
DEVELOPMENT OF SEMANT IC DATA MODELS TO
SUPPORT DATA IN TEROPERAB I L I T Y IN THE RA I L

INDUSTRY

jonathan tutcher

A thesis submitted to the University of Birmingham for the degree of
doctor of philosophy

Centre for Railway Research and Education
Electronic, Electrical, and Systems Engineering
College of Engineering and Physical Sciences

University of Birmingham

April 2015

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Jonathan Tutcher: Development of Semantic Data Models to Support
Data Interoperability in the Rail Industry © April 2015

supervisors:
Prof. Clive Roberts
Dr. John Easton

ABSTRACT

Railways are large, complex systems that comprise many heteroge-
neous subsystems and parts. As the railway industry continues to en-
joy increasing passenger and freight custom, ways of deriving greater
value from the knowledge within these subsystems are increasingly
sought. Interfaces to and between systems are rare, making data shar-
ing and analysis difficult.

Semantic datamodelling provides amethod of integrating data from
disparate sources by encoding knowledge about a problem domain or
world into machine-interpretable logic and using this knowledge to
encode and infer data context and meaning. The uptake of this tech-
nique in the Semantic Web and Linked Data movements in recent
years has provided a mature set of techniques and toolsets for design-
ing and implementing ontologies and linked data applications.

This thesis demonstrates ways in which semantic data models and
OWL ontologies can be used to foster data exchange across the rail-
way industry. It sets out a novel methodology for the creation of in-
dustrial semantic models, and presents a new set of railway domain
ontologies to facilitate integration of infrastructure-centric railway
data. Finally, the design and implementation of two prototype sys-
tems is described, each of which use the techniques and ontologies in
solving a known problem.

iii

P UBL ICAT IONS

Some of the work that appears in this thesis have appeared previously
in the following publications:

[1] J. Tutcher. “Ontology-driven Data Integration for Railway As-
setMonitoringApplications”. In: IEEEWorkshop on Large Data
Analytics in Transportation Engineering, 2014 IEEE International
Conference on Big Data. 2014.

[2] J. Tutcher, J. M. Easton, and C. Roberts. “Enabling Data Inte-
gration in the Rail Industry Using RDF andOWL:TheRaCoOn
Ontology”. In: ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems, Part A: Civil Engineering (2015), F4015001.

v

ACKNOWLEDGEMENTS

This thesis is a culmination of four years of work at the Birmingham
Centre for Railway Research and Education, and significantly more
time living and studying in Birmingham. My thanks go to everyone
who made my time there so inspirational and enjoyable, and I am
particularly grateful to the following people:

• Clive Roberts and John Easton, for their ideas and supervision,
company, and expertise both inside of academia and outside.

• Gemma Nicholson, Mani Entezami, and Chris Morris, whose
wise words and cooking skills kept me sane.

• Stephen Kent, Edd Stewart, and Andreas Hoffrichter, for dis-
tractingmewith fuel cell trains, exploding pointmachines, robots,
and freezers.

• Pete Nickless and Lizzie Smith Airey for the creative inspiration
and company.

• Rob Myall, Mark Hargreaves, Colin Tiller and Simon Chadwick
from Siemens, who were fantastic collaborators.

• TheEngineering and Physical Sciences ResearchCouncil, Siemens,
Network Rail, and Future Railway for funding and facilitating
the work undertaken in this thesis.

• Rory Dickerson, for being an incredible friend.

Finally, I am indebted to Jo Bryant andmy parents David andHilary
Tutcher, who have been an unwavering source of love and encourage-
ment throughout.

vii

CONTEN TS

List of Code Listings xxi

1 introduction and problem statement 1
1.1 Project Background and Problem Statement 1
1.1.1 Railway Fragmentation and Failure 1
1.1.2 Information Silofication 2
1.1.3 The Data-driven Railway 3
1.1.4 Standardised Data Models 4
1.2 Aims and Original Contributions 5
1.3 Thesis Organisation and Structure 6
1.4 Project Partners . 6

2 modelling, ontologies, and the semantic web 9
2.1 Introduction . 9
2.2 Data Modelling and Knowledge Management 9
2.2.1 Application and Domain Engineering 10
2.2.2 Incentives for Standardised Models 12
2.2.3 Syntax-based Models 14
2.3 Semantic Modelling . 18
2.3.1 Flexiblity in Knowledge Representation 19
2.3.2 Preservation of Context 20
2.3.3 Interoperability and Expressivity 20
2.4 Knowledge Representation and Ontology 23
2.4.1 What Is An Ontology? 23
2.4.2 Semantic Expressivity and Ontology Languages 24
2.4.3 Data Models, Vocabularies, and Ontology 26
2.4.4 Ontology Types . 27
2.4.5 Ontology Reasoning . 28
2.4.6 Ontology Engineering Methodologies 29
2.4.7 Ontology Modularity 33
2.4.8 Validation and Evaluation of Ontology Design 36
2.5 The Semantic Web and the Linked Data Movement 38
2.5.1 The Semantic Web . 38
2.5.2 The Linking Open Data Movement 41
2.5.3 Disincentives to Uptake of Linked Open Data and En-

terprise Ontology . 42
2.6 Core Technical Concepts and Notation Used 43
2.6.1 The Resource Description Framework 43
2.6.2 RDF Schema . 50

ix

x contents

2.6.3 Ontology Languages, TheWeb Ontology Language and
Description Logic (DL) 51

2.6.4 Reasoning and Inference in OWL and DL 55
2.6.5 Terminological and Assertional Knowledge 59
2.6.6 RDF Storage and Presentation 60
2.6.7 Overview of Software Tools 60
2.6.8 Querying RDF Data . 62
2.6.9 Presentation of OWL Examples and Patterns 63
2.7 Practical Problems and Assumptions in OWL 65
2.8 Summary . 66

3 railway data management, industrial models,
and notable ontologies 67

3.1 Introduction . 67
3.2 State of UK Rail Data Management 67
3.2.1 Current Wheel Maintenance Workflow 67
3.2.2 Network Rail Intelligent Infrastructure 68
3.2.3 DARWIN and Network Rail ORBIS 70
3.3 Transportation Data Models and Frameworks 72
3.3.1 RailML . 72
3.3.2 TAF/TAP TSI . 73
3.3.3 RailTopoModel and National Topology Models 75
3.3.4 Proprietary Systems and Models 77
3.3.5 InteGRail . 77
3.3.6 Rail Functional Architecture 80
3.4 ISO15926 . 81
3.5 Generic Asset Information Integration Standards 82
3.5.1 MIMOSA OSA . 83
3.5.2 Siemens Ontology-based Data Access System 85
3.6 Relevant Ontologies and Common Modelling Paradigms 85
3.6.1 Upper Ontologies . 86
3.6.2 Approaches to Time Representation 86
3.6.3 Approaches to Representing Quantities, Units, and Di-

mensions . 91
3.7 Summary . 92

4 designing extensible models for large complex
systems 95

4.1 Introduction . 95
4.1.1 Introduction to the RaCoOn Ontologies 95
4.1.2 Methodological Requirements 96
4.1.3 Proposed Approach . 97
4.2 Stage 1: Specification and Scope Definition 100
4.2.1 Scope Definition Methododogy 101

contents xi

4.2.2 RaCoOn Stakeholder Requirements and Applications . 103
4.3 Stage 2: Architecture and Ontology Modularity 112
4.3.1 Module Interdependence 114
4.4 Stage 3: Knowledge Acquisition and Conceptualisation . 114
4.4.1 Top-down Knowledge Acquisition 115
4.4.2 Initial Conceptualisation and Iteration of RaCoOn on-

tologies . 116
4.4.3 Knowledge Extraction from Non-Ontological Resources 117
4.5 Stage 4: Implementation and Ontology Reuse 120
4.5.1 Ontology Design and Implementation Best Practice . . 120
4.5.2 Use of Ontology Design Patterns To Encourage Re-use 122
4.5.3 Pattern Design vs. Reuse 122
4.5.4 Developing Ontology Design Patterns 124
4.5.5 Reusing Best Practice Ontologies and Patterns 125
4.5.6 Expressivity and Reasoning 129
4.6 Stage 5: Validation, Evaluation, and Iteration 131
4.6.1 Logical Validation . 132
4.6.2 Ontology Coverage through Application Data Mapping 134
4.6.3 In-use Validation . 136
4.6.4 SimilarityMeasurementThrough Expert Knowledge El-

liciation . 137
4.6.5 Iteration and Version Control 137
4.7 Best Practice Implementation Design Patterns 139
4.7.1 Annotation Best Practice and Naming Conventions . . 139
4.7.2 Ontology Self-documentation 140
4.7.3 Provenance, Trust, and Metadata 141
4.8 Summary . 145

5 racoon: pragmatic ontologies for the rail in-
dustry 147

5.1 Introduction . 147
5.2 Modular Ontology Design 147
5.2.1 Ontology Module Structure 147
5.2.2 Key Concepts and Semantic Trade-offs 148
5.3 The Cross-Domain Ontology 150
5.3.1 Conceptualisation, Structure and Patterns 151
5.3.2 Representation of Common Concepts 155
5.4 The Rail Core Ontology 159
5.4.1 Subdomains and Terminology 159
5.4.2 Local Naming Pattern 160
5.4.3 Representing Asset Capabilities and Characteristics . . 162
5.4.4 Geographical Positioning and Location 164
5.4.5 Representing Diagrammatic Network Layouts 178

xii contents

5.4.6 Navigability and Routing Across Networks 180
5.4.7 Re-engineering Knowledge from RailML 182
5.5 RaCoOn Ontology Evaluation 190
5.5.1 Structural and Syntactic Validation 190
5.5.2 Workshop Evaluation 193
5.5.3 Measuring Ontology Fit Using Railsys 199
5.5.4 In-use Validation . 205
5.6 Summary . 205

6 integration of railway remote condition mon-
itoring data 207

6.1 Introduction . 207
6.2 The AMaaS Application 207
6.2.1 Overview and Use Case 208
6.2.2 Existing Prototype Architecture 212
6.2.3 Proposed System Architecture 213
6.2.4 Stages 1 & 2: Asset Monitoring System Implementation 220
6.2.5 Stages 3 & 4: Infrastructure Integration and Reasoning 227
6.2.6 Stages 5 & 6: Integration of Timetable Data and Infer-

ence of Rolling Stock Faults 234
6.3 The Train Locator Application 242
6.3.1 Motives for Second Demonstrator 242
6.3.2 Design . 243
6.3.3 Front End Application Implementation 248
6.3.4 Source Data and Simulation 250
6.3.5 Live Departure Boards View & Reasoning 256
6.3.6 Train Mapper View & Reasoning 260
6.4 Summary . 263

7 conclusions drawn and further work 265
7.1 Key Findings and Contributions Made 265
7.1.1 RaCoOn Methodology 265
7.1.2 The RaCoOn Ontologies 266
7.1.3 The FuTRO Case Studies 267
7.2 Limitations of Approaches Taken 268
7.2.1 RaCoOn Methodology 268
7.2.2 The RaCoOn Ontologies 269
7.2.3 Other Limitations . 271
7.3 Planned and Possible Further Work 272
7.3.1 Possible Extensions . 272
7.3.2 Work Currently Underway 273

a list of code and ontologies hosted online 275

contents xiii

b reference diagrams and lists 277
b.1 List of CURIE Prefixes Used Throughout Thesis 277
b.2 ISO 15926 EXPRESS-G Notation Diagrams 278

c racoon ontology resources 281
c.1 RaCoOn Ontology Class Terms 281
c.1.1 List of Cross-domain Ontology Terms 281
c.1.2 List of Railway Domain Ontology Terms 282
c.2 Validation Workshop Results 285
c.2.1 High Level and SubdomainConcepts Elicited FromRaCoOn

Workshops . 285
c.2.2 Domain Interactions Elicited From Rail Core Ontolo-

gies (RaCoOn) Workshops 289
c.3 RaCoOn Railsys Validation 292

d futro implementation notes 303
d.1 AMaaS Track Layout Graphics 303
d.2 Legacy Wheelchex Data Snippets 305
d.3 AMaaS Stardog Rules and Queries 306

bibliography 309

L I ST OF F IGURES

Figure 1.1 Interactions BetweenMajor UKRailway Stake-
holders . 2

Figure 1.2 UK Railway Customer Information Architec-
ture . 3

Figure 2.1 Interactions betweenDomain Engineering and
Application Engineering 12

Figure 2.2 Extract from the RSSB Rail Functional Archi-
tecture . 13

Figure 2.3 Interfaces in Complex SystemsWith andWith-
out Standard Data Models 14

Figure 2.4 Graphical Representation of Possible XML Schema
for Data from Table 2.1 17

Figure 2.5 Example Semantic DataModel UsingDataMod-
ified from Table 2.1 20

Figure 2.6 Alignment of Semantic Data Models Using
Mapping Axioms 22

Figure 2.7 Example of Generalisation and Interoperabil-
ity in Semantic Data Model 23

Figure 2.8 Illustration of Example Pop Music Ontology 24
Figure 2.9 The “Ontology Spectrum” 25
Figure 2.10 Set ofModular Ontologies Partitioned by Pur-

pose . 35
Figure 2.11 AWikipedia Page as Understood by Humans

and Computers 39
Figure 2.12 Screenshot of Google Shopping Results Page 41
Figure 2.13 Example Relationships in The Simpsons Family 48
Figure 2.14 Example of N-ary Relationships Pattern . . . 48
Figure 2.15 Expressivity Characteristics of OWL Profiles 55
Figure 2.16 Protégé 5.0 Ontology Visualisation View . . 61
Figure 2.17 Demonstration Graphical Representation of

OWL Example 65
Figure 3.1 FlowChart of Current and Future TrainWheel

Maintenance Workflows 69
Figure 3.2 Network Rail Intelligent Infrastructure User

Interface Components 70
Figure 3.3 DARWIN Input Data Sources 71
Figure 3.4 TAF/TAPTSI Implementation Tasks and Timescales

for Completion 76

xiv

List of Figures xv

Figure 3.5 Railway Infrastructure StatusDependence Pat-
tern . 79

Figure 3.6 MIMOSAOSA-CBMArchitecture Levels And
Example Applications 84

Figure 3.7 KeyComponents inMIMOSAOSA-EAI Stan-
dard . 84

Figure 3.8 Example of Temporally-Varying Data Repre-
sented Using Endurantist Approach 87

Figure 3.9 Example of Temporally-Varying Data Repre-
sented Using Perdurantist Approach 87

Figure 3.10 Representation of Time Extents Using Endurant
Entities . 88

Figure 3.11 Reified Endurantist Time Extents Represen-
tation . 88

Figure 3.12 Example of 4D Fluents [225] Approach in OWL 89
Figure 4.1 RaCoOn Ontology Engineering Methodology 98
Figure 4.2 “Torchlight” Diagram Showing an Overview

of the Rail Domain, and Proposed Scope of
Domain Ontology 101

Figure 4.3 SimplifiedDiagramof ‘Vee’ Systems Engineer-
ing Methodology 102

Figure 4.4 Initial Rail Domain Functional Conceptuali-
sation with Invensys Rail Group Stakehold-
ers (2011) . 105

Figure 4.5 Interconnected RailwayDataManagementAp-
plication Areas 107

Figure 4.6 Transport Data Applications Mentioned by
Participants at TSC ‘Data Challenge’ Work-
shop . 108

Figure 4.7 Data Types Used by Participants at TSC ‘Data
Challenge’ Workshop 109

Figure 4.8 TSCWorkshop Infrastructure-centric Data In-
tegration Themes 111

Figure 4.9 Modularity Based on Expressivity in a Set of
Ontologies 114

Figure 4.10 Diagram Showing Design Question Paths to
Domain Model Construction 117

Figure 4.11 Stages inNeONMethodologyNon-ontological
Resource Reuse Process 118

Figure 4.12 Steps Towards Concept Formalisation in RaCoOn
Methodology 123

Figure 4.13 Visualisation of ‘Linked Open Vocabularies’
Datasets by Size 125

xvi List of Figures

Figure 4.14 RaCoOn Methodology Ontology Integration
Process . 126

Figure 4.15 W3C RDF Validator Results for Upper Ontology133
Figure 4.16 RaCoOn Ontology Git Commit History . . . 138
Figure 4.17 Documentation Pattern for RepresentingCon-

tent Pattern Association in OWL 140
Figure 4.18 Example Use ofMeta-modelling toAssert Prove-

nance Information on Ontology Concepts . . 144
Figure 5.1 RaCoOn Ontology Modules Structure 148
Figure 5.2 OWLViz Diagram of RaCoOn Cross-domain

Ontology . 152
Figure 5.3 Representation of Temporally ChangingData

in RaCoOn Cross-Domain Ontology 155
Figure 5.4 Example of Measurement Design Pattern in

RaCoOn Ontologies 156
Figure 5.5 Example of CompositionDesign Pattern Show-

ing High Level Points Machine Components 158
Figure 5.6 Example Showing Local Naming Design Pat-

tern . 161
Figure 5.7 Design Pattern Showing Assertion of ERTMS

Capability on Track Section and Class Inference163
Figure 5.8 Example Showing TrackCharacteristic Change

Design Pattern 164
Figure 5.9 Example of ‘Network Level’ Railway Route

Graph . 166
Figure 5.10 Example of ‘Route Level’ Railway Route Graph166
Figure 5.11 Example of ArbitraryGraphDirectivity in Track

Topology . 170
Figure 5.12 Example Showing Track Inheritance Design

Pattern . 172
Figure 5.13 Track Element Positioning Design Pattern . 175
Figure 5.14 Example WGS84 Position Represented Using

Location Pattern 176
Figure 5.15 Screenshot From InvensysWestlock Interlock-

ing Simulator 178
Figure 5.16 Example XY Presentation Position Represented

Using Location Pattern 179
Figure 5.17 Example Representation of Network Naviga-

bility Across Routes 181
Figure 5.18 Overview of RailML Subschemas and exam-

ple elements 183
Figure 5.19 Flowchart Showing RailMLRe-engineeringWork-

flow . 185

List of Figures xvii

Figure 5.20 RailML Entity Provenance Annotation Pattern 187
Figure 5.21 Example of a RailML Signal Group, Repre-

sented Using the Collections Ontology . . . 189
Figure 5.22 Example Showing Route Profile Design Pat-

tern Across Three Route Nodes 190
Figure 5.23 Screenshot of Oops! Result for 3DCross-domain

Ontology . 192
Figure 5.24 Photograph of RaCoOn Validation Session at

the University of Birmingham 193
Figure 5.25 Photograph of RaCoOn Validation Session at

the University of Birmingham 194
Figure 5.26 Railway High Level Systems As Conceptu-

alised byGroups at EdgbastonValidationWork-
shop . 196

Figure 5.27 Edgbaston Validation Workshop: Results of
‘Infrastructure’ Category Decomposition . . 197

Figure 5.28 Example Interaction for Validation Workshops 198
Figure 5.29 Alignment BetweenHigh Level RailwayThemes

Elicited in Workshops and RaCoOn Scope . . 200
Figure 5.30 XML SchemaDefinition of line fromRailsys

Example Documents 201
Figure 6.1 AMaaS Modularity 209
Figure 6.2 Data Sources And Actors In AMaaS 210
Figure 6.3 System Design Storyboard for AMaaS System 211
Figure 6.4 Siemens Cloud-based Asset Monitoring Sys-

tem Architecture 212
Figure 6.5 AMaaS Demonstrator System Architecture . 214
Figure 6.6 BlockDiagram ShowingQueryActivity across

Federated Data Stores in AMaaS 220
Figure 6.7 AMaaS Component Topology Design Pattern 221
Figure 6.8 AMaaS Observation Pattern 223
Figure 6.9 Hierarchy of PCMDevices inAMaaSDemon-

strator System 224
Figure 6.10 Screenshot of the AMaaS Entity Browser . . 225
Figure 6.11 AMaaS Observation Pattern 226
Figure 6.12 AMaaS Web Application Profiles View . . . 227
Figure 6.13 Railway LayoutAroundCoventry StationAc-

cording to OpenStreetMap 228
Figure 6.14 Screenshot of AMaaS Track View 230
Figure 6.15 Asset Dependency and Fault Inheritance De-

sign Pattern 234
Figure 6.16 Screenshot of OpenRefine RDFMapping Plug-

in . 238

xviii List of Figures

Figure 6.17 AMaaS Rolling Stock Design Pattern & Ex-
ample Data 240

Figure 6.18 Screenshot Showing AMAaaS Train Finder
View . 240

Figure 6.19 System Design Storyboard for FuTRO Train
Locator Application1 244

Figure 6.20 FuTRO Train Locator Key Components . . . 247
Figure 6.21 UML Sequence Diagram ShowingHigh Level

Data Flow for Request of LiveDeparture Board
View . 249

Figure 6.22 Train Locator Infrastructure Data Mapping
Workflow . 252

Figure 6.23 UMLClass Diagram Showing Structure of FuTRO
Train Simulator 254

Figure 6.24 Design Pattern Used for Train Locations in
Train Locator Demonstrator 255

Figure 6.25 Screenshot of Train Locator Live Departure
Board View 257

Figure 6.26 Demonstration of Train Location as Reported
by Train Locator 260

Figure 6.27 Screenshot of Train Locator Map View . . . 261
Figure 6.28 Pattern for Prioritising Knowledge in TLOC

Ontology . 262
Figure B.1 EXPRESS-G Model Diagram 279
Figure B.2 EXPRESS-G Instance Diagram 279
Figure C.1 Railsys RaCoOnTransformationValidation Spread-

sheet . 293
Figure D.1 SVG Track Diagram Used in FuTRO AMaaS

Project . 303

L I ST OF TABLES

Table 2.1 1950s Jazz Musicians and Key Personal Infor-
mation . 15

Table 2.2 Making a Phone Call 18
Table 2.3 The 5 Stars of Open Data 42
Table 2.4 Example RDF URIs and Literals 44
Table 2.5 Two Examples of Semantic Web URI abbre-

viated as CURIE identifiers 45
Table 2.6 ExampleOWLConstructs and RelatedDL Sym-

bols . 53
Table 2.7 Icon Symbols Used to Denote OWL Entities . 64
Table 3.1 TAP Key Activities and Descriptions 74
Table 4.1 Use Cases for a Standard Rail Data Model,

Categorised by Area 106
Table 4.2 Table Showing Subjective Metrics for Non-

ontological Resource Reuse in RaCoOn On-
tologies . 120

Table 4.3 Division of OWL constructs between core and
constraints ontologies 131

Table 5.1 RaCoOn Modules and Dependencies 149
Table 5.2 Basic Track Topology Design Pattern OWL

Constructs 169
Table 5.3 Linear Track Positioning OWL Constructs . 174
Table 5.4 Geodesic Location RepresentationOWLCon-

structs . 176
Table 5.5 OWL Expressivity Profiles of RaCoOn Modules191
Table 5.6 Rail Domain SubsystemsValidationWorkshop

Consensus 195
Table 5.7 Table Showing Example Interactions Elicited

from Ontology Evaluation Workshops 198
Table 5.8 Table ShowingDisambiguation of Railsys plat-

form element 202
Table 5.9 Extract fromRailsys Transformation Table Show-

ing ‘Station’ Pattern 204
Table 6.1 Functional RequirementsDefined FromAMaaS

Storyboard 216
Table 6.2 Comparison of Features Across Popular RDF

Triplestores 217

xix

xx List of Tables

Table 6.3 RaCoOnElements Used for AMaaS Infrastruc-
ture Mappings 229

Table 6.4 Example of Asset Data Contextualisation us-
ing Asset Monitoring System Data 231

Table 6.5 Working Timetable Attribute Mappings . . . 238
Table 6.6 Selected Records fromCIF ‘Schedules’ Schema

Table . 239
Table 6.7 Matrix of Train Locator SystemBehaviour Us-

ing Different Data Sources 246
Table 6.8 Views Provided by Train Locator Application 250
Table 6.9 Train Locator API Calls and associated func-

tionality . 251
Table B.1 Ownership Denoted by URI Namespaces . . 277
Table C.1 Railway Domain Interactions Elicited From

Edgbaston Validation Workshop 290
Table C.2 Table Showing Railway Domain Interactions

Elicited From Chippenham ValidationWork-
shop . 291

L I ST OF CODE L I ST INGS

Figure 2.1 Example XML Markup of Table 2.1 16
Figure 2.2 Example of Facts RepresentedUsing Terse RDF

Triple Language (Turtle) 47
Figure 2.3 Example of RDF Reification in Turtle 49
Figure 2.4 Demonstration of Inference based on rdfs:domain-

:and rdfs:range:Restrictions 51
Figure 2.5 OWLMarkup Showing Restrictions on Train

Class . 54
Figure 2.6 SPARQL Query for Railway Stations in Model 63

Figure 3.1 Using Datatype Properties to Represent At-
tributes . 91

Figure 3.2 Turtle Listing Showing Time Represented us-
ing the QUDT ontology 92

Figure 4.1 Train Speed Represented in RDF Using Di-
rect Data Property Approach 99

Figure 4.2 Train Speed Represented in RDFUsing Ternary
Relations Design Pattern 100

Figure 4.3 Ontology Validator Method Listing 133
Figure 4.4 Example VoID Description of Upper Ontology 142

Figure 5.1 Example Assertions to Demonstrate rdfs:-

range Restrictions 153
Figure 5.2 Example InferencesMadeThrough rdfs:range

Restrictions 153
Figure 5.3 Demonstration of Ternary RelationsMeasure-

ment Pattern in Turtle 157
Figure 5.4 Example SPARQLLocationMapping Between

RaCoOn and the W3C Geo Ontology 177
Figure 5.5 Extract fromRailML InfrastructureModel Show-

ing Complementary Elements and Types . . 186

Figure 6.1 OWL Axiom Asserting Observation Relation
Properties . 232

Figure 6.2 Stardog Rule for Inference of Current Asset
Condition . 232

Figure 6.3 Extract of RDF Station Information fromTrain
Locator Knowledge Base 253

xxi

xxii List of Code Listings

Figure 6.4 Natural Language Query for Train Forecast
in Train Locator Application 257

Figure 6.5 SPARQL Query for Train Forecast in Train
Locator Application 258

Figure 6.6 Stardog Rule to Assert Track Circuit Mileage
in Train Locator Application 259

Figure 6.7 Stardog Rule to Present PreferredData in Train
Locator Application 262

Figure D.1 Extract from RDFa Enriched SVG Code . . . 304
Figure D.2 Example Wheelchex XML Data File 305
Figure D.3 Stardog Rule for DerivingCurrent Asset Con-

dition in AMaaS 306
Figure D.4 SPARQL Query for Wheel Impact Load De-

tector Traffic Inference 307

ACRONYMS

AJAX Asynchronous Javascript and HTML.
AMaaS Asset Monitoring As A Service.
AMQP Advanced Message Queuing Protocol.
API Application Programming Interface.
ATOC Association of Train Operating Companies.
BFO Basic Formal Ontology.
CASE Collaborative Awards in Science and Engineering.
CIF Common Interface Format.
CQ Competency Question.
CSV Comma Separated Values.
CURIE Compact URI.
DERI Digital Enterprise Research Institute.
DILIGENT Distributed Engineering of Ontologies.
DL Description Logic.
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering.
DUL DOLCE & DnS Ultralite.
ECML East Coast Main Line.
ELR Engineer’s Line Reference.
ERTMS European Rail Traffic Management System.
EU European Union.
FOL First Order Logic.
GIS Geographical Information System.
GPS Global Positioning System.
HABD Hot Axlebox Detector.
HDT Header, Dictionary, Triples.
HTML Hypertext Markup Language.
HTTP Hdypertext Transfer Protocol.
IBM International Business Machines.
ID Identifier.
IIP Intelligent Infrastructure Project.
INSPIRE Infrastructure for Spatial Information in the European Community.

xxiii

xxiv Acronyms

IP Internet Protocol.
IRG Invensys Rail Group.
IRI Internationalized Resource Identifier.
ISO International Organization for Standardization.
ITS Siemens Intelligent Transportation Systems.
JSON JavaScript Object Notation.
JSON-LD JavaScript Object Notation for Linked Data.
KIF Knowledge Interchange Format.
LDB Live Departure Board.
LDL Layout Description Language.
LOD Linked Open Data.
MIMOSA An Operations and Maintenance Information Open System Alliance.
MVC Model-View-Controller.
NASA National Aeronautics and Space Administration.
NR Network Rail.
ODP Ontology Design Pattern.
ONTIME Optimal Networks for Train Integration Management across Europe.
OOPS! OntOlogy Pitfall Scanner.
ORBIS Offering Rail Better Information Services.
OSA-CBM Open System Architecture for Condition-based Monitoring.
OSA-EAI Open System Architecture for Enterprise Application Integration.
OWA Open World Assumption.
OWL Web Ontology Language.
PC Personal Computer.
PCM Points Condition Monitoring.
PDF Portable Document Format.
PRM Passengers with Reduced Mobility.
QL Query Language.
QUDT Quantities, Units, Dimensions, and Types.
RaCoOn Rail Core Ontologies.
RCM Remote Condition Monitoring.
RDF Resource Description Framework.
RDFa Resource Description Framework in Attributes.
RDFS Resource Description Framework Schema.
REST Representational State Transfer.
RFA Rail Functional Architecture.

