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Abstract

New sources of information are required to support rice production decisions. To cope with

this challenge, studies have found practical applications on mapping rice through the use of

remote sensing techniques. This study attempts to implement a methodology aimed at mon-

itoring rice phenology using optical satellite data. The relationship between rice phenology

and reflectance metrics was explored at two levels: growth stages and biophysical modifications

caused by diseases. Two optical moderate-resolution missions were combined to detect growth

phases. Three machine learning approaches (random forest, support vector machine, and gra-

dient boosting trees) were trained with multitemporal NDVI data. Analytics from validation

showed that the algorithms were able to estimate rice phases with performances above 0.94

in f-1 score. Tested models yielded an overall accuracy of 71.8%, 71.2%, 60.9% and 94.7% for

vegetative, reproductive, ripening and harvested categories. A second exploration was carried

out by combining Sentinel-2 data and ground-based information about rice disease incidence.

K-means clustering was used to map rice biophysical changes across reproductive and ripening

phases. The findings ascertained the remote sensing capabilities to create new information

about rice for Colombia’s conditions.
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Chapter 1

General Introduction

Many have contributed their knowledge and efforts for the consolidation of rice as one of the

essential short-cycle crops in Colombia during the last decades. Government entities (Ministry

of Agriculture and Rural Development), the National Rice Growers Federation (Fedearroz)

and international research institutes (e.g., International Center for Tropical Agriculture) have

played a key role in promoting rice research and improving rice production conditions. As a con-

sequence, rice production in Colombia has increased from 2 tons.ha−1 in 1960 to 5.7 tons.ha−1

in 2016 (UNEP (2005)), and the rice production area has increased in 23 out of 32 departments

with a total harvested area of 570,802 hectares (Fedearroz (2017)). Such expansion has turned

rice into a vital crop for Colombia society (McLean et al. (2013)). Nevertheless, rice crop is ex-

posed to several factors that affect its profitability (Amaya Montoya (2011)). High production

cost, fluctuation on rice prices, international trades, disease outbreaks, and overproduction are

some of the challenges that Colombian rice growers must face. Rice information is therefore

essential in monitoring factors that may affect crop production.

Rice crop data is valuable in diverse aspects to bring farmers agronomical decisions tools

(Delerce et al. (2016); Jiménez et al. (2016)), to serve as a base in political decisions related with

food security (Cihlar (2000); Dong and Xiao (2016)), and to monitor pest and disease outbreaks

(Gnanamanickam et al. (2010)). Due to its importance, many efforts have been carried out to

get reliable information about rice-ecosystems. One of the most common methods is through

surveys. Regardless of its high accuracy, this methodology is time-consuming and hard to

implement at a large scale (Mosleh et al. (2015)). After that, new sources of information are

required to obtain high-frequency data at low cost. Remote sensing has gained interest due

13
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to its capacity to monitor crops at different scales in a cost-effective manner (Dong and Xiao

(2016); Kuenzer and Knauer (2013)).

During the last decade, several studies have successfully proved the remote sensing capability

on monitoring rice, creating valuable data for characterizing rice-crop conditions. Although the

method has been widely implemented in countries which rice is extensively sowed (e.g., China,

India, Vietnam) (Mosleh et al. (2015)), in Colombia there are few reported studies that have

explored the relationship between rice and spectral satellite-derived metrics (Mart́ınez (2017)).

The potential for growth phase detection can be further explored to characterise the intra-

variability on rice fields. New metrics can be derived in order to monitor rice biophysical

changes across phenological stages. A comprehensive assessment may link those changes to rice

stresses factors such as diseases. This technology can be therefore used to identify and treat

rice damages in fields (González-Betancourt and Mayorga-Rúız (2018); Wu et al. (2018)).

The purpose of this study is to establish new methods for monitoring rice growth phase and

disease incidence in Colombia. The objective was focused on creating remote sensing metrics to

better characterise the rice morphological and physiological changes through its growth cycle.

Using ground-based information shared by Fedearroz, a methodology was developed to detect

rice growth phases using optical satellite data. Using this to control for the phenological stage of

the crop, a method for detecting zones affected by diseases within the rice fields was developed.

The remainder of this chapter contains the background information related to remote sens-

ing techniques and general aspects of rice phenology. Chapter two explains the methodology

developed for rice growth phase detection by blending Landsat and Sentinel-2 images. Chapter

three explores a method for detecting phenological changes caused by diseases during repro-

ductive and ripening phases. Chapter 4 gives a synthesis and future works that must be done

in order to validate methodologies.
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1.1 Remote sensing

Remote Sensing is a method that measures properties from an object using devices which are

not in contact with (Khorram et al. (2012); Mulla (2013)). These devices can be mounted on

aircrafts, earth orbiting spacecrafts, or even held by hand (ground-based). The electromagnetic

energy emitted or reflected by the object is captured by the devices or sensors. Any object at

a given temperature should naturally emit electromagnetic radiation. The amount of energy is

proportional to the source temperature (Joshi and Kumar (2008)). The electromagnetic (EM)

radiation is the energy that moves at a speed of light in a harmonic wave pattern. The EM

waves comprise an electromagnetic spectrum. One property of the electromagnetic radiation

is the wavelength; this is a spatial distance from one wave position to the next wave in the

same point (Khorram et al. (2012)). This attribute is used to split the spectrum into seven

categories: gamma rays, x-rays, ultraviolet, visible rays, infrared rays, microwaves, and radio

waves (Joshi and Kumar (2008)).

One of the principal energy sources on earth is the sun. Various types of interactions

can occur between EM and matter, such as absorption, reflection, scattering, emission, and

transmission. Thus, a material has a characteristic absorbance and/or reflectance to the original

EM radiation; this phenomenon is known as a spectral profile. The key of remote sensing is that

the devices used can record the spectral profile (Khorram et al. (2012)). The sensors that detect

electromagnetic radiation from natural sources are known as passive sensors. In contrast, active

systems rely on illuminating the subject with a pulse or beam of radiation and measuring the

backscatter. Airborne photography and optical satellites belong to the first group, while Light

Detection and Ranging (LIDAR) and Radio Detection and Ranging (RADAR) are examples

for the second one.

Likewise, remote sensing information can be obtained in two ways: non-imaging, and imag-

ing. Sensors such as spectroradiometers which are commonly used in ground-based applications

are in the first category. For the imaging methods, one example is the earth observation data

that is captured by the satellites (Martinelli et al. (2015)). The digital images can be stored

at different spatial, temporal, spectral, and radiometric resolutions. Spatial resolution is the

image grid size. Cadence is the revisiting time on a specific geographical location. Spectral
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resolution is the sensor ability for registering wavelength intervals. Finally, radiometric resolu-

tion characterises the sensor sensitivity (Khorram et al. (2012)). These parameters constrain

the applicability of the product.

Currently, close to 200 Earth Observation satellites are continuously registering information

(Ma et al. (2015)). This amount of data has facilitated the development of applications in many

fields such as oceanography, atmospheric, weather forecasting, environmental monitoring, urban

structuration, and agriculture.



CHAPTER 1. GENERAL INTRODUCTION 17

1.2 Remote sensing in agriculture

The first studies using remote sensing techniques were focused on characterizing leaf chlorophyll

content (Benedict and Swidler (1961); Thomas and Gausman (1977)). This pigment absorbs

energy centered in blue and red, while reflects the wavelength in green, yet, these spectral

regions are not the only ones related to vegetation. Baret et al. (1987), found that the red edge

spectrum provides information related to the leaf area and the percentage of ground coverage.

Bannari et al. (1995), mentioned that near-infrared (NIR) is affected by leaf cellular structure.

To overall the plant-spectral relationship, the reflectance in the visible spectrum is low mainly

caused by photosynthetic pigments. In the red-edge region, retrieval is influenced by chlorophyll

content (Ramoelo et al. (2012)). The leaf cellular structure controls the absorbance in the near

infrared region. Finally, for short-wavelength infrared, the reflectance is influenced by water,

proteins, and other carbon constituents content (Huang et al. (2012); Peñuelas and Filella

(1998)).

Since the first Earth Observation satellite mission, studies have focused on characterizing

radiometric response and vegetation cover using broadband sensors. Among spectral bands, red

and NIR especially showed high sensitivity to vegetation conditions. The red band is absorbed

by chlorophyll that is essential for the plant photosynthetic process, while NIR is reflected

by leaf cellular structures. Thus, the combination of both bands allows identifying vegetation

covers from others (e.g., soil, and water) and quantify the vigor of the plant (Bannari et al.

(1995)).

The quantification metrics derived from spectral band combinations are known as vegeta-

tion indices. The first indices were computed as ratios of the green and NIR bands. Although

these ratios are used to measure relative greenness, these indices may be affected by atmo-

spheric effects, vegetative density, and study location (Bannari et al. (1995); Tucker (1979)).

Rouse et al. (1973), found a way to reduce the negative aspect of existing vegetation indices by

calculating the normalised difference between red and NIR bands. Thus, the normalised dif-

ference vegetation Index (NDVI) gained notorious importance for plant biophysical properties

monitoring. However, the NDVI is sensitive to soil background, atmospheric conditions, and

heterogeneous canopies (Rondeaux et al. (1996); Xue and Su (2017)). To adequately assess

the plant response using band combinations, many studies have developed different vegetation
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indices to tackle specific problems (table 1.1).

Table 1.1: List of standard vegetation indices, and their mathematical equation.

