294 research outputs found

    FORECASTING URBAN EXPANSION BASED ON NIGHT LIGHTS

    Get PDF

    Measuring heterogeneity in urban expansion via spatial entropy

    Get PDF
    The lack of efficiency in urban diffusion is a debated issue, important for biologists, urban specialists, planners and statisticians, both in developed and new developing countries. Many approaches have been considered to measure urban sprawl, i.e. chaotic urban expansion; such idea of chaos is here linked to the concept of entropy. Entropy, firstly introduced in information theory, rapidly became a standard tool in ecology, biology and geography to measure the degree of heterogeneity among observations; in these contexts, entropy measures should include spatial information. The aim of this paper is to employ a rigorous spatial entropy based approach to measure urban sprawl associated to the diffusion of metropolitan cities. In order to assess the performance of the considered measures, a comparative study is run over alternative urban scenarios; afterwards, measures are used to quantify the degree of disorder in the urban expansion of three cities in Europe. Results are easily interpretable and can be used both as an absolute measure of urban sprawl and for comparison over space and time.Comment: 23 pages, 7 figure

    The Future of Central European Cities – Optimization of a Cellular Automaton for the Spatially Explicit Prediction of Urban Sprawl

    Get PDF
    The quantitative and qualitative measurement, prediction and evaluation of urban sprawl have come to play a central role in land-system science. One of the most important and most implemented artificial intelligence (AI) techniques in terms of urban systems simulation is cellular automata (CA) like SLEUTH. SLEUTH models the physical urban expansion by accomplishing four simple growth rules with every modeling step. Simultaneously, SLEUTH also reflects main drawbacks of CA since they contain a higher degree of stochastic variation leading to a simulation uncertainty. This chapter will explain how the simulation power of CA can be optimized by combining them with the machine learning algorithm support vector machines (SVMs). Conceptually in SVMs, input vectors are projected in a higher-dimensional feature space in which an optimal separating hyperplane can be constructed for separating the input data into two or more classes. In the comparative analysis, the integrated modeling approach is carried out for a unique postindustrial European agglomeration: The Ruhr Area. It will be demonstrated how the AI learning approach is implemented, calibrated, validated and applied for the prediction of the regional urban land-cover pattern between 1975 and 2005. Finally, the probability effects will be visualized with the concept of urban DNA

    〈Research Reports〉Spontaneous simulation of land surface temperature in Tianjin city, China

    Get PDF
    Monitoring and simulating land surface temperature (LST) by using satellite images is an essential approach to understand land use/cover changes, especially in developing countries where the availability of ground truth and statistical data is limited. This study analyzed the relationship between LST and land use/cover types in Tianjin city from 2005 to 2015. Then, based on the LST distribution maps, we simulated LST in 2025 by employing a hybrid model of the artificial neural network and the cellular automata. The results show that the LST is gradually increasing from 2005 to 2025 with the changes in the land use/cover. This study provides significative information for sustainable development and environmental protection in the future