Acronyms xxv

RFC Request for Comments.
RFF Réseau Ferré de France.
RIF Rule Interchange Format.
RINF Register of Infrastructure.
RINM Rail Infrastructure Network Model.
RL Rule Language.
RRUKA Rail Research UK Association.
RS Rolling Stock.
RSSB Railway Safety and Standards Board.
RTPI Real Time Passenger Information.
SaaS Software-as-a-Service.
SCADA Supervisory Control And Data Acquisition.
SDEF Signalling and Data Exchange Format.
SNOMED CT Systematized Nomenclature of Medicine Clinical Terms.
SPARQL Sparql Protocol and RDF Query Language.
SPIN SPARQL Inferencing Notation.
SQL Structured Query Language.
SSN Semantic Sensor Network.
SVG Scalable Vector Graphics.
SWRL Semantic Web Rule Language.
TAF Telematics Applications for Passenger Services.
TAP Telematics Application for Passengers.
TBC Topbraid Composer.
TCP Transmission Control Protocol.
TLOC Train Locator.
TOC Train Operating Company.
TOCs Train Operating Companies.
TOVE Toronto Virtual Enterprise.
TRUST Train Running System TOPS.
TSC Transport Systems Catapult.
TT Timetable.
Turtle Terse RDF Triple Language.
UIC International Union of Railways.
UK United Kingdom.
UML Unified Modelling Language.
UNA Unique Name Assumption.

xxvi Acronyms

URI Uniform Resource Identifier.
URL Uniform Resource Locator.
VCS Version Control System.
VoID Vocabulary of Interlinked Datasets.
W3C World Wide Web Consortium.
WILD Wheel Impact Load Detector.
WILM Wheel Impact load Measurement.
WTT Working Timetable.
WWW World Wide Web.
XML eXtensible Markup Language.
XSD XML Schema Definition.

1
I N TRODUCT ION AND PROBLEM STATEMENT

1.1 project background and problem statement

Railways across the world have enjoyed a revival in recent years, with
passenger numbers growing inmany countries as a result of increased
fuel prices, traffic congestion, and a shift in public opinion to more en-
vironmentally friendly methods of transport [48]. In the United King-
dom (UK), passenger numbers have increased dramatically in the last
decade [152], and this resurgence in popularity has led to continued
investment in railway infrastructure and operations [150] to provide
more capacity and reliability. As the returns on investment from ‘easy
wins’ such as platform extensions and re-signalling diminish, and in
light of recent government pressure towards efficiency savings [212],
methods for making better use of existing assets are increasingly be-
ing sought. One such method is to encourage better use of data man-
agement principles and modern Information Technology systems, as
noted by the 2012 UK Rail Technical Strategy [175]. A key motive for
developing such systems is to allow greater information sharing be-
tween stakeholders, in order two support better decision making and
thus encourage greater efficiency, reliability, and safety.
This thesis seeks to provide ways to encourage information sharing,
by using semantic data models to provide machine-interpretable con-
text around railway data.This first chapter overviews the current chal-
lenges and circumstances around railway data, outlines the aims and
contributions of the PhD project, and provides an overview of the rest
of the document.

1.1.1 Railway Fragmentation and Failure

In spite of recent investment, the UK railway is highly fragmented.
Much of its infrastructure originates from lines constructed during
the ‘railway mania’ of the 1840s, during which time economic dis-
incentives and a lack of standardisation encouraged the creation of
many heterogeneous systems that are still in use today. The priviti-
sation and subsequent re-organisation of the railways in 1993 led to
heavy fragmentation of the stakeholders that operate it, with many
different companies now responsible for operating, maintaining, and
regulating different aspects and subsystems, as shown in Figure 1.1.

1

2 introduction and problem statement

Key

Governance Maintainer

OperatorInfrastructure

regulates advises

Freight Operating
Companies

use

uselease from

Transport for
London HS1 Ltd

Tubelines

Train Operating
Companies

UK Government

Department for
Transport

RS Maintenance
Companies

Railway Safety and
Standards Board

London
Underground

RS Leasing
Companies

Office of Rail
Regulation

manages
useuse

lease from
maintain use

use

accountable to accountable to

Network Railfunds

Figure 1.1: Interactions Between Major UK Railway Stakeholders (Data
Taken From Office of Rail Regulation [151])

This fragmentation has led to the proliferation of independently
owned and operated information systems across the industry, with lit-
tle regard for exchange or sharing of knowledge between parties. Rail-
way stakeholders that own few physical assets place immense value
in the knowledge they can gather, and are not incentivised to share it
unless necessary [184].

1.1.2 Information Silofication

In addition to business incentives for keeping information private, in-
formation sharing also faces technological and operational barriers.
The long lifecycles and safety-critical nature ofmany railway informa-
tion systems means that applications are often difficult to modify.The
McNulty report [212] observes that a lack of ‘systems thinking’ has
led to continued development of heterogeneous systems and bespoke
interfaces between systems, often with complex, manual workflows
bridging the gap. It estimates that over 1700 independent information
systems are in use in the UK rail industry today, and concludes that:

“…the effectiveness of the industry’s IS [Information Sys-
tems] is inhibited by a suite of legacy systems that are
expensive to run, unable to communicate with new tech-

1.1 project background and problem statement 3

nology and encourage users to develop awide range of be-
spoke local systems to overcome limitations.” and “…many
systemswere felt to be inflexible, intertwined and increas-
ingly difficult to maintain and enhance. This has resulted
in additional (rather than replacement) applications and
business practices being implemented to plug the gaps
and to support the emerging devolved rail industrymodel.”

To illustrate this point, Figure 1.2 shows the current system layout
of a set of passenger information systems in the UK railway.

CIS Displays (60 plus Systems Nationally)

BUSINESS
PRO

CESS
CENTRAL
SYSTEM

S
PASSENG

ER
/CUSTO

M
ER

PRESENTATIO
N

Long Term
Planning

Short Term
Planning

(Up to A to C)

NR Planners

ITPS

CIF
FTF Mgr

Signalling Control

Disruption
Management

TOC/ FOC
Service

Management

NR Route
Management

TOC/FOC
Controllers

Station
Management

TSIA/TOPS/
TRUST

Service
Changes,

VSTP,
Cancellations

(For DA usage)

Service
Changes

NR
Controllers

Signallers

Manual
Reports

Incident
Managers

Control Log
(CCIL/DataSys)

TOC Ops Msgs
(Tyrell 2/Tyrell IO)

NR Ops Msgs
(Tyrell 2.5)

Service
Impacts

Logs

Logs Incident
Updates,

PPM

Service
Changes,

Cancellations

TD Data

Field Operations

MOM/LOM

Possessions
Management

COS

Train
GPS

Feeds Mass Detectors

www.nationalrail.co.uk
www.networkrail.co.uk

Tiger

RTPPM

Ops Msg
(Theseus)

CIS
Info

(LICC Only)
Live Departure

Boards

Darwin

Timetable
(CIF)

TD Data

Train Mvt,
VSTPs

Station
Controllers

Timetable
(CIF)

Timetable
(CIF)

TOC/FOC
Planners

Local
Service

Changes

GPS Fed CIS
(Northern

Whitby Line)

CIS Systems
(LICC/Amey/

Thales/Funkwerk)

Automated
PA Systems

TD
Train Mvt

Cancellations

TD
Train Mvt

Cancellations

Timetable
(CIF)

EMS
Hub/

TD.NET

Train
Movements
(TD/SMART)

Service
Impacts

CO
NSO

LIDATO
RS

TRAIN
LO

CATIO
NS

DIST.
HUBS

Station
Initiated Service

Changes

Ops Msg
Initiated Service

Changes

OIS/SOIS

Train Mvt

transportdirect.info

Local
Disruption

Info

Ops Msg
Initiated Service

Changes

Service
Changes
(Darwin

Workstation)

Rainbow
Feed

Gemini/Genius

GPS Train
Pos

Consist
Info

Consists Info

Service
Updates

Service
Updates

Posessions
Updates

Posessions
Updates

Incident
Updates

NRE

Figure 1.2: UK Railway Customer Information Architecture (Taken
from [53])

These heterogeneous information sources often possess few or ill-
defined system interfaces, leading to the creation of information si-
los—large repositories of potentially useful data that is inaccessible to
other system, and therefore of no use in domain-wide decision mak-
ing. Recent European Commission data sharing mandates such as the
Register of Infrastructure [59] that aim to provide interoperability be-
tween European railways have presented difficulties to many railway
undertakings, with Network Rail having identified at last 32 systems
that must be modified to provide conformance [14].

1.1.3 The Data-driven Railway

It is not just government recommendations that provide incentives for
embracing new information systems. The industry is also beginning
to recognise the potential for new technologies for decision support

4 introduction and problem statement

and automated processing within the railway, such as remote con-
dition monitoring systems that aid with detection and diagnosis of
faults before they occur [15]. Newer systems, such as Network Rail’s
Intelligent Infrastructure project [222] acquire large amounts of data
about asset health, but currently confine its use to only its immedi-
ate application: that of thresholding and triggering alarms on faulty
assets. This creates further information silos, and encourages unnec-
essary duplication of data.

1.1.4 Standardised Data Models

As the number of information systems employed in the railway in-
dustry increases, so too does the need for long term approaches for
management of data. Domain-wide standard data models provide a
shared vocabulary with which to exchange data, and several promi-
nent efforts have already been made in the railway domain, as dis-
cussed in Chapter 3.

Semantic data models provide a way of storing information whilst
preserving its context. In contrast to traditional approaches to data
modelling and storage, semantic models encode the meaning of data
by relating it to a logical conceptualisation of theworld, allowing com-
puters to more easily integrate data from multiple sources. This re-
duces reliance on one particular datamodel structure, allowing greater
flexibility—a feature which is necessary considering that some sys-
tems have lifespans of 25–50 years. Consequently, semantic models
provide several advantages over relational databases, eXtensibleMarkup
Language (XML) schemas, and other syntax-dependent information
exchange formats when considering the demands of the railway in-
dustry and other complex systems:

• Preservation of data meaning across system interfaces and up-
grades [107]. The semantics of each term used in a system are
defined by the relationships they sharewith other concepts, and
can be stored alongside the data itself. This reduces ambiguity
and preserves the intent of the information stored.

• Ease of system integration: semantic models encoded in Re-
sourceDescription Framework (RDF) encode data as knowledge
graphs, and so do not depend on any fixed structure beyond
that of representing the facts themselves. Terms that share se-
mantics can be mapped and queried together, facilitating easier
combination of knowledge.

1.2 aims and original contributions 5

• Model extensibility [33]: semanticmodels can easily be extended
incrementally over time, allowing new concepts and knowledge
to be introduced without re-designing entire standards and sys-
tems.

• Derivation of new knowledge [84]. By understanding the con-
text of data within a system, semantic models can be extended
through a process of machine reasoning, to add ‘common sense’
and business rules to data stores, andmaterialise additional knowl-
edge within a system.

For these reasons, semantic models have been used successfully for
data integration in applications such as oil and gas engineering [226],
medicine [200], and journalism [178]. The uptake of semantic mod-
elling on the internet, in the form of the Semantic Web and Linked
Open Data initiatives, has brought about a set of standardised tools
and technologies on which to implement ontologies and build appli-
cations, and many of these technologies are now used widely in pro-
duction environments [50].

1.2 aims and original contributions

This work presented in this thesis builds on the current state-of-the-
art in ontology engineering methodologies and techniques to develop
new ways to aid data exchange in the railway industry. In addition to
providing an overview of current literature in these areas, the thesis
seeks to answer the following research questions:

• How should domain ontologies for industrial data sharing be
designed and built using existing non-ontological information
resources and expert knowledge

• How can such models be evaluated and validated?

• What are the key use cases and over-arching requirements for
a domain ontology that supports data sharing and integration
in the railway industry?

• Can Web Ontology Language (OWL) and semantic web tech-
nologies be used to create a candidate domain ontology for infrastructure-
based data sharing in the railway industry, and can such amodel
be used to infer new knowledge from existing information?

• How can asset monitoring and Real Time Passenger Informa-
tion (RTPI) systems take advantage of and implement thesemod-
els, and how are such applications achieved using current off-
the-shelf technologies?

6 introduction and problem statement

To answer these questions, three principal novel contributions are
presented:

1. Chapter 4 describes a new methodology for knowledge elicita-
tion and design of domain models for large complex industrial
systems, based on current state-of-the-art.

2. In Chapter 5, A set of OWL domain ontologies and vocabularies
for the railway domain are presented, as well as a set of corre-
sponding design patterns for representing key railway concepts
to allow future extension for specific tasks.

3. Chapter 6 documents the development of two demonstration in-
formation systems utilising these rail ontologies and extensions
to them, based on identified rail industry use cases. Documenta-
tion of novel ontology design patterns for use in other railway
applications is also provided.

1.3 thesis organisation and structure

The rest of the thesis is structured as follows:

• Chapter 2 provides an overview of the principles of knowledge
management and datamodelling. It describes semantic datamod-
els, ontologies, and their uptake on theWorldWideWeb, which
has given rise to many of the tools and technologies used to un-
dertake this project.

• Chapter 3 describes the current state-of-the-art in industrial
datamodels, aswell as currentworkflows andmodels usedwithin
the railway industry and other large complex systems.

• Chapter 7 provides an evaluation of the work undertaken, out-
lines conclusions reached, and describes both potential future
work arising from this thesis, and current or upcoming projects
utilising its outputs.

1.4 project partners

This thesis was produced as the result of an Engineering and Physical
Sciences Research Council Collaborative Awards in Science and En-
gineering (CASE) Studentship between Invensys Rail Group and the
University of Birmingham.

Invensys Rail Group were primarily a provider of railway control,
signalling, and safety systems. In 2012, the company was bought by

1.4 project partners 7

Siemens PLC, and became part of the Siemens Intelligent Transporta-
tion Systems group. This merger in turn led to a collaborative project
(discussed in Chapter 6) with another part of the Siemens Intelligent
Transportation Systems (ITS) group, based in Ashby-de-la-Zouch, Le-
icestershire.

For consistency, the name ‘Invensys Rail’ is used throughout this
thesis to refer to the organisation based in Chippenham and Birming-
ham, and ‘Siemens’ is used to refer to the group based in Ashby-de-
la-Zouch.

2
MODELL ING , ON TOLOG IES , AND THE SEMANT IC
WEB

2.1 introduction

To contextualise the aims and research questions set out in Chapter 1,
this chapter provides an overview of the fields of knowledge repre-
sentation and semantic data modelling, and sets out the conventions
adopted to document and explain concepts in subsequent chapters.
Section 2.2 introduces key data modelling principles and techniques,
and outlines current types and approaches to knowledge manage-
ment. In Section 2.3, the concept of semantic data modelling is intro-
duced, and the advantages of semantic data models in assisting data
interoperability across systems are shown. Section 2.4 discusses the
use and characteristics of ontologies, and how reasoning can be used
to infer implicit knowledge from a set of facts. The final section, Sec-
tion 2.6, shows the state-of-the-art in technologies for creating and
using computer ontologies and linked data, and outlines technical no-
tation used throughout the rest of the thesis.

2.2 data modelling and knowledge management

Since the advent of affordable computing in the 1960s, there has been
a steady increase in the number of organisations and individuals ex-
ploiting information systems to automate business processes and store
information. As the information processed by these systems became
more complex, ad hoc methods for representing data were no longer
practical, and new techniques and paradigms for doing so gained trac-
tion. Data modelling is the practice of defining the structure and rep-
resentation of data to be stored in such a system, with the purpose
of allowing the information present to be correctly preserved and re-
called. Data models provide a mapping between real life concepts and
their physical representation on a computer storage device, and en-
sure that data quality is ‘fit for purpose’ within an application [226, p.
6]. As such, data models vary in complexity and scale depending on
their requirements—from simple tabular structures that support indi-
vidual tools or applications that depend on implicit domain knowl-
edge for users to make sense of them, to intricate enterprise-wide
models that support interoperability across an organisation by mak-

9

10 modelling, ontologies, and the semantic web

ing the meaning of data explicit in the models themselves. The devel-
opment of the World Wide Web (WWW) has brought about a simi-
larly diverse set of models for representing data on the internet, rang-
ing from unstructured representations of interlinked knowledge in
standardised markup formats such as Hypertext Markup Language
(HTML), to machine-readable representations used by search engines
and software applications, and discussed in Section 2.5.2.

To provide this mapping between concepts and data storage, soft-
ware engineering approaches often advocate the design of several
models, each at a particular level of abstraction between the real world
and the machine. Types of data model can be categorised into the fol-
lowing three main categories [94, p. 6], defined as follows:

• Conceptual models describe the concepts and behaviour of a
problem domain or system. They are implementation-agnostic,
and do not attempt to specify behaviour of the system itself.
Conceptual models may be specified formally (using a meta-
model) or informally, depending on their requirements.

• Logical data models describe the high level structure and rela-
tionships of the system to be implemented, according to some
set of rules or expressiveness. They introduce devices to allow
conceptual data to be encoded by computers (such as relation-
ships and attributes), but are not defined by a particular imple-
mentation themselves.

• Physical data models are the manifestation of the logical model
within a defined technological implementation. Common phys-
ical modelling formats include eXtensible Markup Language
(XML) and relational databases.

In trivial cases, physical models are defined ‘ad hoc’, with no formal
logical or physical representations. However, as complexity increases,
the structure of such physical models becomes less intuitive. When
considering larger systems, for example railway ticketing databases,
formal data models reduce ambiguity and aid interoperability, and are
a key component in several systems engineering methodologies [125,
p. 42].

2.2.1 Application and Domain Engineering

As a result of the ambiguity inherent in many data models, many
large complex systems include components that can be regarded as
information silos: applications or data stores where useful information

2.2 data modelling and knowledge management 11

is held but cannot easily be extracted. Applications using conflicting
data models (at either a logical or a physical level) cannot exchange
data without some bespoke interface to translate between systems,
and design of such interfaces is often expensive or unfeasible[216].
This heterogeneity can be eased somewhat by the introduction of
common data models, shared by several applications. Such models
can reinforce the consistent meaning of concepts across multiple ap-
plications, and therefore mitigate the likelihood of information silos
forming in the first place.

In the absence of wider motivations for interoperability, software
designmethodologies base the creation of an application’s data model
on pre-defined sets of functional requirements. These requirements
specify what information should be represented, and rarely consider
the needs of surrounding systems [169]. This application engineering
approach can establish comprehensive models that suit one partic-
ular application, but may make assumptions that do not hold in the
wider domain of discourse in order to reduce complexity and increase
system efficiency [192]. The actual domain knowledge required of the
system for interpretation is often ad hoc, implicit (assumed) and infor-
mal [116]. In enterprise environments, this limits re-usability and in-
teroperability between systems, as different assumptions and require-
ments can lead to different approaches to modelling the same types
of information.

Consider a railway maintenance system and a passenger informa-
tion system. In the former, a train may be defined as a physical thing
consisting of a number of unique carriages with serial numbers. In
the latter, however, a train may refer to a service that can be fulfilled
by any physical vehicle. Although these are both perfectly reasonable
definitions to make in the domain of each system, different assump-
tions made in each case may be incompatible and require a translation
layer to provide interoperability.

Domain engineering seeks tomitigate these incompatibilities by cre-
ating models that identify key concepts and interactions across a do-
main of discourse, rather than those confined to one application’s re-
quirements [169]. These domain models are agnostic of any particu-
lar application, and are often designed at a higher conceptual level
than their application-specific counterparts, allowing the types of as-
sumptions necessary in physical models to be avoided altogether. By
building on domain models, applications across an organisation can
encode information using shared definitions of concepts, facilitating

12 modelling, ontologies, and the semantic web

easier re-use and exchange of data [154].

Successful software design for interoperability utilises both approaches [94],
with standard domain-specific vocabularies used to represent the se-
mantic of key concepts, and application-specific extensions to provide
additional functionality and encode these abstract concepts into logi-
cal and physical models. Figure 2.1 shows how these two disciplines
may interact during development of a particular system.

Application
Engineering

Track

Domain
Engineering
Track

Domain
Analysis

Domain
Model

Model
Formalisation

Structural
Model

Reference
Data

Population

Repository of
Components

System
Analysis

Analysis
Model

Design

Design
Model

Application
Construction

Software
Application

Figure 2.1: Interactions between Domain Engineering and Application Engi-
neering, adapted from Falbo et al. [60]

2.2.2 Incentives for Standardised Models

The work presented in this thesis centres on the use of standardised
domain models to aid interoperability across large complex systems,

2.2 data modelling and knowledge management 13

by providing a shared vocabulary and conceptualisations that applica-
tions can subscribe to and use. As an example of this, an extract from
the Railway Safety and Standards Board (RSSB) Rail Functional Ar-
chitecture, a recently created conceptual model for functions across
the rail industry, is shown in Figure 2.2 [176] and discussed in more
detail in Chapter 3.

Figure 2.2: Extract from the RSSB Rail Functional Architecture

The interoperability advantages of a standardised domain model
within an industry can be illustrated quite clearly by considering the
need for interfaces between different systems, as shown in Figure 2.3.
If we make the assumption that each pair of systems with differing
representations of data require some form of reconciliation interface
between them in order to communicate, then the number of such in-
terfaces for a given complex system can be estimated.
For small applications with just two interoperating systems, only one
interface is required: the one between system A and system B. If a
third system must exchange data with both systems, then two more
interfaces are required, so three in total. As the information landscape
grows, more interfaces are required—in fact, to enable all N applica-
tions to communicate, the number of interfaces needed is N(N−1)

2 .
Furthermore, when one system is modified, N − 1 interfaces also re-
quire modification!
However, if a standard data model is implemented, capable of express-

14 modelling, ontologies, and the semantic web

ing all information exchanged by systems, the number of interfaces
drops to N interfaces—one for each system. In addition, modification
of one system no longer requires alteration to many different inter-
faces.

A

B

C

D
E

(a) Without Standard Data Model

Model

C

B

A

E

D

(b) With Standard Data Model

Figure 2.3: Interfaces in Complex Systems

Dickerson and Mavris [49] highlights other advantages to subscrib-
ing to standard data models within an enterprise. In addition to no
longer requiring bespoke interfaces between every platform, software
re-usability across systems increases: if applications are designed us-
ing common concepts, then modules that serve a particular function
can be re-used in other applications. Other stakeholders also benefit
from the consistent use of terminology across the domain: they must
no longer learn the caveats of how terms are presented in each sys-
tem.

2.2.3 Syntax-based Models

Implementation of both domain and application data models relies
not just on an appropriate conceptual model being created, but also
on the translation of this model into a representation that can be used
by computers. A common mechanism for achieving this is by using a
syntax-based representation, storing the context and meaning of data
according to the physical structure of a document [9, ch. 5]. To define
a syntax-based physical model, a logical representation is first cre-
ated that encodes and documents these concepts and their attributes
as an appropriate data structure. This structure is then used as the
basis for a physical data model, which is defined according to the cho-
sen implementation technology. Commonly used logical and physical
modelling formats include:

2.2 data modelling and knowledge management 15

• Relational databases, in which a logical model is stored in the
form of a database schema. Information is retrieved by forming
queries over the database according to a schema, which are used
to extract and combine data from multiple tables.

• eXtensible Markup Language (XML), which encodes data using
textual makers (tags) in a file. An XML SchemaDefinition (XSD)
defines tag structure, terms, and constraints, allowing users to
establish the meaning of data.

• Spreadsheets, which encode data into a tabular form, and define
meaning by table headings and additional metadata.

By adhering to a known syntax, systems can deduce the meaning
of a piece of data based on its position within the store’s structure,
and interpret it accordingly. Data shown in Table 2.1, for example,
can be interpreted via its table headers, which allows us to establish
that the piece of information that intersects row four (Bill) and col-
umn three (Primary Instrument) is the datum that represents that Bill
Evans’ primary instrument is piano. Listing 2.1 shows how the same
information could be represented in XML form.

Table 2.1: 1950s Jazz Musicians and Key Personal Information

First Name Last Name Primary Instrument Birth date […]

Miles Davis Trumpet 26/05/26 71
Cannonball Adderley Saxophone 15/09/28 48
Bill Evans Piano 16/08/29 52
Michael Brecker Saxophone 29/05/49 39
Bill Evans Saxophone 09/02/58 24

16 modelling, ontologies, and the semantic web

<?xml version=”1.0” encoding=”UTF-8” ?>
<Musicians xmlns=”http://purl.org/ub/ex/jazz”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://purl.org/ub/ex/jazz
jazzschema.xsd”>

↪→

↪→

↪→

<jazzMusician>
<Name>

<FirstName>Bill</FirstName>
<LastName>Evans</LastName>

</Name>
<PrimaryInstrument>Piano</PrimaryInstrument>
<BirthDate>1929-08-16</BirthDate>

</jazzMusician>
<jazzMusician>

<Name>
<FirstName>Miles</FirstName>
<LastName>Davis</LastName>

</Name>
<PrimaryInstrument>Trumpet</PrimaryInstrument>
<BirthDate>1926-05-26</BirthDate>

</jazzMusician>
</Musicians>

Listing 2.1: Example XML Markup of Table 2.1

An example XML schema is shown in Figure 2.4, which illustrates
the logical data model to which data should adhere. Schemas are use-
ful for specifying data structures, often provide human-readable docu-
mentation, and allow for validation of information. They do not, how-
ever, allow machine understanding of data; instead, software design-
ers write business and application logic to extract the information
they require as necessary.

Whilst XML schemas are widely used for industrial and enterprise
applications, well-supported public standards also exist. Examples in-
clude Scalable Vector Graphics [42], and the Web Service Description
Language [34].
XML and similar models are successful in scenarios where data con-
cepts and features can be well-defined and do not change over time.
If agreement on the nature of each term in the model is consistent
among applications and developers, information can be preserved and
exchanged between systems. This is, however, not always the case, as
detailed in the following section.

2.2 data modelling and knowledge management 17

M
us

ic
ia

ns
ja

zz
M

us
ic

ia
n

N
am

e

Ty
pe

xs
:s

tr
in

g
Fi

rs
tN

am
e

xs
:s

tr
in

g

Ty
pe

xs
:s

tr
in

g
La

st
N

am
e

xs
:s

tr
in

g

Ty
pe

xs
:s

tr
in

g
Pr

im
ar

yI
ns

tr
um

en
t

xs
:s

tr
in

g

Ty
pe

xs
:d

at
e

Bi
rt

hD
at

e
xs

:d
at

e

1.
.

Fi
gu

re
2.4

:G
ra
ph

ic
al

Re
pr

es
en

ta
tio

n
of

Po
ss
ib
le

XM
L
Sc

he
m
a
fo
rD

at
a
fro

m
Ta

bl
e
2.1

18 modelling, ontologies, and the semantic web

2.3 semantic modelling

Semantic data models are a family of models that better allow mean-
ing and context to be stored alongside information, independently of
a fixed structure or syntax. Rather than using syntactic cues to lo-
cate and store data, they define information by its inter-relationships,
much as humans think of facts, so that a concept’s meaning can be
derived from its relationships. In natural language, information and
semantics from Table 2.1 could be described as:

Bill Evans is a jazz musician. Bill Evans’ primary instru-
ment is the Piano Bill Evans’ birthday is 16/08/29

Additionally, further facts can be added to describe the other con-
cepts mentioned: piano, birthday, musician and so on, to create a
view of the world containing this knowledge. Rules and characteris-
tics (such as ‘a piano has 88 keys’) can also be expressed, allowing
semantic models to further contextualise information. As such, data
can adhere more closely to an initial conceptual model of the domain,
without relying on any particular physical representation of the data
beyond the format in which the semantic model itself is represented.

