes. In addition, confounding effects of the structural properties co-vary in different ways 

with Chl at different growth stages (Appendix A), which might mask to some extent the subtle 

variation in canopy biochemistry that should have been expressed in canopy reflectance signals. 

Therefore, methods used here still need to be improved to uncover those aspects for remote 

sensing that apply to precision agriculture. 

 Conclusions 5.5

Monitoring in situ the variation in chlorophyll is of great importance for stress detection, 

yield and grain quality prediction in the context of precision agriculture. In this study, we aimed to 

optimize spectral indices that are insensitive to structural effects for the estimation of leaf 

chlorophyll (Chl). Canopy reflectance data were obtained through model simulation (PROSAIL) 

and spectral measurement from barley canopies. We proposed a comprehensive 

band-optimization method to explore the best spectral indices for estimating Chl, and compared 

them with published indices and multivariate methods (i.e., OMBR, PLSR and SVR). 

The findings of this study support our hypothesis that the ratio of reflectance difference 

(RRD) type indices eliminate both additive and multiplicative effects owing to canopy structural 

properties, i.e., soil background, canopy structure and multiple scattering, thus improves the 

estimation of Chl. For example, under varying LAIs (1-8), optimized RRDI= (R615-R700)/ (R555-R515) 

for simulated data yielded a very strong correlation with Chl with R2 of 0.98 (p < 0.0001), 

suggesting the potential to apply RRD type indices to canopies with low LAI. 

Importantly, the growth stage negatively affects the accuracy of spectral indices that account 

for the variation in Chl. Thus, a general purpose model for the entire growing season might not 

be able to accurately account for the variation in Chl for individual, but critical, stages. However, 

we found that RRDIs optimized for the stage-spans covering individual stages before and after 
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canopy closure (i.e. heading stage), respectively, improved the accuracy with R2 of 0.65 (p < 

0.0001) and 0.78 (p < 0.0001). It is of practical merit to optimize the open-canopy model for 

“yield dressing” and the closed-canopy model for “quality dressing” in precision agriculture. 

Our results might provide support for future studies into the remote estimation of canopy 

biochemistry. These studies might have different focuses of, 1) monitoring nutrient cycling at the 

ecosystem scale by optimizing a general model based on RRD type indices; 2) monitoring canopy 

Chl or N in precision agriculture by classifying open and closed canopies into two “optical types” 

(Ustin & Gamon, 2010) and optimizing yield-dressing and quality-dressing RRDI models, 

respectively. The main criticism of the methods developed here is that the wavelengths optimized 

for RRDIs are still crop/species specific. Thus, the exact wavelengths determined here might not 

ensure accuracy when applied to other crops under different conditions. However, the methods 

are expected to apply, since precision agriculture prefers crop- and site-specific nutrient 

managements. Therefore, further studies on more crop or vegetation species, for different 

purposes and at different scales, will be of great importance for evaluating and improving the 

methods developed here. 
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Appendix A. Temporal changes in canopy reflectance 

Figure 5-A1a-g shows the changes in canopy reflectance over seven growth stages for 

each barley cultivar, respectively. All cultivars showed similar trends across the entire 

growing season. Across growth stages, NIR reflectance generally increased until BBCH 51 

and then decreased, whereas green reflectance decreased until BBCH 55 and then increased, 

suggesting the effect of the heading stage (BBCH 50-60) on canopy reflectance. Figure 

5-A1h-n shows reflectance differences between seven barley cultivars at each growth stage, 

respectively. The range of reflectance differences between cultivars varied at different growth 

stages. The differences between cultivars were more pronounced in NIR than in other 

wavelengths. Notably, before BBCH 51 differences were more pronounced in green bands 

than in red, (Figure 5-A1h-j), whereas after BBCH 55 they were more pronounced in red 

bands than in green (Figure 5-A1l-n). 
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Figure 5-A1: Temporal changes in canopy reflectance of barley across seven growth stages for 
each cultivar (a-g) and reflectance differences between seven cultivars at each growth stage (h-n). 
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CHAPTER 6  

Validation of N dilution effect and developed vegetation 

index (RRDI) and evaluation of crop responses to 

diseases* 

 

 

Summary 

Chapter 6 presents additional data from the barley experiments to evaluate and validate the 

results of the early phases of this study. This chapter focuses on (1) validating the effect of growth 

stages on the remote estimation of chlorophyll (Chl) and nitrogen (N) concentrations, (2) 

evaluating the performance of the Ratio of Reflectance Difference Index (RRDI) in the red edge 

(RRDIre) for estimating Chl and N, and (3) verifying the efficiency of the vegetation indices based 

on water absorption bands in discriminating plant diseases compared to indices based on Chl 

absorption bands. 

The results confirmed that the N dilution effect that occurs along with barley plant growth 

has a significant impact on the correlations between the vegetation indices and canopy N, which 

was highlighted in CHAPTER 2 and based on rice data. RRDIre, which was developed in this study 

based on the rice dataset (CHAPTER 3), provided the best performance for estimating Chl and N 

of barley plants and suggested the promising potential of capturing canopy Chl and N variations 

across different crop types and cultivars. The results also showed the effectiveness of vegetation 

indices based on water absorption bands in discriminating diseased plants, which highlighted the 

importance of water absorption bands for the remote detection of crop diseases. 

 

 

                                                 
* This chapter provides addition results to (1) evaluate the results of the previous chapters and (2) validate 
the new vegetation index, Ratio of Reflectance Difference Index (RRDI), developed in this study. 
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 Materials and methods 6.1

6.1.1 Experimental design and descriptions of disease symptom 

Field experiments were conducted in 2011 and 2012 at the Institute of Crop Science and 

Resource Conservation (INRES-Horticulture), University of Bonn, Germany. The experiments 

were arranged in a randomized block design with four replications and had a plot size of 10.5 m2 

(7*1.5). The treatments were combinations of two factors: fungicide application and barley 

cultivar. There were two fungicide treatments (“with-fungicide” and “without-fungicide”) and 

four cultivar treatments (Belana, Marthe, Conchita and Tocada). Barley seeds were sown on 

March 23 and April 3 for the experiments in 2011 and 2012, respectively, with a density of 320 

seeds m-2. Figure 6-1 shows all of the field measurement activities on different days after sowing 

(DAS) in 2011 and 2012.  

 

Figure 6-1: Time table shows the field activities of canopy spectral measurements and fungicide 

applications in 2011 and 2012. A basal spraying of fungicide on all of the experiment plots was 

performed to establish a baseline for studying the effect of fungicide applications. The 

measurements in the early phase (days after sowing (DAS) < 70) were performed to understand 

the effects of growth stages and cultivars on the canopy biological traits, whereas the effect of 

fungicide was studied in the late growth phase (DAS > 70). 