Vegetation Index Equation Reference

Radio Vegetation Index
(RVI)

(red)
(nir)

Pearson and Miller
(1972)

normalised Difference
Vegetation Index

(NDVI)

(nir−red)
(nir+red)

Rouse et al. (1973)

Enhanced Vegetation
Index (EVI)

2 ∗ (nir−red)
(nir+6∗red−7.5∗blue+1)

Liu and Huete (1995)

Enhanced Vegetation
Index 2 (EVI2)

2 ∗ (nir−red)
(nir+2.4∗red+1)

Qiu et al. (2015)

Land Surface Water
Index (LSWI)

(nir−swir1)
(nir+swir1)

Ceccato et al. (2002)

normalised Difference
Red Edge (NDRE)

(nir−red−edge)
(nir+red−edge) Liu et al. (2019)
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1.3 Rice phenological detection

Rice phenology can be divided into three main phenological phases: vegetative (germination

to panicle initiation), reproductive (panicle initiation to flowering), and maturity or ripening

(grain filling to maturity)(Moldenhauer and Slaton (2001)). Changes in the plant morphology

characterise each agronomic stage. The vegetative phase initiates with the plant emergence;

during this phase, the main characteristics are the gradual increase of plant height, leaf area,

and an active tillering. The phase transition takes place when the tiller number per plant

reaches a maximum. The reproductive stage follows maximum tillering. During this phase,

the panicle primordia stage starts its initiation. The panicle needs approximately 25 days

to achieve the heading stage, which refers to when 50% of the panicles have flowered. After

100% of flowering, the ripening stage takes place. The maturity stage is characterised by leaf

senescence and grain filling (Yoshida (1981)). The rice cycle takes from 3 to 5 months; the

difference is subject to the conditions in which the crop is developed (Kuenzer and Knauer

(2013)).

Figure 1.1: Rice plant cycle with phase and froth stages. the curve represents the temporal
profile for NDVI (modified after Kuenzer and Knauer (2013); Mosleh et al. (2015)).

As the rice plant change its growth phenology, the reflectance is affected at different spectral

wavelength. Studies have adequately described the rice cycle as a function of vegetation indices.

Several indices have shown a strong correlation with rice growth. For example, NDVI is affected

by the low percentage of vegetation cover at the early vegetative phase, due to that its values

are close to zero (figure 1.1). While the plant is growing, the chlorophyll quantity increases,
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which exerts considerable influence in the absorbance of light in the red domain. Although

the absorbance in the blue region also increments due to chlorophyll content, this domain

is also influenced by carotenoids absorption (Peñuelas and Filella (1998)). In NIR region, the

reflectance is increased by foliar and tillering development. The NDVI characterises this process

as a gradual increment in its values. Finally, NDVI starts to decrease due to biomass reduction

(decay and loss of leaves), greenness diminishing (chlorophyll content), and yellowness increase

(rice grains filling)(Kuenzer and Knauer (2013); Mosleh et al. (2015)).

The growth stage can, therefore, be predicted by the NDVI trajectory in time. Several stud-

ies have shown the feasibility in detecting rice phenological changes using time-series NDVI reg-

istered by satellite missions. Frequently studies referred to MODIS vegetation indices products

that can produce NDVI and EVI on 16 days intervals at multiple spectral resolutions (NASA

(2018)). Thus, Sakamoto et al. (2005) and Shihua et al. (2014) used EVI multi-temporal profiles

to characterise the rice cycle. Three phenological dates (planting, heading, and harvest) were

calculated based on the inflection points that were found in the time-series. Although MODIS

products have a high temporal resolution (the products are staked from a daily measurement),

their spatial resolution is low (>250 m), which hampers a precise identification (Onojeghuo

et al. (2018)).

Other studies have focused their analysis on satellites with higher spatial resolution than

MODIS, such as Landsat or Sentinel-2. Nevertheless, their low temporal resolution compromises

data availability. Recent methodologies merge multiple mission to overcome this inconvenience.

For instance, Wang et al. (2015) created smoothed vegetation indices time-series by combining

two optical satellites, Landsat-8, and HJ-1 CCD. They found reliable performances when both

satellites were combined, instead of using only one. They assigned the rice phenological shift for

those days when the vegetation index time-series reached a maximum. Wu et al. (2018) used

radar and optical data to detect rice in early middle, and late phases for areas located in China.

Thus, they summarized Sentinel-1s VH backscattering images taken during the rice plantation

period in three layers minimum, difference, and maximum. The imagery stack was compared

with the minimum and maximum coefficients, which defined the rice growth stages. Finally,

they calculated the Landsat-8’s NDVI values for which areas filtered from the Sentinel-1. The

NDVI was classified using the k-means approach to differentiate each rice stage. Although the
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study reported a high level of overall accuracy (98.1 %) in their methodology, they worked under

local rice system conditions, for example, assuming a general crop calendar and considering only

irrigation rice
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1.4 Crop diseases detection

Plant pathogens are significant causes of yield loss (Huang et al. (2012)). The primary or-

ganisms that cause damage to rice plants are bacteria, viruses, fungi, and nematodes (Ahn

and Jennings (1982)). Hence, many efforts have risen in order to understand the symptoms

caused by the pathogens, as well as to better characterise the specific environmental condi-

tions that facilitate their outbreaks. For example, The Centre for Tropical Agriculture (CIAT)

and Fedearroz have identified five significant pathogens for Colombia (Correa-Victoria and Zei-

gler (1993); Fedearroz (2014)). These are Pyricularia Orizae, Helminthosporium, Rhizoctonia

Solani, Rhynchosporium, Gaemannomyces.

Rice blast disease is caused by the fungal pathogen Pyricularia Orizae (teleomorph Mag-

naporthe Orizae); this is of considerable importance to rice producers (Dean et al. (2012)).

The fungus affects all foliar tissues, and the major diagnostic symptoms are lesions on leaves,

nodes, and different parts of the panicle (Ou (1985)). Although the disease is reported world-

wide, symptoms depend on the climatic conditions, especially relative humidity (Ou (1985)).

For example, in Colombia, the rice blast is mainly located in the eastern part of the country

due to a suitable temperature and humidity conditions (Correa-Victoria and Zeigler (1993);

Fedearroz (2014)). The establishes during early plant stages, tillering and neck emerge stages

are susceptible to this pathogen (Venkatarao and Muralidharan (1982)) and is immediately

controlled by farmers when symptoms present.

Different factors affect the incidence of Brown Spot disease (Helminthosporium Orizae),

but, environments with a scarce water supply and lacking in soil nutrient minerals, or with

accumulated toxic substances, facilitated the diseases development (Ou (1985); Barnwal et al.

(2013)). Indeed, Ou (1985) reported that Brown Spot disease is caused by a deficiency of one

or more nutrient elements (nitrogen, silica, potassium manganese, and magnesium), and in

practice, disease and deficiency symptoms are often inseparable. Thereby, the Brown Spot is

sometimes used as a reference to mineral deficiencies (Ahn and Jennings (1982); Daytnoff et al.

(1991); Barnwal et al. (2013)). Plant age is also relevant for disease growing. Although Brown

Spot can attack at early plant stages, its damage is commonly noted in dough and maturity

stages (Singh (2016)).

Diseases modify plant physiology. These changes mostly occur in leaf structure and pigments
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content. Consequently, the electromagnetic spectrum absorption at different wavelengths varies

depending on the level of disease. For instance, one symptom of Magnaporthe Orizae is leaf

cell necrosis, which causes pigments degradation; these changes can be therefore spotted by

the visible spectral region (Zhou et al. (2019)). Kobayashi et al. (2001) reported that blue and

red regions reflectance increases at dough stage, because of the carotenoids and chlorophyll

content decrement. Pathogens such as Rhizoctonia and Helminthosporium also have been

detected using the visible and NIR regions (Qin and Zhang (2005)). For instance, Liu et al.

(2008) and Zhao et al. (2012) characterised rice infected with Helminthosporium Oryzae using

hyperspectral ground-measurements taken at a laboratory and field-canopy level, respectively.

They found differences in the near-infrared spectrum, specifically at the ranges of 740 nm to

790 nm and 1550 nm to 1750 nm, comparing healthy and diseased rice (figure 1.2). Zheng

et al. (2018) proposed a new index vegetation index, red-edge disease stress index (REDSI),

for detecting yellow wheat rust at canopy and plant level using Sentinel-2. Zhihao Qin et al.

(2003) identified rice incidence on Rhizoctonia Solani combining four broad bands that were

captured by airborne. Thus, they pointed out that the disease incidence correlated to indexes

calculated from blue, red, red-edge, and NIR band values.

Figure 1.2: Rice-canopy spectral profiles for four severity levels of Helminthosporium Oryzae
(modified after Zhao et al. (2012)).

The practical implementation of remote sensing has been hampered by differentiating the

disease from other stress factors (e.g., lack of nutrients or drought) which can trigger similar

changes in reflectance (Huang et al. (2012); Liu et al. (2019)). Recent studies have blended
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hyperspectral and multi-temporal satellite data. Shi et al. (2018) mapped rice damage from

diseases using two different acquisition dates from the high spatial resolution PlanetScope.

Huang et al. (2012) firstly characterised yellow rust on wheat using hyperspectral ground-

based measurements that then was used as a reference for satellite implementation. Although

PlanetScope offers useful information at high spectral and temporal resolutions, their images ac-

quisition prices constrain regional application. These studies show the potential use of spectral

reflectance measurements in quantifying the incidence or severity of rice diseases.



Chapter 2

Rice Growth Phases Detection

In this section, a novel approach for identifying rice growth phases using optical satellite im-

ages and supervised classification approaches is presented. Sentinel-2 and Landsat data were

downloaded and processed for two localities in Colombia. Three state-of-the-art machine learn-

ing supervised classification algorithms (random forest, support vector machine, and gradient

boosting trees) were trained, validated, and tested using ground-based data shared by The

Colombian National Rice Growers Federation (Fedearroz). The analysis showed: 1) clear re-

lationship in various rice growth phases with multi-temporal NDVI data; 2) feasible to obtain

a considerable number of optical satellite data by blending Landsat and Sentinel-2 missions;

3) training supervised classification approaches allowed applying the methodology in another

locality.