The result of creating these knowledge graphs is that semantic mod-
els allow computers to process data based on its meaning, rather than
on it’s predefined position in a data store. An analogy to this distinc-
tion is in how the author’s partner and the author’s grandmother in-
teract with technology, such as placing a call on a mobile phone. This
is illustrated in Table 2.2

Table 2.2: Making a Phone Call

Jo Diana

1. Turn on the phone 1. Press the top button
2. Navigate to ‘Phone Book’ 2. Press ‘up’, then ‘left’, then ‘select’
3. Search for ‘Jon’ 3. Press ‘4’ then ‘down’
4. Press ‘call’ 4. Press ‘select’

Jo interacts with the phone by understanding the meaning and con-
text of the information it presents her; she could use a different phone
and carry out the same task, subject to her domain knowledge being
good enough. Diana, on the other hand, has no knowledge of how
mobile phones work, and simply inputs a set of instructions to obtain
the result. Both methods are successful, but by using semantic cues,

2.3 semantic modelling 19

Jo is able to continue to carry out the task as the structural informa-
tion she is presented with changes (such as on a new phone), whereas
Diana is not.

The main characteristics of semantic data models are described in
the following subsections.

2.3.1 Flexiblity in Knowledge Representation

Many knowledge management challenges encountered by organisa-
tions occur when architectural changes occur within the information
landscape, such as de-commissioning/replacement of systems, addi-
tion of features to suit new requirements, or changes from external
interfaces. Often, data models must be altered to facilitate new infor-
mation arising from such changes. In syntax-dependent models these
changes can be difficult, particularly when complex data structures re-
quire modification. Tools such as XML, Structured Query Language
(SQL) and spreadsheets rely upon the position of data to deduce its
meaning and act on it; changes to the way in which information is
stored to incorporate more data can require potentially expensive sys-
tem modifications. Semantic models avoid this reliance on syntax—
applications deduce themeaning of terms based on their relationships,
regardless of how they are stored. Altering the data model of a syntax-
dependent system often requires modification of all the systems that
use it, whereas extending a semantic model simply requires the addi-
tion of new axioms and definitions.

To show the distinction in flexibility between syntax-reliant data
models and semantic models, the example of elaborating on data pro-
vided in Table 2.1 is discussed. Miles Davis does indeed play the trum-
pet, but specifically plays Bb trumpet, and also piano. Cannonball
Adderley in fact plays both tenor and alto saxophones, and collabo-
rates with Miles Davis.

To represent this knowledge in a syntax-based format is challeng-
ing, and requires re-definition of the schema. In a semantic model,
however, new assertions can be added instead, extending the model
whilst preserving compatibility, as shown in Figure 2.5.

Applications based on the initial semantic model still work; answer-
ing the query ‘List all saxophonists’ will provide the same results. In
the syntax-based model, the answer to this query depends heavily on
implementation; an XPath or SQL query for ‘list all saxophonists’ now
requires modification to facilitate the extra level of expressiveness in
the data model.

20 modelling, ontologies, and the semantic web

Miles Davis

Bill Evans Piano

Bb Trumpet Trumpet

plays
instrument

collaborates
with

plays instrument

type of

Figure 2.5: Example Semantic Data Model Using Data Modified from Ta-
ble 2.1

2.3.2 Preservation of Context

Another important implication of the flexibility provided by taking
this approach is that of the preservation of information. Rather than
constraining data input to a pre-defined set of attributes and fields us-
ing a schema, knowledge bases operating with semantic models can
easily convey extra information that exceeds the scope of the designed
model, by providing informal extensions. For example, the fact that
‘Miles Davis visited Paris’ can be encoded in the model using some
(informal or undefined) mechanism, and processed later. The rise of
modern ‘NoSQL’ schema-less databases can be partly attributed to
this advantage, allowing organisations to spend less time perfecting
database schemas for every conceived eventuality, and instead allow-
ing them to evolve over time [93].

2.3.3 Interoperability and Expressivity

Data exchange and sharing across heterogeneous data sources requires
some form of interoperability between systems. Such interoperability
can exist at a number of levels, from the physical layers surrounding
the systems themselves to the conceptual level discussed above. Amit
Sheth [191] summarises four levels of interoperability as system, syn-
tax, structure, and semantic:

• System-level or technical interoperability concerns the ability
of systems to communicate physically with one another, and
has been addressed since the 1960s by now ubiquitous commu-
nication standards such as TCP/IP and standardised data encod-
ing formats. At this level, data must still be translated or aligned
in some way between each system to allow information to be
shared.

• Syntactic interoperability is the ability of systems to share and
understand some type of document syntax (for example XML or

2.3 semantic modelling 21

spreadsheet syntax), so that software can use concepts in these
syntaxes to extract pieces of data. Systems that are only syntac-
tically interoperable require further mappings to align informa-
tion used in them to each other.

• Structural or schema interoperability is achieved by systems
adhering to the same data model or schema, such that the cate-
gorisation of a piece of data is preserved and its meaning can be
inferred by context from a corresponding schema. Many mod-
ern computing standards achieve interoperability at this level;
railway-specific implementations include RailML and An Oper-
ations andMaintenance Information Open SystemAlliance (MI-
MOSA) Open System Architecture for Condition-based Moni-
toring (OSA-CBM), as discussed in Section 3.3.

• Full semantic interoperability allows systems communicating
with each other to interpret data and its meaning independently
unambiguously, without a schema to set out all valid and in-
valid terms. Instead, all of the knowledge required to interpret
a model is defined alongside the data itself, such that systems
receiving data can interpret and integrate it.

In practise, widely-used syntax-dependent technologies can only
facilitate schematic interoperability, and ‘semantic clash’, where sim-
ilar terms cannot be reconciled due to differently defined meanings, is
common [36], Semantic data modelling techniques provide some level
of semantic interoperability to solve this problem. Complete (ideal)
semantic interoperability is unfeasible—each concept requires a se-
mantic description provided by a number of other concepts, each of
which must also be defined, leading to a potentially infinite num-
ber of axioms. Thus, frameworks for semantic modelling define meta-
models of standardised terms and features [89], onto which concep-
tual/domain models are built. Many ontology languages exist, and are
discussed in Section 2.4.

For systems that use the same ontology language, ease of informa-
tion sharing is greatly increased over those using any kind of syntax-
based model, even if they use different conceptual models. Although
concepts may be labelled differently across models, if their meaning
is the same, alignment of data can be done by introducing simple new
rules. Given models A and B as shown in Figure 2.6, asserting that ‘ev-
ery musician who has composed something is a composer’ and ‘every
composer is also a musician’ provides a mechanism for a computer
system to align the two models.

For systems using either the same conceptual model or a derivative
of it, interoperability is even easier. Those that extend a conceptual

22 modelling, ontologies, and the semantic web

Model BModel A

MusicianKind of
Blue

Miles
Davis Composer

Steve
Reich

composed

Trumpet

primary instrument

is a

is a

is a

Trumpet

composed for

same as

is a

Figure 2.6: Alignment of Semantic Data Models Using Mapping Axioms

model can use underlying generalisations to allow other systems to
take advantage of data, even if it is described in a more prescriptive
way than the system understands. This is shown in Figure 2.7. Model
A now contains information about Miles Davis’ place of birth, which
can be exploited to infer that he is an American using another set of
axioms (not shown) in model A and concepts in the common model.
Queries to the set of models can now include Miles Davis in any list
of American Musicians, along with those asserted as such in model B.

dealing with ambiguity in semantic data models

When attempting interoperability between data models, the possibil-
ity of ambiguity arises when multiple interpretations of one piece of
data can be derived, as often occurs in natural language. This prob-
lem is alleviated in semantic models, as terms can be disambiguated
by considering their position in the model and their relationships to
other concepts, unlike in traditional database or XML systems. This
characteristic has been repeatedly used to solve disambiguation prob-
lems in a number of areas, including natural language [219], entity
recognition [136], and geographical mapping [218].

2.4 knowledge representation and ontology 23

Model BCommon
Conceptual
Model

Model A

Musician

Miles
Davis

Aaron
Copland

Larry
Page

Trumpet

primary
instrument

is a

is a
American

USA

Illinois

is a

Ozzy
Osborne

born in

country

is a

is a

is a

Figure 2.7: Example of Generalisation and Interoperability in Semantic Data
Model

2.4 knowledge representation and ontology

This section overviews the meaning of the term ontology, and de-
scribes ontologies, ontology engineering, and machine reasoning as
used in the context of work undertaken in chapters 5-7 of this thesis.
It explains key principles used in the development of semantic mod-
els, and outlines distinctions between ontologies and traditional data
modelling approaches. Current technologies and notation for devel-
oping ontologies are discussed further on, in Section 2.6.

2.4.1 What Is An Ontology?

The term ‘ontology’ is shared between two inter-related but distinct
fields of research sharing the name; one in philosophy, and more re-
cently in computer science. In philosophy, ontology is the study of
meta-physics, or:

“[…] a philosophical theory concerning the basic traits of
the world” [29]

Philosophical ontology studies the nature of being, and identifies
how entities exist and interact with each other by studying their clas-
sifications and relationships between each other [28]. Within com-
puter science, the term is used in a slightly different context. Here, the
study of ontology arose from a need to understand how to formally

24 modelling, ontologies, and the semantic web

represent knowledge in database systems, software systems, and ar-
tificial intelligence [196], and concerns the creation of concrete mod-
els that encode knowledge about the world into a usable document
with some known formalism. Thomas Gruber’s widely-cited defini-
tion states that an ontology is:

“[…] an explicit specification of a conceptualization.” [83]

Rather than representing an abstract philosophy about how the
world works, a computer ontology can be described as a set of con-
cepts, types, properties, and their interrelationships that in some way
describe a view of a particular domain or subject area. For the pur-
poses of discussion in this thesis, a computer ontology can be thought
of as a formal encoding of a conceptual data model.

A basic ontology describing interactions in pop music along with
some sample instance data is given in Figure 2.8, created by forming
a simple conceptualisation of the domain based on facts known about
entities and the relationships they have with one another.

Band

Solo Artist

Act

Rock Band

Roger Waters Pink Floyd

Guitarist

Guitar

a a a

subClassOf

subClassOf

plays

Musician

Thing

Drummer

Ringo Starr The Beatles

a

memberOf

memberOf a

subClassOf

subClassOf

subClassOf contains
(max 1)

Figure 2.8: Illustration of Example Pop Music Ontology

2.4.2 Semantic Expressivity and Ontology Languages

In practise, there is no concrete distinction between ‘syntactic’ and
‘semantic’ data models, and representations take a number of forms,

2.4 knowledge representation and ontology 25

each of which provides some level of semantic expressivity. Computer
ontologies are built using ontology languages: pre-defined rules and
constructs that provide a semantic framework for expressing knowl-
edge. These languages vary in the expressivity they offer and can be
placed on an ‘ontology spectrum’, ranging from those that provide
few assumptions and assume fixed or implicit semantics (and thus are
less formal) to those that are highly expressive and provide detailed,
formal semantics (and thus high interoperability). This ontology spec-
trum is well illustrated in Figure 2.9.

Formality (Reasoning Capability)

Ex
pr

es
si

ve
ne

ss
 (A

bi
lit

y
to

 R
ep

re
se

nt
 S

em
an

tic
s)

Taxonomy

Thesaurus

Conceptual Model

Logic Theory

Relational
model

Schema
ER

Extended ER

RDFS
UML

OWL

Description Logic

First Order Logic

List

Glossary

Syntactic Interoperability

Structural Interoperability

Semantic Interoperability

Data Dictionary

Figure 2.9: The “Ontology Spectrum”, taken from Obrst [149]

On the left hand side, informal data catalogues simply provide sys-
tem designers with agreed symbolic ways of representing concepts,
such that information can be exchanged using a known, controlled
vocabulary. Glossaries additionally give natural language definitions
for terms to aid disambiguation, but no machine-readable data seman-
tics are captured. Thesauri extend upon this basic syntactic interop-
erability by encoding basic relationships, such as synonyms (equiva-
lence) and associations across concepts. Taxonomies (trees) provide
more expressivity by allowing ‘type of’ hierarchies to be represented
in some way, such that computers can entail additional information
about terms.

Example taxonomies inwidespread use includeWordNet [137], which
provides semantics for lexical analysis of words, and Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT)1, which is

1 http://snomed.org/

26 modelling, ontologies, and the semantic web

used for electronic healthcare and prescribing.

In order to represent richer information about the world, further
flexibility is required. For instance, representing the fact ‘Roger Wa-
ters plays guitar’ in a taxonomy is difficult; we could represent his
membership as a ‘guitarist’, but the fact that guitarists play guitar
must be stored implicitly or in natural language. Ontologies expressed
in description logics or frames provide this extra level of expressive-
ness, introducing a distinction between classes and individuals (con-
cepts, and instantiations of concepts) and allowing arbitrary relations
to be expressed between concepts. The characteristics of these rela-
tions can also be expressed in a machine-readable way, allowing ma-
chines to infer information based on the relationships linking con-
cepts. Description Logic (DL) ontologies can provide a good trade-off
between expressive power and computational complexity [7], and are
described further below and in Section 2.6.3.

Higher level ontology languages allow expression of increasingly
complicated interactions between concepts, but become expensive to
compute. DL-based languages, for instance, only allow binary rela-
tions (those that have one subject and one object), so certain real-
world concepts (such as time) are difficult to properly represent. En-
coding ontologies using full First Order Logic provides greater expres-
sivity, but can be intractable [23, p. 329]; these and more expressive
languages can be used for data exchange, but cannot be reasoned over.

2.4.3 Data Models, Vocabularies, and Ontology

The approaches to data representation outlined so far can be outlined
into three categories: traditional application-centric conceptual, logi-
cal, and physical data models as described in 2.2.3; controlled vocab-
ularies with informal semantics; and formal ontologies with varying
expressive capabilities as described in Section 2.4.4. The main differ-
ences between these categories are as follows:

• Datamodels are designed for a particular application or suite of
applications at inception. They are tightly coupled to these ap-
plications, and specified to represent the exact types of informa-
tion and assumptions needed. They do not encode formal data
semantics, but often enforce contraints in order to carry out
data validation. Conceptual modelling techniques such as Uni-
fied Modelling Language (UML) can provide very rich data se-
mantics and facilitate interoperability, but do not providemachine-
interpretable ways of describing information context.

2.4 knowledge representation and ontology 27

• Controlled vocabularies are, like ontologies, designed tomodel
a domain of discourse itself, as opposed to modelling applica-
tion data flow directly. They aim to abstract the representation
away from a particular application with a view to encouraging
data re-use. Controlled vocabularies are sets of terms that have
been enumerated and defined unambiguously, such that each
term can be interpreted correctly by systems with prior knowl-
edge of the vocabulary’s definitions. They may include detailed
descriptions of the meaning and semantics of each term, but do
encode these semantics informally and rely on logic encoded in
an application to contextualise and interpret information.

• Ontologies are controlled vocabularies expressed in a formal
ontology representation language, and capture the semantics of
the domain of discourse in a machine-interpretable way, such
that themeaning of data can be inferred through axioms present
in the ontology itself, rather than relying on application logic.
These axioms express how concepts in the vocabulary interact,
so they can be used by a machine to infer new knowledge on in-
formation expressed using the ontology. Ontologies are again
application-agnostic, and designed to model interactions in a
particular domain or subject area, rather than data in a particu-
lar application.

Examples of the differences between controlled vocabularies and
ontologies can be observed in the evolution of the semantic web and
linked data movements, as described in Section 2.5.1. Vocabularies
such as Dublin Core2 are widely used to unambiguously represent
data on the semantic web and in other fields, but do not themselves
provide ways for machines to make inferences based on the data; this
is left to the application developer. In constrast, some web ontologies
do exist and facilitate machine reasoning over data, such that further
inferences based on the content presented directly can be made with-
out the need for additional application logic. Examples include Geon-
ames3 and the Music Ontology [179].

2.4.4 Ontology Types

In this thesis, ontologies are used predominantly for domain mod-
elling and data exchange between practical information systems. Since
this is not only one use of ontologies, it is useful to classify ontologies

2 http://purl.org/dc/elements/1.1/
3 http://www.geonames.org/ontology/documentation.html

http://purl.org/dc/elements/1.1/
http://www.geonames.org/ontology/documentation.html

28 modelling, ontologies, and the semantic web

and methodologies present in the literature. Firstly, they can be clas-
sified by purpose or intent:

• Highly formal ontologies are used in domains where exact se-
mantics are required. Models designed for these purpose tend
to be highly expressive, and heavily draw upon philosophical
concepts in order to correctly represent terms.

• Web ontologies are typically far less expressive, and make as-
sumptions about data types and applications in order to provide
a concise schema-less data exchange format with some expres-
sion of semantics.

• Domain-specific ontologies are usually designed to be express-
sive enough to allow extensibility across a domain, but make
assumptions in order for representation of information to re-
main practical. Some example domain ontologies are discussed
in Section 3.3.

Ontologies can also be classified according to a hierarchy based on
use, as observed by Guarino [86].

• Upper level ontologies describe generic concepts common to
all domains, such as space and time, a few examples of which
are described in Section 3.6.1.

• Domain ontologiesmay extend upper level ontologies, and rep-
resent knowledge of a particular area of interest.

• Task ontologies further specify domain ontologies by creating
patterns according to a particular (cross-application) task.

• Application ontologies provide concepts and terms related to
a specific application, such as information on views and config-
uration.

This hierarchy aligns well to the disciplines of domain and applica-
tion engineering discussed in Section 2.2.1.

2.4.5 Ontology Reasoning

By encoding information and meaning in a formal way, facts that are
included in ontologies and semantic data models can be exploited by
computers in order to establish new knowledge, in a similar way to

2.4 knowledge representation and ontology 29

how humans reason over information. This process is known as logi-
cal inference, and can also be used to aid data integration between sys-
tems and alignmodels, as shown by the example given in Section 2.3.3.
Additionally, by implementing some logic about the world that the
model shown in Figure 2.8 might adhere to, it is possible to infer new
facts about the model. For example, it could be said that:

• If A is a member of B, B has member A.

• If A plays B, B is played by A.

• If A is a subclass of B, then anything of type B is also of type A

A reasoner using this logic could then infer that:

• Pink Floyd are an act, a band, and a rock band.

• Pink Floyd has member Roger Waters.

• Roger Waters is a musician.

• RogerWaters plays guitar, and guitar is played by RogerWaters.

• The Beatles have Ringo Starr as a member.

Furthermore, if we introduce another axiom into the ontology stat-
ing that ‘bands only have members that are musicians’, the fact that
‘Ringo Starr is a musician’ can also be inferred, even though the fact
that drummers are also musicians is omitted from the ontology.

The extent towhich this inference can be performed depends on the
expressivity of the ontology, which is itself dictated by the ontology
language chosen. More expressive representations provide greater po-
tential for inference [23, p. 327], at the cost of computational effi-
ciency. Ontology languages are discussed in Section 2.6.3.

2.4.6 Ontology Engineering Methodologies

Formal ontology engineering methodologies help to guide ontology
designers into creating successful models, particularly at the early
stages of a project. Drawing upon software engineering techniques,
many such methodologies have been published, with most describ-
ing creation of an ontology in several distinct stages. These are sum-
marised by Pinto and Martins [162] and explained as follows:

• Specification. Identification of the purpose and scope of an ontology—
definition of motivations, requirements, and system boundaries

30 modelling, ontologies, and the semantic web

• Conceptualisation. Design of the ontology itself, by specifying
vocabulary and relationships and formulating exact knowledge
fragments to be represented. Often undertaken in natural lan-
guage or using diagrams.

• Formalisation. The encoding of a conceptual model into expres-
sive formal language such as First Order Logic or UML.

• Implementation. Creation of final ontology based on formal
model. Commitment to a technology is only needed at this stage.

Additionally, Pinto and Martins also suggest three tasks to be car-
ried out throughout the process:

• Maintenance. Keeping the ontology up to date and relevant
throughout design, implementation, and use.

• KnowledgeAcquisition.The use of either automatic /bibliographic
techniques or domain experts to assemble an accurate represen-
tation of the domain in ontology.

• Evaluation and Documentation. The continual measurement
of an ontology’s fitness-for-purpose, and natural language doc-
umentation to aid reusability.

The most commonly-used [31, 193, 194] methodologies can be cat-
egorised into four groups, based on their characteristics and intent:

• Early ‘monolithic’ ontology engineering methodologies that as-
sume a single, non-iterative design process and emphasise choice
of modelling language and how knowledge is formalised. These
include Uschold and King [214] and the methodology used in
creating the Toronto Virtual Enterprise (TOVE) ontology [85].

• Iterative ontology engineering methodologies that place less
emphasis on initial formal specification of a model, and instead
advocate testing, refinement, and ontology re-use, such as the
widely-usedMETHONTOLOGY [63] andOn-To-Knowledge [204].

• ‘Post semantic web’ methodologies such as the NeON Method-
ology [203] and Distributed Engineering of Ontologies (DILI-
GENT) [164] that place emphasis on collaboration and flexibil-
ity, and provide more pragmatic approaches to ontology cre-
ation than earlier methods.

• Ontology learningmethodologies that focus on using automated
or semi-automated tools to re-engineer knowledge, such asGen-
Tax [99], ROD [232],

2.4 knowledge representation and ontology 31

Three widely-used methodologies influence the work undertaken
in this thesis, and in particular the methodology described in Chap-
ter 4. They are discussed below:

2.4.6.1 METHONTOLOGY

METHONTOLOGY [63] was one of the first ontology engineering
frameworks to consider the activity primarily in terms of software
engineering principles, rather than in philosophical terms. It defines
seven stages of the process (specification, knowledge acquisition, con-
ceptualisation, integration, implementation, evaluation and documen-
tation), and encourages the use of graphical ‘filing cards’ with key
attributes to document the process as well as the resulting ontology.
Methontology introduces several important concepts in ontology en-
gineering:

• Recognition of ‘incremental’ and ‘evolving’ ontology engineer-
ing techniques.Whilst traditional software engineeringmethod-
ologies at the time favoured monolithic approaches to system
design, Fernandez et al. recognised that incremental ontology
design is a valid and sensible option for creating ontology mod-
els.

• Description of guidelines/tooling for following a methodology.
METHONTOLOGYprovides not just abstract instructions about
how to design an ontology, but practical suggestions and tech-
niques for undertaking each stage too.

• Encouragement of ontology reuse at the integration stage. The
authors suggest that existing ontologies should be surveyed and
integrated beforemodellers create their own conceptualisations.

Despite its age, METHONTOLOGY is still in widespread use in re-
cent projects [31, 194].

2.4.6.2 DILIGENT

The DILIGENT methodology [164] is a collaborative approach to on-
tology design that is aimed at designers of practical ontologies for se-
mantic web applications. Thus, its emphasis takes advantage of more
contemporary tools and resources to describe a distributed technique
for creating ontologies, that allows domain experts rather than knowl-
edge engineers to do the bulk of the modelling work. From the per-
spective of this piece of work, it has several relevant features:

32 modelling, ontologies, and the semantic web

• The assumption of collaboration and rapid evolution of ontolo-
gies. Rather than seeing models as entities which are imple-
mented and then left or minimally maintained, DILIGENT pro-
motes an ‘evolutionary’ approach to development, where mod-
els are released but then modified and adapted as new use cases
emerge.

• The recognition that conceptualisation and formalisation of on-
tologies can take place simultaneously. In themethodology, Pinto
et al describe a scenario where groups of ontology engineers
and experts build ontologies collaboratively, and in small stages.

• The use of change management techniques to create versions
of ontologies. DILIGENT allows users to make changes to local
ontologies at no risk to other users, and then submit them for
review with a centralised panel of judges, who decide whether
to publish these changes.

The iterative approach taken by diligent allows knowledge elicited
by one person to propagate to other users, which prompts them to
consider these changes and further specialise them. This ‘snowball
effect’ is an effective way of achieving domain coverage.

2.4.6.3 The NeON Methodology

TheNeONmethodology, proposed by Suárez-Figueroa, Gómez-Pérez,
and Fernández-López [203], is a scenario-driven ontology engineer-
ing framework that describes nine approaches tomodel creation, based
on factors such as potential for ontology re-use, resources available,
and intended application. Each approach involves completion of sev-
eral activities, many of which are based on approaches described in
existing ontology engineering methodologies, and as such provide a
huge number of possibilities for ontology development in different
situations. These activities are described in detail by a published glos-
sary [202, p. 70–74]. The NeON methodology advocates creation of
ontology ‘networks’: groups of focussed ontologies that are linked
together to achieve a task. Four of the nine proposed scenarios are
listed below, taken directly from Suárez-Figueroa, Gómez-Pérez, and
Fernández-López [203, p. 12–13], owing to their relevance to the new
approach described in Chapter 4:

• Scenario 1: From specification to implementation.The ontology
network is developed from scratch, with no re-use of existing
components.

2.4 knowledge representation and ontology 33

• Scenario 2: Re-using and re-engineering non-ontological resources.
This scenario covers the need to re-engineer and re-use knowl-
edge which is currently in non-ontological form

• Scenario 4: Reusing and re-engineering ontological resources.
This covers scenarios where knowledge must be re-used and
modified from existing ontologies.

• Scenario 7: Reusing ontology design patterns (ODPs). Ontology
developers access repositories of ontology design patterns to
reuse them.

Other methodologies for ontology creation and design also exist,
and this section has focussed predominantly on those approaches that
are relevant to work described in Chapter 4. Methodologies not de-
scribed above include collaborative approaches such as RapidOWL [6],
ANEMONE [155], and UPON Lite [45], the latter of which has no re-
quirement on expert ontologies enginers for implementation. Recent
surveys such as Corcho, Poveda-Villalón, and Gómez-Pérez [40] indi-
cate a tendency towards ‘ad-hoc’ ontology creation for the web, with
varying resulting ontology quality [231].

2.4.7 Ontology Modularity

As ontologies become large, they also become more difficult to man-
age and to re-use [84]. Ontologymodularisation is the practice of split-
ting models into a number of smaller chunks, or modules. Stucken-
schmidt and Schlicht [201] summarises some of the key motivations
and advantages of designing modular ontologies:

• Understandability and documentation: By separating ontology
modules by task or subdomain, users can examine and under-
stand each module easily rather than having to trawl through
one monolithic representation of the entire problem. Each mod-
ule can be annotated and documented independently, providing
more granular provenance and context.

• Ease of reuse. Modularisation allows easier re-use of knowl-
edge by other parties. Following the principle of ‘minimum on-
tological commitment’, users of domain models may wish to
only commit to a certain part of a conceptualisation, to aid com-
putational efficiency or to re-assert parts of a domain in other
ways.

34 modelling, ontologies, and the semantic web

• Scalability. The performance and computational expense of on-
tology reasoning (discussed in Section 2.4.5) is often affected by
the number of axioms a reasoner must consider when making
inferences, with many reasoners performing particularly well
over small knowledge bases but poorly over large ones. Rather
than reasoning over a whole knowledge base, modularisation
provides the possibility of reasoning over only those aspects
required for a particular application, and thus helps aid perfor-
mance as a model grows [180].

• Maintenance and validation. As in software engineering, the
maintenance of small modules is inherently easier than that of
a single, monolithic, model. Multiple ontology modules may be
simultaneously authored by several individuals, and can more
easily take advantage of software engineering practises such
as unit testing and source control. Additional validation is also
easier, as modules can be tested against known requirements
for a particular use case or brief.

Methods for modularising existing ontologies are widely discussed
in the literature, a recent overview of which is provided by D’Aquin
[43]. These methods seek to break up large monolithic models into
smallermodules for the purposes outlined above (‘module extraction’),
and accomplish this through manual or automatic means. In this the-
sis, methods for constructing modular ontologies from scratch (‘mod-
ular development’) [181] are of more relevance, and it is from this
point of view that several strategies for ontology modularisation are
considered. Some desirable properties of ontology modules are sum-
marised from the literature by Pathak, Johnson, and Chute [161]:

• Size. An ontology module should be as small as possible, to al-
low for scalability and efficient reasoning.