Considering the favorable time period for pathogen infection, the effect of the fungicide 

factor was studied mainly in the late growth phase (DAS > 70). For the early growth phase, the 

growth stage and cultivar variability were assumed to be the primary agents affecting the 

experiments. Therefore, the relationships between different biophysical and biochemical traits of 

barley crop were studied along with correlations with the optical properties (mainly vegetation 

indices).  

3/23/2011

DASSowing 23 29 37 43 51 57 64 72 78 86 96 106 114

68 82

4/3/2012

DASSowing 24 35 49 56 63 70 77 84 91 98

72

Field Measurement Base Spraying Fungicide Treatments

43

48

Fungicide effectEffect of growth stage on canopy traits
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 As observed in this study, plant diseases infections were not prominent in the field 

experiments under natural conditions. Figure 6-2 shows that the leaves of the without-fungicide 

treatment were moderately infected, whereas the with-fungicide treatment controlled the 

disease infections. 

 

Figure 6-2: Photographs show barley leaves with fungicide spraying (A) compared with the 
leaves without fungicide spraying (B). The leaves in the without-fungicide plots showed visual 
symptoms of infections at a mild/moderate level. 

6.1.2 Canopy spectral measurement and plant sampling 

Canopy reflectance was measured with an ASD FieldSpec® 3 spectrometer (Analytical 

Spectral Devices Inc., Boulder, CO, USA) from a distance of 1 m above the canopy and within 

two hours of solar noon. The configuration of the FieldSpec® 3 has been detailed in previous 

chapters (see CHAPTER 2). The spectrometer was calibrated every 15 min using a white 

reference panel (Spectralon®). For each plot, six spectra were collected at six random locations 

within the plot.  

After the spectral measurement, the above ground parts of the barley plants within an area 

of 400 cm2 (20*20) were sampled from each plot. For the experiment in 2011, plant samples were 

cut 50-cm from the top (upper part) when the plants were higher than 50 cm, and the remainder 

(lower part) was processed separately for further analysis. This approach was used to examine 

the Chl vs. N relationships in different parts/organs of a plant and was not used for comparison 

purposes in the 2012 experiments. After cutting, the plant samples were stored in a cool box and 

transported to the laboratory where the samples were weighed for fresh weight and then 

lyophilized to determine the Chl concentration. Thereafter, the plant samples were free-dried 
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until a constant weight and then ground before determining the N concentration (%) was 

determined. The Chl concentration (µg/g) was determined by the spectrophotometric method 

described in CHAPTER 3. The N concentration (%) was determined using a C/N elemental 

analyzer.  

6.1.3 Selected vegetation indices for sensitivity comparison with the new 

index RRDI 

To study the response of vegetation indices to different variables, i.e., Chl, N and biomass, 

nine vegetation indices were selected by considering their band combinations and applications 

that focused mainly on canopy biochemical traits (Chl and N). The new Ratio of Reflectance 

Difference Index (RRDI) in the red edge (RRDIre), was included to compare its performance with 

other vegetation indices. Table 6-1 provides the nine vegetation indices and their formulae. 

Table 6-1: Selected vegetation indices for sensitivity comparison. 
Index Formula Reference 

CIg (R750-R550)/R550 Gitelson et al. (2003b) 

CIre (R750-R700)/R700 Gitelson et al. (2003b) 

EVI 2.5*( R800-R670)/(R800+6*R670-7.5*R470+1) Huete et al. (2002) 

NDVI (R800-R680)/(R800+R680) Blackburn (1998b) 

ND705 (R750-R705)/(R750+R705) Sims & Gamon (2002) 

PRI (R531-R570)/(R531+R570) Gamon et al. (1992) 

REIP 700+40*((R670+R780)/2-R700)/(R740-R700) Guyot & Baret (1988) 

RRDIre (R745-R740)/(R740-R700) Yu et al. (2014a) 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 

The formulae for TCARI and OSAVI are provided in Table 1-1. 

 Results 6.2

6.2.1 Relationships between Chl and N in different parts of a plant 

One of the main objectives of the 2011 experiments was to examine the relationships 

between N and Chl. Thus, the plant samples were divided into two parts (upper and lower) by 

cutting at a length of 50 cm from the top when the barley plants were well developed (height > 

50 cm). The results of the regression analysis showed that Chl increased as N increased in both 

the upper and lower parts of the barley plant and the whole plant when the plant height was less 

than 50 cm (Figure 6-3). The regression models for the different parts differed, although a robust 

correlation was observed between Chl and N across all of the data of the different parts.  
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Figure 6-3: Relationships between chlorophyll concentration (Chl, µg/g) and nitrogen 
concentration (N, %) as observed in the whole plant and upper and lower parts of the barley 
plants. The results were obtained from the 2011 experiment. The upper and lower parts denote 
the upper 50 cm and remaining parts of the whole plant, respectively. 

6.2.2 Relationships between Chl and N at different growth stages as 

observed in different cultivars of barley 

Across the data of the two experiments in 2011 and 2012, Figure 6-4 shows that Chl 

increased as N increased in the four different barley cultivars at four different growth stages. The 

Chl vs. N relationships at individual growth stages were similar for the different cultivars and 

yielded almost identical slopes of regression (Figure 6-4). By contrast, the relationships in 

different growth stages differed significantly from each other, with no exception found in the 

cultivars studied in the two experiments. Compared to the cultivars, the growth stages have 

shown a significant effect on the correlation between Chl and N concentrations of the whole 

plants. 
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Figure 6-4: Relationships between chlorophyll concentration (Chl, µg/g) and nitrogen 
concentration (N, %) at different growth stages (days after sowing, DAS) as observed in the 
whole plants of different barley cultivars. The results were obtained from the field experiments in 
2011 and 2012. 

6.2.3 Relationships between Chl and vegetation indices (VIs) 

To find the most robust indicator of Chl, all data from the two experiments in 2011 and 

2012 were used to study the correlations between Chl and different VIs (Table 6-1). Figure 6-5 

shows the relationships between Chl and the nine selected vegetation indices by different growth 

stages. They showed reverse relationships at the very early (DAS < 40) and vary late stages 

(DAS >80), which confirms the previous results observed in rice experiments (CHAPTER 2). 
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Figure 6-5: Scatterplots showing the chlorophyll concentration (Chl, µg/g) plotted as a function 
of the nine vegetation indices (Clg, CIre, EVI, NDVI, ND705, PRI, REIP, RRDIre and 
TCARI/OSAVI, see Table 6-1). 

Accordingly, the data for DAS > 80 were excluded from the regression analysis because the 

correlation showed an opposite trend compared to other stages (Figure 6-5). Figure 6-6 shows 

the performances of the nine VIs when accounting for the variation in Chl. The performances of 

the EVI, NDVI, ND705 and PRI appeared to be too poor to explain the variation in Chl and 

yielded an r2 < 0.35. Both CIg and CIre explained 57% of the variation in Chl. The most robust 
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indices were REIP, RRDIre and TCARI/OSAVI, which yielded r2 of 0.65, 0.66 and 0.68, 

respectively. 