25
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2.1 Materials and methods

2.1.1 Study areas

Two sites in Colombia were chosen to train and test the spatial phenological detection approach

using optical images. Saldaña and Purificación are two Tolima municipalities that cover nearly

21,400 hectares from 4°N and 75°6.01'W to 3°48.6'N and 74°54.475'W. The zones are in the

central part of Colombia. The municipalities temperature ranges from 27°C to 28.5°C over

the year. Precipitation has a bimodal distribution spanning from March to May and from

September to November. The climatic conditions are suitable for rice production, which has

influenced the local economic activity (Delerce et al. (2016)). Thus, the agricultural sector

is responsible for almost 77% of the municipalities’ Gross Value Added (Fedearroz (2010)).

The rice annual planting area is nearly 15,390 hectares in both localities. Hereafter the name

Saldaña is used to refer to both municipalities.

The second site is in the Cesar department. The Cesars climate is classified as tropical wet

and dry. The wet season begins in March, and dry season starts in December, with an average

annual temperature that ranges from 27°C to 34°C. This region has specific crop management

differences compared with Saldaña. The most notable is the farming system. While lowland

irrigated rice is the only system implemented in Saldaña, in Cesar the 5% of the system is

rainfed rice (DANE (2017)), which means that irrigation only depends on the rainfall duration.

2.1.2 Ground data

The Colombian National Rice Growers Federation (Fedearroz) collected the ground data as part

of a separate initiative. Twenty rice fields plantations were monitored in the second semester

of 2015 (figure 2.1). Rice fields were visited on five dates from November 2015 to January 2016.

Rice growth stages, field geospatial location, plant height, soil water content, emergence date,

field extension, and an overall appreciation over rice cycle conditions were variables included

in the survey. A second campaign was undertaken in 2018 in the Cesar department. Nineteen

rice fields were surveyed (figure 2.2). The new data allowed testing models on a new geographic

area with slightly different climatic conditions. In addition to the parameters measured above,

any external incidence, such as drought or agronomic practices, was also included.
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Figure 2.1: Location map of the rice fields used for training and validationin the Saldaa region.

Figure 2.2: Location map of the rice fields used for testing in the Cesar region.
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2.1.3 Satellite data

Sentinel-2

The Sentinel-2 mission is part of the Global Measurement for Earth and Security (GMES) pro-

gram, which is responsible for delivering data products for environmental and security services

(Drusch et al. (2012)). Sentinel-2 reflectance measurements provide essential data for stud-

ies of land management, agriculture, and disaster monitoring (Aschbacher and Milagro-Pérez

(2012)). Sentinel-2 has two identical satellites with revisit cycle of 10 days. Thus, the mission

captures information globally every five days. Each satellite has a Multispectral Instrument

(MSI), which is used to monitor the earth surface in 13 spectral bands (table 2.1). The instru-

ment has a spectral range from the visible to the short wave infrared (Drusch et al. (2012)).

The spatial resolution varies regarding the wavelength, thus visible and NIR are available at

10 m, while red-edge and SWIR are recorded at 20 m. All data were downloaded directly from

the Sentinels Scientific Data Hub (https://scihub.copernicus.eu/ ).

Landsat-7 and Landsat-8

The first Landsat mission was launched in 1972. Since then, six satellites were put into orbit to

monitor the global earth surface. This program has been led by the National Aeronautics and

Space Administration (NASA) and the United States Geological Survey (USGS). The Enhanced

Thematic Mapper Plus (Landsat-7 ETM+) and the Operation Land Imager (Landsat-8 OLI)

are two satellites which are still capturing data every 16 days. Both can scan surface reflectance

and land surface temperature as a result of measuring the visible, near infrared, and short wave

infrared portions of the spectrum (Claverie et al. (2018))(table 2.1). USGS processes Landsat-

8 and Landsat-7 surface reflectance products that are then distributed in the EarthExplorer

repository (https://earthexplorer.usgs.gov). The available data has the highest-level quality

and is achieved through two processing softwares, Landsat Ecosystem Disturbance Adaptive

Processing System (LEDAPS) and the Landsat Surface Reflectance Code (LaSRC), designed

for Landsat-7 and Landsat-8 respectively. Although both products are processed using different

data sources, their inputs are water vapor, ozone, geopotential height, aerosol optical thickness,

and digital elevation (USGS (2018a,b)). Unfortunately, the Landsat-7 scan line corrector (SLC)

failed in 2003. The SLC controls the forward motion of the satellite. Therefore, close to 22%
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of the pixels of the data are missing since then (Chen et al. (2011)).

Table 2.1: Corresponding central wavelength and spatial resolution available at each band for
each instrument.

Band
Central wavelength (µm) Spatial Resolution (m)

S2A S2B Landsat-7 Landsat-8 Sentinel Landsat

coastal 0.44 0.44 0.44 60 30

blue 0.49 0.49 0.49 0.48 10 30

green 0.56 0.56 0.56 0.56 10 30

red 0.66 0.66 0.66 0.65 10 30

red edge 1 0.7 0.7 20 30

red edge 2 0.74 0.74 20 30

red edge 3 0.78 0.78 20 30

near in-
frared
(NIR)

0.83 0.83 0.84 0.86 10 30

narrow nir 0.86 0.86 20 30

water vapor 0.95 0.94 60 30

cirrus 1.37 1.38 1.37 60 30

short in-
frared 1
(swir1)

1.61 1.61 1.65 1.61 20 30

short in-
frared 2
(swir2)

2.2 2.19 2.22 2.2 20 30

Thermal
Infrared
(TIRS) 1

11.34 10.9 60 - 100

Thermal
Infrared
(TIRS) 2

12 100

2.1.4 Satellite images processing

Surface reflectance

Atmospheric variability (e.g. from clouds, water vapor, dust, etc.) must be corrected in order

to recover the Bottom of Atmosphere Reflectance (Chen and Cheng (2012); Tian et al. (2018)).

In Sentinel-2, such process is carried through the state version of sen2cor. The module uses two
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external sources, radiative transfer tables and a digital elevation model (DEM). The tables con-

tain absorbance as a function of the frequency, pressure, temperature, and water vapor (Buehler

et al. (2011)). The atmospherically corrected product also contains a Scene Classification Layer,

providing a broad classification of the ground cover at a 400 m2 resolution.

Sentinel-2 and Landsat data work with different spatial resolution levels. An image resam-

pling was applied to compare the reflectance of data sources. Considering that 10 meters are

the highest spatial resolution available for the data, this was selected as a reference for all

products. There are several techniques developed for image resampling purposes. This study

used two: bilinear spatial interpolation and nearest neighborhood. The first algorithm takes

the nearest cells values and applies them an average. Hence, the new value will be the mean of

their neighborhoods. This model was applied on images with continuous numeric data, and for

categorical layers (e.g., the scene classification layer) were processed using the nearest neigh-

borhood method. This model, as its name refers, assigns the pixel of interest value equal to its

most adjacent pixels.

Landsat geometric registration

Studies have revealed the existence of misregistration between Landsat and Sentinel-2 products.

Some have reported a shift of up to 1.6 pixels at 30 meters resolution. Thus it is advisable to

apply a co-registration method to the images (Skakun et al. (2017)). For this reason, many

methodologies have been developed for geographic correction. This study uses phase correlation,

which was reported in Skakun et al. (2017). The phase correlation algorithm is based on the

cross-correlation algorithm that transforms both images into a Fourier space. The peak of the

cross-correlation represents the shift that must be applied to the register image (Guizar-Sicairos

et al. (2008)).

One Sentinel-2 image and one Landsat-8 were chosen considering two conditions: 1) the

acquisition dates are the same for both images, and 2) the cloud cover over the region is close

to zero. Both images were subset for the corresponding area of interest (i.e., Saldaña extension).

The final registered imagery had a 10 m spatial resolution.
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Figure 2.3: Overview of the methodology for processing Sentinel-2 and Landsat images.

2.1.5 Vegetation index time series processing

The multitemporal stacked layers were used as input for the vegetation time series creation.

The red and NIR bands were extracted from each adquisition image; these bands were used to

compute the NDVI layer. Each pixel had information about the vegetation index throughout

time. However, values from a multi-temporal sequence can be affected by the presence of noise

(e.g., atmospheric, surface reflectance methods, shadows). Therefore, a filtering technique is

necessary for handling these errors. The Savitzky-Golay algorithm was chosen, which uses a

moving window to smooth values that span into it (Savitzky and Golay (1964); Cao et al.

(2018)). The smooth approach has two parameters: the window size and the polynomial fitting

degree. To summarize the NDVI time series, five features were calculated.

The rice growth phenological phase detection problem has been addressed through charac-

terising in which dates the NDVI time profile has inflection points, these changes may describe

the shift into a new growth phase (Shihua et al. (2014)). Thus, the inflection points are obtained

from derivatives methods. In this study, two derivatives values were computed at beginning

and ending of the smoothed time series. Additionally, five features were obtained aimed at

summarizing the NDVI time series.
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The kernel regression method was applied in order to estimate new values across the time

series. The simplest kernel weights average estimation is the Nadaraya Watson form (Hastie

et al. (2009)):

f (̂x0 ) =

∑n
i=1Kλ(xi, x0)y0∑n
i=1Kλ(xi, x0)

(2.1)

Where, Kλ is a gaussian kernel function for λ which controls the variance of the gaussian

density. This regression was performed for every pixel in the multi-temporal stack. The result-

ing NDVI time series is composed of seven points that are separated by 16 days. Finally, 14

features were created for classification (table 2.2)

Table 2.2: List of features used in the models.