• Correctness. An ontologymodule should only contain informa-
tion from the model it was extracted from; it should not be pos-
sible to infer any further or different knowledge to that which
could be inferred from the original ontology.

• Localized Semantics. An ontologymodule should preferably be
able to stand alone from othermodules, such that a globalmodel
is not required to integrate individual modules.

• Correct reasoning. Reasoning over a collection of individual
modules should produce the same logical consequence as rea-
soning over the original large ontology.

2.4 knowledge representation and ontology 35

To modularise ontologies in order to achieve these goals, two main
approaches are suggested in the literature, and are discussed below.

semantics-driven modularity

Semantics-drivenmodularity[201] identifies particular subdomains or
subject areas within the domain of discourse, and uses these to divide
a model into several disjoint subject-specific modules. The scope of a
module is thus very intuitive to designers and users, as recommended
by Rector [180], and each module imports other modules that it de-
pends upon, often in a hierarchical fashion (as shown in Figure 2.10).
Modules containing commonly-used high level concepts are inherited
by increasingly subject specific sub-modules[181].

This semantics-driven appraoch has the disadvantage that it dis-
courages axioms that cross domain boundaries, as such axioms would
require the inclusion of another subdomain module for use, diminish-
ing the advantages of creating modules in the first place. Approaches
to automated semantic modularisation of existing ontologies by sub-
domain are limited, but graph-based approaches that exploit model
hierarchies can produce similar results [52, 187, 188].

High Level
Ontology

Subject
Area 2

Subject
Area 3

Subject
Area 1

Application
Ontology X

Application
Ontology Y

Task
Ontology Z

Figure 2.10: Set of Modular Ontologies Partitioned by Purpose

structure-driven modularity

Here, the term ‘structure-driven’ is taken to mean creation of ontol-
ogy modules based on structure-based traits, such as how tightly a set
of concepts and relationships are interconnected. This form of mod-
ularity is well-suited towards module extraction, where automated
implementations can segment an existing monolithic ontology by its
expressivity or size using logic-based methods, and can guarantee a
resulting series of modules with guaranteed characteristics [78, 124].
This strategy lends itself to addressing the scalability problem addressed
above owing to this guarantee, but is less well-suited to addressing

36 modelling, ontologies, and the semantic web

maintenance, ease-of-use, or documentation challenges thatmay present
themselves in a large ontology.

These application of these approaches to create a set of modular
domain ontologies is discussed in Chapter 4.

2.4.8 Validation and Evaluation of Ontology Design

The need for validation and evaluation of ontologies has long been
recognised in the literature [63, 72, 116, 162, 165]. Validation is im-
portant in gaining acceptance of newly-created models, and many
different approaches to doing so have been suggested in several dif-
ferent ontology engineering methodologies. Whereas validating the
design of traditional data models in software engineering can often
be established by directly checking a model against against a set of
functional (and quantified) requirements made by an application, this
approach falls short when applied to ontologies. As domain models
are intentionally divorced from the requirements of any particular ap-
plication, testing against such requirements only guarantees that the
model can represent information—it does not necessarily evaluate the
quality, style, accuracy, or coverage of the model. Several techniques
for ontology validation relevant to work undertaken in Chapter 4 and
Chapter 5 are described in the following sections.

2.4.8.1 Qualitative Approaches to Validation

Qualititative evaluationmethods such asOntoMetric [131] and Burton-
Jones et al. [30] entail asking domain experts to examine and ratemod-
els subjectively to a set of metrics. This approach can produce good
indications of ontology coverage, quality, and correctness, but has sev-
eral drawbacks. Firstly, choosing the correct set of users is difficult—if
domain experts are used, model logic and semantics may bemisunder-
stood, and if modelling experts are used, domain concepts may bemis-
understood. Secondly, rating criteria are necessarily highly subjective:
OntoMetric requires that users rate various factors from ‘very low’ to
‘very high’, but cannot provide any reference points to establish the
meaning of these ratings.

2.4.8.2 Formal Metrics for Ontology Evaluation

The use of formal or automated approaches to ontology validation
allow for more objective results, based on parts of a model that can
be evaluated by machines. These metrics include:

2.4 knowledge representation and ontology 37

• RDF syntax validators, to check conformance of an ontology
file to the correct syntax

• Graph metrics such as ‘connectedness’ that measure the char-
acteristics of an underlying RDF graph, in methodologies such
as AKtiveRank [2]

• Logical consistency checkers, such as those provided by the
OWL Application Programming Interface (API) to prove the ex-
pressive profile and consistency of a model.

• Ontological evaluators, that check the semantics of an ontol-
ogy for quality and consistency, such as those based on Onto-
Clean [87] and the OntOlogy Pitfall Scanner [168]. These ap-
proaches provide an indication of how well-designed an ontol-
ogy is, but cannot completely evaluate the intended semantics.

2.4.8.3 Similarity and Data-driven Measurement

Comparison of a candidate ontology to a known ‘gold standard’ can
provide indicative measures of coverage and similarity that serve to
validate its design. Such methods are outlined in Maedche and Staab
[132] and Burton-Jones et al. [30], but are not considered in detail
here. When considering ontology design for interoperability across
large complex systems, the existence of a ‘gold standard’ is unlikely.

An alternative approach is to use a known corpus of domain-related
text to compare with the candidate ontology. If such a corpus aligns
with the needs of the ontology, entity extraction techniques can be
used to check the alignment and coverage of a candidate ontology
to it. Such an approach is suggested by Brewster et al. [24], who use
disambiguation and clustering approaches to additionally validate the
structure of an ontology based on the similarity of distances between
concepts in both the domain model and the corpus.

2.4.8.4 Application-based Validation

‘In-use’ validation provides another partial way of validating ontolo-
gies. By attempting to use a domain model in a real-world task, the
coverage, ease of use, and quality of a model in the application area
can be assessed . This technique is discussed by Porzel and Malaka
[167] and Seremeti and Kameas [189], and its use in evaluating se-
mantic web ontologies are examined in Sabou et al. [186].

The validation techniques described in Chapter 4 and Chapter 5
draw on several of these techniques in validating domain ontologies.

38 modelling, ontologies, and the semantic web

2.5 the semantic web and the linked data movement

The data integration challenges discussed above are not confined to
enterprise applications and private systems. Like modern enterprise
systems, the Internet connects together many diverse and heteroge-
neous data sources, and there is a widespread desire to take advan-
tage of data made available by this interconnectivity, as envisaged by
Berners-Lee and Fischetti [18]. The ubiquity of the World Wide Web
demonstrates this desire, and has influenced the development ofmany
technologies now in widespread use in enterprise applications.

Efforts to provide greater machine interoperability over the web
(the Semantic Web) have led to the rapid development of ontology-
based technology stacks and toolsets which have in turn become avail-
able for other purposes. The development of these technologies is dis-
cussed in the following subsection.

2.5.1 The Semantic Web

The WWW has undoubtedly made data sharing over the internet ex-
tremely easy, and the simplicity ofmaking content availablemay have
aided its huge success [18]. Much of this content on theweb is still pre-
sented in plain text or HTML, which contains very little machine read-
able markup—web pages are inherently incomprehensible to auto-
mated systems. Search engines that allow users to query information
across the web developed ways of deducing semantics through natu-
ral language processing and graph-based algorithms such as PageR-
ank [156], and these remain the primary method of accessing web
data to the present day.

The lack of machine-readable data on the web restricts the ability
of computers to retrieve and process information. Figure 2.11 illus-
trates this by obfuscating the text of a wikipedia article to simulate a
computer’s comprehension of it: without a way of understanding the
human-readable text, machines are confined to extracting only meta-
data such as links, page layout, and text analysis. The Semantic Web
aimed to address this limitation by providing a way of representing
such data on the web, so that search engines and other agents may
be able to carry out vastly more complex and useful queries. As an
example, imagine a train booking system with a user aiming to:

‘Get me from Edgbaston, Birmingham, to Splott, Cardiff,
this Friday evening in time to get a table for dinner at
Mario’s’

2.5 the semantic web and the linked data movement 39

(a) Human Comprehension

(b) Machine Comprehension

Figure 2.11: A Wikipedia Page as Understood by Humans and Computers

40 modelling, ontologies, and the semantic web

On the conventional web, the user must first look up when tables
are free at Mario’s. Assuming no prior knowledge, they must then
consult a myriad of websites to determine the possible ways of mak-
ing the journey. They must note down bus times for each end of the
journey, and determine which train or bus to get from Birmingham
to Cardiff. This is a considerable amount of work, despite all of the
information being present on the web.

On the semantic web, it should be possible to automate the whole
process, or to only present the user with a set of solutions:

1. A software agent queries a route planning service to list of trans-
port routes and providers between Edgbaston and Splott, deter-
mining likely routes and times.

2. It submits aweb search forMarios’ restaurant, obtains the restau-
rant’s Uniform Resource Identifier (URI), and then queries its
availability for Friday.

3. Exact travel times and costs are obtained from each provider’s
data store

4. Itineraries are compiled and presented to the user.

5. Upon choosing an itinerary, transport arrangements and restau-
rant bookings are made, and corresponding bookings placed in
Marios’ and the travel operators’ data stores.

This automation is achieved by retrieving not just HTML over the
web, but machine-readable facts too, based on web ontologies. By as-
signing each entity on the web a unique identifier and linking these
identifiers to each other through properties according to an ontology,
the exact meaning of each piece of information on a web page can be
deduced by the computer, allowing data from many heterogeneous
sources to be used together.

An example of the semantic web in action can be seen in Google
Shopping4. Incentivised by higher exposure and search listing rank-
ings, websites selling goods mark up their HTML pages with machine
readable semantic web data according to the GoodRelations ontol-
ogy [100], with information such as pricing, descriptions, and loca-
tions of items for sale. With knowledge of exactly what each onto-
logical assertion means, Google Shopping is able to use and query
across this data, such that users can obtain information about rele-
vant products, suited to their interests, in their location, as shown in
Figure 2.12.

4 http://shopping.google.com/

2.5 the semantic web and the linked data movement 41

Figure 2.12: Screenshot of Google Shopping Results Page

Although the original semantic web vision enjoyed some success,
its uptake did not grow rapidly [88]. It did, however, spur on the de-
velopment of many technology platforms and tools that have uses
outside of the web itself, such as in enterprise applications. The ma-
jority of the tools used to implement work discussed in this thesis are
based on work driven by the semantic web movement.

2.5.2 The Linking Open Data Movement

The Linking Open Data movement has become a more recent continu-
ation of the push for the SemanticWeb adoption. Promoted in parallel
with a wider social push towards data transparency in governments
and public sector organisations, Linked Open Data (LOD) addresses
some issues with the original semantic web offering by doing the fol-
lowing:

• Lowering the technological barrier to entry, by providing sim-
pler implementationmechanisms and better documentation. Ini-
tially, few web developers coded semantic web data into their
sites due to the vast amount of knowledge needed to do so. Cre-
ation of domain ontologies is not emphasised, and new data for-
mats such as RDFa, and JavaScript Object Notation for Linked
Data (JSON-LD) allow developers to use existing toolsets to im-
plement linked data.

• Providing simpler, unambiguous vocabularies such as schema.org5
with a defined set of benefits to use.

5 http://schema.org

42 modelling, ontologies, and the semantic web

• Approaching data publishers rather than web sites; and specifi-
cally those with a desire or obligation tomake data available to
the wider world (predominantly governments and public sector
organisations)

As a result of these changes, and the success of the open data move-
ment in campaigning for such organisations to publish their data,
LOD has enjoyed significant uptake in recent years [98]. As part of
this campaign, TimBerners-Lee outlined a ‘5 star’ ranking system [17]
for quality of open data resources, based on data structure, seen in Ta-
ble 2.3.

Table 2.3: The 5 Stars of Open Data

Description Format

★ Data is available, in some way, on the web PDF
★★ Data available in computer-readable formats XLS,

DOC
★★★ Standardised computer-readable formats used CSV
★★★★ Data provided in ‘linked data’ format RDF
★★★★★ ‘Linked data’ associated with existing data and

ontologies
RDF/
OWL

This five star ranking system pairs loosely with the interoperability
levels discussed in Section 2.3.3: ‘two star’ data provides structural
interoperability, ‘three star’ data brings syntactic interoperability, and
‘five star’ data provides good semantic interoperability.

2.5.3 Disincentives to Uptake of Linked Open Data and Enterprise On-
tology

The recent enthusiasm for provision of linked open data on the web
highlights technical and business motivations both for and against
exposing organisational information. Many of these issues are analo-
gous to those experienced across complex, multi-stakeholder systems
such as the railway, and can be summarised as follows:

• High upfront investment to create ontologies and design pat-
terns for publishing data can be discouraging and preventative [184],
particularly when themissed opportunity cost of underutilising
information assets within a business is not realised.

2.6 core technical concepts and notation used 43

• Open licensing of data can be intimidating, especially where
information assets make up a high proportion of a company’s
value [205]. In many cases this is a legitimate barrier to entry,
and few models for monetising data access currently exist.

2.6 core technical concepts and notation used

The continued development of the semantic web and related concepts
has, over the last fifteen years, enabled development and specifica-
tion of a mature set of standards, tools, and technologies for working
with ontologies and linked data. Drawing upon a number of prior ef-
forts, the World Wide Web Consortium (W3C) recommendations for
RDF [122], RDFS [26], OWL [221], and SPARQL [172] have become de
facto technology standards in their areas, and the recent W3C Linked
Data Platform [229] proposal is likely to further consolidate the se-
mantic web technology ecosystem.These technologies are used exten-
sively in realising the semantic data models created and implemented
in this thesis, and are explained in the following section.

2.6.1 The Resource Description Framework

Resource Description Framework (RDF) provides the building blocks
for creating and representing knowledge in semantic datamodels. It is
a framework designed to allow exchange of data between applications
without loss of meaning [122], and provides a way of encoding knowl-
edge as a series of assertions about entities and concepts (henceforth
called resources). RDF is built on the idea of a triple, which encodes a re-
lationship between a subject and an object through a property, or pred-
icate, in the form <subject> <predicate> <object>. Compil-
ingmany triples with the same subjects or objects allows a knowledge
graph to be built up:

Subject Predicate Object

Miles is a Musician
Miles plays Trumpet
Miles nationality American

Each element in a triple is filled by either a resource—a unique
identifier representing some concept—or a literal, which is a concrete
value of some type6. Each resource is notated by a unique , either gen-
erated either by the designer of the knowledge base, or re-used from

6 In RDF, only the object of a triple may take a literal value

44 modelling, ontologies, and the semantic web

some well-known or canonical identifier7. Web Uniform Resource Lo-
cators (URLs) are often chosen as Resource IRIs, allowing users to seek
further information about the resource by retrieving its URI over the
web8, although this is not mandatory. Examples of IRIs and literals
are shown in Table 2.4.

Table 2.4: Example RDF URIs and Literals

Resource Description

http://dbpedia.org/
resource/MilesDavis

The DBpedia canonical IRI for Miles
Davis

http://
data.ordnancesurvey.co.uk/
id/50kGazetteer/81356

an IRI for Edgbaston, Birmingham, as
described by Ordnance Survey Linked
Data

http://
railwayontologies.org/
Delay

A concept of railway delay. Does not
resolve to a web address, but is still a
valid IRI

”405500”ˆˆxsd:int A literal, with integer datatype (as
specified by XSD).

”Edgbaston”@en A literal, with RFC 3066 defines
compliant language tag

Provenance or ownership of a resource is often implied by its names-
pace (the part of the IRI before the final ‘/ór #̀ćharacter), and most
semantic data models define one or several namespaces for this pur-
pose. As such, IRIs are often abbreviated as ‘Compact URI (CURIE)
names’ [20] of the form namespace:prefix for readability, a conven-
tion used throughout this thesis, and illustrated by the URIs and con-
versions in Table 2.5. A full list of namespace mappings used can be
found in Section B.1. 9.

7 Modellers may choose to create their own Internationalized Resource Identifiers
(IRIs) for a concept, or to adopt a widely-used IRI for the same concept in another
knowledge base. As an example, resources that are part of Wikipedia are often iden-
tified by their http://dbpedia.org IRIs, such that ambiguity is minimised when two
disparate data sources are used.

8 The ‘follow-your-nose’ design pattern [230] suggests that some information about
a resource be available at the end of an Hdypertext Transfer Protocol (HTTP) re-
quest to the resource’s URI. In this way, a user or computer system can gain some
information about a resource

9 CURIE mappings are not standardised, and prefixes used for the same IRIs can vary
from document to document. Some very common namespaces are often abbreviated
in the same manner; a repository of these is available at http://prefix.cc/

2.6 core technical concepts and notation used 45

Table 2.5: Two Examples of Semantic Web URI abbreviated as CURIE identi-
fiers

Full URI CURIE identifier

http://dbpedia.org/resource/MilesDavis dbp:-
MilesDavis

http://railwayontologies.org/Delay ex:Delay

RDF provides very little by way of formal semantics or assump-
tions about data structure, and there are few limits as to what can be
represented as triples. The huge syntactic flexibility gained here is an
advantage in some situations but hinders machine reasoning. In prac-
tice, many knowledge graphs use either an agreed vocabulary with
some agreed semantics, or further semantic web standards such as
Resource Description Framework Schema (RDFS) and OWL to con-
vey explicit data semantics and structure.

2.6.1.1 RDF Serialization

RDF is defined firstly as an abstract syntax, in that it only initially
defines triples, resources, and literals as concepts, and not as any par-
ticular type of markup or data format on a computer. As such, RDF
information can be represented in many forms, and several standard
RDF serialisation formats are available.

• RDF/XML [12] was published with the initial RDF standard in
2004, and is widely used and supported. It represents RDF as a
subset of XML, and is notoriously unreadable for human users.
For this reason, its use is waning in comparison with other for-
mats[13].

• N-Triples [11] is used predominantly by applications that re-
quire low processing overheads, and expresses RDF as line-delimited
triples in plain text.

• Turtle [13] is an extension of N3 and adds support for abbre-
viation, URL prefixes, and several other readability-enhancing
features. It has gained widespread use owing to its readability.

• Header, Dictionary, Triples (HDT) [62] is a newly-proposed bi-
nary serialization format, allowing compression of RDF whilst
retaining search and browse capabilities.

46 modelling, ontologies, and the semantic web

• ResourceDescription Framework inAttributes (RDFa) [1] pro-
vides a method for embedding RDF information within HTML
documents. It is used extensively in the field of Open Data, and
allows human-readable web documents to be parsed by RDF-
aware machine processors without the need for a separate RDF
document.

• JSON-LD [198] is a subset of the widely-used JavaScript Object
Notation (JSON) data serialization format, and was designed to
enable linked data exchange over the web using existing JSON
tools and expertise. JSON-LD is a syntactic superset of RDF; fea-
tures such as lists that are part of the syntax of JSON-LD syntax
must be expressed in RDF using an additional vocabulary.

• Microdata [101] allows RDF to be represented in HTML5 docu-
ments through the use ofHTMLkey-value attribute pairs. Along
with RDFa, it has enjoyed significant uptake on the web owing
to its adoption by schema.org10[21].

This thesis uses Turtle notation to present RDF examples and ideas.
A brief demonstration of howRDF content presented in Turtle is shown
in Listing 2.2.

2.6.1.2 RDF Rules and Semantics

RDF, as well as the standards the build upon it, have several other key
characteristics of note. These are outlined as follows:

• The Open World Assumption (OWA) entails that within an
RDF model, anything not known to be true is unknown, rather
than false. This is in contrast to relational databases, where a
missing value implies falseness (ClosedWorld Assumption). For
example, given the knowledge in Figure 2.13, wemight ask ‘How
many daughters does Homer Simpson have?’. A closed world
system should answer ‘two’, whereas an open world system an-
swers ‘at least two’. To tell the open world system that ‘two’ is
the correct answer, an additional assertion is required - a ‘clo-
sure axiom’.

• No Unique Name Assumption. Similarly, in RDF, entities with
different names or IRIs are not assumed to be unique. So in
fact, unless the knowledge base is explicitly told that Maggie
and Lisa are different people, the answer to the above question
would in fact be ‘unknown’, as it is otherwise possible that ‘Mag-
gie’ and ‘Lisa’ are the same person!

10 http://schema.org/

http://schema.org/

2.6 core technical concepts and notation used 47

Anything following a hash symbol is a comment, and
dis-regarded by the Turtle parser.↪→

Firstly, define prefixes. Using a prefix to describe a
resource denotes that it has the namespace shown in
<brackets>

↪→

↪→

@prefix ex: <http://example.org/> .
Multiple prefixes are used to ease the use of references from

different namespaces↪→

@prefix dbr: <http://dbpedia.org/resource/> .
RDF and XSD namespaces with defined semantics
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

The base URI of the document is defined using the @base
keyword↪→

@base <http://example.org/> .

Firstly, Assert the fact that a trumpet is a musical
instrument without prefixes (as an example). Triples are
terminated with a full stop:

↪→

↪→

<http://example.org/Trumpet>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://example.org/MusicalInstrument> .

↪→

↪→

Now, the same thing asserted using prefixes:
ex:Trumpet rdf:type ex:MusicalInstrument .

Predicate lists allow the assertion of multiple triples about
the same subject. Semi-colons indicate that the following
statement has the same subject as the previous:

↪→

↪→

dbr:Miles_Davis rdf:type :Musician;
^^Iex:nationality ex:American .

Object lists allow the assertion of many triples with the
same subject and predicate. Commas indicate that that the
following statement has the same subject and predicate as
the last:

↪→

↪→

↪→

dbr:Miles_Davis ex:plays ex:Trumpet, ex:Piano, ex:Drums .

RDF literals can be quoted or unquoted, and are followed by a
language tag or datatype URI. Quoted literals with no
datatype or language tag are defined to be <xsd:string>.

↪→

↪→

dbr:Miles_Davis ex:nickName ”Miles”, ”Miles”^^xsd:string;
^^Iex:description ”Miles Davis is a famous American jazz

musician”@en .↪→

Unlabelled blank nodes can be created using square brackets:
dbr:Miles_Davis ex:album [ex:name ”Kind Of Blue”; ex:year

”1959”^^xsd:date] .↪→

The above statement is equivalent to:
dbr:Miles_Davis ex:album _:AlbumNode .
_:AlbumNode ex:name ”Kind Of Blue” ;
^^Iex:year ”1959”^^xsd:date .

Listing 2.2: Example of Facts Represented Using Turtle

48 modelling, ontologies, and the semantic web

• Blank nodes are an RDF construct that allows definition of un-
named intermediate nodes to cater for certain design require-
ments such as ternary relationships, as described below.

marriedTo

son
daughter

daughter

Figure 2.13: Example Relationships in The Simpsons Family

2.6.1.3 RDF Reification and Ternary Relations

The RDF model is limited to expressing binary predicates—relations
that have one subject, one object and no more. It is desirable in many
situations to model higher arity relations, such as when modelling
time (‘Train Xwas located at Banbury at 10.30AM’). Twomechanisms
for doing this within RDF are common:

n-ary relations using blank nodes

In this approach, ternary relations are expressed by introducing a
third, intermediate, RDF resource between the subject and the object
of the intended relation [147]. This resource then expresses two or
more relationships of its own, linking the original subject to the even-
tual n-ary objects through itself. This pattern is demonstrated in Fig-
ure 2.14, which expresses the statement ‘Signal 3191 was controlled
from Oxford between 1949 and 2004’ using the N-ary relationships
pattern.

Signal3191

:_BlankNode

1949to2004

Oxford

controlledFrom holds

value

Figure 2.14: Example of N-ary Relationships Pattern

Signal13191 is linked to a blank node through the :controlledFrom
property, which is the subject of two triples: :holds :1949to2004

2.6 core technical concepts and notation used 49

asserts that the fact holds over a specified timespan, and :value :-

Oxford asserts the actual object of the fact that holds over that period.

rdf reification

Reification provides an alternate means for representing n-ary rela-
tions. Reification de-composes an RDF triple into an RDF entity in its
own right, with its own corresponding properties. The addition of a
time property using reification to ex:Signal3191 :controlledFrom
:Oxford is shown in Listing 2.3.

:_Triple1 rdf:subject ex:Signal3191
:_Triple1 rdf:predicate ex:controlledFrom
:_Triple1 rdf:object ex:Oxford
:_Triple1 rdf:atTime ex:TimeInterval1

Listing 2.3: Example of RDF Reification in Turtle

Reification in thisway does allow effective representation of ternary
relations, but is used infrequently in conjunction with ontologies. Rei-
fied assertions are no longer ‘first class’ triples, and so much of their
semantics are lost. In OWL, described below, reasoning capability
over reified relations is greatly decreased.

2.6.1.4 RDF Conventions

Several conventions have become best practice when working with
RDF models, and are adhered to in the work presented by this thesis.
These are as follows:

• RDF resources are usually assigned identifiers that correspond
to URLs on theworldwideweb.This facilitates the ‘follow-your-
nose’ approach taken by semantic web tools, by which addi-
tional information about a resource is provided by a document
located on the web at its URL.

• RDF resources are described in terms of namespace and suffix.
An RDF model usually uses one namespace, and resources de-
fined in it are specified by their suffix.

– The namespace is all of the IRI until the final / or #.
– The suffix is the final part of the IRI, and is used as the local

name of the resource by tools.

50 modelling, ontologies, and the semantic web

• These IRIs are often abbreviated using CURIE names in the form
namespace:prefix. This notation is used in several RDF serial-
isation formats and will be used henceforth in this thesis.

2.6.2 RDF Schema

To make it possible for computers to use and infer knowledge from
RDF data, some formal specification of how the model behaves is re-
quired. Whilst pure RDF provides the flexibility to assert a wide range
of information, this flexibility can make reasoning over data sets un-
feasible for machines.

RDF Schema is a syntactic subset11 of RDF that provides a fixed
vocabulary and enforces certain restrictions on the structure of a data
model, in order to make automated inference of facts possible. Full
details of RDFS are outlined in Brickley and Guha [26], and notable
characteristics described below:

• The rdf:type property12 entails that the subject is a member of
the class of objects. This is equivalent to saying subject is an
object, and is synonymous in most RDF serialisations with the
predicate a. This allows models to infer membership of classes.

• rdf:Property describes resources that are used as properties
that link two other resources. In RDFS, these must not be liter-
als. RDFS semantics requires that anything used as the predicate
of a triple is of type rdf:Property and infers this if it is not ex-
plicitly stated. rdf:type is of type rdf:Property.

• rdfs:subClassOf allows the definition of class hierarchies, such
as ex:ElectricTrain rdfs:subClassOf ex:Train. The defi-
nition of such hierarchies is a powerful tool in reasoning, as
it allows the entailment of class membership at any level of a
hierarchy.

• rdfs:domain and rdfs:range allow the rdf:type of entities
to be inferred based on the property that link them, a demon-
stration of which is shown in Listing 2.4

11 RDFS models can only use a subset of RDF syntax
12 Although rdf:type is defined in the RDF vocabulary, its semantics are specified

only in the RDFS standard.

2.6 core technical concepts and notation used 51

ex:plays rdfs:domain ex:Musician .
ex:plays rdfs:range ex:MusicalInstrument .
ex:MilesDavis ex:plays ex:Trumpet .

infers

ex:MilesDavis a ex:Musician .
ex:Trumpet a ex:MusicalInstrument .

Listing 2.4: Demonstration of Inference based on rdfs:domain:and
rdfs:range:Restrictions

2.6.3 Ontology Languages, The Web Ontology Language and Descrip-
tion Logic (DL)

In order to represent formal ontologies, some way of describing the
world formally using well-specified formal semantics is needed. Nota-
tion systems that accomplish this are called ontology languages, and
several prominent ontology languages are present in the literature,
including Knowledge Interchange Format (KIF) [74], EXPRESS [111],
and OWL [221]. By far the most widespread of these is OWL, which
enjoys large scale public adoption and tooling support. OWL is built
on Description Logic (DL) semantics, and both are described below.