 

Figure 6-6: The results of the linear regression analyses show the extent of the variation in 
chlorophyll concentration (Chl, µg/g) that was explained by the different vegetation indices. Data 
for days after sowing (DAS) > 80 were excluded from the analysis. 

6.2.4 Relationships between N, biomass and VIs  

To study whether the robust indictors of Chl are also related to N and biomass, the 

relationships between N and the nine VIs were also studied by excluding the data for DAS > 80. 

Figure 6-7 shows the performances of the nine VIs when accounting for the variation in N. 

Similarly, the performances of the EVI, NDVI, ND705 and PRI were relatively poor in explaining 
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the variation in N compared to the other indices and yielded r2 < 0.48. By contrast, CIg, CIre and 

TCARI/OSAVI explained 67%, 67% and 69%, respectively, of the variation in N. The most robust 

indicators were the two red edge vegetation indices, REIP and RRDIre, which both yielded an r2 

of 0.76. 

 

Figure 6-7: The results of linear regression analyses show the extent of the variation in 
nitrogen concentration (N, %) that was explained by different vegetation indices. Data for days 
after sowing (DAS) > 80 were excluded from the analysis. 

Figure 6-8 shows that the correlations between biomass dry weight (BDW) and EVI, NDVI, 

ND705 and PRI became saturated as BDW increased, which indicted relatively poor 

performances of these indices for explaining the variation in BDW (r2 < 0.54). By contrast, CIg, 
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CIre and TCARI/OSAVI explained 77%, 76% and 64%, respectively, of the variation in BDW. 

Similar to the relationships with N, the most robust indicators for BDW were also found to be 

the two red edge indices, REIP and RRDIre, which yielded r2 of 0.81 and 0.82, respectively.  

 

Figure 6-8: The results of linear regression analyses show the extent of the variation in 
biomass dry weight (BDW) that was explained by different vegetation indices. Data for days after 
sowing (DAS) > 80 were excluded from the analysis. 

Briefly, according to the results of the barley experiments, the REIP and RRDIre appeared to 

be robust indicators of Chl and N concentrations and BDW.  
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6.2.5 Reponses of BDW, Chl and N to fungicide treatments 

The effect of fungicide application and responses of barley biochemical and biophysical traits 

to fungicide treatments were studied mainly in the late growth phase (DAS > 70). Figure 6-9 

shows that the with-fungicide treatment yielded a significantly higher amount of BDW than the 

without-fungicide treatment after the fungicide applications on 68 DAS and 72 DAS in 2011 and 

2012, respectively. Although the second application on 82 DAS did not yield significantly higher 

BDW in the following days, it enabled the with-fungicide treatment to maintain a relatively high 

amount of BDW compared to the without-fungicide treatment (Figure 6-9).  

It was observed that the with-fungicide treatment in 2012 always maintained a higher amount 

of BDW than the without-fungicide treatment on different days. 

 

Figure 6-9: Response of biomass dry weight (BDW) to the two treatments of fungicide (with- 
and without-fungicide) observed on different days after sowing (DAS) in 2011 and 2012. BDW is 
shown by the mean ± SE (standard error). 

 The responses of Chl concentration to the two different fungicide treatments for different 

years are shown in Figure 6-10. The with-fungicide treatment yielded relatively higher Chl in 2011, 

whereas it yielded lower Chl in 2012. Figure 6-10 also shows that the with-fungicide treatment 

did not yield a significantly higher Chl than the without-fungicide treatment after the application 

of fungicide in 2011 and 2012. However, it is obvious that the with-fungicide treatment closed the 

gap with Chl relative to the without-fungicide treatment after the fungicide application on 72 DAS 
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in 2012, which enabled the with-fungicide treatment to maintain a high amount of Chl 

concentration even when the BDW was at a relatively high level (cf. Figure 6-10 and Figure 6-9). 

Therefore, it can be deduced that the application of fungicide in 2012 inhibited the pathogen 

infections in the with-fungicide plots.  

 

Figure 6-10: Response of chlorophyll concentration (Chl) to the two treatments of fungicide 
(with- and without-fungicide) observed on different days after sowing (DAS) in 2011 and 2012. 
Chl is shown by the mean ± SE. 

The responses of N concentration to the two different fungicide treatments for different 

years are shown in Figure 6-11. The with-fungicide treatment did not yield higher N 

concentration than the without-fungicide treatment after the application of fungicide in 2011 and 

2012.  

The results appear to indicate that the fungicide application did not have an effect on the N 

concentration. However, according to the results of the BDW variations, the variation in N 

concentration was clearly dominated by the variation in BDW (cf. Figure 6-11 and Figure 6-9). 

Therefore, the plant N concentration might not be a reliable indicator of crop disease stress, 

particularly when the infections are mild, as observed in this study. The results also highlighted 

that the N concentrations are dominated by the plant biomass as discussed in Chapter 2. 

Therefore, the with-fungicide treatment showed a relatively lower N than the without-fungicide 

treatment as a result of the high BDW. 
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Figure 6-11: Response of N concentration (N, %) to the two treatments of fungicide (with- and 
without-fungicide) observed on different days after sowing (DAS) in 2011 and 2012. N is shown 
by the mean ± SE. 

6.2.6 Yield response to diseases 

The infections were at a mild/moderate level and did not show significantly severe disease 

symptoms (cf. Figure 6-2). To study the effect of pathogen infections developed under natural 

conditions on the final yield, the grain yield was determined for each plot and treatment after 

harvest.  

The responses of yield to the two different fungicide treatments for different years are 

provided in Figure 6-12. Generally, the with-fungicide treatment produced relatively high yield 

compared to the without-fungicide treatment in both years. Further, an ANOVA analysis was 

performed and the results showed that the with-fungicide treatment produced a significantly 

higher (p < 0.01) yield than the without-fungicide treatment in 2011(Figure 6-12A). In 2012, 

however, the difference between the with- and without-fungicide treatments was not statistically 

significant (p = 0.27, Figure 6-12B). 



164 Validation of N dilution effect and developed vegetation index (RRDI) and evaluation of crop responses to diseases 

CHAPTER 6 
 

 

 

Figure 6-12: Response of barley yield to the two treatments of fungicide (with- and 
without-fungicide) observed in the experiments in 2011 (A) and 2012 (B), respectively. Yield is 
shown by the mean ± SE. 

6.2.7 Responses of VIs to diseases 

The results from CHAPTER 4 that were based on earlier experiments suggested that the 

MCARI and MCARI/TCARI were capable of indicating plants grown under disease stresses. 

