56,326 research outputs found

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series

    Get PDF
    Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, WorldView-2 was mainly used to segment the study area focusing on individual greenhouses. Basic spectral information, spectral and vegetation indices, textural features, seasonal statistics and a spectral metric (Moment Distance Index, MDI) derived from Landsat 8 time series and/or WorldView-2 imagery were computed on previously segmented image objects. In order to test its temporal stability, the same approach was applied for two different years, 2014 and 2015. In both years, MDI was pointed out as the most important feature to detect greenhouses. Moreover, the threshold value of this spectral metric turned to be extremely stable for both Landsat 8 and WorldView-2 imagery. A simple decision tree always using the same threshold values for features from Landsat 8 time series and WorldView-2 was finally proposed. Overall accuracies of 93.0% and 93.3% and kappa coefficients of 0.856 and 0.861 were attained for 2014 and 2015 datasets, respectively
    • …
    corecore