The Future of Central European Cities – Optimization of a Cellular Automaton for the Spatially Explicit Prediction of Urban Sprawl

Abstract

The quantitative and qualitative measurement, prediction and evaluation of urban sprawl have come to play a central role in land-system science. One of the most important and most implemented artificial intelligence (AI) techniques in terms of urban systems simulation is cellular automata (CA) like SLEUTH. SLEUTH models the physical urban expansion by accomplishing four simple growth rules with every modeling step. Simultaneously, SLEUTH also reflects main drawbacks of CA since they contain a higher degree of stochastic variation leading to a simulation uncertainty. This chapter will explain how the simulation power of CA can be optimized by combining them with the machine learning algorithm support vector machines (SVMs). Conceptually in SVMs, input vectors are projected in a higher-dimensional feature space in which an optimal separating hyperplane can be constructed for separating the input data into two or more classes. In the comparative analysis, the integrated modeling approach is carried out for a unique postindustrial European agglomeration: The Ruhr Area. It will be demonstrated how the AI learning approach is implemented, calibrated, validated and applied for the prediction of the regional urban land-cover pattern between 1975 and 2005. Finally, the probability effects will be visualized with the concept of urban DNA

    Similar works