Feature Name Meaning

NDVI 1 NDVI value for 96 days before the date of interest.
NDVI 2 NDVI value for 80 days before the date of interest.
NDVI 3 NDVI value for 64 days before the date of interest.
NDVI 4 NDVI value for 48 days before the date of interest.
NDVI 5 NDVI value for 32 days before the date of interest.
NDVI 6 NDVI value for 16 days before the date of interest.
NDVI 7 NDVI value for 0 days before the date of interest.
NDVI sd ts Standard Deviation of the NDVI time series.
NDVI max ts Minimum NDVI value.
NDVI min ts Maximum NDVI value.
maximum NDVI day day in which the NDVI time series reached a maxi-

mum.
minimum NDVI day day in which the NDVI time series reached a mini-

mum.
first derivative tsending value on the date of interest for a first derivative of

the NDVI time series.
first derivative tsstarting value on 80 days prior the date of interest for a first

derivative of the NDVI time series.

2.1.6 Supervised classification algorithms

Herein, three classification approaches were used and compared in this study: support vec-

tor machines, random forest, and gradient boosting machine. The implementation of each

algorithm was done through packages that were developed for the software R. Support vector

machine, and random forest modes have been widely used in remote sensing studies (Mountrakis

et al. (2011); Belgiu and Drgu (2016)). Recently, gradient boosting machine has gained noto-

rious popularity because of its superior performances compared to more traditional machine
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learning techniques (Georganos et al. (2018)).

Support Vector Machines

The support vector machines (SVM) is based on the linear model classification, which uses a

hyperplane for class separation. A linear function is suitable for the cases where the data is

linearly separable. The optimal hyperplane is one that maximizes the margin width between

the nearest classes (figure 2.4). This margin depends on one vector (β) which is perpendicular

to the linear function. Therefore, the unknown point classification depends on its location,

considering the hyperplane. Thus, to maximize the margin, the algorithm finds the minimum

distance from the origin vector (β)

Min
1

2
‖β‖ subject to yi(xi

T. β + β0) ≥ 1, i = 1, 2, ...,N (2.2)

Figure 2.4: Example of the separable case for two classes (blue and red dots). The solid black
line represents the decision boundary.

Although the hyperplane was conceived to separate the classes as best as possible, there

are cases where categories are overlapping in the feature spaces. Thus, this scenario is tackled

by allowing errors when data are separated (Cortes and Vapnik (1995)). The errors can be

expressed as εi which are greater or equal to 0. The total of errors is also constrained by a

constant (C), aimed to regularise the function
∑N

i εi ≤ C. Thus, large C values allow the εi

increment and, as a consequence, the model will tend to overfit, while with small values, the
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model will be restricted (Hastie et al. (2009)). Adding cost values to all points that violated

the constraints, the optimization problem is defined as:

Min
1

2
β2 + C

N∑
i

εi

subject to εi ≥ 0, yi(xi
T . β + β0) ≥ 1 − εi, i = 1, 2, ..., N(2.3)

Linear separation models work accurately under scenarios where a linear function can sep-

arate the data, but for data with a more complex distribution, it is necessary to add new

non-linear features. However, the transformation and selection of new features require con-

siderable computational resources that make it challenging to find new solutions (Muller and

Guido (2017)). Cortes and Vapnik (1995), found a way to deal with this problem, they demon-

strated that it is not necessary to transform the new feature. It is only required to obtain

the inner products (e.g., dot product) from a small amount of training data. After that, a

non-linear transformation is applied to the vectors. The training points are known as support

vectors. The inner product in the new space is found through a kernel function. Two of the

more commonly used functions, in support vector machines, are polynomial kernel and radial

basis function.

Polynomial kernel basis : K (xi, x) =
(

xi
Tx + coef

)d
(2.4)

Radial basis function : K (xi, x) = exp− γ || xi − x ||2 (2.5)

SVM is sensitive to feature magnitudes, so all features must have the same scale. Although

NDVI data ranges from 0 to 1, the other features values oscillate on another scale. For this

reason, the min-max normalisation method was used to transform all data on the same scale

[0,1].

Random Forest

Random Forest is an ensemble model of a finite number of decision trees. The tree models

recursively split the data into subsets through a serial of rules. However, when a tree has many

splits, it can overfit the data. On the one hand, this model has a straightforward interpretation

of the results. On the other hand, the model is unstable, and the final pruning will depend on
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the primary partition. Breiman (2001) showed significant improvements in reducing overfitting

and variance scenario on tree based approaches, through training many trees with random data;

thus, each tree casts a class, and the final decision depends on the number of votes.

The new training sets are drawn from randomising the original data with replacements (the

same point can be picked more than one time). This method is known as bootstrap (Breiman

(2001); Muller and Guido (2017)). Using bootstrap, we can obtain multiple datasets that have

the same length than the original dataset. The bootstrap aggregation or bagging is the results

of averaging the models’ predictions fitted with the bootstrap samples. This technique reduces

high-variances and low-biased obtained from approaches such as trees (Hastie et al. (2009)).

Additionally, to ensure that each tree grows independently, a random subset of the features is

used in each node. Consequently, the trees can predict based on different features combinations.

Therefore, the grown trees are not pruned. Two parameters are needed to construct a random

forest model: the number of trees and the maximum number of features used at each node.

Gradient Boosting Trees

Gradient boosting is another ensemble model based on trees approaches. However, instead of

using bootstrap as a sampling method, it uses the boosting method. Contrasting with random

forest, with which predictions are derived from multiple bootstrap samples, gradient boosting

machine is a way of combining the performance of many weak classifiers to improve the general

performance additively (Friedman et al. (2000); Muller and Guido (2017)). Thus, for the tree

based approach, the trees grow in an adaptative way to reduce bias (Hastie et al. (2009)).

In general, the learning model aimed to train a function F (x) using a training sample

({xi, yi}N1 ) that minimises the expected value (E) of some specified loss function Friedman

(2001) is:

ϕ(F (x)) = arg min
F

Ex[EyL(y, F (x)))|x] (2.6)

In order to find a solution for ϕ(F (x)), Friedman (2001) proposed an alternative where

the model is trained in an additive way. Thus, the solution is obtained from the previous

approximation, t−1. This strategy is known as stagewise-greedy or gradient boosting procedure.
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F (x)t = F (x)t−1 + αh(x)t (2.7)

ϕ(F (x))= arg min
F

Ex[EyL(y, F (x)t−1 + αh(x)t)|x], (2.8)

where α is a step size and the function h(x) is a base predictor (or also known as a weak

learner) that belongs to the family functions F , which usually are classification trees. One

inconvenience in this model is the tendency to overfit the data. This problem has been tackled

with multiple algorithms. Among the gradient boosting machine implementations, XGBoost

has proved to have good performances in many studies. The method implements stronger

regularization parameters that constrain the model (Georganos et al. (2018)). For the purpose

of the study, five parameters were modified. The learning rate (eta), col sample (percentage of

columns using in each tree), gamma (the loss reduction), max depth (maximum depth of the

tree), and sub sample (ratio of the training set) (Chen and Guestrin (2016)).

2.1.7 Evaluation metrics and scoring

The performance of each supervised classification approaches was assessed through metrics

that compare predictions to real values. The confusion matrix method is commonly used for

binary classification (table 2.3). Although the confusion matrix is an efficient tool to visualise

performances, the matrix by itself lacks a metric to evaluate the classification. However, some

techniques allow summarising the confusion matrix. Precision, recall, and f1-score are evalua-

tion metrics that are commonly used not only for binary classification but also for multi-class

problems (Sokolova and Lapalme (2009)).

Table 2.3: Confusion matrix for binary classification.

Real Positive Real Negative
Predicted Positive true positive (TP) false positive (FP)
Predicted Negative false negative (FN) true negative (TN)

Precision is the proportion of samples classified as positive by the model, which are truly

positive. Recall measures the ratio of the amount of correct positive classifications to all possible

positive values in the data (Lantz (2013); Muller and Guido (2017)). F1-score is the harmonic

mean of precision and recall. Micro averaging, macro averaging, and per-instance averaging
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are variations of the three mentioned metrics that are applied to multi-class problems (Lipton

et al. (2014)). Micro is the sum of all true positive (TP), false positive (FP), true negative

(TN), and false-negative (FN) quantities for all classes. Whereas, macro averaging calculates

the parameters per class, and then averages the results. Finally, per-instance averaging assigns

weights to each class. Macro averaging is used when the methodology requires to treat all

categories as equal, yet in cases when bigger classes must be favored, the micro averaging is

computed (Sokolova and Lapalme (2009)). In this study, the macro averaging metric is applied

to gauge the model performances.

Precision macro =
C∑
i=1

TP i

TP i + TP i

(2.9)

Recall macro =
C∑
i=1

TP i

TP i + FN i

(2.10)

f1 Score macro = 2
Precision ∗ Recall

(Precision+Recall) ∗ C
(2.11)

Training machine learning approaches involves tuning several parameters that may impact

the final robustness of the model (Verrelst et al. (2012)). A cross-validation method was com-

puted to select the best tuning parameters values. Once the model classified the validation

data, the f-1 score macro metric was computed to measure the model performance. Finally,

the parameters configuration for which f1-score was the highest was selected. Each supervised

classification approach varies in the number of parameters to optimize. For instance, ran-

dom forest only depends on the trees numbers and features used as input at each node. On

the other hand, SVM polynomial kernel has four parameters to modify: regularization (cost),

polynomial-degree, γ, and initial coefficient (coef0).
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2.2 Results

2.2.1 Optical images pre-processing

Twelve Landsat and four Sentinel-2 images were downloaded (table 2.4). The MSI images were

atmospherically corrected using the Sen2Cor module, while for Landsat, the surface reflectance

product was directly obtained from USGS. All images were projected to Universal Trans Merca-

tor projection (UTM Zone 18N) and then clipped using a mask that encompassed the Saldaña

region. A noise percentage index was calculated using the scene layer classification to indicate

the percentage of clouds and shadows over the interested region. Although for Landsat-7 im-

ages, this index shows relatively low values, it must be considered the error caused by the SLC

control, which adds another 22% of unusable pixels in the image (figure 2.5)