Therefore, the two indices were examined for their ability to discriminate the with- and 

without-fungicide treatments on different DAS for each cultivar in 2011 and 2012. Additionally, 

diseases may have had specific effects on the spectral traits of the water absorption bands 

compared to the chlorophyll absorption bands. Thus, the two vegetation indices based on water 

absorption bands, WBI and NDWI (see CHAPTER 1, Table 1-1), were also employed for the 

discrimination of different treatments of fungicide. 

Figure 6-13 shows that the MCARI/TCARI values were higher in the with-fungicide 

treatment than in the without-fungicide treatment for the cultivar Belana in 2011 (DAS 72-96). 

Following the fungicide applications in both 2011 and 2012, the with-fungicide treatment showed 

a positive response by closing the gap relative to the without-fungicide treatment.  

Figure 6-14 shows that the MCARI yielded higher values in the with-fungicide treatment than 

in the without-fungicide treatment for the cultivars Belana and Tocada in 2011. By contrast, there 

appeared to be no significant differences between the two treatments for each cultivar in 2012. 

Following the fungicide application days, the with-fungicide treatment showed a positive response 

by closing the gap relative to the without-fungicide treatment. 
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Figure 6-13: MCARI/TCARI response to the two treatments of fungicide (with- and 
without-fungicide) observed on different days after sowing (DAS), for different cultivars and 
years. MCARI/TCARI is shown by the mean ± SE. 

 

Figure 6-14: MCARI response to the two treatments of fungicide (with- and without-fungicide) 
observed on different days after sowing (DAS), for different cultivars and years. MCARI is shown 
by the mean ± SE. 
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The responses of the WBI to the two different treatments for each cultivar and year are 

shown in Figure 6-15. It is obvious that the WBI generally yielded higher values in the 

with-fungicide treatment than in the without-fungicide treatment, particularly in 2011. By contrast, 

there were almost no significant differences between the two treatments for the cultivars Belana 

and Tocada in 2012 (Figure 6-15). Overall, the WBI provided significant separability and showed 

the ability to discriminate diseased plants that yielded lower WBI values. 

 

Figure 6-15: WBI response to the two treatments of fungicide (with- and without-fungicide) 
observed on different days after sowing (DAS), for different cultivars and years. WBI is shown by 
the mean ± SE. 

The responses of the NDWI to the two different treatments for each cultivar and year are 

shown in Figure 6-16. Similarly, the NDWI also yielded higher values in the with-fungicide 

treatment than in the without-fungicide treatment in 2011. The NDWI also provided significant 

separability and showed an ability to discriminate diseased plants that yielded lower values in the 

NDWI. However, there appeared to be no significant differences between the two treatments 

for 2012. 

Compared to the MCARI/TCARI and MCARI, the WBI and NDWI provided a significantly 

positive performance for discriminating the with- and without-fungicide treatments, suggesting 



Validation of N dilution effect and developed vegetation index (RRDI) and evaluation of crop responses to diseases 

CHAPTER 6 
167 

 

 

the potential of using water absorption bands to remotely detect crop diseases. The relatively 

weak performance in 2012 was expected as the yield difference was not significantly different.  

 

Figure 6-16: NDWI response to the two treatments of fungicide (with- and without-fungicide) 
observed on different days after sowing (DAS), for different cultivars and years. NDWI is shown 
by the mean ± SE. 
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 Remote sensing of canopy N 7.1

There remains some dispute about the ability of remote sensing to detect the canopy N 

status, particularly when using the NIR spectral range (Knyazikhin et al., 2013; Ollinger et al., 2013; 

Townsend et al., 2013). The previously observed correlation between NIR spectral and N 

concentration was deemed a consequence of canopy structural variations rather than of N 

(Knyazikhin et al., 2013). However, other researchers have argued that the lack of a direct link 

between N and NIR spectra does not necessarily mean that NIR reflectance does not contain 

useful information for inferring the N variability (Ollinger et al., 2013; Townsend et al., 2013) and 

the indirect link indicates that NIR spectra are correlated with the functional associations 

between canopy N and leaf/canopy structural traits. The co-variations of biochemical and 

biophysical traits across plant functional types may allow for the prediction and mapping of 

canopy biochemical variations that could be used to understand the N cycling in vegetation 

canopies (Ollinger et al., 2008; Townsend et al., 2013).  

 Although the previous studies were conducted on forest canopies, they provide positive 

implications for remote sensing of the crop canopy N status. Similarly, NIR bands have been 

found to be efficient in estimating crop N status using near-ground multispectral (Gianquinto et al., 

2011) and hyperspectral data (Li et al., 2008; 2014), airborne multispectral data (Lee et al., 2008; 

Tilling et al., 2007) and satellite images (Martin et al., 2008; Shou et al., 2007). Based on 

hyperspectral narrow band data collected on rice canopies, Yu et al. (2013b) also showed that 

NIR reflectance plays a key role in optimizing the best 2-band combinations, which follow the 

formulae of simple ratio (SR) and NDVI (see CHAPTER 2). In addition, the optimum multiple 

narrow band reflectance (OMNBR) models also required the use of NIR bands to improve model 

accuracy, particular for modeling N uptake — the product of plant dry biomass and N 

concentration (CHAPTER 2). Together, these studies based on hyperspectral narrow bands and 

multispectral broad bands, through near-ground to space platforms, scaling from experimental 

fields to larger ecosystems, have shown consistent results that NIR bands can be used to 

remotely sense canopy N (Gianquinto et al., 2011; Li et al., 2008; Martin et al., 2008; Ollinger et al., 

2008; Shou et al., 2007; Tilling et al., 2007; Yu et al., 2013b). However, as observed in powdered 

samples of dried leaf materials, the most abundant nitrogen-bearing compound in green leaves has 
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absorption features mainly in the SWIR bands (1500, 1680, 1740, 1940, 2050, 2170, 2290 and 

2470 nm) instead of NIR bands (Elvidge, 1990), which appears to be a contradiction — NIR bands 

are important in estimate canopy N, but they are not directly linked to N — with the large 

number of observed results as mentioned previously. 

From the perspective of the effect of N supply, Heege et al. (2008) argued that N has two 

effects on the reflectance of a plant canopy: (1) the first effect occurs only in the visible (VIS) 

bands and is known as the photosynthetically active radiation (PAR). This effect is due to that N 

supply increases the chlorophyll per unit area in the leaves, causing that more light is absorbed 

and that reflectance is very low in VIS region; and (2) the second effect is a very pronounced 

effect on canopy reflectance and occurs in the NIR region (known as the “NIR shoulder”), which 

is due to that N supply increases the growth of plant mass and green leaf area. Theoretically, the 

larger the green leaf area, the more incident solar radiation should be scattered back by the 

canopy instead of the soil (Heege et al., 2008). These authors clarified the indirect link between N 

supply and VIS-NIR reflectance of crop canopies by comparing with the “control canopy” that has 

no N supply, which contradicts the view that N is not related to NIR reflectance. The results 

observed by Yu et al. (2013b) also support this explanation by demonstrating an indirect link 

between VIS-NIR reflectance and N uptake (see CHAPTER 2). 