2.6.3.1 Description Logics

DLs are a set of knowledge representation languages that can be used
to formally describe knowledge of an application domain [199, ch. 1].
They accomplish this by defining a set of concepts and roles, and al-
lowing the nature of interactions and restrictions across such con-
cepts to be described using a set of logic-based constructs, many of
which are borrowed from First Order Logic (FOL), such as negation,
conjunction, and restriction. For example, take the following informa-
tion.

A train has at least one carriage and has powered or un-
powered traction characteristics.

These facts could be represented using DL notation, as follows:

Train ≡ Thing⊓ (≥ 1hasCarriage)
⊓ ((∀traction.Powered)
⊔ (∀traction.Unpowered))

52 modelling, ontologies, and the semantic web

. Here, Thing and Train are unary predicates—‘atomic concepts’ [8],
as are the two types of traction characteristic: powered and unpow-

ered. hasCarriage is a binary predicate, or ‘atomic relation’.The R.C
construct is a ‘value restriction‘ symbolising the set of concepts re-
lated to the C class through the R relation, so the total description
including union and intersection symbols can be summarised as:

A train is the set of concepts that:
…belong to concept Thing and
…belong to the set of concepts that are linked to more
than one other concept via the hasCarriage relation, and
…belong to the set of concepts that are related to the Pow-
ered concept through the traction relation, or
…belong to the set of concepts that are related to the un-
powered concept through the traction relation.

TheseDL descriptions of interactions and restrictions between things
can be used to describe a huge variety of knowledge, as long as it can
be conceptualised using binary relations. Further examples of DL no-
tation constructs are given in Table 2.6, and a full detailed explanation
of description logics (including the many different profiles that exist
for different purposes) is provided by Baader et al. [8] and Harmelen
et al. [95].

2.6.3.2 Web Ontology Language (OWL)

OWL is a family of ontology languages designed to create formal,
machine-interpretable ontologies. [221]. The OWL 2 standard defines
several subsets, or ‘profiles’ for different purposes, and in this thesis
we focus on the subset of OWL known as OWL DL which have se-
mantics based on the SROIQ(D) description logic. As such, OWL
2 provides a very expressive way of defining formal ontologies, whilst
maintaining tractability—it is always possible for an automated rea-
soner to make sound and complete inferences over an ontology ex-
pressed in this way (although performance for large ontologies can
be extremely poor)[8, ch. 1].

OWL was primarily designed to provide a way of formally describ-
ing ontologies for the semantic web. As such, they are usually notated
in RDF, although several non-RDF formats exist [106, 143]. As an il-
lustration, Listing 2.5 shows the DL fragment from above expressed
in OWL using Turtle notation:

2.6 core technical concepts and notation used 53

Ta
bl
e
2.6

:E
xa

m
pl
e
O
W

L
Co

ns
tru

ct
sa

nd
Re

la
te
d
D
L
Sy

m
bo

ls

D
L
Sy

m
bo

l
O
W

L
Te

rm
D
es
cr
ip
tio

n/
Ex

am
pl
e

ow
l:C

la
ss

rd
f:t
yp

e
of

re
so

ur
ce

sd
efi

ne
d
as

Cl
as
se
s

ow
l:I
nd

iv
id
ua

l
rd

f:t
yp

e
of

re
so

ur
ce

sd
efi

ne
d
as

In
di
vi
du

al
s

⊤
ow

l:Th
in
g

Th
e
cl
as
st

o
w
hi
ch

al
li
nd

iv
id
ua

ls
be

lo
ng

⊥
ow

l:N
ot
hi
ng

Th
e
cl
as
st

o
w
hi
ch

no
in
di
vi
du

al
sb

el
on

g
⊓

ow
l:i
nt
er
se
ct
io
nO

f
Ca

t⊑
A
ni
m
al
⊓

Pe
t

⊔
ow

l:u
ni
on

O
f

H
um

an
⊑

Ad
ul
t⊔

Ch
ild

∃
R.
C

ow
l:s

om
eV

al
ue

sF
ro
m

Ex
ist

en
tia

l‘
ha

ss
om

e’
re
st
ric

tio
n:

Ca
t⊑

∃
pa

rt
Fa

ce
∀
R.
C

ow
l:a

llV
al
ue

sF
ro
m

Un
iv
er
sa
l‘
on

ly
ha

s’
re
st
ric

tio
n:

Ca
t⊑

∀
ea

ts
Ca

tF
oo

d
≥
n
U

ow
l:m

in
Ca

rd
in
al
ity

M
in
im

um
ca

rd
in
al
ity

re
st
ric

tio
n:

Ca
t⊑

≤
4
pa

rt
Le

g
≤
n
U

ow
l:m

ax
Ca

rd
in
al
ity

M
ax

ca
rd

in
al
ity

re
st
ric

tio
n:

Ca
t⊑

≥
5
pa

rt
Br

ai
nC

el
l

ow
l:T

ra
ns

iti
ve

Pr
op

er
ty

“C
at

pa
rt

Le
g,

Le
g
pa

rt
Pa

w
”i

nf
er
s“

Ca
tp

ar
tP

aw
”

54 modelling, ontologies, and the semantic web

:Train rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf ([rdf:type owl:Class ;
owl:unionOf ([rdf:type owl:Restriction ;

owl:onProperty :traction ;
owl:hasValue :Powered
]
[rdf:type owl:Restriction ;
owl:onProperty :traction ;
owl:hasValue :Unpowered
]

)
]
[rdf:type owl:Restriction ;
owl:onProperty :hasCarriage ;
owl:onClass owl:Thing ;
owl:minQualifiedCardinality

”1”^^xsd:nonNegativeInteger↪→

]
)

] .

Listing 2.5: OWL Markup Showing Restrictions on Train Class

2.6.3.3 OWL 2 Profiles

Several subsets of OWL DL are provided in the OWL 2 specification.
These subsets are encoded in the same way as OWL 2 DL, but alter
the ontology’s expressivity to provide different trade-offs for compu-
tational efficiency:

• OWL Full places no restrictions on the OWL syntax, but can
create models for which reasoning is intractable. OWL Full is
often used as a notation language or in association with non-
complete reasoners that are faster but do not necessarily com-
pute 100% of inferences.

• OWL DL is the most expressive subset of OWL2 to provide
sound and complete13 reasoning using a suitable piece of soft-
ware. Reasoning across large OWL DL ontologies can be in-
tractable, and so DL reasoners are rarely used in applications
with large volumes of data.

13 Reasoning soundness implies that all inferred axioms are correct. Completeness
measures the proportion of all possible inferences that are inferred. Reasoners
which produce complete and valid results are called sound and complete.

2.6 core technical concepts and notation used 55

• OWL EL is designed for applications with large ontologies but
a small amount of instance data, and guarantees good14 perfor-
mance in this environment [47].

• OWL Query Language (QL) ontologies allow efficient reason-
ing over large numbers of individuals, as long as the ontology
size (and expressiveness) is low. Queries across OWL QL on-
tologies can be re-written into SQL, allowing native relational
databases to be used to store data.

• OWLRule Language (RL) is a slightly restricted subset of OWL
DL that guarantees better performance inmost situations. OWL
Rule Language (RL) reasoning can be implemented using rule-
based reasoners, and can deliver excellent performance if sound
but not complete reasoning is acceptable.

Figure 2.15 shows the expressivity of OWL subsets compared to
other ontology languages.

Semantic Expressiveness

Syntactic Flexibility

Computational Complexity

RDF
RDFS OWL EL

OWL RLOWL QL OWL Full
OWL DLEntity Relationship

XML

Simple Intractable

Relational

Figure 2.15: Expressivity Characteristics of OWL Profiles

2.6.4 Reasoning and Inference in OWL and DL

Reasoning in OWL DL can provide the following features:

• Subsumption: checking which classes a concept is necessarily
a member of (primarily through inheritance)

• Satisfiability: a class that necessarily has no members (through
some conflicting definition) is unsatisfiable.

14 OWL EL guarantees that a particular set of reasoning features can be inferred in less
than polynomial timewith respect to the number of assertions in the ontology [142].

56 modelling, ontologies, and the semantic web

• Consistency checking: checking whether an ontology conflicts
with itself in some definition. For example, if classes ‘Human’
and ‘Cat’ are said to be disjoint, and ‘Fred’ is a member of both,
the ontology is inconsistent.

• Equivalence: checking if two concepts are equivalent (the same)
as each other.

• Entailment: the creation of new assertions following the logic
provided by the ontology.

Under some circumstances, reasoning according to anOWL-compliant
DL reasoner may be undesirable. These reasoners often calculate in-
ferences using a ‘theorem-proving’ method, which calculates all log-
ically permissible entailments and then discount invalid ones [23, p.
99]. Such circumstances include:

• Reasoning over medium or large knowledge bases that make
DL complexity unfeasible or intractable

• Applicationswhere complete inference is not required, and com-
putational efficiency is preferred to full entailment

• Reasoning where axioms beyond the expressivity of OWL DL
are needed, such as in ontology alignment or when asserting
domain-specific knowledge.

Where this is the case, a rule-based approach may instead be taken.
These reasoners work by iterating through a knowledge base attempt-
ing to match pre-defined rules, and then applying some logic when a
match is found [141]. Several subsets of OWL can be reasoned over
completely using rule-based approaches, such as RDFS-Plus [5] and
OWL RL, and many off-the-shelf RDF data stores employ rule-based
approaches in place of less efficient but more complete tableau-based
algorithms [37, 121].

Several rule languages for RDF exist, including the Semantic Web
Rule Language (SWRL), the Rule Interchange Format (RIF), and SPARQL
Inferencing Notation (SPIN). Rule reasoning over RDF is also possi-
ble in Javascript, using SPINx [123] and in Datalog, using Java soft-
ware library Jena15. Custom rules are used in Section 6.2 to encode
application-specific logic into a demonstration ontology.

15 see https://jena.apache.org/documentation/inference/

2.6 core technical concepts and notation used 57

2.6.4.1 Forward and Backward Chaining

RDFS and OWL reasoners can be implemented in a number of ways.
Software currently available broadly take two approaches to reason-
ing, in order to obtain best performance for particular applications
and use cases: forward-chaining and backward-chaining[185, ch. 9].
These are described below:

Forward-chaining reasoners start with a set of assertions and a set
of rules or axioms. They iteratively apply this set of axioms to the
set of assertions to infer more and more knowledge until reasoning
is deemed complete. Such reasoners can implement full DL inference
as described above, and examples include Pellet [160], HermiT [190],
and RacerPro [92]. Forward-chaining reasoners are useful for static
ontologies and usually materialise all inferences in memory, so that
they need not be run every time a query is made. They are often less
appropriate for use in large or changing knowledge bases owing to
their need to continually re-compute consequences whenever input
data in amodel changes. Full OWLDL reasoning itself has poor worst-
case reasoning performance16, so frequently re-computing inferences
using these across largemodels can be costly. Other forward-chaining
reasoners such as OWLIM [121] base their implementation on rule-
based algorithms, which reason over a practical subset of OWL DL in
order to achieve increased performance.

Backward-chaining reasoners are those that work backwards from
a query or fact in order to deduce associated inferences. Reasoners
of this type tend to use rule-based implementations of ontology log-
ics, and often accompany forward-chaining reasoners in implementa-
tions such as JESS–the rule reasoner used in Jena [102, ch. 3], Virtu-
oso [54], and Stardog [37], the RDF triplestore adopted in Chapter 6
of this thesis. Backward chaining reasoners suit applications where it
is impractical to keep all inferences of a knowledge base in memory,
such as if they are large or constantly changing. They need only to
compute inferences related to each requested query, and can there-
fore perform better than a forward-chaining reasoner if materialisa-
tion of all inferences is not possible.
Most enterprise-level RDF triple stores such as thosementioned above
nowoffer a hybrid approach, using both forward-chaining and backward-
chaining. Non-changing parts of a knowledge base, for instance, can
adopt forward-chaining and materialisation to optimise query perfor-

16 The worst case reasoning performance of OWL DL rises double-exponentially with
the number of assertions in the model [103]

58 modelling, ontologies, and the semantic web

mance, whilst constantly-changing or infrequently-queried parts can
choose to use backward chaining instead.

2.6.4.2 Closed World Reasoning

When using the OWA, only the assertions made in a particular knowl-
edge base are known to be true. The non-existence of a fact does not
imply that it is false; it is just unknown. This makes the OWA appro-
priate for semantic modelling and knowledge discovery, where only
partial representations of a world view are created and the ability to
reason over incomplete information is a desirable feature. In some sit-
uations, however, the closed world assumption taken by traditional
database applications can be more appropriate. For example:

• Counting instances. In a closed world system that also makes the
unique name assumption, the number of entities of a particular
type can be counted. In an open world system, this is only the
case if a closure axiom has been asserted: the knowledge that
‘this is the set of all of the entities’ is in the knowledge base.

• Data validation and constraints checking. In closed world sys-
tems, schema restrictions and constraints can easily be used
to prevent users from entering data that does not fit the data
model, and to validate user input. With the OWA this is more
problematic, since data that would trigger a constraint violation
in a closed world system may mere imply new knowledge in
an open world. Consider the information in Listing 2.5, which
states among other things that a train must have at least one
carriage. Should a user add a train to the knowledge base with-
out any carriages, an open world system assumes simply that
some carriages must exist that it does not know about, whereas
a closed world system immediately assumes a validation error
has occurred. These two contrasting behaviours may be useful
for different applications.

The lack of closed world semantics in OWL leads to difficulties imple-
menting certain practical features such as those listed. For this rea-
son, several ways of undertaking closed world reasoning in OWL are
highlighted here. Firstly, Grimm, Motik, and Preist [81] suggest an ex-
tension to OWL semantics to denote closed world axioms explicitly,
allowing reasoners to understand both closed and open world seman-
tics in the same knowledge base.
Alternatively, Motik, Horrocks, and Sattler [140] provide an alterna-
tive way of interpreting OWL existing OWL semantics under the
closed world assumption, and suggest that applications themselves

2.6 core technical concepts and notation used 59

choose which axioms should be reasoned over using each approach17.
Tao et al. [207] show how this approach can be implemented through
translatingOWL into Sparql Protocol and RDFQuery Language (SPARQL)
queries; explicit closed world constraints could also be expressed di-
rectly in a rule language such as those described in Section 2.6.4.

2.6.5 Terminological and Assertional Knowledge

In ontology engineering, a distinction is usually made between do-
main knowledge, which describes the way the world works—the ter-
minological component, and assertional knowledge, which describes
what is in it. By convention, the word ‘ontology’ usually refers to the
T-box component, whereas ‘instance data’ is referred to as the A-box
part of the knowledge base. Although in an RDF ecosystem the repre-
sentation and semantics of the two do not vary, it is useful to separate
them:

• T-box (ontology) data is re-usable across multiple sets of in-
stance data. One domain ontology may be used independently
in several organisations or applications; indeed, this is a funda-
mental motivation behind publishing ontologies on the Seman-
tic Web, and ontologies are published as their T-boxes only for
this reason.

• A-box data is re-usable across multiple ontologies. Given a set
of assertional data about an application or domain, the level of
reasoning (computational expense) may be dominated by a gov-
erning ontology; as such, switching this ontology for another
may provide better performance for different applications.

• T-box and A-box data often (but not necessarily) have different
reasoning characteristics, and thus may employ different rea-
soning strategies. For example, the axioms of a small, highly
expressive ontology may be pre-computed by a DL reasoner,
whilst large, dynamic A-boxes may be better suited to less ex-
pressive rule reasoning where reasoning completeness is less
vital.

Henceforth in this thesis, the noun ontology is used to describe the
terminological part of amodel. Somemodels presented are shown pop-
ulated with A-box vocabulary too; where this is the case, this part of
the model is referred to separately.

17 A commercial implementation of a reasoner that can interpret OWL axioms under
closed world semantics is available as part of the Stardog triplestore used in Chap-
ter 5

60 modelling, ontologies, and the semantic web

2.6.6 RDF Storage and Presentation

RDF models can be stored and queried in several ways. At the sim-
plest level, they can be represented as triples in a physical file on a
computer or hosted on a website. Many standard web ontologies are
presented in this way: a document containing a number of triples,
which together declare a vocabulary and set of axioms defining the
ontology. Humans or computer agents then read these files, and pro-
cess the information in them in some way.

More commonly for large datasets, RDF can be stored in a triple-
store. A triplestore is a database built for storing large amounts of
RDF content, and data access is provided through some form of query/
update mechanism. Triplestores often implement methods for opti-
mised storage and retrieval of content, and commercial offerings of-
ten advertise benchmarked performance for storage, querying, and
inference in their marketing.

Finally, RDF can be presented by some form of mapping from other
data formats. This is particularly useful in situations where interop-
erability is desired between systems but these systems themselves
should not or cannot use semantic data models internally. Given the
system’s known semantics (for example, an XML schema or docu-
mentation), mapping software can translate queries for RDF data into
queries for non-RDF data, fetch the results, map them into RDF, and
then return them to the requester. This gives the functionality of a
linked data store and interface, but makes sound/complete reasoning
over assertional data unfeasible.

2.6.7 Overview of Software Tools

Owing to the emergence of the semantic web, a wide range of tools
exist for editing and creating RDF and OWL data models. A brief
overview of the main tools used in this thesis is provided below.

2.6.7.1 Ontology Development Environments (IDEs)

Although ontologies can be fully described manually using DL no-
tation formats and OWL abstract syntax, the rise of the semantic
web and the desire to allow non-mathematicians to author ontolo-
gies has led to the creation of several mature ontology editing tools.
These tools are typically used to create the terminology part of a data
model—the domain knowledge itself—whilst other bespoke tools or
mappers are used to import or acquire assertional knowledge depend-
ing on the application.

2.6 core technical concepts and notation used 61

• Protégé 18 is an open source graphical ontology editing tool
created by a team at the Stanford Centre for Biomedical Re-
search. The current version of Protégé [148]builds on work car-
ried out since 1987 on tools for biomedical knowledge repre-
sentation [75]. Protégé allowsmanipulation of OWL ontologies,
and provides tools for class/individual creation, axiom editing,
DL reasoning, and basic visualisation. It is widely used, with re-
cent surveys suggesting it is the most popular graphical editor
available among ontology authors [120, 224].

• TopbraidComposer19 is a commercial editor based on the Eclipse
platform20. Sharing many features with Protégé, Topbraid Com-
poser (TBC) also provides additional capabilities: mapping from
non-ontology formats into models, better manipulation of A-
box data (individuals), custom rule reasoning, and integration
with several RDF triplestores. TBC was used extensively across
the PhD project.

Figure 2.16: Protégé 5.0 Ontology Visualisation View

Many other ontology editing tools exist, and are not covered here.
Meenachi and Baba [135] and Simperl and Luczak-Rösch [193] pro-
vide more detailed surveys and comparison.

18 http://protégé.stanford.edu/
19 http://www.topquadrant.com/topbraid/
20 https://eclipse.org/

62 modelling, ontologies, and the semantic web

2.6.7.2 Software Development Libraries and Tools

In development of applications based on semantic web technology,
bespoke tools are often created to interface users or computer agents
with data models. Several programmatic tools and libraries help this,
and the following

• Apache Jena21 is an open source Java library designed to aid de-
velopment of semantic web applications. It provides a rich API
for manipulating RDF models, a file or web-based RDF triple-
store, and an inference API that supports OWL, RDFS, and rule
reasoning.

• The OWL API, a Java library developed at the University of
Manchester, provides similar functionality to Apache Jena but
allows OWL concepts to be created and manipulated natively
rather than through their underlying RDF model22. This makes
working with ontologies easier, at the cost of limited flexibility
when dealing with pure RDF graphs.

• dotNETRDF is another RDF library, written for the Microsoft
.NET platform. Whilst it currently provides less functionality
than the above Java libraries, it allows easy RDF integration in
.NET applications, and is used heavily in implementing applica-
tions in Section 6.2.

Several other tools were used in developing models and software
throughout this thesis, and are described in other chapters. These in-
clude ontology mapping tools, modelling software, and visualisation
applications. A well-maintained list of other semantic web develop-
ment tools is provided on the former W3C Semantic Web Working
Group Wiki23.

2.6.8 Querying RDF Data

In order to interact with RDF models, some method for representing
or modifying data is required. The two approaches so far described
have allowed for this to be done:

• Visually, using a graphical ontology editor

• Programatically, using pattern matching on triples—e.g. ‘show
me all triples with ex:MilesDavis as subject’

21 https://jena.apache.org/
22 Jena also supports this to a limited extent, through the OntModel class
23 http://www.w3.org/2001/sw/wiki/Tools

2.6 core technical concepts and notation used 63

SPARQL (Sparql Protocol and RDF Query Language) standardises
a language for executing more complex queries over graphs. SPARQL
provides operations for finding and updating RDF data, and searches
for data using patterns expressed in a format similar to Turtle (de-
scribed above). For example, Listing 2.6 searches for all known train
stations in a model, and returns their URI and label.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX vocab:<http://purl.org/ub/rail/vocab/>

SELECT ?station ?label WHERE {
?station a vocab:Station ;

rdfs:label ?label
}

Listing 2.6: SPARQL Query for Railway Stations in Model

This query returns matches (a station and label) for every part of
the model that matches the pattern inside the WHERE clause - that
is, wherever there is an RDF triple stating [something] rdf:type

vocab:Station and that same [something] also has an rdfs:label

[something else]. All permutations of this pattern that exist within
a graph are returned; if a station is marked up with more than one
rdfs:label, as is common, two results are created. The standard allows
for far more powerful querying than shown here; Chapter 6 includes
several more complex examples.

2.6.9 Presentation of OWL Examples and Patterns

To illustrate OWL constructs in the rest of this thesis, diagramswill be
used in addition to the DL notation described above. These diagrams
follow the style used by several OWL software tools and textbooks, in-
cluding Protégé and Topbraid Composer, and specifically follow how
patterns and examples are set out in Allemang andHendler [5]. Sets of
concepts (classes, individuals, properties, literals, and restrictions) are
illustrated by rectangular boxes containing a symbol denoting type
and followed by the concept’s name or description using CURIE no-
tation, and relations between these boxes are shown by a line with a
directional arrow from one to another overlaid with the linking prop-
erty’s name. Elements drawn with solid black lines denote asserted
knowledge, whilst dashed lines denote knowledge obtained through

64 modelling, ontologies, and the semantic web

Table 2.7: Icon Symbols Used to Denote OWL Entities

Symbol Description

Class
Individual
Literal (integer)
Object property
Datatype property
Equivalent class restriction
Existential restriction
Universal restriction
Union
Max cardinality restriction
Min cardinality restriction

inference.

Many of the examples used later in this thesis require that sets of
individuals with an associated class be shown. Rather than explicitly
diagramming these using two seperate boxes related with an rdf:-

type relation between them, they are often shown directly atop one
another, with the class entity in the upper box, and the individual in
the lower box, and the rdf:type relation omitted.This representation
makes many of the examples shown clearer to read. A full list of sym-
bols to denote different types of concepts and restrictions is shown
in Table 2.7, and an example of this graphical representation of OWL
examples is shown in Figure 2.17.

This example shows the information from Listing 2.4, with two ex-
tra facts to demonstrate the diagramming system: that ex:MilesDavis
rdf:type ex:Person, and that ex:MilesDavis ex:name “Miles Davis”.
The first of these facts is illustrated on the bottom left, and the second
by the arrow and string literal shown bottom right. The rdf:type in-
ferences caused by the domain and range restrictions on ex:plays

are shown using dashed arrows.

2.7 practical problems and assumptions in owl 65

ex:Musician

ex:plays

ex:plays

rdfs:domain

ex:MusicalInstrument

rdfs:range

ex:Trumpet

rdf:type

rdf:type

“Miles Davis”s

ex:Person

ex:MilesDavis ex:name

Figure 2.17: Demonstration Graphical Representation of OWL Example

2.7 practical problems and assumptions in owl

Whilst there is a tendency to advocate OWL as a ‘silver bullet’ so-
lution to data integration challenges, some characteristics and traits
must be considered:

• The lack ofUniqueNameAssumption (UNA), and theOpenWorld
Assumption (OWA) make operations such as counting assets im-
possible in OWL, and fundamentally restricts any form of con-
straint checking natively. In many enterprise systems it is desir-
able to assume a closed world, as the number of negative facts
about a system usually vastly outweigh the number of positive
facts over the same domain [56, p. 9]—in OWA systems, clo-
sure axioms must be asserted to assert these negative facts. Sec-
tion 2.6.4.2 discusses a number of existing approaches which
allow closed world reasoning using OWL.

• The restriction of RDF to using binary relationships allows for
efficient reasoning but does not suit certain real world concepts.
This makes representation of such concepts (for example time
and measurement) difficult[225], as a marked deviation from
perceived real world semantics is required.

• Toolsetmaturity is not yet established. Although now supported
by large enterprise software providers such as International Busi-
ness Machines (IBM) and Oracle, widespread support for RDF/
OWL technologies is still limited. In traditionally cautious en-
vironments such as the railway, the risk of investment in new
technologies is often avoided, although newer initiatives within
Network Rail may indicate that attitudes towards innovation
are changing [195].

66 modelling, ontologies, and the semantic web

These traits can make for incorrect assumptions among new OWL
users. A selection of common mistakes and anti-patterns partially
caused by such traits is discussed by Rector et al. [182].

2.8 summary

Over the course of this chapter, an overview of the key data mod-
elling techniques and technologies surrounding the central work of
this thesis has been given. Data modelling as a discipline has been
used as a tool to facilitate data sharing and in systems engineering
for many years, but the semantics encompassed in these models are
usually not formal enough to allow a machine to interpret and act
on them. Ontologies provide a way of writing semantic data models
using formal logic, and thus allow automated reasoning over knowl-
edge bases that would have traditionally required bespoke interfaces
or applications to accomplish.

Recent advances made in light of the development of the seman-
tic web have provided practical tools that can be used to easily build
both the models themselves and the software systems around them,
and these tools are used extensively in chapters four, five, and six to
build and implement ontology-based information systems for a vari-
ety of railway applications.

Having introduced the technologies used in this thesis, the next
chapter will introduce prior art in the area of railway and industrial
datamodelling, aswell as overviewing commonly-usedOWLpatterns
and models.

3
RA I LWAY DATA MANAGEMENT, INDUSTR IAL
MODELS , AND NOTABLE ONTOLOG IES

3.1 introduction

This chapter highlights existing approaches to data exchange in the
railway industry, and examines current state-of-the-art industrial data
models and common ontologies. Initially, Section 3.2 describes cur-
rent railway data exchange practice and UK-based data sharing initia-
tives currently being undertaken. Section 3.3 then describes standard
transportation data models, and Section 3.5 documents other models
and common design patterns for semantic modelling, as considered
in Chapter 4 and Chapter 5.

3.2 state of uk rail data management

3.2.1 Current Wheel Maintenance Workflow

Firstly, to illustrate the inefficiencies caused by information silos in
the current UK rail industry, an overview of one particular mainte-
nance workflow is given, gathered from interviews with the head of
maintenance at a large UK train depot. The use of Remote Condition
Monitoring to diagnose asset faults across the rail industry is grow-
ing, but implementation of ‘siloed’ systems can lead to inefficient and
potentially erroneous exchange of data, as described below.

wheel impact load detection and maintenance

Train wheels must be completely round for proper operation across
the network. Wheels which are ‘out of round’ cause discomfort to
passengers damage to railway track, and for this reason infrastruc-
ture maintainers such as Network Rail continuously monitor trains
for wheel ‘flats’ using devices called Wheel Impact Load Detector
(WILD). Wheel Impact Load Detectors (WILDs) monitor one point
on the railway network and record the force with which wheel pass
over track, and raise alarms if this impact load exceeds a threshold.
Identified wheels are later re-turned on a lathe, preventing further
damage. The current workflow for this system is shown in Figure 3.1.
Currently, several interfaces between machine and human operator

67

68 railway data management, industrial models, and notable ontologies

exist, as wheel impact data is taken from its silo, manually compared
to train running information in another silo, and finally input into a
maintenance system silo.

