438 research outputs found

    A virtual MIMO dual-hop architecture based on hybrid spatial modulation

    Get PDF
    International audienceIn this paper, we propose a novel Virtual Multiple-Input-Multiple-Output (VMIMO) architecture based on the concept of Spatial Modulation (SM). Using a dual-hop and Decode-and-Forward protocol, we form a distributed system, called Dual-Hop Hybrid SM (DH-HSM). DH-HSM conveys information from a Source Node (SN) to a Destination Node (DN) via multiple Relay Nodes (RNs). The spatial position of the RNs is exploited for transferring information in addition to, or even without, a conventional symbol. In order to increase the performance of our architecture, while keeping the complexity of the RNs and DN low, we employ linear precoding using Channel State Information (CSI) at the SN. In this way, we form a Receive-Spatial Modulation (R-SM) pattern from the SN to the RNs, which is able to employ a centralized coordinated or a distributed uncoordinated detection algorithm at the RNs. In addition, we focus on the SN and propose two regularized linear precoding methods that employ realistic Imperfect Channel State Information at the Transmitter. The power of each precoder is analyzed theoretically. Using the Bit Error Rate (BER) metric, we evaluate our architecture against the following benchmark systems: 1) single relay; 2) best relay selection; 3) distributed Space Time Block Coding (STBC) VMIMO scheme; and 4) the direct communication link. We show that DH-HSM is able to achieve significant Signal-to-Noise Ratio (SNR) gains, which can be as high as 10.5 dB for a very large scale system setup. In order to verify our simulation results, we provide an analytical framework for the evaluation of the Average Bit Error Probability (ABEP)

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    Transceiver Design for MIMO DCO-OFDM in Visible Light Communication

    Get PDF
    Direct current-biased optical-orthogonal frequency-division multiplexing (DCO-OFDM) is a simple yet spectrally efficient multicarrier modulation scheme for visible light communication (VLC). But in multiple-input multiple-output (MIMO) scenario, which is more practical for VLC due to the LED deployment, the research on DCO-OFDM is still limited and calls for in-depth investigation. In this chapter, we first study the basic modulation scheme of DCO-OFDM, including the design of conventional receiver without considering the clipping noise. Secondly, we present a novel receiver for combating clipping distortion in the DCO-OFDM system, which can reconstruct the clipping noise and subtract it from the received signal. Thirdly, we generalize the results to MIMO scenario and investigate the preliminary transceiver design, which is based on the minimum mean-square error (MMSE) criteria. Based on this, we propose a precoding algorithm to further enhance the performance. Finally, the symbol error rate performance is compared through computer simulations to give the reader a whole picture of the performance of MIMO VLC system

    DC-Informative Joint Color-Frequency Modulation for Visible Light Communications

    Full text link
    In this paper, we consider the problem of constellation design for a visible light communication (VLC) system using red/green/blue light-emitting diodes (RGB LED), and propose a method termed DC-informative joint color-frequency modulation (DCI-JCFM). This method jointly utilizes available diversity resources including different optical wavelengths, multiple baseband subcarriers, and adaptive DC-bias. Constellation is designed in a high dimensional space, where the compact sphere packing advantage over lower dimensional counterparts is utilized. Taking into account multiple practical illumination constraints, a non-convex optimization problem is formulated, seeking the least error rate with a fixed spectral efficiency. The proposed scheme is compared with a decoupled scheme, where constellation is designed separately for each LED. Notable gains for DCI-JCFM are observed through simulations where balanced, unbalanced and very unbalanced color illuminations are considered.Comment: submitted to Journal of Lightwave Technology, Aug. 5th 201

    Power saving and optimal hybrid precoding in millimeter wave massive MIMO systems for 5G

    Get PDF
    The proliferation of wireless services emerging from use cases offifth-generation(5G) technology is posing many challenges on cellular communicationinfrastructure. They demand to connect a massive number of devices withenhanced data rates. The massive multiple-input multiple-output (MIMO)technology at millimeter-wave (mmWave) in combination with hybrid precodingemerges as a concrete tool to address the requirements of 5G networkdevelopments. But Massive MIMO systems consume significant power fornetwork operations. Hence the prior role is to improve the energy efficiency byreducing the power consumption. This paper presents the power optimizationmodels for massive MIMO systems considering perfect channel state information(CSI) and imperfect CSI. Further, this work proposes an optimal hybrid precodingsolution named extended simultaneous orthogonal matchingpursuit (ESOMP).Simulation results reveal that a constant sum-rate can be achieved in massiveMIMO systems while significantly reducing the power consumption. Theproposed extended SOMPhybrid precoder performsclose to the conventionaldigital beamforming method. Further, modulation schemes compatible withmassive MIMO systems are outlined and their bit error rate (BER) performance isinvestigate
    • …
    corecore