To date, by assuming that N in fresh leaves does not alter their absorption bands, RS 

community tacitly accepts the explanation that the absorption of nitrogen-bearing compounds in 

fresh leaves is not strong and is generally masked by water absorption in the SWIR bands (Kumar 

et al., 2001). However, there are still no definitive answers to (1) how the in-vivo N in green 

leaves affects the light absorption, transmittance and reflectance of a canopy over the full 

wavelengths, since the absorption of N-bearing compounds is difficult to be measured in fresh 

leaves; and (2) whether the in-vivo N in fresh leaves have different absorption features relative to 

those absorption bands (SWIR) that are observed in powdered samples of dry leaf materials. The 

answers to these questions might uncover the role of the in-vivo N in determining the canopy 

reflectance. Additionally, these different arguments suggest the need to improve our 

understanding on the underlying mechanisms that can link canopy reflectance with N 

status/variability. For this purpose, a means of physical explanation is needed, despite that 

currently available radiative transfer models appear to be unable to fully represent the linkages 

(Townsend et al., 2013).  

As a result of the importance of the N status of the whole plants in determining the grain 

production (Qiao et al., 2013), this study focuses mainly on N estimation of the whole plants. The 

canopy sensing of N requires us to consider that the distribution of in vivo N and chlorophyll 
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(chlorophyll is also a N-bearing compound) within individual leaves may be heterogeneous and 

the N element is mobile between different leaves of a plant (Barton, 2001; Gastal & Lemaire, 

2002). Under N deficiency, plants have developed relatively elaborate mechanisms to improve N 

use efficiency by remobilizing N element from older leaves that are generally at the bottom of the 

plant and transporting it to younger leavers at the top of the canopy (Lemaire et al., 2008; Yu et al., 

2013b) (see Figure 7-1). Short-term N stress may not significantly change the top canopy 

properties — both biological and optical properties — compared to healthy plants with sufficient 

N supply except a possible yellowing of the older leaves (Fageria, 2009) (Figure 7-1). In contrast, 

long-term N stress may produce leaves and stems that are light green, yellow and spindly and lead 

to significant structural differences, such as the production of smaller plants, compared to the 

healthy plants with sufficient N supply (Figure 7-1). These differences are readily captured by 

canopy spectra and often yield low reflectance in NIR region and green bands of VIS but 

reflectance increase in blue and red regions (Yu et al., 2013a) (Figure 7-2).  

 

Figure 7-1: A schematic diagram shows the responses of plants to N deficiency. Plants perceive 

N deficiency and improve N use efficiency by remobilizing N element from older leaves and 

transporting it to younger leavers at the top of the canopy. 

Accordingly, the best time to remotely capture crop N deficiency is right after the plants 

perceive a signal of N deficiency and start N remobilization (Figure 7-1). However, individual 

leaves of the top canopy may not adequately represent the N state of the whole plant (Yu et al., 

2013b) (see CHAPTER 2); therefore, it is not recommended to assess canopy N status by leaf 

level spectral measurements. With long-term N stress or significant N deficiencies, robust 

correlations are often observed in leaf level spectral measurements because top canopy leaves 

have undergone significant changes (Xue et al., 2004); however, the appearance and detection of 

N deficiency N remobilization

Long-term
N stress
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these changes after the excessive “N hunger” is often too late to guide the crop N management. 

Thus, important uncertainties remain when N statuses are estimated by spectral measurements 

of individual leaves rather than the canopy.  

 

Figure 7-2: Canopy reflectance observed on rice canopies with different nitrogen supply at the 
booting stage. Inset highlights the reflectance variation in the 450-680 nm range (adapted from Yu 
et al. (2013a)). 

 Growth stage and N dilution effect 7.2

The effect of growth stage on the remote sensing of canopy traits is not as simple as a 

change in ground coverage and has not sufficiently studied in the past. Different trends of the 

correlations between plant N concentration and vegetation indices in different growth stages 

have been reported in rice (Yu et al., 2013b) (see CHAPTER 2) and wheat crops (Li et al., 2010b). 

In this study, the results of the barley experiments also showed the distinct trends in the 

correlations between vegetation indices and plant N concentration, as well as chlorophyll 

concentration (CHAPTER 6, Figure 6-5), which implies that the limitations of vegetation indices 

due to the influence of growth stages are not crop-species-specific responses and might be 

unavoidable in the currently existing vegetation indices. Yu et al. (2014b) observed the temporal 

changes in canopy reflectance collected on seven barley cultivars across seven growth stages (see 
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CHAPTER 5). They found that NIR reflectance generally increased until the heading stage and 

then decreased, whereas green reflectance decreased until the heading stage and then increased 

(CHAPTER 5, Appendix A, Figure 5-A1), suggesting that canopy reflectance at different 

wavelengths change in different ways across growth stages. This may explain the distinct trends of 

vegetation indices in response to canopy nitrogen in different stages (Li et al., 2010b). 

 With the advance of growth stage, plant growth rate is much faster that the rate at which N 

is accumulated in the plant mass until the stage of full heading, which results in the decrease of N 

concentration (Figure 7-3) and yields the N dilution effect (Justes et al., 1994; Yu et al., 2013b). 

The N dilution effect causes the crop canopy structural variations (mainly biomass) to be the 

dominant factor that determines the canopy spectral signatures before the canopy closure, 

particularly in the NIR and SWIR regions (Heege et al., 2008; Mistele & Schmidhalter, 2008). 

Similarly, the results of this study also showed that barley canopy N concentration decreased as 

plant biomass increased (Figure 7-3). As shown in the N dilution curves in both experiments in 

2011 and 2012, the dilution effect has faded from 75 days after sowing (DAS). This corresponds 

with the trends that were observed in the correlations of vegetation indices and canopy 

chlorophyll concentration (CHAPTER 6, Figure 6-5). Following the DAS 75-80, the growth rate 

of plant biomass became very low compared to the early growth stages (DAS < 75), and crop 

canopy reached closure. Theoretically, after the canopy closure, biomass variations might not be 

sufficiently captured by canopy reflectance, because two dense canopies with significant difference 

in biomass might not produces significant difference in their canopy reflectance or vegetation 

indices. This might explain the well-known “saturation effect” of traditional vegetation indices 

(e.g., NDVI) when they are used to estimate green leaf area (Kimura et al., 2004; Sims & Gamon, 

2003). Also, the saturation phenomena of traditional vegetation indices (e.g., NDVI) that have 

been found in biomass estimation are attributed to the effect of growth stages (Gnyp et al., 2014a; 

Li et al., 2010a). In contrast, after canopy closure, the effect of canopy biochemical variations (e.g., 

Chl, N, water etc.) on canopy reflectance might become prominent compared to the effect of 

biomass variations, thus cause the significantly different trends of correlations for DAS > 80 

(CHAPTER 6, cf. Figure 6-5 and Figure 7-3). These biochemical variations might be due to various 

factors, for example variation in chlorophyll, N or even variations caused by senescence 

(Merzlyak et al., 1999; Viña & Gitelson, 2011) and other factors. Therefore, in a closed canopy*, 

biochemical variations might be one the dominant factors that produce canopy spectral 

variations. 