A future workflow involving shared data could save significant ef-
fort. Information shared between the WheelChex system and an ex-
isting realtime Train Describer system would allow inference of the
identity of a train, whilst consignment information from a timetabling
systemwould allow the rolling stock identity and direction to be gath-
ered. This information could then be used by a maintenance plan-
ner, or scheduled automatically. Maintenance engineers re-profiling
a wheel could have access not only to the identity of the train, but its
history and other maintenance information.

3.2.2 Network Rail Intelligent Infrastructure

In constrast to the current siloedWheel Impact LoadDetectors (WILDs)
workflow, Network Rail’s Intelligent Infrastructure Project (IIP) is a
recently implemented remote condition monitoring platform that fa-
cilitates ‘predictive’ maintenance, from data acquisition to data anal-
ysis. By instrumenting 22 000 railway assets and monitoring them for
failures, the system has so far saved an estimated 300 000 delay min-
utes through predictive maintenance, and saved over £9m for Net-
work Rail [222] in reduced ‘delay minutes’1. IIP currently monitors
five types of railway assets, with data marked up using the Interna-
tional Organization for Standardization (ISO) 13374 exchange format
(discussed in Section 3.5.1). Further project progress aims to integrate
trend analysis for prognostic assessment and automatic advisory gen-
eration for maintenance of degraded assets [197]. The components of
the IIP systems are illustrated in Figure 3.2.

The IIP project does not consider integration of existing data on the
railways, and uses an off-the-shelf systems to store and analyse data.
Interfaces to other systems are not considered in the available litera-
ture, although InvensysWonderware2 is identified as the Supervisory
Control And Data Acquisition (SCADA) data store and analysis solu-
tion. The extent to which data to and from the IIP system is or will be
shared is unknown [222].

1 Financial attribution of faults on the UK railway is measured by the total amount
of time affected services are delayed by.

2 http://software.invensys.com/wonderware/

3.2 state of uk rail data management 69

Existing Workflow Shared Information Workflow

Alert generated by WheelChex and
Data technician notified

Data technician accesses
WheelChex system and prints plot

of alert measurement

Data technician accesses
TRUST (train movements database)

Data technician identifies train by
WheelChex characteristics

(no. axles, spacing between axles)

Data technician marks up plot
(with pencil) to indicate offending

measurement and axle number

Data technician scans and emails
annotated plot

Maintainence scheduler reads
report and identifies rolling stock

Maintainence scheduler identifies
axle (train may be in reverse)

Maintainence scheduler inputs
planned maintenance into

information system

Maintainer reads information
system

Maintainer re-profiles wheel

Alert generated by WheelChex
and input into shared
 information system

Maintenance scheduler accesses
shared information system and

plans maintenance

Maintenance engineer
reads shared information system

Maintainer re-profiles wheel

Figure 3.1: Flow Chart of Current and Future Train Wheel Maintenance
Workflows (data taken from Groom [82])

70 railway data management, industrial models, and notable ontologies

NR Intelligent
Infrastructure
Programme

Waveform
Analysis

Reporting

Alarm
Generation

Geospatial
Interface

Asset
Details

Trend
Analysis

Email and
SMS Alerts

Figure 3.2: Network Rail Intelligent Infrastructure User Interface Compo-
nents

3.2.3 DARWIN and Network Rail ORBIS

Two other data sharing initiatives in the rail industry are also relevant
to work undertaken in this thesis. DARWIN is a Association of Train
Operating Companies (ATOC)-owned system aimed at providing con-
sistent passenger information across the country, whilst Offering Rail
Better Information Services (ORBIS) is a Network Rail initiative for
providing railway maintainers with accurate asset information.

darwin

Initially implemented as an ATOC-only system, DARWIN is a nation-
wide system for providing Real Time Passenger Information (RTPI)
driven from train running data sources such as Train Running System
TOPS (TRUST). In the past ten years, significant investment has been
provided to build interfaces between several bespoke Train Operating
Company (TOC)-owned passenger information data sources and the
ATOC-owned system, in order to provide more unified information.

In April 2014, DARWIN began integrating data from Real Time Pas-
senger Information systems owned by all UK TOCs. Owing to the
heterogeneity of systems, DARWIN currently only accepts a minimal
set of data from each, rather than being able to take full advantage
of specific data available in each TOC ‘silo’. This manifests itself in
discrepancies between publicly available passenger information data,

3.2 state of uk rail data management 71

DARWIN System and Heuristics

Integrated Train
Planning System TRUST National Rail

Comms Centre Theseus

Southern CIS Amey Datel x 6 Train Describers

Consumers Consumers Consumers

Figure 3.3: Principal DARWIN Input Data Sources (re-drawn from National
Rail Enquiries [144])

and that displayed at railway stations. As more and more Real Time
Passenger Information (RTPI) systems are implemented, more inter-
faces to DARWIN are required, each of which need individual main-
tenance and upkeep.

orbis

Network Rail’s Offering Rail Better Information Services (ORBIS) sys-
tem is a series of projects centred around providing staff with better
access to existing asset information data across diverse sources. It is a
£330m project running from 2012 to 2019, and has been credited with
having saved the company £27m since its introduction [144]. ORBIS
to date provides applications for the following purposes [144]:

• Workforce safety support

• Controlled document distribution

• Asset condition monitoring and reporting

• Infrastructure modelling

• Wheel impact analysis

Key applications focussed on for 2014 to 2019 include [145]:

• Mobile data andworksmanagement, to allowmaintenance staff
to collect and view asset-related data3.

3 The foundations of a system formobile asset management and analysis have already
been established by Network Rail by commissioning the ‘Linear Asset Decision Sup-
port’ system, as described in Bentley [16]

72 railway data management, industrial models, and notable ontologies

• Geography and location data improvement, by acquisition of
new track data

• Improved management of information handover between rail-
way stakeholders

• Development of a Rail Infrastructure Network Model (RINM)
for central data exchange

Several of these objective align significantly with the work under-
taken in this thesis, and coordinate with efforts across the European
Union to develop standardised railway infrastructure models. Whilst
the data acquisition and design of many of these systems is already
underway, the company recognises that semantic data models pro-
vide a longer term solution to ensuring that information is available
across the entire organisation [146].

3.3 transportation data models and frameworks

This thesis build upon several prior efforts to create standard railway
data models for a number of applications. A review of the state-of-the-
art in railway data modelling is described below in order to contextu-
alise the work carried out in this thesis.

3.3.1 RailML

RailML4 is a cross-industry data model developed by a consortium
funded by a group of European railway infrastructure maintainers,
rolling stock firms, and software providers. Developed as a set of XML
schemas, RailML covers a set of data exchange use cases driven by its
stakeholders, and has a significant bias towards railway simulation
and planning data. Although studies of its uptake in production sys-
tems are elusive, many railway software tools now support RailML
import and export functionality, and recent legislative developments
across Europe [59] have led to further buy-in by stakeholders.

RailML comprises the following schemas:

• Infrastructure (IS): Terms, relationships, and restrictions con-
cerning infrastructure representation, track layout, and static
infrastructure assets such as signals, platforms, and train sta-
tions.

4 http://www.railml.org/

3.3 transportation data models and frameworks 73

• Rolling Stock (RS): Maintenance and operations data for rolling
stock concepts, such as vehicles, train consists, composition,
and type.

• Timetable (TT): Schema for timetable planning, used predomi-
nantly for storing markup for train simulators.The current (ver-
sion 2.2) timetable schema is not well documented, but seman-
tics can be deduced from example files.

• Common (CO): Metadata concepts common to all subschemas

• Interlocking (IS): A new draft schema recently contributed to
by the European Union (EU) Optimal Networks for Train In-
tegration Management across Europe (ONTIME) project. The
draft IS subschema stores interlocking logic and routing data,
with the aim that this data can be used for simulation and de-
sign work.

Whilst figures for its uptake are not published, RailML has notably
been used in large EU research projects such as ONTIME [3, 19], and
advertises applications by several high profile organisations on its
website5. Work in this thesis draws upon the RailML vocabulary ex-
tensively, as it provides an authoritative, direct and unambiguous set
of terms for reuse.

3.3.2 TAF/TAP TSI

Telematics Application for Passengers (TAP) and Telematics Applica-
tions for Passenger Services (TAF) are two railway interoperability
standards recently published by the International Union of Railways
(UIC). They are aimed at defining Europe-wide procedures and inter-
faces ‘between all types of railway actors’ [57] in order to better fa-
cilitate transport links and changeovers between countries. The two
standards are as follows:

• Telematics Application for Passengers (TAP) dictate a set of
requirements for infrastructure managers to fulfil to facilitate
interoperability across EU passenger train services.

• Telematics Applications for Passenger Services (TAF) are in-
teroperability standards for freight, and are oriented towards
freight services rather than passengers.

5 http://www.railml.org/index.php/applications.html

74 railway data management, industrial models, and notable ontologies

tap tsi

TheTAP requirements centre around the provision of passenger-centric
data across Europe, and is based around eleven key activities as de-
scribed in Table 3.1.

Table 3.1: TAP Key Activities and Descriptions

Task Description

1 Common Requirements Key vocab from TAF
2 Making Own Reference Data

Available
Network data

3 Train Preparation Train ready /not ready
4 Train Running Forecasts/disruptions
5 Passenger Information Station /vehicle-based

information
6 Timetable Data Passenger timetable

exchange
7 Tarriff Data Fare information
8 Reservation Data Seat and bicycle bookings
9 Ticketing ‘Print-at-home’ cross-EU

ticketing
10 PRM Assistance Assistance requests and

contact details
11 Retail Architecture Contact details and retail

reference data

Motives for TAP come from the desire (and mandate) to better facil-
itate passenger travel across Europe. EU passenger rights legislation
requires that travellers are presented with options to plan the short-
est/cheapest trip, as well as being shown accessibility information,
seat availability, and procedures for filing complaints.

taf tsi

The specification for TAF was introduced by the European Commis-
sion in December 2014 and requires all railway stakeholders involved
in the transport of freight to provide data corresponding to the fol-
lowing use cases [57]:

• Applications for freight services, including information systems
(real-time monitoring of freight and trains).

3.3 transportation data models and frameworks 75

• Marshalling and allocation systems, including information sys-
tems (real-time monitoring of freight and trains).

• Reservation systems, whereby here is understood the train path
reservation.

• Management of connections with other modes of transport and
production of electronic accompanying documents.

Under the regulations, participating organisations are required to
supply at least the following types of information:

• Train paths

• Running information (departure, interchange, and arrival points
and times of contracted transport)

• Estimated time of arrival of freight trains

• Service disruption information

timelines and implementation strategy

Within the UK, Network Rail have published a TAP conformance plan
that predicts a full implementation by 2018 [14]. European-wide progress
on both TAF and TAP projects are shown in Figure 3.4.

3.3.3 RailTopoModel and National Topology Models

TheUIC RailTopoModel [114] is a recently developed initiative to pro-
vide a data standard for railway topology mapping across Europe. De-
veloped by the desire to allow network data to be shared between
infrastructure managers effectively, RailTopoModel defines a data ex-
change format for the interchange of railway data, drawing from sev-
eral existing data models [113]:

• Register of Infrastructure Model (RINF) [59], a format corre-
sponding to the EU regulation for infrastructure managers to
submit topology information to the EU on a quarterly basis

• Infrastructure for Spatial Information in the European Com-
munity (INSPIRE)6, a European Union Geographical Informa-
tion System interoperability standard.

• InfraNet, the infrastructure model of InfraBel, Belgium

6 http://inspire.ec.europa.eu/

76 railway data management, industrial models, and notable ontologies

(a)TA
P
TSI(data

from
TA

P
Phase

Tw
o
ProjectTeam

[208])

(b)TA
F
TSI(data

from
European

Com
m
ission

[58])

Figure
3.4:TA

F/TA
P
TSIIm

plem
entation

Tasksand
Tim

escalesforCom
pletion

3.3 transportation data models and frameworks 77

• ARIANE, the infrastructure model of Réseau Ferré de France
(RFF), France.

• Banedata7, the infrastructuremodel of Jernbaneverket, Norway

• RINM, the infrastructure model of Network Rail.

Its stated use cases are predominantly around minimising the ef-
fort required to interchange topology data in Europe, by unifying ex-
isting standards from member countries. As an XML standard, Rail-
TopoModel also requires buy-in from every state, and will form part
of the next major version of RailML.

3.3.4 Proprietary Systems and Models

Two proprietary railway data models were also encountered over the
course of this project, as used by Invensys Rail Group and Network
Rail respectively.

• Invensys Layout Description Language is a geographical for-
mat described in a proprietary syntax based on Backus Naur-
Form notation. It was used internally at Invensys Rail Group
(IRG) for exchange of signalling layout diagrams in proprietary
design tools. Developed initially as part of a collaborative project
with the University of Manchester, it encapsulates track topol-
ogy, control systems, and signalling information, but is not in
wider use within the rail industry [32]

• Network Rail Signalling and Data Exchange Format is a simi-
lar effort undertaken by Network Rail, and originally intended
as a standardised infrastructure and signalling model for use
by Network Rail (NR) suppliers and customers. Its uptake out-
side of the organisation is unknown, although vocabulary and
concepts from Signalling and Data Exchange Format (SDEF) are
considered in the design of ontologies shown in Chapter 5 and
Chapter 6.

3.3.5 InteGRail

InteGRail [108] was a collaborated project funded by the European
Commission from 2001–2006. It aimed to:

7 http://www.njk.no/banedata

78 railway data management, industrial models, and notable ontologies

“[…] create a holistic, coherent information system, inte-
grating themajor railway sub-systems, in order to achieve
higher levels of performance of the railway system in terms
of capacity, average speed and punctuality, safety and the
optimised usage of resources.” [108].

Much of the work in InteGRail focussed on the use of ontologies
for rail data exchange. Four such ontologies were built as part of the
project:

• CoreOntology [109]: High level concepts, including rail-specific
entities that are common to most use cases.

• Hot AxleboxDetector Ontology: An application-specific ontol-
ogy to capture knowledge about overheating railway axle boxes

• Wheel Impact load Measurement Ontology [128]: A further
application-specific ontology to support detection and diagno-
sis of high railway vehicle wheel impacts.

• Network Statement Checker Ontology [217]: An extension to
support a cross-european transport planning application for con-
formance of a route to a selected set of capabilities.

The project also implemented a Service-oriented Architecture for
exchange and querying of data across Europe, and presented this proof-
of-concept by allowing applications to run at geographically dispersed
locations. Resolution of queries from across disparate sources was un-
dertaken by consulting a central service repository, sending SPARQL
queries to individual datasets, and performing local queries over the
union of the results [68].

3.3.5.1 InteGRail Core Ontology

The InteGRail core ontology was a model inherited by all applications
used in the project. It sets out fundamental railway terms, and ways
of representing key concepts. Its contents can be generalised into four
main components:

• A set of railway vocabulary, elicited by InteGRail team mem-
bers.This centres around railway asset vocabulary, but provides
very sparse semantics for terms. Most vocabulary terms are
placed in an ‘isa’ hierarchy for categorisation, but have no fur-
ther relationships to each other.

3.3 transportation data models and frameworks 79

• A design pattern to describe railway topology, allowing repre-
sentation of railway networks at two levels of generalisation,
and provides constraints for capturing relationships between
low level (‘road’) and high level (‘route’) concepts.

• An ‘observation’ design pattern to represent measurements in
asset monitoring systems, including their values and diagnoses.

• Time and measurement concepts reused from existing models.

3.3.5.2 InteGRail Applications

The InteGRail project produced two demonstration data integration
applications that are relevant to Chapter 5 and Chapter 6. The first
focussed on the integration of condition monitoring data from mul-
tiple sources to diagnose faults on vehicles that could not be found
in constituent systems. By asserting the relationships between faults
and railway components, rule reasoning could be used to deduce the
likely severity of cross-data-source faults [128]. Ontological models
of railway infrastructure such as Figure 3.5 provide the reasoner with
enough knowledge to establish which components may be faulty in
a given scenario. Additionally, probabalistic reasoning was demon-
strated to provide a ‘best guess’ estimate of fault status, rather than
relying on the usual monotonic nature of OWL [127].

RailHeadStatus

TrackSectionStatus

SleeperStatus

SubstructureStatus

reliesOn reliesOn

reliesOn

reliesOn

Figure 3.5: Railway Infrastructure Status Dependence Pattern (from Lewis
et al. [128])

The second application showed how a graph of infrastructure and
capabilities could be exploited to allow for network compatibility check-
ing of a particular train for a particular route across Europe. By ex-
tending the rail core ontology to encompass knowledge of track ca-
pabilities, the application used federated SPARQL queries and OWL
reasoning to check if a proposed route through the railway network
was compatible with a particular train [217]. Topology data was taken

80 railway data management, industrial models, and notable ontologies

from several locations, and either stored as RDF at each location or
mapped from other formats to form ‘virtual RDF’ stores using D2RQ8.
The architecture and design of these InteGRail demonstrators is of
particular relevance to the new applications presented in Chapter 6.

3.3.6 Rail Functional Architecture

The Rail Functional Architecture (RFA) model is the result of a project
undertaken by RSSB very recently that aims to identify the techno-
logical functions that are performed in order to operate a modern
railway [176]. The result is a TRAK [166] diagrammatic model that
identifies a vast number of railway functions, from enterprise level to
operations level. From its perspective as a functional model, it does
not identify any particular technologies or entities explicitly, but pro-
vides specific details of railway operations roles and tasks.

The model itself focuses on three main levels of function, as re-
quired by TRAK:

• The ‘Enterprise Perspective’ describes enterprise /capability goals,
such as ‘provide value for money’ and ‘deliver UK transport
policy’. It references more specific functions on the concept per-
spective as dependencies, so ‘provide value for money’ requires
‘control cost’ which requires ‘provide passenger services’.

• The ‘Concept Perspective’ describes lower level railway func-
tions required to achieve the enterprise capabilities, such as
providing freight and passenger transport, safety management,
and service planning. Each of these concepts is related to oth-
ers where appropriate, and national/EU railway standards are
referenced appropriately.

• The ‘Solution Perspective’ identifies how concept activities are
achieved operationally.The RFA currently contains a few exam-
ple solution perspective diagrams, but this part of the model is
not complete for all concept entities.

Figure 2.2 shows a TRAK representation of the ‘trainmovement’ ac-
tivity present in the concept perspective in the Rail Functional Archi-
tecture (RFA). Two other perspectives are also specified as part of the
model: the ‘management perspective’ and the ‘procurement perspec-
tive’. The management aspect is intended to convey the scope of the
model as it is, and the procurement perspective, not yet implemented,
focuses on the methods in which different functions are physically

8 http://d2rq.org/

3.4 iso15926 81

achieved. The scope of the model covers all aspects of railway opera-
tions, but is designed to describe exclusively the UK railway industry
as it currently exists.

3.4 iso15926

In comparison to the numerous railway-oriented data exchange stan-
dards, work in this thesis also draws upon two comprehensive generic
models for cross-domain data integration, and particular in their ap-
proaches to modelling certain concepts.The first of these is ISO 15926,
“Integration of life-cycle data for process plants including oil and gas
production facilities”—a set of data integration standards originally
created for asset management across the oil and gas process indus-
tries. It currently comprises six parts, and is not only relevant ow-
ing to its applications of enterprise ontology, but also to its approach
to representing temporally changing information, as discussed below.
The first parts to be published consider the conceptual modelling of
the process industry, with parts 1, 2, and 4 being of interest:

• Part 1 is a general summary of the ISO 15926 project

• Part 2 is a generic domain ontology, written in EXPRESS-G, for
processmanagement. Although designed for the oil and gas pro-
cess industry, the data model is vocabulary-agnostic.

• Part 4 is a set of reference data (vocabulary) for the oil and gas
domain, which populates the ontology outlined in part 2.

More recent parts are concerned with uptake and tooling:

• Part 7 defines a set of templates for implementing ontologies.
These are similar to ontology design patterns [70] orData Shapes
as defined by W3C Data Shapes Working Group [220], and con-
cern the ways in which data is presented within the ontology.

• Part 8 is an implementation of parts 2, 6, and 7 in RDF andOWL,
although this implementation is not openly licensed.

• Part 9 is unpublished, and considers a federated implementa-
tion using SPARQL called ‘facades’.

Work in ISO 15926 has been used by Shell and Bentley, and is gain-
ing traction in other areas.The generic conceptual model used to drive
it has several key benefits that are of interest in the context of this
work:

82 railway data management, industrial models, and notable ontologies

• “4D” Architecture. ISO 15926:2 takes a perdurantist approach
to time, where every concept is described not by its traits, but
by its spacial or temporal characteristics. As such, the ontol-
ogy makes it very easy to specify the composition of entities
over time, by the definition of ‘timeslices’ that characterise an
individual over time. This approach is described in more detail
below in Section 3.6.2.

• Rich compositional modelling. The ontology takes a thorough
mereological view on how entities are composed, and makes a
distinction between physical ‘things you can kick’ and the roles
which they inhabit. This allows the ontology to represent the
lifecycle of a plant and all of the components in it as both a set
of roles, and a set of physical things. It is possible to ask ‘how
many physical pumps have fulfilled the role of PumpXYZ’, or
‘What role does motor C carry out in the system?’.

• Rich definition of characteristics and physical quantities. Fol-
lowing the ontological ideals that physical properties should
not be defined as attributes of an object (as physical properties
are not inherent to the object itself), ISO 15926:2 proposes an
architecture that allows objects to be assigned properties using
classes that describe the nature of the assignment. For example,
a ‘temperature_setpoint’ class may allow measurement units of
‘temperature_quantity’, which in turn allows Kelvin, Celsius, or
Fahrenheit measurement scales. This is a complex way of defin-
ing quantities in ontology, but preserves data meaning such
that reasoning on these quantities can be performed later.

ISO 15926:2 is a thorough generic conceptualisation of a domain
model, which is likely to be effective in facilitating data sharing across
many domains. However, its high expressivity comes at a price, and
its formal semantics are not fully representable in OWL Fiatech [66].

3.5 generic asset information integration standards

In addition to ISO15926, a review of two other relevant approaches
to asset information integration are provided: the MIMOSA ISO stan-
dards, and a Siemens ontology-based method for ontology-based in-
formation exchange.

3.5 generic asset information integration standards 83

3.5.1 MIMOSA OSA

ISO 13374 ‘Condition monitoring and diagnostics of machines’, is a
standard that provides a conceptual framework for enterprise infor-
mation exchange and condition monitoring systems. Its development
was assisted predominantly by MIMOSA, a cross-industry non-profit
organisation, whose ‘Open Systems Architecture’ forms the founda-
tion of both parts of the standard. MIMOSA OSA is divided into two
parts:

• ISO13374:1 provides a general overview of the structure and
data requirements of a standardised condition monitoring sys-
tem, from data acquistion to prognosis generation. It suggests
a number of discrete stages in this process, and overviews the
requirements for each.

• ISO13374:2 ‘Data Processing’ defines a comprehensive specifi-
cation for a data processing system to conform the general ar-
chitecture set out in part one. It defines the requirements for
each stage as shown in Figure 3.6, as well as the interfaces be-
tween components and the levels of abstraction for which a pro-
cessing system should be specified.

• MIMOSAOSA-CBM is an implementation of ISO13374:2, which
provides a conformant conceptual model, XML implementation,
and toolset to facilitate exchange of data across condition mon-
itoring systems. The promise of OSA-CBM is to facilitate a stan-
dardised, modular system for communication between applica-
tions in order to reduce costly bespoke interfaces.

• MIMOSAOpen System Architecture for Enterprise Application
Integration (OSA-EAI) complements the CBM model by defin-
ing a model for representation of the assets and infrastructure
within a system itself. EAI provides another conceptual model,
as well as a reference relational database implementation and
data library for storing and describing assets, and a set of query
and exchange standards for communication of this data. This
database provides coverage of many subject, including asset re-
liability, vibration analysis/condition monitoring data storage,
and work management. The components of the OSA-EAI stan-
dard are shown in Figure 3.7.

The ISO13374 standards and associated MIMOSA implementations
are intended as a comprehensive model for data exchange of asset
condition data and diagnoses. As such, they prescribe a very good

84 railway data management, industrial models, and notable ontologies

Prognostic Assessment

Health Assessment

State Detection

Data Manipulation

Data Acquisition

API

API

API

API

API

System
 A

System
 B

Source

Decision

Figure 3.6: MIMOSA OSA-CBM Architecture Levels And Example Applica-
tions (adapted from International Standards Organisation [110])

Terminology (PDF)

Conceptual Object Model (UML/Visio)

Logical Model (XSD & SQL)

Reference Data Library (XML)

DB Data Exchange
Format Epc

DB Producer/Consumer
Spec

Client/Server Transaction Schema

Client/Server Application Spec

Application HTTP/SOAP Spec

Data Exchange
Query Spec

Data Exchange App
Spec

Figure 3.7: Key Components in MIMOSA OSA-EAI Standard

3.6 relevant ontologies and common modelling paradigms 85

way of integrating and exchanging data between components of a
CBM system, and are used extensively in this field by projects such
as Network Rail’s Intelligent Infrastructure Programme [197], as well
as in prior project by Boeing [126].

It does not, however, address data integration standards outside of
this domain. Whilst its conceptual models could be extended, their
current implementations in relational databases and XML schemas
still require any non-conformant system information to be integrated
using bespoke interfaces, or require an extension or modification to
the standard.

3.5.2 Siemens Ontology-based Data Access System

Kharlamov et al. [119] present an ontological model and demonstra-
tion system for facilitating data interoperability and integration in the
energy domain, and particularly in order to unify diagnostics data for
a range of Siemens-manufactured turbines and process equipment.
The motivations for this work are similar to those highlighted by
the InteGRail, MIMOSA, and ISO13374 initiatives already described,
and describe difficulties and expense accessing data analysis services
within Siemens, and the need to facilitate preventative maintenance.
The Siemens application ontology presented includes axioms to allow
inference of condition on faulty machine components, and utilises
reasoning and RDF streams to provide a demonstration system with
temporally-aware information on the condition of a set of assets. The
authors cite a lack of available production-ready systems for acting
on temporal data, and use a novel proprietary technique and query
language to provide data access.

3.6 relevant ontologies and common modelling paradigms

This section overviews a selection of ontologies and design approaches
that are of relevance to the work undertaken in Chapter 4 and Chap-
ter 5 . The first section outlines notable upper ontologies, which at-
tempt to provide a high level standardised platform for representing
knowledge across multiple domains, whilst the following sections dis-
cuss approaches to two common modelling issues: representing tem-
poral information, and representing quantities. These approaches are
discussed further where they are utilised in Chapter 5.

86 railway data management, industrial models, and notable ontologies

3.6.1 Upper Ontologies

Upper ontologies are models of high level concepts that are common
across many domains and disciplines. They seek to provide a frame-
work for lower level ontologies to adopt and use, such that informa-
tion from across multiple domains can be shared. Some such ontolo-
gies have enjoyed widespread adoption in some disciplines, such as
the Basic Formal Ontology (BFO) within biosciences [97]. Whilst a
comprehensive review of these is given byMascardi, Cordì, and Rosso
[134], two are of relevance to the approaches described in this thesis:

the basic formal ontology

The Basic Formal Ontology (BFO)[79] was created at the University of
Leipzig, and is intended for use across a number of different domains
including medicine , geography, and disaster relief[80]. Its relevance
to this thesis lies in its ability to represent temporal constructs us-
ing two different paradigms, which loosely fit with the 3D and 4D
approaches taken by ISO 15926, and allows entities to be represented
using one or the other depending on circumstance. This is attractive
for modelling temporal characteristics of railway data models, as it
allows intuitive expression of both relatively static data (such as in-
frastructure maps) and dynamic data (such as timetabling).

dolce ultra-lite

The DOLCE & DnS Ultralite (DUL) ontology9 is a simplified subset of
DescriptiveOntology for Linguistic andCognitive Engineering (DOLCE),
and provides a very understandable and semantically sound frame-
work to work from. It possesses a wider scope than that required of
the RaCoOn ontologies, and provides a large number of concepts in
areas that are not relevant to RaCoOn, owing to DOLCE’s roots as a
linguistic and cognitive engineering upper ontology.