Table 2.4: List of Sentinel-2 and Landsat images used in Saldaña

Mission Date Cloud Percentage
Landsat-7 07-07-2015 21.68
Landsat-7 23-07-2015 6.5
Landsat-8 31-07-2015 12.27
Landsat-8 01-09-2015 5.75
Landsat-7 09-09-2015 10.12
Landsat-7 25-09-2015 3.59
Landsat-8 19-10-2015 4.18
Sentinel-2 22-10-2015 12.03
Landsat-8 22-11-2015 33.24
Landsat-8 06-12-2015 50.77
Sentinel-2 11-12-2015 3.08
Sentinel-2 21-12-2015 2.21
Landsat-7 30-12-2015 27.24
Sentinel-2 10-01-2016 15.27
Landsat-7 15-01-2016 17.29
Landsat-8 23-01-2016 31.97

The geometric registration was achieved using one Landsat-8 image that was taken on 22

of December, and one Sentinel-2 product captured on 21 of December. The NIR reflectance

band from both images was used because this band is less affected by atmospheric effects

(Skakun et al. (2017)). The OLI band image has a spatial resolution of 30-meter; thus, a

bilinear interpolation was applied to obtain a 10-meter. Once both layers shared similar spatial

resolution and extension. To calculate the shift, the phase correlation method was used and

implemented with the Scikit-learn python package (figure 2.6). As a result, the shift in longitude
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Figure 2.5: Location of the study area with Landsat-7 true-color image (blue, green and red
bands) acquired on 7 July 2015. The black lines are regions in which there is no data.

and latitude between both images were 10 and 40 meters, respectively. Due to ETM+ and OLI

products share the same registration grid, the same shift is thus applied for both. Finally, the

NDVI layer was calculated for each image.

Figure 2.6: Geometric registration results. The left and central images are the NIR reflectance
band at 10 m measured by Landsat-8 and Sentinel-2, respectively. The right image is the
cross-correlation matrix.

2.2.2 NDVI time profiles

The five ground survey days were chosen as a reference to extract the NDVI time profile of each

field. Each rice field was drawn as a polygon and used to extract the NDVI information per

date. the NDVI time profiles were extracted from 130 days prior to the date in which the survey
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to the survey date. The NDVI profiles was thereafter assigned to each rice field and labeled

with the growth-phase stage that was registered by the technician (figure 2.7). Although the

rice fields were monitored using growth-stages notation, this phenological characterisation may

not be adequately identified by the satellite approach used in this study (Wang et al. (2014)).

Therefore, the growth stages were grouped into three major phenological phases: vegetative,

reproductive, and ripening.

Figure 2.7: Boxplots of the captured NDVI reflectance distributions in each rice fields pixel
in Saldaña at each date of interest. The lines represent the NDVI trend along the time. The
colors refer to each rice growth phase.

Two additional classes, soil and other, were added to the analysis. The first characterises the

rice fields cover during two scenarios: 1) one month after being harvested, and 2) one month

before the sowing date. The second category aimed at representing pixels that do not have

enough information to construct a proper NDVI time series and to encompass values with an

anomalous tendency. Two additional steps were applied to the NDVI time profile: smoothing

and fitting.

2.2.3 Training features

The Savitzky Golay smoothing method (Savitzky and Golay (1964)) was used to smooth the

NDVI time profiles (figure 2.8). The method depends on two parameters: window size and
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polynomials degree. Both parameters were modified according to the number of time points

available per pixel. The kernel regression was computed on the NDVI data available in each

ranged time. The cross-correlation method was applied to find the bandwidth parameter; the

regression was calculated with 70% of the data; the remaining points were used to validate

each estimation. Seven different values of the NDVI that describe the pixels multi-temporal

reflectance were obtained. Figure 2.8 shows the three different NDVI profiles obtained from

the smoothing and fitting steps applied to one pixel data.

Figure 2.8: single pixel NDVI time series comparison between initial time series (red), after
smoothing (green), and after regression (blue).

2.2.4 Training and validation sets

Although all rice fields were monitored during one crop season, not all of them were sowed at

the same time. Thus, some of them started to be monitored at the end of their crop cycle (e.g.,

rice field 52B002, figure 2.9). This condition affected the number of observations per growth

phase. Other limitations were: the number of cloud-free images during the evaluation time,

and the rice fields extension.

The data were randomly divided into six subsets/folds. The number of groups was chosen

considering the total amount of rice fields per stage. Data were split based on the number of rice

fields per growth phase, instead of the number of pixels per class. Thus, the pixels within each

rice field may share similar NDVI features. The information per fold at each growth-phase was

split into two sets: 70% for training, and 30% for validation. Table 2.5 summarizes the number

of pixels from each group in each label as well as the pixel amount destinated for validation

and training.
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Figure 2.9: Rice growth phase that was registered in each visit date for each field. The colors
represent the growth phases.

Table 2.5: Model inputs per fold and growth phase.

Set Folds
Growth Phase

vegetative reproductive ripening harvested soil other

Training

1 3642 3787 2339 2155 2425 2170
2 3310 3760 2800 2194 2827 2170
3 3175 3457 2954 2530 2505 2170
4 3399 3937 2655 2294 2521 2170
5 3730 3686 2617 2230 2060 2170
6 3656 4038 2684 2155 2661 2170

Validation

1 753 1419 1278 814 877 930
2 688 1446 817 775 475 930
3 870 1749 663 439 797 930
4 646 1269 962 675 781 930
5 665 1520 1000 739 1242 930
6 739 1168 933 814 641 930

2.2.5 Parameters grid search

The random forest model was computed on 108 different parameters combinations when the

number of features sampled at each split, was four (figure 2.10). The increment in the number

of trees had no significant relevance in the f1-score. From the SVM radial basis kernel, the best

results were obtained using a γ value equal to 0.0001 and a regularization parameter equal to

3600 (figure 2.10).

SVM polynomial basis kernel and XGBoost have more than two parameters to optimise;

hence, to gauge the influence that each parameter exerts on the model, the f1-scores results

were grouped for each parameter, and then were averaged.
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Figure 2.10: Machine learning models results for different parameters combinations. Left: F1-
score values obtained from Random Forest at a different number of trees and number of features.
Right: F1-score obtained from SVM radial function that was trained with several combinations
of γ and C values. The grey color represents combinations that are below 0.9.

Figure 2.11: Results of the parameter grid search for SVM polynomial basis kernel. (a) The
f1-scores for each of four parameters; (b) The f1-scores for cost and coef0 for and degree
constants.

The SVM polynomial kernel showed scores over 0.915 when γ parameter was equal to 0.05.

The second-degree polynomial had better results than three-grade (figure 2.11-a). For the cost

and coef0 parameters, there was not a long difference in the f-1score; these values were choosen
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using a second plot (figure 2.11-b) where polynomial-degree and γ parameters equal to 2 and

0.05, respectively. Thus, the grid search revealed that the parameters for SVM polynomial

kernel basis were: γ = 0.05, polynomial-degree = 2, cost = 2, and coef0 = 4.

The XGBoost results showed that the score reached a peak for a maximum depth greater

than 8 (figure 2.12-a). This value was chosen, considering that at increasing the max depth

may cause a model overfitting. For learning rate (eta) and subsample, the best results were

obtained at 0.01 and 0.7, respectively. Similarly to SVM polynomial, a second plot was created

to choose the best results for colsample and minimum split loss (λ) (figure 2.12-b). The highest

f-1 score was found for max depth = 8, eta = 0.01, sub sample = 0.7, colsample = 0.7, and

minimum split loss= 4.

Figure 2.12: Results of the parameter grid search for XGBboost approach. (a) The f1-scores
for each of five parameters; (b) The f1-scores for cost and coef0 keeping subsample, eta, and
maxdepthasconstants.

After parameter grid search, the final classification models obtained 0.94, 0.943, 0.946,
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and 0.966 in f1-score for the random forest, SVM radial kernel, SVM polynomial kernel, and

XGBoost, respectively. Figure 2.13 shows the performances achieved per class in which the

best category performance was achieved for vegetative, followed by reproductive. The “other”

class had the lowest scores.

Figure 2.13: f1-score per growth phase for each classification model approach.

2.2.6 Machine learning models testing in Cesar

The Cesar dataset was used to test the machine learning approaches. Fedearroz technicians

monitored 19 rice field from March to September of 2018, but four rice fields were affected

by high temperatures that caused total production loss in two fields and partial loss in the

remaining two. The same pre-processing procedure used for Saldaña was applied for Cesar's

satellite images (figure 2.3). A 10 meters shift across longitude and latitude was applied in

geometric registration. A total of 29 Sentinel-2 and 6 Landsat-8 images were used. The images

acquisition dates ranged from January to September 2018 (figure 2.14). The number of cloud-

free images, from April to May is low, due to the start of precipitation season.

Figure 2.14: Satellite data availability for the Cesar region.

The NDVI time series were extracted using the spatial points for each rice field. The
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series were preprocessed and finally classified using the trained models. The rice growth phase

detection approach was applied at different times, aimed at characterising the whole rice cycle.

The dates of interests, in which the model was applied, were those acquisition dates where the

image cloud percentage was close to zero. In order to compare the model classification results

with ground based data, the Fedearroz growth stage notation was transformed into growth

phase notation. Therefore, vegetative phase was assigned for the time between emergence and

maximum tillering. Reproductive phase was referred to as the interval from flowering initiation

to 100% flowering. The interval from ten days previous harvest date until harvest day was

assigned as ripening phase.

Figure 2.15 shows the classification results obtained from applying the XGBoost model on

two different rice fields (DIAM25 and TRANQ11). The NDVI time profiles from nine different

dates were classified. The model classified 75% of the rice field pixels as a vegetative phase on 24

April; the remaining pixels were classified as soil. Technicians reported that the emergence and

maximum tillering dates were on 6th April and 14 May, which means that in April the rice field

was in the vegetative phase. During June 2018, mode classified the rice field in reproductive

stage, while ground-based registers noted that the 100% flowering occurred on 10 June. Finally,

according to technicians, the rice field was harvested on 23 July, whereas the model estimate

that the field was already harvested on 7th August.

