53 research outputs found

    An Ambient Assisted Living Framework with Automatic Self-Diagnosis

    No full text
    International audienceAs the population in many countries is steadily aging, allowing elderly people to stay longer at home is a growing concern. Ambient Assisted Living (AAL) proposes new techniques to help people remain autonomous, based on ambient intelligence. We present an ontology-based framework in which ontologies enable the expression of users' preferences in order to personalize the system behavior. They are also used for the discovery and interconnection of devices, the storage and retrieval of collected data and the transmission of actions. Basing everything on ontologies allows the designer to express the behavior of the system using high-level logic rules. To render AAL systems as autonomous as possible, devices that fail should be detected at runtime. For this reason, the framework offers a diagnosis service that builds a prediction model of the values detected by sensors. It is based on information discovered opportunistically at run-time and knowledge about physical laws. The framework monitors the run-time behavior of the AAL system and uses the prediction model to detect inconsistencies and hence faults. Therefore, fault detection is totally dynamic and opportunistic; there are no pre-defined control loops. This paper describes an actual implementation, with precise technological details, in order to prove the feasibility of the technical choices, and provide implementation ideas for future projects

    Ontology-Based Framework for the Automatic Recognition of Activities of Daily Living Using Class Expression Learning Techniques

    Get PDF
    The miniaturization and price reduction of sensors have encouraged the proliferation of smart environments, in which multitudinous sensors detect and describe the activities carried out by inhabitants. In this context, the recognition of activities of daily living has represented one of the most developed research areas in recent years. Its objective is to determine what daily activity is developed by the inhabitants of a smart environment. In this field, many proposals have been presented in the literature, many of them being based on ad hoc ontologies to formalize logical rules, which hinders their reuse in other contexts. In this work, we propose the use of class expression learning (CEL), an ontology-based data mining technique, for the recognition of ADL. This technique is based on combining the entities in the ontology, trying to find the expressions that best describe those activities. As far as we know, it is the first time that this technique is applied to this problem. To evaluate the performance of CEL for the automatic recognition of activities, we have first developed a framework that is able to convert many of the available datasets to all the ontology models we have found in the literature for dealing with ADL. Two different CEL algorithms have been employed for the recognition of eighteen activities in two different datasets. Although all the available ontologies in the literature are focused on the description of the context of the activities, the results show that the sequence of the events produced by the sensors is more relevant for their automatic recognition, in general terms

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries

    Proceedings, MSVSCC 2017

    Get PDF
    Proceedings of the 11th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 20, 2017 at VMASC in Suffolk, Virginia. 211 pp

    The Knowledge Grid: A Platform to Increase the Interoperability of Computable Knowledge and Produce Advice for Health

    Full text link
    Here we demonstrate how more highly interoperable computable knowledge enables systems to generate large quantities of evidence-based advice for health. We first provide a thorough analysis of advice. Then, because advice derives from knowledge, we turn our focus to computable, i.e., machine-interpretable, forms for knowledge. We consider how computable knowledge plays dual roles as a resource conveying content and as an advice enabler. In this latter role, computable knowledge is combined with data about a decision situation to generate advice targeted at the pending decision. We distinguish between two types of automated services. When a computer system provides computable knowledge, we say that it provides a knowledge service. When computer system combines computable knowledge with instance data to provide advice that is specific to an unmade decision we say that it provides an advice-giving service. The work here aims to increase the interoperability of computable knowledge to bring about better knowledge services and advice-giving services for health. The primary motivation for this research is the problem of missing or inadequate advice about health topics. The global demand for well-informed health advice far exceeds the global supply. In part to overcome this scarcity, the design and development of Learning Health Systems is being pursued at various levels of scale: local, regional, state, national, and international. Learning Health Systems fuse capabilities to generate new computable biomedical knowledge with other capabilities to rapidly and widely use computable biomedical knowledge to inform health practices and behaviors with advice. To support Learning Health Systems, we believe that knowledge services and advice-giving services have to be more highly interoperable. I use examples of knowledge services and advice-giving services which exclusively support medication use. This is because I am a pharmacist and pharmacy is the biomedical domain that I know. The examples here address the serious problems of medication adherence and prescribing safety. Two empirical studies are shared that demonstrate the potential to address these problems and make improvements by using advice. But primarily we use these examples to demonstrate general and critical differences between stand-alone, unique approaches to handling computable biomedical knowledge, which make it useful for one system, and common, more highly interoperable approaches, which can make it useful for many heterogeneous systems. Three aspects of computable knowledge interoperability are addressed: modularity, identity, and updateability. We demonstrate that instances of computable knowledge, and related instances of knowledge services and advice-giving services, can be modularized. We also demonstrate the utility of uniquely identifying modular instances of computable knowledge. Finally, we build on the computing concept of pipelining to demonstrate how computable knowledge modules can automatically be updated and rapidly deployed. Our work is supported by a fledgling technical knowledge infrastructure platform called the Knowledge Grid. It includes formally specified compound digital objects called Knowledge Objects, a conventional digital Library that serves as a Knowledge Object repository, and an Activator that provides an application programming interface (API) for computable knowledge. The Library component provides knowledge services. The Activator component provides both knowledge services and advice-giving services. In conclusion, by increasing the interoperability of computable biomedical knowledge using the Knowledge Grid, we demonstrate new capabilities to generate well-informed health advice at a scale. These new capabilities may ultimately support Learning Health Systems and boost health for large populations of people who would otherwise not receive well-informed health advice.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146073/1/ajflynn_1.pd

    Development of semantic data models to support data interoperability in the rail industry

    Get PDF
    Railways are large, complex systems that comprise many heterogeneous subsystems and parts. As the railway industry continues to enjoy increasing passenger and freight custom, ways of deriving greater value from the knowledge within these subsystems are increasingly sought. Interfaces to and between systems are rare, making data sharing and analysis difficult. Semantic data modelling provides a method of integrating data from disparate sources by encoding knowledge about a problem domain or world into machine-interpretable logic and using this knowledge to encode and infer data context and meaning. The uptake of this technique in the Semantic Web and Linked Data movements in recent years has provided a mature set of techniques and toolsets for designing and implementing ontologies and linked data applications. This thesis demonstrates ways in which semantic data models and OWL ontologies can be used to foster data exchange across the railway industry. It sets out a novel methodology for the creation of industrial semantic models, and presents a new set of railway domain ontologies to facilitate integration of infrastructure-centric railway data. Finally, the design and implementation of two prototype systems is described, each of which use the techniques and ontologies in solving a known problem

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure
    corecore