3.6.2 Approaches to Time Representation

The majority of data models considered so far are synchronic—that is,
they have no mechanism for representing data that varies over time,
and represent a view of the world at one instant. In the case of many
applications, this works well: models are kept updated to reflect the
view of the world now, and versioning systems are used to store snap-

9 http://www.loa-cnr.it/ontologies/DUL.owl

3.6 relevant ontologies and common modelling paradigms 87

shots of past system states. In some environments, however, there is a
need for explicit representation of temporally-varying data; the need
to represent diachronic information. In order to do this, two theories
of time can be considered Loux [130]:

• Endurantism asserts that objects, called endurants,always exist
but have changing properties. The ‘Jon Tutcher’ that exists to-
day is the same ‘Jon Tutcher’ that existed last year, but with
fewer hairs on his head. Changes in time are represented by
properties with known temporal extents, as demonstrated by
Figure 3.8.

• Perdurantism, or four-dimensionalism, regard different percep-
tions of an entity over time as different objects, which have
some spatial extent. The identity of a concept is considered the
aggregate of all its temporal parts. This is the approach mod-
elled in ISO 15926, and is well suited to process engineering
and domains in which roles that change over time must be com-
monly represented. A perdurant representation of the example
shown in Figure 3.8 can be seen in Figure 3.9.

Signal3191

Banbury

Oxford

:controlledBy
(1949-2004)

:controlledBy
(2005-2015)

Figure 3.8: Example of Temporally-Varying Data Represented Using En-
durantist Approach

:Signal3191

:_Slice1 :_Slice2

1949 2004 present

Figure 3.9: Example of Temporally-Varying Data Represented Using Perdu-
rantist Approach

representing endurants in owl

To represent temporally-changing data using endurants in OWL, a
mechanism for defining the times over which relations hold is needed.

88 railway data management, industrial models, and notable ontologies

This can be done either by re-defining concepts (classes or proper-
ties) as new entities for every time extent, or by representing these
relations using reification as described in Section 2.6.1.3. The first ap-
proach is shown in Figure 3.10, while the second approach is shown
in Figure 3.11.

Signal3191@Time1

Banbury Oxford

Signal3191@Time2

1949 s

2004 s

2004 s

Now

controlledBy

from

to

from

to

controlledBy

Figure 3.10: Representation of Time Extents Using Endurant Entities

Signal3191

Banbury

TimeInterval

:_1949-2004

:_ControlledByA

:_ControlledByB

Oxford

TimeInterval

:_1949-2004

:entity

:entity

:holds

:holds

:controlledBy

:controlledBy

ControlledByFluent

Figure 3.11: Reified Endurantist Time Extents Representation

The latter method imparts all of the required knowledge, and can be
extended to a number of other scenarios involving time variant char-
acteristics. Both of these forms of reification, however, have several
drawbacks:

• Proliferation of objects. Reification by necessity creates redun-
dant information, and in the example given creates at least six
triples, where only two assertions in an appropriate First Order
Logic (FOL) knowledge base would be required.

• Reduction in OWL reasoning capability. Employing this pat-
tern across a whole ontological knowledge base dramatically
reduces the usefulness of tractable OWL reasoning. There is
no longer a single binary relation from the subject to intended
object, so axioms such as inverse properties, transitivity, func-
tionality, and symmetry cannot easily be asserted. The rdfs:-

domain and rdfs:range of each relationship also change, and
this must be taken into account.

3.6 relevant ontologies and common modelling paradigms 89

implementing 4d ontology in owl

The ISO15926:2 ontology uses ternary relations to implement its per-
durantist view of the world in EXPRESS, a highly expressive but com-
putationally intractable formal ontology language. In OWL, ternary
relations are not straightforward to model, but modelling 4D con-
cepts can still be achieved by a using a reification technique proposed
by Welty, Fikes, and Makarios [225], as shown in Figure 3.12.

Fluents

Identity Concepts

Temporal Extents

TemporalExtent:T1

:T2

Signal

:Signal3191

Station

:Banbury

:T0

Station

:Oxford

TimeSlice

:Signal3191@T1

TimeSlice

:Signal3191@T2

TimeSlice

:Banbury@T0

TimeSlice

:Oxford@T0:controlledBy

:controlledBy

:temporalExtent

rdf:type

rdf:type

rdf:type

:temporalExtent

:temporalExtent

:timesliceOf
:timesliceOf :timesliceOf :timesliceOf

:temporalExtent

Figure 3.12: Example of 4D Fluents [225] Approach in OWL

advantages and applications of 4d ontology

The main advantage in using a four-dimensional representation of
fluents is its conceptual consistency when dealing with time-varying
data. All characteristics are represented as spacio-temporal parts of
some identity, so no change in modelling technique or semantics is
necessary to begin asserting some new characteristics that vary with
time. Implementation in OWL, although verbose, also has some ad-
vantages. Relationships between entities can be asserted using binary
properties, so the semantics of these properties (such as transitivity
or symmetry) are maintained. Domain and range assertions are also
possible, by subclassing the ‘Timeslice’ class.

barriers to implementation

The wide-scale uptake of a four-dimensional approach is prevented
by several significant disadvantages to representation in OWL:

90 railway data management, industrial models, and notable ontologies

• Proliferation of triples. The translation of temporal character-
istics into binary predicates leads to a high number of triples
asserted over each concept. This is not necessarily a problem,
but results in readability and slow reasoning in some scenarios.

• Complete loss of semantics for reasoning over entity types. By
containing the characteristics of every individual in one ormore
fluents, OWL inference based on entity properties is impossible.
In contrast, a 3D approach allows this in cases other than where
temporal assertions are required.

• Unnecessary complexity for non-time-variant data. Many mod-
els do not need to consider time in detail, or can sufficiently
be described by a snapshot in time. 4D ontology requires that
even these entities must be represented using time slices, signif-
icantly adding modelling complexity.

other approaches to time representation

Several other approaches to modelling time can also be taken, but are
not discussed in detail here. These include:

• Streaming RDF. Another approach to representing time in dy-
namic systems is simply to ensure that the information system
used continuously reflects the state of information in the real
world. Such real time systems do not require explicit represen-
tation of temporal variance, because a system state when read
is taken to reflect the state of the world at that time. Although
ontologies have traditionally been viewed as static documents,
recent research has shown the possibility for streaming RDF,
which could facilitate real time semantic knowledge representa-
tion. Streaming RDF raises complications in some areas (partic-
ularly reasoning); a recent survey of use cases and implementa-
tions is undertaken by Margara et al. [133], and aW3Cworking
group on the subject was formed in August 201310.

• Graph-based Encoding of Time: It is also possible to encode
temporal information using RDF named graphs. Named graphs
append RDF triples with a fourth attribute, which can be used
to track the context of triples within a knowledge base. Exten-
sions to SPARQL [10, 91] then allow the filtering of query re-
sults based on time, providing a way of accessing time-variant
information.

10 https://www.w3.org/community/rsp/

3.6 relevant ontologies and common modelling paradigms 91

3.6.3 Approaches to Representing Quantities, Units, and Dimensions

Representing quantities, units, and dimensions correctly is important
when designing technical ontologies. Taking an approach that is too
simplistic impedes the ability of the model to represent knowledge
correctly; modelling them in too much detail can affect the perfor-
mance and usability of the model through the additional assertions
required. Three approaches are presented here, and implementation
of these approaches is considered further when describing design of
the RaCoOn ontologies in Section 5.3.2.

direct modelling using datatype properties

In the first instance, owl:DatatypePropertys or RDF properties and
literals can be used to encode quantities and rely on XSD datatypes
to provide restrictions and semantics. Properties can be defined for
each different attribute to be modelled, and documented accordingly.
Examples include foaf:age, which is defined as ‘age in years’ of an
agent, geo:lat, the latitude in degrees of a point, and po:duration,
the duration in seconds of a media program. Listing 3.1 shows an ex-
ample of this approach.

ex:Jon ex:ageInYears ”29”^^xsd:Double;
ex:weightInKG ”65”^^xsd:Double ;
ex:weightInPounds ”143.3”^^xsd:Double .

Listing 3.1: Using Datatype Properties to Represent Attributes

the qudt ontology

Where more semantic certainty is required, the National Aeronautics
and Space Administration (NASA)Quantities, Units, Dimensions, and
Types (QUDT) ontology provides a rigorous ontology for describing
measurements using more descriptive means, demonstrated in List-
ing 3.2. In this case, the semantics of the units and values themselves
are defined formally, allowing for machine-interpretability.

92 railway data management, industrial models, and notable ontologies

ex:Class167Train ex:length :_SomeLength .
:_SomeLength a qud:Quantity ;

qud:quantityKind qud:Length ;
qud:quantityValue :_SomeValue .

:_SomeValue a qud:QuantityValue ;
qud:numericValue ”40”^^xsd:double ;
qud:unit qud:Metres

supporting assertions in the QUDT ontology:
qud:Metres a qud:Unit ;

qud:quantityKind qud:Length .
qud:Length a qud:BaseUnit

Listing 3.2: Turtle Listing Showing Time Represented using the QUDT on-
tology

QUDT provides a comprehensive vocabulary of units such as Me-
tres, Volts, and Radians, which are each linked to a particular quantity
kind, such as Length, Potential, and Angle. Uncertainty of measure-
ments is also supported through the qudt:Quantity class.

the iso 15926 approach

The ISO 15926:2 ontology takes advantage of the additional expres-
sivity afforded by the EXPRESS-G notation format, and defines di-
mensional quantities by using ‘classes of properties’ that allow the
approximation ternary relationships. In addition to providing prop-
erty_quantification and scale attributes, the model also facilitates rep-
resentation of multi-dimensional properties, indirect properties such
as ‘temperature drop’ and property ranges using similar patterns.This
approach is semantically very rich, but requires a higher number of
assertions when translated into OWL than the other two solutions.

3.7 summary

Standardisation of data across the railway domain is a relatively new
pursuit, with the majority of efforts in cross-stakeholder data mod-
elling being undertaken in the last ten years. The current state-of-the-
art shows a number of candidate data models in the asset information
domain, many of which duplicate the same knowledge in efforts to
create systems for diverse and changing stakeholders. Uptake of these
models has been slow except in the case of national or international
mandates for their uptake, as in the case of Register of Infrastructure

3.7 summary 93

(RINF) and TAF/TAP TSI.

As discussed in Chapter 2, semantic models provide flexibility in
creating data exchange standards, such that models can be built upon
and extended rather than replaced.This may prevent the proliferation
of conflicting data standards seen so far across Europe, and instead
provide a single, evolving data framework for development and use
by all. For this reason, their development is explicitly cited as a key
component of railway information system strategy in several recent
industry reports [146, 175, 184].

Work in Chapter 5 draws upon elements from several of the mod-
els reviewed in this chapter: RailML is drawn upon to provide a data
source for railway vocabulary and concepts, and RailTopoModel used
as a basis for the way in which geographic and topological railway
network concepts are mapped in the novel data models described.The
demonstration projects described later in Chapter 6 share common re-
quirements with the condition monitoring elements of the InteGRail
project described, although the novel work in this thesis demonstrates
reasoning across infrastructure elements rather than on-board train
vehicle systems.

Following the overview of state-of-the-art research and techniques
in ontology engineering given in Chapter 2 and the summary of exist-
ing railway data models and approaches given here, the chapters that
follow contribute novel methods and ontologies for facilitating data
exchange using semantic models in the railway and other industries.
The next chapter, Chapter 4, describes a new ontology engineering
methodology for creating industrial semantic data models.

4
DES IGN ING EXTENS IBLE MODELS FOR LARGE
COMPLEX SYSTEMS

4.1 introduction

In Chapter 1 and Chapter 3, the current limitations of knowledgeman-
agement techniques within the railway industry were set out, as well
as the challenges and problems currently faced in maintaining and
implementing new systems. In Chapter 5, a set of novel ontologies
known as Rail Core Ontologies (RaCoOn) are presented that aim to
address some of these limitations, and in particular to provide easier
ways of sharing data between heterogeneous data sources and to en-
courage doing so.
This chapter presents the methodology used in designing and imple-
menting these ontologies. Existing ontology engineering techniques
and workflows are drawn upon, and a new set of extensions and ad-
justments that better facilitate the needs of domain models for data
integration in large complex systems are introduced. A set of best
practice design patterns for implementation of such ontologies is also
presented, drawing upon stated requirements and existing literature.
The content of the RaCoOn ontologies is discussed in the next chapter,
and Chapter 6 presents two novel applications based on extensions to
the new ontologies.

4.1.1 Introduction to the RaCoOn Ontologies

Rail Core Ontologies (RaCoOn) are a set of domain ontologies that
model areas of the rail domain commonly used in railway data ex-
change, with the aim of allowing the uptake of data exchange based
on semantic data models in a number of existing railway use cases
and in future applications. They are implemented in OWL, and are
designed to be extended by specific applications when needed. This
has two immediate consequences for the design and methodology
adopted in creating the ontologies:

• An initial set of models need not consider all possible use cases,
but rather should focus on objective representation of a com-
mon framework for high level concepts. By providing this frame-

95

96 designing extensible models for large complex systems

work, information from applications that extend it are more eas-
ily reusable.

• Themodels can be resilient to changing needs and circumstances.
Whereas XML implementations ofmodels often require changes
that render previous versions incompatible in order to accom-
modate new requirements, OWLmodels can be extended based
on existing semantics without the need for breaking changes.

As such, the RaCoOn ontologies do not attempt to provide a con-
ceptualisation of the entire railway, but provide terms and patterns
for representing data at a high level, along with a set of key railway
terminology. Its two principle components are a cross-domain ‘upper’
ontology of key high level concepts such as space and time, and a set
of domain and subdomain ontologies which express knowledge and
relationships about railway-specific concepts, centred around infras-
tructure.

4.1.2 Methodological Requirements

The approach taken in design of the RaCoOn methodology draws
upon techniques in the existing ontology engineering methodologies
described in Chapter 2, but provides specific approaches in order to
fit with a set of defined requirements for industrial domain models.
The methodology addresses the following set of non-functional re-
quirements, which are suggested to allow the uptake of such models
across multiple existing and future applications:

1. Provideways of semantically integrating data frommany het-
erogeneous sources. The key requirement of the domain model
is an ability to allow data currently trapped in multiple infor-
mation silos and restrictive document structures to be easily
mapped and integrated to an extension of the domain ontolo-
gies described here.

2. Support a multi-stakeholder workflow. Given the current or-
ganisational state of the railways in the UK and abroad, it is un-
realistic to expect a central authority to take ownership of rail-
way data. Thus, the domain model should be highly extensible,
provide its own incentives for use, and should allow stakehold-
ers to make as much use of extended data models as possible.

3. Provide flexibility as information system requirementschange
over time. Semantic data models inherently provide this flexi-
bility, and domain models should be designed to allow further

4.1 introduction 97

modifications over time by ensuring they do not provide overly
restrictive views on the domain

4. Present itself as intuitive and understandable as much as pos-
sible. One barrier to entry of similar systems such as ISO 15926:2
has been the extremely steep learning curve necessary for adop-
tion. Any domain model created should be as intuitive as possi-
ble, to lower the barrier to entry for new users.

5. Provide scaleability. The use of an ontology-based system in
production is likely to encompass far more data than an aca-
demic prototype. Commercial RDF data stores can cluster and
handle vast data volumes, but OWL reasoning is notoriously
tricky to scale.Therefore, an ontology should consider the price
and practicality of using DL axioms where necessary.

4.1.3 Proposed Approach

Thedesign approach adopted in the RaCoOnmethodology draws heav-
ily upon some of the modular ontology engineering tasks described in
the NeON methodology [203], many of which consolidate best prac-
tice from the ontology engineering literature, and most of which are
already tailored towards the creation of ontology ‘networks’, a key
design feature in our methodology.

Based on the high level requirements given above, a multi-stage
approach tailored to creating pragmatic OWL DL models is taken,
and a set of workflows and patterns that are best suited to these re-
quirements.These stages are presented here in five sections: specifica-
tion and scoping(Section 4.2), architecture definition and modularisa-
tion(Section 4.3), knowledge acquisition and conceptualisation(Section 4.4),
implementation and formalisation(Section 4.5), and evaluation(Section 4.6).
The methodology recommends an iterative development process, as
illustrated by Figure 4.1.

This iterative method provides a way of validating and reinforcing
themodel throughout, as demonstrated by Presutti et al. [170]. Knowl-
edgewhich is modelled through the ‘top down’ approach is reinforced
by terms that appear in the ‘re-engineering’ stage, and terms created
during the re-engineering stage are validated and categorised by the
top down approach. The stages in this process are discussed in the
following sections.

98 designing extensible models for large complex systems

Specification

Conceptualisation
and Formalisation

Implementation

Evaluation and
Documentation

Top Down Design Reuse-oriented design

iterate

High Level
Requirements

Definition

Scope Definition
and Content
Specification

Elicit Use Cases
and Expert
Knowledge

Decompose
Existing Models

Module
Definition

Conceptualisation,
Pattern Definition,
Implementation

Conceptualisation,
Pattern Definition,
Implementation

Documentation Documentation

Validation

Figure 4.1: RaCoOn Ontology Engineering Methodology

4.1 introduction 99

4.1.3.1 Observations on Ontology Verbosity

Domain modelling in OWL necessarily involves some trade-off be-
tween accuracy and semantic truthfulness. Gruber [84] stated five de-
sign criteria that are still widely adhered to in the field of ontology
engineering. All five are listed here, with points four and five being
of particular relevance:

1. Clarity: An ontology should effectively communicate the in-
tended meaning of defined terms.

2. Coherence: Inferences made across an ontology should be con-
sistent with their definitions.

3. Extendibility: An ontology should be designed to anticipate the
uses of the shared vocabulary.

4. Minimal Ontological Commitment: ontologies should assert as
little as possible in order to support knowledge sharing activi-
ties

5. Minimal Encoding Bias: models should minimise assumptions
made by implementation-specific issues.

When encoding domain models, the limits of ontological commit-
ment are not necessarily defined. Thus, a formal definition of scope
must be created, and the ontology engineer must define the model to
a reasonable level of detail across this scope. In OWL, this also influ-
ences encoding bias: less ontological commitment can lead to more
semantic assumptions, and these can potentially restrict extensibility.
A good example of this is in representing measurements (discussed in
Section 5.3.2.2). At first glance, it is intuitive to represent a UK train
vehicle’s maximum speed as shown in Listing 4.1. Immediately, how-
ever, this is restrictive. Even if we annotate the ex:maxSpeed property
with the knowledge that speeds are represented in miles per hour,
there is no semantic annotation of this property, and crucially speeds
in other representations cannot be made. Instead, the approach taken
in Listing 4.2 can be taken.

ex:Train ex:maxSpeed ”125.0”^^xsd:float‘‘‘

Listing 4.1: Train Speed Represented in RDF Using Direct Data Property Ap-
proach

100 designing extensible models for large complex systems

ex:Train ex:maxSpeed [ex:unit ex:MilesPerHour, ex:value
”125”^^xsd:float]↪→

Listing 4.2: Train Speed Represented in RDF Using Ternary Relations Design
Pattern

This nowprovidesmore expressiveness, butwith a signifiant overhead—
it now takes three triples to assert the information rather than one.
However, it still makes an assumption on themeaning of ex:maxSpeed.
If it is defined to mean ‘maximum speed on a flat gradient’, then how
are speed profiles represented? How about different maximum speeds
depending on the traction package? Asserting these in the same way
could lead to a proliferation of ex:xxxSpeed properties and make the
ontology unreadable.

The methodology described here is aimed at the definition of on-
tologies that are pragmatic enough for their intended uses, but flexi-
ble enough to be extended by applications in these scenarios. As such,
emphasis is placed on usability and brevity rather than on ontological
completeness.This attitudemirrors that takenwhen designing ‘linked
data’ application ontologies, but applies it to the creation of domain
ontologies instead.

4.2 stage 1: specification and scope definition

To create a domain model, some idea of its scope must initially be
known.Whilst an all-encompassingmodel of every interaction across
the industry is very desirable, such models are expensive to imple-
ment and may have little utility in the real world.

In this methodology, we consider that one or more sections of a
wider domain should be modelled. This approach leads us to create a
set of models that have characteristics somewhere between the philo-
sophically sound ‘formal’ upper ontologies that attempt to completely
model a domain to a high degree of abstraction, and semantic web ‘ap-
plication’ ontologies that are designed to represent knowledge for one
application and give little regard to wider domain context.

For example, considering simply ‘the railway industry’ may encom-
pass a number of different disciplines and worldviews, and in order to
create a pragmatic model, only a section of this should be modelled at
the concept level. Figure 4.2 shows an illustration of this. The rail do-
main is shown as a pyramid, with one high level concept encompass-
ing a number of progressively more specific subdomains, and with

4.2 stage 1: specification and scope definition 101

applications at the bottom. The ontology we aim to build here is an
intentional subset of this diagram, highlighted in red.

Railway

Operations Enterprise Goals

Maintenance

Infrastructure

Business GovernanceAnalysis

Train Service

Timetabling

Supply Chain

Standards

Attribution

Ticketing Staffing …

…

…

…

Train C
ontrol

RC
M

A
sset Register

Fleet M
gm

t

D
esign

Tim
etabling

O
pen D

ata

Route Planner

Ticket Sales

Infra M
aint.

PPM
 A

nalysis

D
elay A

ttribution

Staff Rostering

Fleet Rostering

Project/Risk m
gm

t

Supply C
hain M

gm
t

Property M
gm

t

…

Figure 4.2: “Torchlight” Diagram Showing an Overview of the Rail Domain,
and Proposed Scope of Domain Ontology

The diagram illustrates two dimensions in which the scope and re-
quirements of a model must be defined:

• The breadth of the domain (left-right) is the decision of which
and how many high level concepts should be modelled in a do-
main model to provide the most use.

• The depth of the model is the level of detail in which it is mod-
elled to. In our methodology, we consider domain models that
attempt to model concepts that will be widely reused, but do
not consider application or subdomain-specific details.

4.2.1 Scope Definition Methododogy

In software engineering, the requirements that a system or datamodel
must fulfil can be elicited using one of a known set of requirements
analysis techniques based on the system’s objectives. These require-
ments drive development and validation of the system. The process is
demonstrated by the cross-discipline “Vee” model shown in Figure 4.3,
which illustrates a generic system development lifecycle, and forms
part of several systems, software, and project management method-
ologies [49, p. 31].

102 designing extensible models for large complex systems

Gather
Requirements

Application
Specification

‘Design-to’
Specification

‘Build-to’
Specification

Implementation

Validation from
Requirements

System
Verification

Design
Verfication

Code Testing

validation

verification

Figure 4.3: Simplified Diagram of ‘Vee’ Systems Engineering Methodology
(adapted from Forsberg and Mooz [67]

Existing ontology engineeringmethodologies also take this approach:
they elicit requirements from known use cases, and use these to con-
struct a framework for design and validation of a model. In METHON-
TOLOGY and the NeON methodology, these are expressed as a set of
Competency Questions (CQs) that determine exactly what a model
should be able to represent, and against which a resulting ontology
can be validated.

For the scenario proposed here, this approach is not as effective.
We aim to build a high level domain model which should be useful
to a number of unknown future applications, rather than to a set of
current, specific applications. Additionally, there is no need for us
to model the domain in detail, as subdomain-specific ontology exten-
sions should provide this as demand for them increases. Thus, our
ontology is limited to answering Competency Questions (CQs) that
can be posed against domain-level concepts, and validation against
these does not guarantee that the model’s coverage matches that ex-
pected by a suite of applications.

Instead, we base the scope of our methodology on an initial set of
objectives elicited by project stakeholders, and on an iterative design
process in which appropriate modelling depth is decided based on the
perceived usefulness of concepts and definitions:

4.2 stage 1: specification and scope definition 103

1. High level objectives and requirements are elicited from princi-
pal project stakeholders. This provides the primary motivation
for building the model, and gives an indication of the areas to
be modelled.

2. Perceived initial scope is evaluated against existing and poten-
tial use cases and the nature of the data they may use, to estab-
lish the benefit of a proposed model with the suggested domain.

3. Ontologymodules are designated and created, to categorisemodel
theme and scope into different sub-ontologies

4. Refinement and development of scope is undertaken, andmodel
scope determined based on iterative ontology development. A
set of CompetencyQuestions (CQs) for model scope are created
based on a set of design questions posed as the model is further
developed.

This approach is demonstrated in the design of the RaCoOn ontolo-
gies.

4.2.2 RaCoOn Stakeholder Requirements and Applications

At the start of the ontology design process, several meetings with
industrial representatives at the CASE sponsor company were under-
taken to establish the high level aims and likely use cases for the core
domain model and associated application scenarios. These aims con-
textualised the requirements gathering and scoping of the rest of the
project, and were as follows:

• Development of an industry-wide semantic data model to aid
interoperability between stakeholders.

• Emphasis on ‘Infrastructure-centric’ world view, to match the
current organisational and inter-organisation conceptualisation
within Invensys Rail Group

• Demonstration of extensibility towidely-used IRG andNetwork
Rail data models, such as Layout Description Language (LDL)
and SDEF

These original meetings also suggested three demonstration sys-
tems to be developed using the developed ontology and custom ex-
tensions, but organisational changes instead provided the opportu-
nity for a different set of applications to be built as part of the FuTRO
project detailed in Chapter 6. Nevertheless, these original potential
use cases helped to influence initial scope for the ontologies:

104 designing extensible models for large complex systems

1. Infrastructure visualisation tool, based on combined infrastruc-
ture data from Network Rail and IRG.

2. Remote condition monitoring application, to better integrate
IRG monitoring hardware with infrasructure data and systems

3. Signalling scheme design process tool, demonstrating levels of
detail by discipline

A broad conceptualisation of railway domain subject areas was cre-
ated and agreed upon by IRG, as shown in Figure 4.4. The expected
subdomains to be conceptualised in detail by the rail domain ontology
are shown in bold.

4.2.2.1 Context of RaCoOn Scope Within Wider Domain

To further understand how the model scope proposed by IRG fits with
demand, we draw upon data from two independently organised work-
shops, both of which consider use cases for railway data integration.
The first, carried out by a team from the University of Birmingham
and the University of Nottingham on behalf of Rail Research UK As-
sociation (RRUKA), was part of a study into creating a modal shift
towards rail transport, and focussed on the specification and benefits
of a ‘System-wide Data Framework for the Railway Industry’ [184]. It
presents results from a set of cross-industry stakeholder workshops,
including a large set of potential use cases for data sharing, as well
as a set of requirements necessary to realise the use cases that were
discussed.

The second report [205] was published during the development of
the core ontology, and was the result of another cross-industry work-
shop organised at the launch of the UK Transport Systems Catapult, a
government organisation set up to encourage innovation and collabo-
ration across the transport industry. The Transport Systems Catapult
(TSC) session was an informal one day long event attended by 62 rep-
resentatives from multiple organisations (including the author), and
discussed data integration and challenges in the wider transport sec-
tor rather than just rail. Its outputs captured cross-mode use cases,
current challenges and opportunities for data integration, and busi-
ness incentives and restrictions around the sharing of information.

4.2.2.2 Overview of RRUKA Workshop Use Cases

TheRRUKAworkshop report initially reported a total of 153 use cases
for data exchange across the rail industry, categorised by the area
in which they were likely to provide the most impact. From these

4.2 stage 1: specification and scope definition 105

Ti
m

et
ab

le

In
fo

rm
at

io
n

Ro
ut

e
Se
tti

ng
 &

Si

gn
al

lin
g C
us

to
m

er

In
fo

rm
at

io
n

En
vi

ro
nm

en
t

M
on

ito
ri

ng

Tr
ai

n
C

on
tr

ol

Ti
m

et
ab

le

Pl
an

ni
ng Tr

ac
k

Im
pr

ov
em

en
t

In
fr

as
tr

uc
tu

re

C
on

di
to

n A
ss

et

M
an

ag
em

en
t

Sc
he

du
lin

g
/

Tr
ac

k
Po

ss
es

si
on

In
fr

as
tr

uc
tu

re

In
fo

rm
at

io
n

Su
pp

lie
r D

at
a

D
es

ig
n

Sp
ec

ifi
ca

tio
n

Tr
ac

k
/ R

ou
te

In

fo
rm

at
io

n

Fl
ee

t
In

fo
rm

at
io

n
Fl

ee
t

C
on

di
tio

n

Pl
an

ni
ng

M
ai

nt
en

an
ce

O
pe

ra
tio

ns
C

ha
ng

e

Ra
ilw

ay
 S

ys
te

m

Fi
gu

re
4.4

:I
ni
tia

lR
ai
lD

om
ai
n
Fu

nc
tio

na
lC

on
ce

pt
ua

lis
at
io
n
w
ith

In
ve

ns
ys

Ra
il
Gr

ou
p
St
ak

eh
ol
de

rs
(2
01

1)

106 designing extensible models for large complex systems

use cases, commonalities were identified to produce a list of nine key
application areas, which were studied by the workshop in more detail.
These areas are reproduced in Table 4.1.