                                                 
* Closed canopies denote maximal ground coverage (closure). 
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Figure 7-3: Response of nitrogen concentration (N, %) to biomass dry weight (BDW) 
observed along with the growth stages of the barley experiments in 2011 and 2012. Loess fit 
shows the N dilution curves for each year.  

 Relating Chl to N 7.3

There are a number of studies have consistently shown that chlorophyll (Chl) is related to N 

(Fageria, 2009; Filella et al., 1995; Fridgen & Varco, 2004). As expected, the correlations were 

relatively robust for individual stages (Figure 6-4), although the relationships appeared to be more 

variable across growth stages (Figure 7-4). Therefore, using one variable of the Chl vs. N 

relationship to infer another one makes it difficult to obtain a high precision for all growth stages. 

Importantly, the results also indicate that growth stages have a relatively significant effect on the 

Chl vs. N relationship compared to the differences between cultivars (Figure 6-4).  

The results based on the barley experiments showed that the nine selected vegetation 

indices (see Table 6-1) explained more variation in N concentration than the Chl (cf. Figure 6-6 

and Figure 6-7), suggesting that using spectrally modeled Chl to estimate the N concentration 

might result in significant errors compared to using proper vegetation indices to estimate N 

directly. Consequently, one of the questions concerned in this study — why most of the 

investigations do not use the spectrally modeled Chl and a Chl vs. N model to indirectly model N, 

instead, they use canopy spectra directly to estimate N (CHAPTER 1, section 1.4) — becomes 

clear. 
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Figure 7-4: Response of chlorophyll concentration (Chl, µg/g) to nitrogen concentration (N, %) 
observed in each barley cultivar. 

As discussed in previously section, N variation causes variation in both biomass and 

chlorophyll, which has significant effects on canopy reflectance in both VIS and NIR regions 

(Heege et al., 2008). These indirect effects on the VIS and NIR bands were also been highlighted 

by (Yu et al., 2013a) in rice canopies (Figure 7-2). Therefore, a direct estimation of N 

concentration from canopy hyperspectral data appears to be more effective compared to 

modeling N from spectrally modeled chlorophyll.  

 Decoupling of biochemical and biophysical traits 7.4

In this study, we explored the possibility of decoupling the contributions of biochemical and 

biophysical traits to canopy spectra by introducing a new method to optimize vegetation indices 

(Yu et al., 2014a; 2014b) that employs a transformed “reflectance unit” comprising the Ratio of 



General discussion and conclusions 

CHAPTER 7 
175 

 

 

Reflectance Difference (RRD) (see CHAPTER 3 and CHAPTER 5). Canopy structural variations 

(e.g., biomass, LAI, soil background) cause a confounding effect on the analysis of canopy spectra 

for the estimation of biochemical parameters, and it has been hypothesized that the confounding 

effect is partially linearly eliminable (Figure 7-5, see also CHAPTER 3 and CHAPTER 5). Based on 

this hypothesis, the confounding effect of multiple scattering, soil/water backgrounds and their 

interactions within the canopy can be weakened and eliminated from the measured canopy 

reflectance by defining the Ratio of Reflectance Difference Index (RRDI) and optimizing its 

corresponding bands (λ1-4, Figure 7-5). This hypothesis proved to have an inherent relation with 

the multiple scatter correction (MSC) theory as interpreted in Yu et al. (2014b) (see CHAPTER 

5). 

 

Figure 7-5: A schematic diagram illustrates the hypothesis for developing a reflectance unit that 

attempts to cancel out the effects of canopy confounding factors when correlating the 

biochemical traits and canopy spectra. It is named the Ratio of Reflectance Difference Index 

(RRDI), and the bands can be optimized by a lambda-by-lambda band optimization algorithm 

(CHAPTER 3 and CHAPTER 5). The RRDI is based on the linear hypothesis that the confounding 

effect of multiple scattering, soil/water backgrounds and their interactions induces multiplicative 

(a) and additive (b) contributions to the measured canopy reflectance with the error term e. 

The red edge index, REIP, showed comparable performance to RRDIre for the estimation of 

Chl and N concentrations. Darvishzadeh et al. (2009) suggested that REIP was not a reliable 

indicator of LAI because it was insensitive to LAI variations. Similar results were also found by 
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Boegh et al. (2002), who reported that REIP was relatively insensitive to structural variations and 

REIP probed to be good indicator of Chl, suggesting that using the red edge range for Chl 

estimation is less affected by structural variations. Accordingly, the RRDI in the red edge — 

RRDIre= (R745-R740)/ (R740-R700)) — was developed for the estimation of the canopy Chl content* 

of rice (Yu et al., 2014a) (see CHAPTER 3). This index showed a comparable performance to the 

partial least squares regression (PLSR) when it was employed to estimate the Chl content of 

farmer fields (Yu et al., 2014a). In the subsequent barley experiments, the RRDIre also showed a 

promising performance on estimating the canopy Chl concentration†  (Figure 6-6) and N 

concentration (Figure 6-7) of barley plants and explained 66% and 76% of the variation in Chl and 

N, respectively. These results suggest that the RRDIre has the promising potential to model 

canopy Chl and N across different crop types.  

At the canopy level, Chl per unit area is of interest because of its important role in linking 

with photosynthesis capacity relative to the Chl per unit mass (van der Meer & de Jong, 2001; 

Yoder & Waring, 1994). Generally, a thicker leaf with similar Chl per unit area would have a lower 

Chl per unit mass; therefore, the Chl per unit mass might be less related to the photosynthesis 

capacity than is the Chl per unit area. At the leaf level, two leaves that have the same Chl per unit 

area should have a similar spectral reflectance. However, the degree of the similarity of 

reflectance might decrease when scaling-up to canopy level (Zarco-Tejada et al., 2005). At the 

canopy level, a thicker leaf will be more likely to prevent light from penetrating inside the canopy 

to deeper leaf layers than a thinner leaf with similar Chl per unit area. Additionally, a thinner or 

narrower leaf might be more likely to enable light to encounter soils or non-photosynthesis 

materials compared to a thicker or wider leaf with similar Chl per unit area. Therefore, at the 

canopy level, remote sensing of Chl per unit area appears to be more readily affected by soil 

background and canopy structures (Yu et al., 2014b) (see CHAPTER 5). This was confirmed by 

the results that showed that the optimized RRDI significantly improved the correlation with Chl 

per unit area (Cab) based on the PROSAIL simulation (r2 = 0.98) compared to Chl per unit mass 

of barley leaves (Figure 5-2, CHAPTER 5), which suggests that the method developed in this 

study can be applied to both Chl per unit mass and Chl per unit area estimations; however, it 

might be more applicable to the area-based Chl content. 