The second rice field (TRANQ11) was classified at ten different times. The model found

that on 29 May, close to one third parts of the field was at bare soil, and the remaining field was

at vegetative phase. After ten days, half of the field reached the vegetative phase. However,

the ground data reported that the plant emerged on 26 April and reached maximum tillering

on 5th June; thus, model was not able to wholly classify the entire field in this stage. Likewise,

the rice field was in reproductive at the beginning of July, but most of the pixels were classified

as a vegetative phase. Yet, this rice field suffered a harvest delay due to drought.

The rice field growth phase class at a given date was chosen considering the percentage of

pixels. Thus, the category with a cumulative pixel classification higher than 50% was assigned

to each field. Some fields were harvested in October (e.g., SNIC4), yet there were not cloud-

free images for this time; for that reason, the classification approach was calculated until 31st

September.
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Figure 2.15: Rice growth phase detection results for two fields in Cesar at different times. The
stacked bars compare the cumulative classification obtained per pixel. These bars are obtained
at each date in which the model was computed. The ground observation data is exhibited
below the bars. The lines are the technician’s registers, and the contour represents the rice
field growth phase. The colors are the different classes.

To assess the models’ performances, the number of cases in which the classification ac-

curately classified the phase period was estimated (figure 2.16). Lastly, the number of true

positive classifications were divided by the total of observations (Sakamoto et al. (2005)) (table

2.6).
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Figure 2.16: Comparison between the ground observation and the estimates growth phases per
field. The points and shapes refer to the results obtained from the models at each date.

Table 2.6: Percentage of cases that the model classifications are within the growth-phase period.

Growth Phase
Supervised Classification Models

SVM radial
(%)

SVM polyno-
mial (%)

random forest
(%)

XGBoost

vegetative 77.3 73.9 64 72

reproductive 64.5 65.6 74.2 80.6

ripening 55.6 58.8 61.1 68.4

harvested 89.5 89.5 100 100
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2.3 Discussion

In this study, a feasibility method for detecting rice stages at 10 meters by blending different

optical satellite missions (Landsat-7, Landsat-8, and Sentinel-2) was shown. Although similar

studies, Sakamoto et al. (2005) reported classification performances above of 0.8 (using accuracy

metric), these results were achieved though a coarser resolution (250 m). The rice phenolog-

ical identification using low resolution is suitable for areas where the rice is planted on large

extensions, but considering Colombia'conditions, where close to 70% of the rice production is

taking place on fields in which area extension is less than 10 hectares (Fedearroz (2017)). The

low spatial resolution approaches may not be the best solution.

The methodology developed in this chapter is highly dependent on cloud conditions. How-

ever, recent studies have combined radar and optical derived features in order to map rice fields

(Onojeghuo et al. (2018)).These methodologies have proved to improve the rice phenological

detection, especially for the early stage. For example, Tian et al. (2018) found a high correlation

between rice backscattering and the field when this is inundated by water. The classification

process used VH and VV polarisations data to create RADAR features.

The Colombia Government and Fedearroz have been delivering bi-semester information re-

lated to rice harvested area. This information has been useful for planning decision making.

This study aimed to complement national surveys, offering spatial data more detail and addi-

tional crop characteristic. Thus, the model could estimate which is the rice phenological area

for a given time at a regional scale. For example, for Saldaña, the extension area for each

growth phase detection on 21st December of 2015 was mapped (figure2.17). This exercise was

done using a rice map and the XGBoost model.

Among the state-of-the-art machine learning algorithms, the XGboost model has been re-

ported as a powerful technique for classification tasks. This study was able to validate its poten-

tial. However, SVM showed slightly better performances classifying vegetative phase. Previous

studies have reported differences among tree-based and SVM approaches (Feyisa et al. (2016)).

They referred to classifiers’ robustness as the main factor for efficiency in both approaches.

From the tuning parameters section, it was possible to note a high range of performances.

Using NDVI time series, optical data from two satellites were merged. This approach allows

estimating the growth phases at any time. In this sense, the rice fields cycle was progressively
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Figure 2.17: Map of rice growth estimation in Saldaña region

monitored. This advantage may offer a tool to warn those fields in which the classification

shows an irregular pattern. For example, one of the fields located in Cesar (figure 2.18), that

lost its rice production by drought, had normal phenological evolution until 12th July of 2018,

after that the technicians stopped monitoring labor due to the plant damage. Similarly, the

model classification estimated different classes within the field after the mentioned date.
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Figure 2.18: Multi-temporal characterisation for a field affected by drought. The red line
represents the date at which the technicians stopped the field monitoring.



Chapter 3

Rice Disease Detection

This section aims to present a methodology that uses Sentinel-2 data for detecting diseases areas

within productive rice fields. The processes are described as follows: 1) To detect rice canopy

reflectance changes during two growth stages. 2) To group pixels that share similar reflectance

characteristics. 3) To compare the reflectance profiles with “healthy” and “unhealthy” rice

canopy profiles reported in previous studies. The study uses ground-based information from

the northern region of Tolima.

52
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3.1 Materials and methods

3.1.1 Study area

Tolima has the second largest area sowed with rice in Colombia. The department has tradi-

tionally led the rice production. The rice crop plays an essential role in the local agricultural

sector. Thus, nearly 27% of the Tolima agriculture area is planted with rice (MADR (2014)).

Lowland irrigated rice is mainly planted in the flatlands at an altitude that ranges from 300 to

1200 meters (Delerce et al. (2016)). Tolima precipitation is distributed in two rainy seasons,

the first occurs from March to May, and the second one is from September to November. The

annual rainfall is 1450 mm, while the mean temperature varies from 23 to 27°C (Sarmiento

(2018)).

The department is split into four major regions in terms of rice production. Those regions

are characterised by different geographical, soil, and agronomic conditions. One of these is

the northern region that comprises the municipalities of Lerida, Ambalema, and Armero. The

region annually produces 111,000 tons of rice, which is close to 15% of total department pro-

duction (MADR (2016)). The municipalities mainly plant irrigated rice in flatlands in which

altitude ranges from 200 m to 400 m.

3.1.2 Data sources

Fedearroz implemented the phytosanitary brigade program in 2012. This initiative aims to

monitor disease distribution on rice fields across Colombia. Such data comes from registers

taken by Fedearroz technicians, who annually visited the major Colombian rice production

regions. The information has been used for understanding the disease impact in rice production

(Fedearroz (2016)).

Disease monitoring was carried out in commercial rice fields during the ripening stage, where

in each field, the technicians chose at least 25 control points. In each sampling location, the

person took a handful of rice stems. The evaluator registered the number of diseased plants.

This metric is used to gauge disease incidence. Finally, the disease severity score is evaluated

for a single plant. The person scored from 0 to 100, where 0 means no disease affection, and

100 represents total damage over the plant. The breeder registered four features per evaluation
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point, disease name, number of stems, incidence, and severity (Fedearroz (2014)). The eval-

uated diseases are Rhizoctonia, Piricularia, Gaemannomyces, Helmintosporiosis, Sarocladium.

Additionally, the technician registered the rice field geographic position using a GPS.

3.1.3 Satellite data

Sentinel-2 data was used to detect the diseased areas within the rice fields. The growth phase

identification was tackled using Landsat-8 and Sentinel-2. For more information, please refer

to 2.1.3 section.

3.1.4 Rice fields manual digitalization

The rice fields geolocation was referenced as a spatial point which would have constrained the

study scope to one pixel. Thus, a polygon delimitation method was implemented per each

evaluated field. To effectively assert the polygon with the real field extension, a methodology

which involves the Google Earth Engine (GEE) platform was used. GEE is a cloud-based

platform for global geospatial analysis that brings high-performance computing resources to

studies with high impact social issues (Gorelick et al. (2017)). The GEE data catalog offers

free information sources like Sentinel and Landsat, among others. The tool access is controlled

by an application programming interface (API), this combined with an interactive development

environment (IDE), offers a quick visualization of analysis.

Each rice field contour was defined using a high-resolution image as a reference. The multi-

temporal spectral profile for each polygon was visualized from April to November (according

to Fedarroz the rice season was held this period) through the GEE platform (figure 3.1). The

polygon was assigned as rice field if its NDVI profile had a typical characteristic pattern for rice

canopy) otherwise, a new polygon was created or the rice field was removed from the study.

3.1.5 Spectral reference patterns

The ground base data, that was shared by Fedearroz, offers information about rice disease

incidence. However, it does not pin down which zones were affected by the pathogen. Lack

of knowledge about evaluation points hampers a correct grasp of the relationship between

reflectance metrics with damage caused by diseases. In order to detect those reflectance profiles
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Figure 3.1: GEE platform. The left panel contains two plots that show the time profiles for
NDVI and green, NIR, red bands. The spectral data was extracted from the Sentinel-2 and
Landsat missions, these are freely available on the platform for querying. The right panel
points out a true color high resolution image, which was used to draw the polygon, represented
in yellow color. .

linked to unhealthy rice, this study used spectral profiles previously reported for healthy and

diseased rice canopies.

Although there are no reported spectral studies for rice in Tolima, some studies have suc-

cessfully assigned spectral patterns for healthy rice conditions in other countries. Zhao et al.

(2012) published a spectral characterisation of rice at a different brown spot (Helminthospo-

rium Oryzae) incidence levels. The evaluations were taken on 25 rice fields located in China, in

which they characterised the infested rice canopy by using hyperspectral measurements. Regis-

ters were thereafter grouped into four categories: D0, healthy canopy; D1, severity index from

0% to 27%; D2, index from 27% to 44%; D3, severity index greater than 44%. The evaluation

was carried out during the heading stage.