    Linnade laienemine Eestis: seire, analĂŒĂŒs ja modelleerimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneLinnade laienemine, mida iseloomustab vĂ€hese tihedusega, ruumiliselt ebaĂŒhtlane ja hajutatud areng linna piiridest vĂ€lja. Kuna linnade laienemine muudab pĂ”llumajandus- ja metsamaid ning vĂ€ikesed muutused linnapiirkondades vĂ”ivad pikaajaliselt mĂ”jutada elurikkust ja maastikku, on hĂ€davajalik seirata linnade ruumilist laienemist ning modelleerida tulevikku, saamaks ĂŒlevaadet suundumustest ja tagajĂ€rgedest pikemas perspektiivis. Eestis vĂ”eti pĂ€rast taasiseseisvumist 1991. aastal vastu maareformi seadus ning algas “maa” ĂŒleandmine riigilt eraomandisse. Sellest ajast peale on Eestis toimunud elamupiirkondade detsentraliseerimine, mis on mĂ”jutanud Tallinna ĂŒmbruse pĂ”llumajandus- ja tööstuspiirkondade muutumist, inimeste elustiili muutusi ning jĂ”ukate inimeste elama asumist ĂŒhepereelamutesse Tallinna, Tartu ja PĂ€rnu lĂ€hiĂŒmbruse. Selle aja jooksul on Eesti rahvaarv vĂ€henenud 15,31%. KĂ€esoleva doktoritöö eesmĂ€rgiks on "jĂ€lgida, analĂŒĂŒsida ja modelleerida Eesti linnade laienemist viimase 30 aasta jooksul ning modelleerida selle tulevikku", kasutades paljusid modelleerimismeetodeid, sealhulgas logistilist regressiooni, mitmekihilisi pertseptronnĂ€rvivĂ”rke, rakkautomaate, Markovi ahelate analĂŒĂŒsi, mitme kriteeriumi. hindamist ja analĂŒĂŒtilise hierarhia protsesse. Töö pĂ”hineb neljal originaalartiklil, milles uuriti linnade laienemist Eestis. Tegu on esimese pĂ”hjaliku uuringuga Eesti linnade laienemise modelleerimisel, kasutades erinevaid kaugseireandmeid, mĂ”jutegureid, parameetreid ning modelleerimismeetodeid. KokkuvĂ”tteks vĂ”ib öelda, et uusehitiste hajumismustrid laienevad jĂ€tkuvalt suuremate linnade ja olemasolevate elamupiirkondade lĂ€heduses ning pĂ”himaanteede ĂŒmber.Urban expansion is characterized by the low–density, spatially discontinued, and scattered development of urban-related constructions beyond the city boundaries. Since urban expansion changes the agricultural and forest lands, and slight changes in urban areas can affect biodiversity and landscape on a regional scale in the long-term, spatiotemporal monitoring of urban expansion and modeling of the future are essential to provide insights into the long-term trends and consequences. In Estonia, after the regaining independence in 1991, the Land Reform Act was passed, and the transfer of “land” from the state to private ownership began. Since then, Estonia has experienced the decentralization of residential areas affecting the transformation of agricultural and industrial regions around Tallinn, changes in people's lifestyles, and the settling of wealthy people in single-family houses in the suburbs of Tallinn, Tartu, and PĂ€rnu. During this period, Estonia's population has declined dramatically by 15.31%. Therefore, this dissertation aims to "monitor, analyze and model Estonian urban expansion over the last 30 years and simulate its future" using many modeling approaches including logistic regression, multi-layer perceptron neural networks, cellular automata, Markov chain Analysis, multi-criteria evaluation, and analytic hierarchy process. The thesis comprises four original research articles that studied urban expansion in Estonia. So far, this is the first comprehensive study of modeling Estonian urban expansion utilizing various sets of remotely sensed data, driving forces and predictors, and modeling approaches. The scattering patterns of new constructions are expected to continue as the infilling form, proximate to main cities and existing residential areas and taking advantage of main roads in future.https://www.ester.ee/record=b550782

    APPLYING URBAN COMPACTNESS METRICS ON PAN-EUROPEAN DATASETS

    Get PDF

    Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model

    Get PDF
    Abstract(#br)Land use changes are complex processes affected by both natural and human-induced driving factors. This research is focused on simulating land use changes in southern Shenyang in northern China using an integration of logistic regression, cellular automata, and a Markov model and the use of fine resolution land use data to assess potential environmental impacts and provide a scientific basis for environmental management. A set of environmental and socio-economic driving factors was used to generate transition potential maps for land use change simulations in 2010 and 2020 using logistic regression. An average relative operating characteristic value of 0.824 was obtained, indicating the validity of the logistic regression model. The logistic–cellular automata (CA)–Markov model..

    Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

    Get PDF
    The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detection methods by formulating them in an adequate high-dimensional feature space. Finally, the presented methodology allows the integration of contextual information and multisensor images with different levels of nonlinear sophistication. The binary support vector (SV) classifier and the one-class SV domain description classifier are evaluated by using both linear and nonlinear kernel functions. Good performance on synthetic and real multitemporal classification scenarios illustrates the generalization of the framework and the capabilities of the proposed algorithms.Publicad

    Modelling of land use and land cover changes and prediction using CA-Markov and Random Forest

    Get PDF
    We used the Cellular Automata Markov (CA-Markov) integrated technique to study land use and land cover (LULC) changes in the Cholistan and Thal deserts in Punjab, Pakistan. We plotted the distribution of the LULC throughout the desert terrain for the years 1990, 2006 and 2022. The Random Forest methodology was utilized to classify the data obtained from Landsat 5 (TM), Landsat 7 (ETM+) and Landsat 8 (OLI/TIRS), as well as ancillary data. The LULC maps generated using this method have an overall accuracy of more than 87%. CA-Markov was utilized to forecast changes in land usage in 2022, and changes were projected for 2038 by extending the patterns seen in 2022. A CA-Markov-Chain was developed for simulating long-term landscape changes at 16-year time steps from 2022 to 2038. Analysis of urban sprawl was carried out by using the Random Forest (RF). Through the CA-Markov Chain analysis, we can expect that high density and low-density residential areas will grow from 8.12 to 12.26 km2 and from 18.10 to 28.45 km2 in 2022 and 2038, as inferred from the changes occurred from 1990 to 2022. The LULC projected for 2038 showed that there would be increased urbanization of the terrain, with probable development in the croplands westward and northward, as well as growth in residential centers. The findings can potentially assist management operations geared towards the conservation of wildlife and the eco-system in the region. This study can also be a reference for other studies that try to project changes in arid are as undergoing land-use changes comparable to those in this study
    • 

    corecore