In addition, this method has the potential to reduce background signals similar to the 

derivative-transformed spectral indices (Gnyp et al., 2014a; Yu et al., 2014a; Zhao et al., 2005) (see 

CHAPTER 3 and CHAPTER 5); however, it may not limited to the sensors measuring continuous 

wavelengths compared to derivative analyses. Therefore, the RRDI eliminates the additive effect 

                                                 
* Content uses the area-based unit µg cm-2. 
† Concentration uses the dry-mass based unit µg/g. 
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without employing derivative transformation and reduces both the additive and multiplicative 

effects without having to apply the MSC (Yu et al., 2014b), which indicated that RRDI optimization 

has the advantage of simplicity in hyperspectral remote sensing of canopy biochemistry. However, 

in addition to Chl and N, the main biochemicals found in plants also include cellulose, 

hemicellulose, lignin, protein, starch and water (Kumar et al., 2001) for which this method still 

need to be evaluated.  

 General model and growth-stage-specific model  7.5

As previously discussed, growth stages have a dominant effect on the remote estimation of 

crop canopy N and Chl concentrations. Therefore, one vegetation index or general model 

covering all of the growth stages may not be able to capture precise information about crop 

growth status. It has been recommended that different vegetation indices should be used for 

different crop parameters at different growth stages (Hatfield & Prueger, 2010). This is consistent 

with our results wherein the optimized vegetation indices for N uptake and N concentration are 

used in the early and late growth stages, respectively (Yu et al., 2013b) (CHAPTER 2). To design a 

general method to overcome the effect of growth stages on vegetation indices, Yu et al. (2014b) 

suggested to classify crop canopies into two types — open and closed canopies* — based on the 

concept “optical types” proposed by Ustin & Gamon (2010), and select the best vegetation 

indices/models for open and closed canopies, respectively (CHAPTER 5). A pre-screening 

method based on a threshold value of NDVI has been used (0.8) to ensure that the canopy 

biochemical traits of forest canopies that only have high-LAI are analyzed (Asner & Martin, 2008). 

Similar methods for classifying the degree of canopy closure may be applied to crop canopies by 

selecting the proper vegetation indices. Based on prior knowledge on the growth stages, Yu et al. 

(2013b; 2014b) used the BBCH scales (Lancashire et al., 1991) to distinguish the canopy closure 

(open or closed canopies) in rice and barley canopies, respectively, and this method proved to be 

able to improve the estimation of canopy N and Chl for both open and closed canopies 

(CHAPTER 2 and CHAPTER 5). In addition, the results also indicate that different narrow bands 

and band combinations must be used at different growth stages and that the use of additional 

bands, such as NIR-SWIR bands (Koppe et al., 2010; Yu et al., 2013b).  

 Compared to vegetation indices, multivariate methods offers the potential of the calibration 

of a general model for the estimation of multiple variables such as biomass, Chl, LAI, N and other  

canopy biochemical and biophysical parameters (Asner & Martin, 2008; Atzberger et al., 2010; 

Hansen & Schjoerring, 2003; Yu et al., 2013a; 2013b; 2014a; 2014b; 2014c). Yu et al. (2013a) 

                                                 
* Open and closed canopies denote before and after reaching the maximal ground coverage (closure), 
respectively. 
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suggested the use of both biochemical (N) and biophysical (biomass) variables to calibrated a 

partial least squares regression (PLS) model to take the co-variations of both variables into 

account, which proved to be able to improve the estimations of both biomass and N variations. 

Therefore, to use canopy reflectance for the N estimation at different growth stages, this study 

suggests two approaches: (1) use the two-step method that first classifies the degree of canopy 

closure into two classes (open and closed canopies) and selects the proper vegetation indices and 

optimizes the open- and closed-canopy models, respectively; and (2) calibration of multivariate 

methods.  

Currently available radiative transfer (RT) models are still not able to account for the effect 

of crop growth stages. Although LAI variations might be able to indicate to some extant the 

variations due to phenological stage development, they are not able to fully represent the linkages 

between different factors that co-vary in reality, e.g., biomass, LAI, N and Chl (Jacquemoud et al., 

2009; Townsend et al., 2013). Some studies have suggested that the ill-posed problems — different 

variable combinations may produce almost identical spectra — should be taken into account 

when using RT models (Atzberger, 2004; Richter et al., 2011). Concerning the effect of growth 

stage, ill-posed problems might occur in the form that different growth stages might produce 

almost identical spectra, which further increases uncertainties in estimating crop characteristics. 

 Canopy sensing of plant diseases 7.6

Comparisons between vegetation indices derived from chlorophyll and water absorption 

bands are rarely conducted (Apan et al., 2004; Delalieux et al., 2009); therefore, the methods by 

which plant diseases impact chlorophyll functional change and water absorption are not well 

understood. According to the results of the barley experiments, water band indices (WBI, NDWI) 

appeared to be superior to chlorophyll band indices in the tests in this study (cf. Figure 6-13, 

Figure 6-14, Figure 6-15 and Figure 6-16), which suggests that the response of canopy spectra to 

plant diseases might be dominant in water absorption bands compared to the chlorophyll 

absorption bands. Recent studies have shown that water absorption bands are also useful for the 

estimation of plant biomass (Gnyp et al., 2014b; Koppe et al., 2010), which suggests that significant 

higher values of the WBI and NDWI might be due to the higher amount of biomass. However, 

according the results of this study, the with-fungicide treatment did not yield significant high 

amount of biomass compared to the without-fungicide treatment (see Figure 6-9) on those days 

that the with-fungicide treatment yielded significant higher WBI and NDWI (Figure 6-15 and 

Figure 6-16). The possible explanation is that the disease infections were mild as observed in this 

study (Figure 6-2). The vegetation indices derived from the chlorophyll absorption bands and 

water absorption bands failed to distinguish the fungicide treatments in 2012, which is in 
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accordance with the yield response in 2012 in which no significant difference was observed 

between the two fungicide treatments (Figure 6-12). Finally, our results suggest that spectral 

features in the NIR-SWIR range might be more efficient for detecting crop diseases compared to 

those in the VIS range. 