The narrowband measurements were transformed into the Sentinel-2 broadbands. This

mission was chosen over Landsat because of its MSI sensor offers information that covers the

red-edge spectrum, this spectral region is strongly affected by chlorophyll content (Kobayashi

et al. (2001)). The transformation was achieved by integrating the hyperspectral measurements

into the Sentinel-2’s relative spectral response domain (Zheng et al. (2018)).

Rsb =

∫ λend

λstart

f (x) dx (3.1)

where, Rsb is the simulated reflectance value for the band b, and λ is the wavelength range

for the band b. f(x) is the spectral response function of the Sentinel-2 mission. The simulated
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Figure 3.2: Spectral response of Sentinel-2 in the visible, near infrared and short infrared range.
The spectral signatures that characterise rice canopy affected by several brown spot incidence
levels (blue, yellow, green and red refers to D0, D1, D2, D3, and D4, respectively) are also
shown.

reference was constructed for nine broadbands, swir2 region was removed because of its high

susceptibility to water absorption (figure 3.2).

3.1.6 Phenological changes detection

Diseases damage may accelerate the plant senescence process (Martinelli et al. (2015)). For

example, diseases such as Sarocladium and Helminthosporium can cause panicles rotting and

the emergence of spots on the leaves tissues. Early physiological changes can be spotted by

a continuous monitoring method. In this sense, the goal is to detect spectral changes across

the reproductive phase (from heading to ripening stage). A Bi-stage normalised band metric

is calculated to identify different spectral patterns within the field. The metric is computed

per pixel and is then clustered. As a consequence, groups with similar spectral changes pat-

terns were detected. Finally, the averaged spectral reflectance per group is compared with the

simulated reference spectral profile that describes a plant affected by a disease.

Normalised band reflectance

Rice diseases can affect a plant in different ways regarding the plant growth stage. Thus some

symptoms, such as lesions, are not visible until the late stages. The canopy morphological

changes can be observed using reflectance when the leaf has reached a specific size (Martinelli

et al. (2015)). Likewise, the disease incidence increment can speed up during specific phase

stages. For instance, the Rhizoctonia incidence rapidly increases from early heading to grain
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filling stages, due to chemicals released by plant cells during reproductive phase (Gnanaman-

ickam et al. (2010)). Hence, to correctly characterise the rice reflectance profile for healthy

and unhealthy scenarios, the rice fields phenological stage was first detected. The methodology

developed in chapter 2 was used to detect the growth phases.

Shi et al. (2018) proposed normalised two-stage vegetation indices for characterising rice

diseases development. They computed the metric over six different vegetation indices which

were selected based on PlanetScope multi-spectral resolution (i.e., blue, red, green, and nir).

However, Sentinel-2 mission offers a broader number of spectral bands than PlanetScope. This

study used the bi-stage normalised difference (NDRB) metric to characterise the rice phenology

changes across the reproductive phase. Thus, the metric was computed over each Sentinel-2

reflectance band, aimed at exploring the whole spectral range, and was fed with the plant

reflectance data captured at the beginning and end of the reproductive phase.

NDRbi =
Rbi heading −Rbi ripening
Rbi heading +Rbi ripening

(3.2)

Clustering

An unsupervised classification approach was used to find which pixels shared similar spectral

reflectance characteristics. The unsupervised transformation methods are applied to understand

data better. Among the algorithms that belong to this approach, clustering methods are

frequently used in remote sensing applications, e.g., land-cover determination (Duda and Canty

(2002)), crop phenology identification (Tian et al. (2018)), or plant stresses detection (Zheng

et al. (2019)). One of the most popular clustering algorithms is k-means.

The k-means clustering randomly initialises with a given number of centres for which are

assigned points closest to them. The algorithm calculates the means of the data that represents

each centre, this mean vector then becomes the new centre for the cluster. These two steps

are iteratively repeated to minimise the cluster variance (Gareth James, Daniela Witten and

Tibshirani (2006)). One common practice is first to adjust the features to the same scale,

before applying a clustering algorithm. This procedure was achieved through the robust-scalar

algorithm. The method computes interquartile range and median absolute deviation for each

feature. This methodology aims to be less susceptible to extreme values (Muller and Guido
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(2017)). The clusters number were decided based on elbow algorithm, which measures the

heterogeneity for each cluster, so k-means is calculated at a different number of groups. Hence,

heterogeneity tends to decrease as more clusters are created. The final goal is to choose the

number of groups before the reduction reached a minimum plateau (Lantz (2013)).

Spectral profiles matching

The Euclidean distance norm was used to quantify similarity among the spectral profiles.

ED =

√√√√ N∑
i=1

‖Rsi −Ri‖2 (3.3)
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3.2 Results

3.2.1 Spatial fields preprocessing

Through the rice field digitalization was possible to obtain 57 polygons that are located in

the northern region of Tolima were visually evaluated (figure 3.3). The remaining points were

removed due to inconsistencies such as geographical positions errors, or low quantity of cloud-

free images for the evaluation period.

Figure 3.3: Location map of the rice fields located in the northern region of Tolima.

3.2.2 Healthy and unhealthy rice canopy spectral reference

Figure 1.2 exhibits the simulated multispectral reference for rice canopies that were infested

by Brown Spot. Comparing healthy (D0) with unhealthy(D3) profile, the most significant

differences are presented in the green, red-edge 3, nir, and swir1 regions. This spectral response

is occasioned by leaf tissue damages, which derivates in pigments degradation, intercellular

space filled with cellular debris, and water content reduction
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Figure 3.4: Simulated spectral reflectance response to different Brown Spot infection levels
across the Sentinel-2 spectral bands.

3.2.3 Rice field of interest

Rice canopy reflectance is not only influenced by stress factors, but also by agricultural prac-

tices such as cultivar, fertilization, irrigation, or by external phenomena such as weather, or soil

(Thenkabail et al. (2000); Gnyp et al. (2013); Huang et al. (2012)). Although the knowledge of

these factors is essential to explain the rice spectral variations, only rice variety was available

in the dataset, thus, the study was only focused on one cultivar. Fedearroz 67 was the most

frequently sowed cultivar in the region during 2016 and 2017. To assign a disease incidence

value to each rice field, the disease incidence scores that were registered for Rhizoctonia, Gae-

mannomyces, Helmintosporiosis, and Sarocladium Oryzae. The Piricularia registers were not

considered in the analysis because of its low values. The technicians only evaluated disease

severity for Sarocladium, and therefore, this score was used as a reference for rice damage.

Two rice fields were first characterised in order to explore the relationship between spectral

reflectance and ground-based observations (table 3.1). Rice fields were selected based on their

disease incidence and severity scores. Field 1 was registered with a disease incidence of 20.9%

and severity of 9.6%, while Field 8 had an incidence of 44% and severity of 69.6%. Both

rice fields were monitored at different years 2016 and 2017, respectively. Hereafter the name

“healthy” is used to refer Field 1 and “unhealthy” field to name Field 8.
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Table 3.1: Rice diseases incidence score for rice fields cultivated with Fedearroz 67. The rice
field size is the field area at hectares.

Rice field
reference

Sarocladium
Severity Score

(%)

Diseases
Incidence Score

(%)

Rice Field
size (ha)

Field 1 9.6 20.9 0.4
Field 2 12.6 13.2 11.9
Field 3 50 22.2 0.6
Field 4 53 20.4 7.7
Field 5 57 18.6 5.6
Field 6 58 34.4 2.5
Field 7 64 54.5 0.6
Field 8 69.6 44 2.8
Field 9 70 40.6 2.8
Field 10 71 50.9 5.9
Field 11 75 45.2 0.5
Field 12 75 50.6 3.2
Field 13 75 44.6 0.9

3.2.4 Rice growth phases detection

Rice phenological phases were detected using the methodology described in section 2. Unlike

Saldaña region where Landsat-7 data were included in the analysis, this mission was not in-

cluded in this chapter. In total, 27 optical images were used, in which 10 and 17 were Landsat-8

and Sentinel-2, respectively. XGBoost model was used to classy the NDVI multitemporal sig-

natures belonging to each rice field. The rice cycle was progressively characterised from July to

September. The dates of interest were those in which the image cloud percentage was close to 0.

The “healthy” field growth phase crop was estimated on five different dates. The rice field was

in reproductive phase during July 2016 and then changed to ripening phase one month later.

For “unhealthy” field, the method was applied on eight dates. The field reached reproductive

phase on the middle of July, changing to ripening phase at the end of August, and finally, being

harvested in October 2017 (figure 3.5).

Sentinel-2 images that were taken during reproductive and ripening phases were selected.

Therefore, Five and nine Sentinel-2 images were selected for healthy and unhealthy fields,

respectively. An additional step was used to select the images. Each image was visualized as

a true color composite (i.e., blue, green, and red) aimed at spotting surfaces with noise. As

a result, the image acquired on 7 August of 2016 was removed, because a thin cloud partially

covered the rice field (figure 3.6)
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Figure 3.5: Results of Growth phase detection for “healthy” and “unhealthy” fields.

3.2.5 Heading and maturity stages identification

The spectral information per pixel for each time and field was extracted (figure 3.7). The

rice fields were classified into growth phases, but Zhao et al. (2012) characterised rice canopy

during heading stage. Hence it was necessary to find which was the time where rice fields were

in heading stage. So, the spectral profiles for each image were compared with the simulated

spectral references. Euclidean distance metric was used to measure the similarity of both

profiles. As a result, the most similar spectral profiles were found for those images captured

on 28 of July of 2016 and 18 of July of 2017 for “healthy” and “unhealthy” field, respectively

(figure 3.8). This result is consistent with growth phase detection, because the dates were

within the estimated reproductive phase.