Plant height has an effect on the vertical expansion of diseases; therefore, infection 

symptoms may appear earlier on the upper parts of dwarf cultivars than on the leaves of taller 

cultivars (Gröll, 2008). Therefore, compared to the leaf level proximal sensing, hyperspectral 

canopy sensing provides the potential to detect the infection symptoms in a relatively low layer of 

the canopy. This is confirmed by the results of the barley experiment (see CHAPTER 4) in which 

the hyperspectral vegetation indices detected the diseased plants even when the upper-most flag 

leaves did not show obvious infection symptoms (Yu et al., 2014c). 

 Canopy remote sensing of crop diseases has the potential to provide site-specific 

applications of agricultural chemicals (Cao et al., 2013; Delalieux et al., 2007). However, the 

successful implementation depends on both spatial and spectral resolution of the detecting 

sensors (Gröll, 2008; Laudien & Bareth, 2006). A low spatial resolution sensor system might be not 

able to detect the unevenly spread diseases compared to a high spatial resolution system (Figure 

7-6).  

It is well known that the severity and occurrence of diseases are affected by the weather and 

climate conditions (Barkley et al., 2014), which is why disease infections often appear to be mild 

under natural conditions. Additionally, mild symptoms of diseases and disease symptoms in the 

lower leaf layers might not be detectable by high spatial resolution systems with a low spectral 

resolution or limited disease-insensitive bands (Figure 7-6). In these cases, mild symptoms might 

be masked by other variations of the canopy, and a sensor with a low spectral resolution is more 

likely to capture canopy spectra that are primarily dominated by other factors other than the 

disease symptoms. Therefore, the detection of mild symptoms of diseases requires both high 

spatial and high spectral resolution sensors and the sensors should have the sensitive bands, for 

example the NIR-SWIR bands as highlighted in this study. 
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Figure 7-6: A schematic diagram illustrates the effect of spatial and spectral resolutions of 
canopy sensors on the detection of plant diseases.  

 Near-ground remote sensing for PA 7.7

Compared to the wide spectrum of remote sensing (RS) applications, the scope of this 

dissertation is very narrow and focuses mainly on understanding and estimating the variability of 

chlorophyll (Chl) and nitrogen (N) in crop canopies. Over the last 40 decades, remote sensing 

has proved to be a valuable tool for agronomic management (Gausman & Cardenas, 1968; Hatfield 

et al., 2008). High spatial resolution RS data collected by sensors on most available airborne or 

satellite platforms have low spectral resolution and a limited number of bands, which prohibits 

the capturing of rich information about the variation in crop biological characteristics (Zhang & 

Kovacs, 2012). Although satellite hyperspectral images (e.g., Hyperion (EO-1)) provide greater 

spectral resolution, they have very low spatial resolution that cannot sufficiently represent the 

within-field subtle variability (Thenkabail et al., 2012). Hyperspectral remote sensing based on 

near-ground platforms allows for studying the sensitivity of hyperspectral narrow bands to 

various plant biochemical and biophysical characteristics (e.g., biomass, Chl, N, water) with low 

costs. By combining with ground truth data, near-ground hyperspectral remote sensing allows for 

the investigation of how to efficiently use the high dimensional RS data to interpret variability of 
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crop growth and yield. Consequently, it also enables the development of new methods and 

products that can be applied to PA, as well as airborne or satellite platforms. 

With the enlargement of intensive production and mechanization of site-specific fertilization 

and pest managements, near-ground remote sensing also plays a key role in facilitating the 

development of crop sensors, tractor-based sensing system and low-cost UAV systems for 

precision crop management (Heege et al., 2008; Hunt et al., 2010; Yao et al., 2012; Zhang & Kovacs, 

2012). 

 Mains findings and conclusions 7.8

Growth stages have a dominant impact on the remote sensing of crop canopy biochemical 

and biophysical traits and variations, which suggests that different vegetation indices must be used 

for open (early stage) and closed (late stage) canopies. Multivariate models such as multiple linear 

regression (MLR) analysis, partial least squares (PLS) and support vector machines (SVM) are 

relatively resistant to the effect of growth stage by employing more spectral bands or a 

full-spectrum analysis. 

 The ratio of reflectance difference index (RRDI) removes the confounding effects of canopy 

structures, multiple scattering and soil background as well as their interactions, which improves 

the estimation of canopy biochemical traits (e.g., Chl and N) compared to traditional vegetation 

indices such as the normalized difference vegetation index (NDVI) and simple ratios (SR). As an 

example, the RRDI in the red edge (RRDIre) shows a promising performance in estimating 

canopy chlorophyll and N across the different cultivars of barley and rice crops. 

 Canopy hyperspectral measurements are able to detect disease stresses before significant 

losses in Chl and N concentrations are observed. The MCARI and its variants are useful for the 

detection of disease symptoms because they are sensitive to Chl functional change. However, 

vegetation indices based on water absorption bands, such as the WBI and NDWI, offer a superior 

ability in discriminating diseased plants compared to the vegetation indices based on Chl 

absorption bands. Thus, water absorption bands might be more useful for crop disease detection 

at the canopy level. 

 Limitations and outlook 7.9

The possible limitations of this study are that (1) method developed here is not able to 

completely decouple the contribution of canopy biochemical and biophysical properties to 

canopy spectra data by optimizing the newly proposed vegetation index (RRDI); (2) underlying 

hypothesis is not comprehensive enough to account for the nonlinear factors of the confounding 

effect that result from the canopy structures, soil background and their interactions; and (3) lack 
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of validations using satellite and airborne sensors, despite the specific spectral bands detailed in 

this study being absent on the sensors of these platforms. Therefore, the method should be 

improved in the future work to verify whether validation is achievable through the hyperspectral 

imaging sensors mounted on unmanned aerial vehicles (UAVs).  

Despite important progress has been made on the remote sensing of canopy N, there is a 

need to understand the underlying mechanisms and causality principles that generate the 

observed consistencies. The distribution of the in vivo N and its dynamic response to phenological 

stages, biotic and abiotic stresses make it difficult to fully represent canopy N variability using 

remote sensing; therefore, integration with vertical N distribution models might be able to 

improve the quantitative modeling of canopy N (Li et al., 2013). Crop growth and soil fertility 

within a field or at a regional scale are both spatially and temporally variable (Cao, Q et al., 2012; 

Dobermann et al., 2004; Moran et al., 1997); therefore, the challenge for precision agriculture 

techniques is to provide the precise information on the within-field spatial variability. To achieve 

this goal, remote sensing must allow for the timely determination of the source and extent of the 

variability, differentiation between the yield-limiting factors and identification of the specific crop 

stresses. 

Despite the various limitations to understanding the links between canopy optical and 

biological traits, remote sensing will become an irreplaceable tool for understanding the links and 

studying the carbon and nitrogen cycles from leaf to global levels in agricultural and ecological 

applications. Future work for agricultural remote sensing should be highly integrated through 

sensor and data fusion. 
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