Besides the comparison between simulated spectral reference and spectral profiles per time,

these were also compared with the spectral characteristics for each disease severity level (figure

3.8). Thus, “healthy” field profile was found to be more similar to the spectral profile that char-

acterises a rice canopy without disease damages. Likewise, “unhealthy” field profile registered

a similar pattern to the spectral profile for the rice canopy with a high level of disease severity.
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Figure 3.6: Sentinel-2 true color images during the reproductive and ripening periods for the
“healthy” and “unhealthy” fields. The red line is the field contour.
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Figure 3.7: Spectral profiles. The red lines are the spectral information per pixel. The black
line shows the averaged spectral profiles per time.
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Figure 3.9 shows the averaged spectral profiles that characterised each rice field, “unhealthy”

field exhibited a similar trend than the D3 severity level reported by Zhao et al. (2012).

Figure 3.8: Comparison between the simulated spectral reference and the spectral profiles for
each date and for each field (“healthy” and “unhealthy”). The colorbar indicates Euclidean
distance value, which its low values are colored in dark purple, whereas high values are colored
as yellow.

Figure 3.9: Comparison between the spectral reference profiles (blue and red lines) and the rice
fields averaged spectral profiles (green and orange lines) computed for both fields.

To find the date for maturity stage in both fields, the “healthy” field images during ripening

phase were used as a reference. These images were compared with the images of “unhealthy”

field ripening phase. The goal was to find in which date both fields had similar spectral profiles

in ripening phase. As a result, images were taken on sixth of September and first of September,

of 2016 and 2017, respectively, captured a similar spectral pattern for both fields (figure 3.10)

Figure 3.11 shows the reflectance profile per pixel for each rice field. The spectral profiles

exhibited a similar tendency in each band. Plant senescence process is mainly the cause. The

spectral responses found in both stages for each field suggest that the biophysical changes caused

by the diseases were mainly located during the reproductive phase. Although no information

accurately pinpoints the rice phenological stage, hereafter maturity stage term is used to refer
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Figure 3.10: Euclidean distances result from comparing the rice fields reflectance spectral pro-
files during the ripening phase.

to the highlighted spectral profiles.

Figure 3.11: Comparison between the reflectance spectral profiles per pixel for each field (i.e.,
“healthy” and “unhealthy” ) during the maturity stage.

3.2.6 Rice disease detection within the rice fields

The bi-stage NDRb was computed, aimed at gauging the spectral variation within the fields

during the transition from heading to maturity stages. Figure 3.12 shows the NDRb values at

each spectral band for each field. The most significant differences among both fields occurred

in the blue, red, red-edge2, red-edge3, NIR, and narrow-nir bands.

The NDRb values were used as inputs for the clustering algorithm. The number of clus-

ters were determined using Elbow method 3.13; thus four and five clusters were selected for
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Figure 3.12: Boxplots of the normalised bi-stage distributions by rice field disease status.

“healthy” and “unhealthy” fields, respectively.

Figure 3.13: Number of cluster selected for the “healthy” and “unhealthy” fields. The red
points highlight which cluster were picked.

To determine which group shared similar spectral characteristics to the healthy or diseased

references, the pixels spectral profiles belonging to each cluster at heading stage were averaged.

Averaged profiles were compared with the simulated spectral reference. For “healthy” field, the

averaged groups were not shown significant difference across the whole spectrum (figures 3.14

3.15)

For “unhealthy” field, it is to point out that there is a tree in the middle of the field (figure

3.16). Pixels belonging to cluster 5 characterise tree reflectance response. For that reason,

this cluster was labeled as noise and then removed. Figure 3.17 shows how well the averaged

reflectance profiles fitted with the reference profiles that characterise plants with 0 and 44%

severity of Helminthosporium. The pixels, which comprise the first cluster, shared similar

reflectance characteristics in the infrared portion that the healthy one reported by Zhao et al.

(2012). Likewise, second and third clusters registered values close to 0.43 in the red-edge3 band,

while the simulated reference reported a value of 0.42 in the same band. The fourth cluster
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Figure 3.14: Map of the clusters calculated for the “healthy” field. The true color image is the
date in which the rice field was in the heading stage.

Figure 3.15: Averaged spectral profiles for each cluster that characterised the “Healthy” field.

presented reflectance in the infrared region below of the diseased reference. These findings

suggest that grouping the pixels based on the two-stage NDRb can discriminate reflectance

responses from unhealthy to healthy rice canopy.

3.2.7 Application in other fields

In order to gain more in-depth insight into the methodology, other rice fields were exposed to

the steps before mentioned. Field 2, Field 9, and Field 12 were selected to calculate the zones

affected by diseases (figure 3.18). For Field 2, five clusters were picked. For Field 9 and Field

12, four clusters were chosen. Spectral profiles were extracted from the images in which each

field was in heading stage.
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Figure 3.16: Map of the clusters calculated for the “unhealthy” field. The true color image is
the date in which the rice field was in the heading stage.

Figure 3.17: Averaged spectral profiles for each cluster that characterised the “Unhealthy”
field.

The three fields showed similar pattern in the near-infrared spectrum, their reflectance values

were close to 0.4 (figure 3.18 b,d,f). Unlike, the rice fields exposed in the previous section; the

reflectance profiles for the new fields did not present a similar pattern that the described as

healthy. Although the unsupervised classification showed differences into the rice fields (figure

3.18 a,c,e), the clusters averaged spectral profiles differ from the simulated reference profile;

thus, it was not possible to link which areas were affected by disease presence instead of others

stresses factor.
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Figure 3.18: Results for three different rice fields. The map for each field is exhibited in the
left panel; The disease incidence score is pointed out above the map. In the right, the averaged
spectral profile for each cluster and field.
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3.3 Discussion

The damage produced by diseases may change plant structure at the physiological level (Yang

(2010); Martinelli et al. (2015); Zhang et al. (2018)). Degradation in pigments production and

cellular structure can modify the light absorption in specific regions. This study explored the

feasibility of using Sentinel-2 data for detecting diseased zones within rice fields. It was pos-

sible to distinguish different rice canopy reflectances within fields by integrating hyperspectral

characterisation, ground-based, and Sentinel-2 data. It was noted that the most significant

differences were located from red-edge to near-infrared region. Red-edge portion has been

highlighted as a good indicator of chlorophyll content (Peñuelas and Filella (1998)), whereas

near-infrared has often linked to being sensitive to rice canopy morphology status (Shi et al.

(2018)).

The methodology used in this study demonstrated the applicability of detecting rice canopy

changes by computing reflectance metrics across rice cycle. To identify the growth stages,

the rice phase detection model developed in chapter 2 was used. It was possible to assign

reflectances responses to diseases damages by using hyperspectral measurements previously

reported (Zhao et al. (2012)). Thus, the narrow band characterisation was transformed into

the Sentinel-2 spectral response function. Although, k-means can distinguish different spectral

profiles in the fields, it was not possible to precisely pin down, which was the cause of the

different rice canopy reflectance. However, the pixels groups shapes showed similar patterns

than the spread of pathogens in fields (circular and rectangular) (Zhang et al. (2018)).

The rice physiological structure can be modified by several factors such as soil, agricultural

practices, weather. The changes can trigger a similar spectral response than damages by dis-

eases. For instance, Gnyp et al. (2013), found that bands located in visible and near-infrared

regions were highly sensitive to varies rates of nitrogen fertilizer (figure 3.19). To effectively

assert rice detection using remote sensing tools, it is necessary to isolate factors that can influ-

ence the spectral response. In this sense, rigorous ground-field monitoring must be held. Plant

density, fertilizer applications, weather conditions, and irrigation application are parameters

that must be part of the study.

Regardless, the methodology was evaluated only in 5 rice fields. The remaining polygons,

that were manual digitalized, were shared to Fedearroz. This information is a good source to
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Figure 3.19: Rice canopy spectral profiles at various nitrogen rates (Gnyp et al. (2013)).

locate the rice growers fields quickly. Besides, the validation opens a debate about the way

that technicians georeferenced fields. This suggestion was transmitted to Fedearroz, which will

advise using GPS devices when a worker is inside of fields.



Chapter 4

Summary and Further Research

The study aimed to explore the benefits of using remote sensing data at monitoring rice growers

fields. In this sense, Chapter 2 showed a feasible way to detect rice phenological phases by

blending two optical satellite missions. Performances of three machine learning models were

compared, where XGBoost algorithms obtained slightly better f1-scores (figure 2.13). Although

some signals were more challenging to detect than others (figure 2.15), the proposed method

exhibited acceptable performances at implementing it in other localities (figure 2.16). This

result allows creating national statics of rice phenological conditions (figure 2.17). Further

exploration can derivate on identifying regions that are affected by external factors such as

weather (figure 2.18).

Chapter 3 explored a method to detect diseased rice zones within fields through Sentinel-2

data; however, these analyses need to be further validated. The rice-field referenced as “un-

healthy” exposed almost identical spectral characteristics than the created by Zhao et al. (2012)

(figure 3.17). But, this result can seem a coincidence without a comprehensive ground data

observation. This appreciation is validated when the methodology was applied in other fields,

though the method found an intra-variability signal, the spectral profiles exhibited different

magnitudes in the near-infrared region (Figure 3.18). Thus, it was not possible to assign the

clusters to rice zones that were affected by diseases. In future studies, ground-based data will

need to provide agricultural practices, soil and weather conditions, evaluations points with

georeferencing in order to get a better idea about the influence that each factor have in the

rice-canopy reflectance.

73
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Some studies have created an integrated framework between airborne, ground hyperspec-

tral, and satellite data. Thus, using a methodology to recollect multitemporal information at

different spectral resolutions, would allow at monitoring pilot rice-fields. Fedearroz has started

to explore airborne data scope. For futures works, this information would be included as well as

rigorous agricultural practices registers at ground level. This information would help to grasp

the reflectance metrics derivative from satellite missions.
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