Table 4.1: Use Cases for a Standard Rail Data Model, Categorised by Area

Categorisation Numbers

Asset management 40
Operations 30
Business and strategy 26
Interoperability 15
Customer 12
Data 12
Vehicle monitoring and management 8
Standardisation 4
Testing /modelling 4

The workshop also created a graph of interconnected application
areas, reproduced in Figure 4.5. Application areas given in this graph
were summarised during the workshop from given use cases, and
links between them provided by a consensus amongst workshop par-
ticipants. Arrows in the diagram depict an identified link from the
source idea to the destination idea, and does not necessarily imply
transitivity between the ideas.

This graph shows a representative view of possible data integration
applications across the railway, and provides a way of contextualising
the utility of the proposed RaCoOn model scope.

4.2.2.3 Overview of TSC Workshop Use Cases

The aims of the day-long TSCworkshop were much broader than sim-
ply examining data sources and use cases for integration. The morn-
ing ‘Use of Data’ session divided attendees into several teams, who
were then asked to complete several tasks concerning their views on
data use and availability. The aggregated answers from two of these
questions are presented here:

1. List examples of the types of data you currently use (or would
like to use in the future). The results of this question are visu-
alised in Figure 4.6.

4.2 stage 1: specification and scope definition 107

Spares,
availability,

and lead
times Importance

to network

Quality of
reports

Passenger
understandi

ng of
delays

Supply

Standard
vocabs

Data
interpretati
on for all
levels of

user

Quality and
verification

Maps,
abstrac-

tions,
vehicles

Data
sharing

Cross-
manufactur

er inter-
operability

Data
accessi-

bility

Configurati
on of assets

Unit
formations

Other
stake-

holders

Changes
over time /
evolution

Inter-org
‘incident’

mgmt

Transmodel

Fare info
Train paths
and service

types

Handling
disruption

Models of
train, track,

infra-
structure

Condition
monitoring

Timetabling
Signalling

and
interlocking

Crew
availability

Train /
asset

location

GPS,
routes,

signalling
areas

Types of fix:
scheduled,
emergency

…

Mainte-
nance and
reporting

Temporary
restrictions

Prediction
of faults

Historical
data

Automated
safety

standards
checking

Representat
ion of

location

Correlation
of fault

indicators

Feedback
to supply

chain

End-to-end
Ticketing

Transient
network

state

Defect
reports

Figure 4.5: Interconnected RailwayDataManagement Application Areas (re-
drawn from [184, p. 30])

108 designing extensible models for large complex systems

2. Howare you currently using or hoping to use this data?.Work-
shop results here were categorised by attendees into six main
areas, which are shown in Figure 4.7.

The results of the TSC session show a bias towards multi-modal,
and public data, which reflects the nature of the participants at the
session. Whilst some of the data uses exhibited here were not directly
relevant to the railway, many of the cross-mode use cases could ben-
efit directly from the use of a railway-wide domain model.

Models for
Traffic/Impact

of
Interventions

Improving
Network

Performance

End-to-end
Journey
Planning

Informing the
Public

Increasing
Evidence for

Policy
Decisions Safety and

Risk
Management

“Joining the
Dots” - Data

Analysis

Data Types

Figure 4.6: Transport Data Applications Mentioned by Participants at TSC
‘Data Challenge’ Workshop (data from Szluinska et al. [205])

4.2.2.4 The Case for an Infrastructure-centric Model

The scope of RaCoOn was decided based on proposed implementa-
tion areas, perceived cross-application usefulness, and implicit do-
main knowledge. For this reason, the domain models presented here
were authored around railway infrastructure and asset concepts, and
incorporate high level concepts for rolling stock, timetabling, and as-
set management to act as a base ‘domain’ model.

Considering again Figure 4.5, 23 out of 40 scenarios can be intu-
itively seen to have a strong link to infrastructure information, and
would benefit directly from a domain model representing these con-
cepts, as shown in Figure 4.8. 70 out of 153 individual use cases were

4.2 stage 1: specification and scope definition 109

Traffic
flow/

incident
data

Real-time
sensor data

Inventory/
geometry

data

Vehicle
locations

and
movements

Occupancy

Asset
contition/

maintenanc
e

Parking
spaces

EV
charging

points

Weather

Temperatur
e

Air Quality NoiseEarthquake Disruption

Planned

Accidents

Events

Location/
GPS for
people

Land use

Terrain

Points of
Interest

Footfall

Perfor-
mance/

reliability

Bespoke
surveys

Corporate
data

Context

Comm-
ercial

datasets

Metadata

Simulated
data

Transport
Systems and

Infrastructure
Data

Environment
data

Event and
Incident Data

Geospatial data

Other Data
types

Data Types

Figure 4.7: Data Types Used by Participants at TSC ‘Data Challenge’ Work-
shop (data from Szluinska et al. [205])

110 designing extensible models for large complex systems

categorised as either in the realm of asset or operations data, both
of which are areas in which infrastructure data is typically used heav-
ily. The TSC workshops, although oriented towards multi-modal data,
also show a number of use cases that could benefit from a model of
this scope. Five out of seven of the stated use cases could be directly
assisted by the definition of an infrastructure-centric model, and two
out of five of the themes identified for existing datasets directly align
with the themes mentioned (transport systems and infrastructure data
and Geospatial data respectively).

4.2 stage 1: specification and scope definition 111

Spares,
availability,

and lead
times Importance

to network

Quality of
reports

Passenger
understandi

ng of
delays

Supply

Standard
vocabs

Data
interpretati
on for all
levels of

user

Quality and
verification

Maps,
abstrac-

tions,
vehicles

Data
sharing

Cross-
manufactur

er inter-
operability

Data
accessi-

bility

Configurati
on of assets

Unit
formations

Other
stake-

holders

Changes
over time /
evolution

Inter-org
‘incident’

mgmt

Transmodel

Fare info
Train paths
and service

types

Handling
disruption

Models of
train, track,

infra-
structure

Condition
monitoring

Timetabling
Signalling

and
interlocking

Crew
availability

Train /
asset

location

GPS,
routes,

signalling
areas

Types of fix:
scheduled,
emergency

…

Mainte-
nance and
reporting

Temporary
restrictions

Prediction
of faults

Historical
data

Automated
safety

standards
checking

Representat
ion of

location

Correlation
of fault

indicators

Feedback
to supply

chain

End-to-end
Ticketing

Transient
network

state

Defect
reports

Figure 4.8: TSC Workshop Infrastructure-centric Data Integration Themes,
Highlighted From Figure 4.5

112 designing extensible models for large complex systems

4.3 stage 2: architecture and ontology modularity

Modularity, as discussed in Section 2.4.7, is employed in the RaCoOn
methodology to encourage creation of a model made up of several
small modules rather than a single, monolithic one. Modularity is en-
couraged here for the following reasons:

• Re-use. Creating a number of small, disjoint modules allows
future users to include only the modules required for their ap-
plication and aids performance and maintainability

• Understandability. Self-contained ontology modules with a de-
fined scope are intuitive for non-experts who wish to explore
concepts in a particular subdomain.

• Extension and business case. Modularising ontologies makes
access control, versioning, and provenance easier across subsets
of models. In a multi-stakeholder system, individual actors can
be made responsible for individual models, and organisations
wishing to build on an ontology and extend it for their own use
case have a well-defined set of extension points from whcih to
do so.

The approach taken in the RaCoOn methodology is to modularise
ontology creation in two ways: firstly into a semantics-driven hierar-
chy of increasingly specific subdomain ontologies, and secondly by
splitting models into modules of different expressivities. The combi-
nation of these two approaches results in a set of modules which can
be combined and used to cover many different industrial use cases,
and can be customised by domain coverage and expressiveness.

semantic modularisation and hierarchy

The creation of domain models is a difficult business decision to jus-
tify, as by their nature they provide very long term gains rather than a
short term return on investment. Thus, modularisation within indus-
trial ontologies plays another role; that of splitting the effort involved
in creating domain models into several smaller parts, making a busi-
ness proposition to develop each module less expensive or risky. Ef-
fort required to build initial parts of a core ontology to facilitate some
level of interoperability is lessened, without commitment to building
an expensive, comprehensive domain model being needed.

The RaCoOn methodology suggests a hierarchical framework in
which to build ontologymodules, with five distinct layers correspond-
ing to different semantic levels of specification and abstraction, sim-

4.3 stage 2: architecture and ontology modularity 113

ilar to the architecture described by Guarino [86] and described in
Chapter 2. At each level, modules inherit and specialise concepts from
the level above, and are segregated by subdomain to allow applica-
tions to pick and choose which parts of the model to utilise.

• High level ontologies describe a cross-domain conceptualisa-
tion of foundational concepts and relationships.

• Domain ontologies build on an upper ontology to provide vo-
cabulary and interactions for common concepts across a partic-
ular domain

• Subdomain ontologies provide more detailed knowledge about
specific domain areas, for use in a subset of domain use cases.

• Application ontologies adopt one or more domain and subdo-
main ontologies and build on them to represent application-
specific knowledge.

• Task-based ontologies are independent modules which address
a self-contained problem, and may be imported by other mod-
els.

The RaCoOn ontologies described in Chapter 5 fully implement
modules in the first two of these layers. Chapter 6 implements two
application ontologies based on known use cases, and utilises skele-
ton subdomain ontologies in the areas of rolling stock and timetabling.
It is anticipated that further subdomain ontology development will be
undertaken when the demand for it arises.

expressivity-driven modularity

To produce a set of ontologies that are easily usable in industrial appli-
cation, the RaCoOn methodology also suggests segregation of ontolo-
gies into different modules depending on expressivity and verbosity.
This allows applications to choose what concepts to re-use based on a
trade-off between semantic correctness and computational efficiency.
In RaCoON, ontologies are split into ‘vocabulary’ and ‘constraints’
modules, allowing a distinction between applications using OWL RL
concepts and those using fuller DL axioms. Further structure-driven
modularisation is also used to allow identical concept vocabularies to
be viewed from 3D and 4D perspectives, as detailed in Chapter 5. Fig-
ure 4.9 shows how a set of expressivity-driven modules fit within the
semantics-driven modularity structure described above.

114 designing extensible models for large complex systems

Subject Area 1

Vocabulary Constraints

High Level Ontology

Vocabulary Constraints 3D 4D

Figure 4.9: Modularity Based on Expressivity in a Set of Ontologies

4.3.1 Module Interdependence

Considering ontology interdependence is essential to re-usability and
testability of modules, as discussed by Parent and Spaccapietra [159].
Modules that depend on others are harder to test and re-use, as they in
turn require that their dependent modules are loaded. In the semantic
modularisation approach, interdependence should be such that:

• Low level modules depend on high level modules. Vocabulary
modules may extend the structure of more general ontologies
by providing ‘glue’ between newly defined concepts and higher
level modules.

• Application modules should depend on several domain and sub-
domain vocabularies

• Task-based ontologies should minimise their dependence on
other modules, such that they can be re-used outside of the
scope of just one domain ontology. Examples of this include
the RaCoOn documentation ontology discussed in Chapter 5.

In this way, high level ontologies can be tested and validated first,
and then lower level ontologies validated knowing that upper level
concepts they depend on are valid. This approach is outlined further
on in Section 4.6.

4.4 stage 3: knowledge acquisition and conceptuali-
sation

The creation of any conceptual model first requires that an accurate
set of knowledge about the problem domain be obtained. In railway
infrastructure and in similar systems, obtaining this information from
subject experts can be difficult or costly, and no ‘gold standard’ con-
ceptual domainmodel exists to transform. In contrast, the datamodels

4.4 stage 3: knowledge acquisition and conceptualisation 115

of existing systems from across the industry provide clues to vocab-
ulary terms and relationships, but often do not provide sufficient se-
mantic clarity to produce an ontology from.

As such, we propose an iterative approach to knowledge elicitation
and design comprising two parallel workflows. Firstly, key terminol-
ogy is elicited using a ‘top down’ approach from domain experts and
from domain literature, based on high level scope. A high level formal-
isation of entities within scope is defined, and a pragmatic set of high
level concepts defined. Secondly, and in parallel, transformation of ex-
isting resources is undertaken, drawing upon and extending the high
level concepts already defined by experts. The apparent semantics of
these terms are taken into account, and are verified and expanded
upon by domain experts to provide even coverage of a domain at the
high level stage.

This process is repeated as more knowledge becomes available, un-
til an ontology that fits the high level requirements is reached. It does
not guarantee any level of detail or coverage, but provides a way of
building an effective and extensible high level domain ontology.

4.4.1 Top-down Knowledge Acquisition

Theaimof a top-down approach to conceptualisation is to elicit knowl-
edge and structure of a domain independently of any bias provided
by existing models or resources. It should usually be undertaken in
collaboration between domain experts and ontology engineers, and
its aim is twofold:

• Initially, it should establish a skeleton upper level conceptuali-
sation of a domain, to be used as a basis for further modelling
and for vocabulary terms.

• Iteratively, it should provide a well-grounded conceptual struc-
ture for vocabulary terms and relationships. Terms that are elicited
from existing vocabularies should prompt additional analysis,
maintaining a consistent ontology.

In this process, the knowledge elicitation, conceptualisation, and
formalisation stages can be combined. For creation of semi-formal
models, software tools such as Topbraid Composer and Protégé now
provide enough assistance and modelling cues that knowledge can be
conceptualised by a knowledge engineer and directly constructed us-
ing these tools, rather than having to use separate specialised tools to

116 designing extensible models for large complex systems

formalise and build the set of OWL axioms later. This simplifies the
design process significantly.

4.4.2 Initial Conceptualisation and Iteration of RaCoOn ontologies

In the RaCoOn ontologies, knowledge used in top down design was
elicited by initial meetings between the ontology engineers, signalling
experts at Invensys Rail, and other railway academics at the Univer-
sity of Birmingham. Following these workshops, the domain concep-
tualisation was extended by drawing on personal domain knowledge
and specific resources, as follows:

• Visits to Invensys Rail Group in Chippenham and Birmingham,
to gain familiarity with signalling, control, and design concepts
within the organisation

• Attending Railway Systems Engineering and Integration MSc.
modules at the University of Birmingham

• Discussions with visiting academics and engineers

• Manual knowledge extraction from the rail domain wiki dis-
cussed in Roberts et al. [184].

Starting with the scope and structure defined in Section 4.2, the
domain was decomposed into subdomains corresponding to the main
areas of interest, providing a meta-model on which to base concepts.
This meta-model was then filled out with an initial set of concepts,
along with typical traits, that led to the definition of a set of design
questions for modelling other domain and upper level concepts. For
example:

• “How do we deal with the distinction between physical things
and the roles that they provide?”

• “Trains have wheels. How do wemodel the whole-part relation-
ship here?”

• “A track may be electrified, or may not be. It may have train
protection, it may not. How do we represent track characteris-
tics?”

By attempting to model the answers to these questions using the
implementation process described in Section 4.5, further questions are
asked and further concepts discovered. As model design continues, its
scope is refined further by domain experts, and reuse of existing data

4.4 stage 3: knowledge acquisition and conceptualisation 117

models extract further vocabulary terms to be considered. Once a set
of questions is specific enough to be formalised in OWL, a set of CQs
are defined from expert knowledge and existing models to formalise
the exact requirements of a part of the model, and modelling is under-
taken based on these.

The repetition of this process allows a complete view of the domain
to be created independently of specific application requirements, an
example of which is shown in Figure 4.10.

What makes up railway infrastructure?

What to do with track should we model? what signalling concepts exist?

track signalling

How do we model track topology?

How do we model track gradients?

how do we represent track circuits?

search in existing models

how do we model a balise?

asset characteristic ODP

track circuits

track topology

track gradients

track circuits

search in existing models

…

balise

existing ODPnew ODP

track topology ODP

…

new ODP

Figure 4.10: Diagram Showing Design Question Paths to Domain Model
Construction

Once a specific design question is reached, CQs can be developed.
In the case of ‘how can we model a balise’, these questions may be:

• “What type of balise is Balise X?”

• “What position along the track is Balise X located?”

• “What operational state is Balise X in?”

• “Is Balise X part of a group of balises?”

4.4.3 Knowledge Extraction from Non-Ontological Resources

The second approach to knowledge elicitation involves extraction of
terms from known non-ontological models. In this methodology, the

118 designing extensible models for large complex systems

process of re-engineering non-ontological resources such as XMLdata
models are focussed on, although the same manual approach can be
applied using ontology-based resources too. Re-engineering existing
resources in parallel with a top-down approach has two distinct ad-
vantages:

1. Gaining domain vocabulary and semantics ‘for free’.Whilst these
resources are usually designed for specific applications and ex-
change situations, they also provide a mechanism for integrat-
ing concepts that may otherwise be missed.

2. Extracting vocabulary and semantics forces validation of top-
down approaches. If an initial model makes assumptions that
do not hold when re-engineering an existing resource, this may
indicate a problem with the conceptualisation.

Search Non-ontological
Resources

Assess Candidates Extract Lexical Entities

Calculate Precision

Calculate Coverage

Evaluate Consensus

Evaluate Quality

Build an Assessment
TableSelect Appropriate NORs

Data Gathering

Re-engineering

Implementation

Gather schemas,
documentation, and other
resources related to the model

Figure 4.11: Stages in NeON Methodology Non-ontological Resource Reuse
Process

4.4 stage 3: knowledge acquisition and conceptualisation 119

The NeON methodology describes a comprehensive technique for
evaluating resources for reuse and then re-engineering them using a
six stage process, as shown in Figure 4.11. Here, we additionally use
NORs as a prompt for further ontology development: concepts found
feed back into the iterative design process and prompt further manual
knowledge elicitation.

4.4.3.1 Finding and Assessing Candidate Models for Reuse

When designing the RaCoOn models, a number of factors were taken
into account when considering models for reuse. These factors were
as follows:

• Perceived Scope Alignment: the amount to which the model’s
stated aims and requirements align with those of the candidate
ontology or required data to be modelled.

• Authority and Provenance: the perceived credibility of the au-
thor with regard to their data modelling capabilities.

• Industrial support: the level of uptake the model has across the
industry, to be regarded as endorsement for the model’s useful-
ness or quality

• Semantic expressiveness: the level towhich themodel describes
its concepts.

• Documentation and support: the amount of human-readable
additional documentation that accompanies the model. In in-
expressive models, this documentation can be the only way of
inferring the definite semantics of terms.

• Perceived Modelling Quality: from inspection, the quality and
consistency of the model’s schema design.

An evaluation of candidate models for the RaCoOn ontologies us-
ing these metrics (ranked between 0 and 5) is shown in Table 4.2

4.4.3.2 Data Gathering, Re-engineering and Implementation

The NeON methodology provides a complete overview of methods
for transforming non-ontological resources into OWL, and the ex-
act techniques for doing so are likely to depend on the nature of the
non-ontological resources to be transformed. In the RaCoOn ontolo-
gies, RailML was used extensively for knowledge extraction, and Sec-
tion 5.4.7 describes the motivations for and methods of manual trans-
formation that was undertaken for this purpose.

120 designing extensible models for large complex systems

Table 4.2: Table Showing Subjective Metrics for Non-ontological Resource
Reuse in RaCoOn Ontologies

M
od

el

Au
th
or

ity

Up
ta
ke

Sc
op

e

Ex
pr

es
siv

ity

Qu
al
ity

D
oc

um
en

ta
tio

n
To

ta
l

RailML 3 3 5 3 (XML) 3 4 21
SDEF 4 - 3 3 3 3 16
LDL 4 2 3 2 3 3 17
RFA 5 - 2 3 4 5 19
MIMOSA 4 4 1 3 5 5 22
ISO15926 3 3 1 5 5 4 22
RailTopoModel 2 4 4 4 3 3 20

4.5 stage 4: implementation and ontology reuse

Implementation of ontologies in the RaCoOnmethodology relies upon
ontology engineers to formalise knowledge in OWL. In order to en-
courage reusability and adoption, emphasis the use ofwell-documented
and designed Ontology Design Patterns (ODPs) [69], as well as adopt-
ing current semantic web best practice, which focusses on reusability
and pragmatism.

4.5.1 Ontology Design and Implementation Best Practice

To encourage re-use and extensibility, ontologies should follow best
practice in the disciplines of computational ontology design as well
as semantic web development. Fortunately, these two disciplines are
becoming increasingly well-aligned and standardised, and a set of de
facto standard design procedures is now apparent from the literature.

Firstly, the need for minimal ontological commitment has already
been stated in Section 4.1.3.1. Models should not include axioms and
concepts that are not likely to be required by users for the sake of effi-
ciency and manageability, and over-constraining models should also
be avoided. Therefore, in domain modelling efforts should be taken
to ensure that out-of-scope concepts are not included, and that ax-
ioms constraining relationships between concepts are only included

4.5 stage 4: implementation and ontology reuse 121

if they add value to the model. In the RaCoOn methodology, this is
undertaken by reviewing concepts with domain experts prior to in-
clusion, and by considering likely use cases for each addition prior to
including it in a model.

Another tenet of contemporary ontology design is to ‘re-use as
much as possible’ [65], in order to ease the reuse of data that has been
represented. When considering ontologies for circumstances where
automated reasoning is to be used, this issue of reuse is particularly
important: popular ontologies for representing some concepts are of-
ten too inexpressive or too expressive for an intended use case, and
so compromises have to be made. In the RaCoOn methodology, 4.5.5
describes methods for reusing ontologies.

Finally, in order to encourage adoption and reuse of an ontology,
good documentation is required. A number of strategies for docu-
menting ontologies are discussed in Section 4.7.1, and the RaCoOn
methodology includes several novel documentation methods, shown
in Section 4.7.2.

The following sections further address how OWL is used in the
RaCoOnmethodology in order to create ontologies that are pragmatic
and fit the aims described in Section 4.1.

4.5.1.1 Constraints in Domain Models

A key principle of ontology modelling in general, and particularly
domain modelling, is:

“Keep domain models and usage models separate” (from
Uschold and Grüninger [213])

This alludes to the tendency by novice ontology engineers to treat
domain models as they would models for syntax validation—that is,
to over-commit the domain model such that errors in data entry could
be detected as logical inconsistencies and rejected. Instead, it is sug-
gested that instance data entered as RDF triples should be pre-validated
by applications, such that reasoners assuming correct and valid knowl-
edge can function efficiently. OWL axioms can still be exploited to
provide search a service by interpreting them under the closed world
assumption, as discussed in Section 2.6.4.2, and the RaCoOn models
keep such axioms in seperate modules to easily facilitate reasoning in
this manner.

122 designing extensible models for large complex systems

4.5.2 Use of Ontology Design Patterns To Encourage Re-use

A significant element of the RaCoOn methodology is in the definition
of useful ODPs to assist in creating ontologies.The definition and doc-
umentation of new patterns in the ontology design process itself is a
key component in ensuring reusability and extension of models that
are created, and the methodology itself suggests several patterns to
aid creation of pragmatic industrial ontologies. Work in this thesis
draws upon a number of existing, accepted design patterns [51, 70,
71], and proposes some novel patterns arising from the need to repre-
sent new concepts.

Ontology Design Patterns (ODPs) presented in this thesis are de-
scribed in this chapter and in Chapter 5. Those described here are
generic patterns to aid in the construction and documentation of on-
tologies, whilst ontology-specific patterns used in the creation of the
RaCoOn models are described in the next chapter. Additionally, pat-
terns to encompass specific reasoning solutions are discussed in Sec-
tion 4.5.6.

4.5.3 Pattern Design vs. Reuse

In order to satisfy the requirements for reusability and understand-
ability shown in Section 4.1, the RaCoOn methodology encourages
the use and creation of ontology design patterns to describe reusable
elements of new ontologies and to document ways of representing ter-
minological concepts. Initially, the adoption of other commonly-used
existing design patterns from other domains is encouraged in order
to ease the use of knowledge from these domains in future. Should
other patterns be absent or unsuitable for adoption, the creation and
documentation of new patterns makes it far easier for new users to
build upon concepts and themes present in constructed ontologies, in
a similar manner to how design styles and patterns are documented
in software engineering.

By encouraging the reuse of patterns and ontologies, de facto stan-
dards for the representation of certain terms appear, reducing the
amount of effort required when mapping knowledge between ontolo-
gies in applications. Examples of extensive reuse can be found inmany
semantic web ontologies, an overview of which can be found in Alle-
mang and Hendler [5].

4.5 stage 4: implementation and ontology reuse 123

A summary of the approach taken by the RaCoOnmethodology for
concept formalisation using design patterns is shown in Figure 4.12.
Section 4.5.4 and Section 4.5.5 consider in detail the design and imple-
mentation of these patterns.

Can an
existing pattern in the

model be used to represent
the concept?

Can an existing pattern in
the model be extended?

Is it facilitated by an
existing good ontology?

Start

Reuse existing
ontology

Extend existing
pattern

Use existing
pattern

Create new
pattern

Yes

Yes

Yes

No

No

No

Figure 4.12: Steps Towards Concept Formalisation in RaCoOn Methodology

The first step in the process is to search out existing similar ap-
proaches to representing the knowledge to be modelled within the
subject ontology itself. Some concepts share design patterns, and em-
ploying consistency in how concepts are modelled across a module
or ontology may be worth more in understandability and reusability
than the advantages gained by taking a new approach. Should this not
be the case, engineers are asked to seek out patterns or mechanisms
present in other third party ontologies that may be of use—such pat-
terns may be found in ‘gold standard’ models from other domains, or
from dedicated libraries of ontology design patterns such as ontolo-
gydesignpatterns.org and Dodds and Davis [51].

Finally, ontology engineers are asked to engineer the new concept
themselves, and to document it as a new design pattern if appropri-
ate (i.e. if it is likely to be of any other use modelling other concepts).
This approach ensures the development of ontologies that maximise

124 designing extensible models for large complex systems

reuse of existing resources and are consistent with themselves, and
is similar to existing methods [65]. It should be used both when de-
signing domain ontologies and when extending them to model new
knowledge.

Often, the decision between ontology reuse and original pattern
creation is dictated by the quality of candidate ontologies rather than
their existence. The subject of formalisation and reuse itself has been
discussed at length by a number of authors and in the methodolo-
gies already examined (see Falbo et al. [60], Fernández-López, Suárez-
Figueroa, and Gómez-Pérez [65], and Pinto and Martins [163] for ex-
amples).

4.5.4 Developing Ontology Design Patterns

When an original contribution to the ontology is made that is likely
to be reusable, it should be as part of an content pattern. A concept’s
association with an ODP provides traceability and an explanation for
its existence, as well as a mechanism for future users who may wish
to model similar concepts to do so.

The actual conceptualisation and implementation of a particular de-
sign pattern are specific to themodelling requirements, and are for the
ontology engineer to create. They should, however, be documented in
the following two ways to aid usability and extension in the future:

• By using theODP documentation pattern described in Section 4.7.2,
which provides a mechanism for representing design patterns
within the ontology itself.

• By filling out ontology design pattern ‘filling cards’, as described
in Suárez-Figueroa, Gómez-Pérez, and Fernández-López [203, p.
32]. Filling cards provide a template for documenting a new on-
tology design pattern, encouraging ontology engineers to de-
scribe the definitions, goals, input, output, and other character-
istics of the pattern they have created.

In development of the RaCoOn ontology, filing cards were kept for
each ontology design pattern using Evernote1 and are present in the
OWL ontology files themselves. Further detail on RaCoOn design pat-
terns as well as those used in Chapter 6 are given in Tutcher, Easton,
and Roberts [211].

1 http://evernote.com/

4.5 stage 4: implementation and ontology reuse 125

4.5.5 Reusing Best Practice Ontologies and Patterns

Figure 4.13: Visualisation of ‘Linked Open Vocabularies’ Datasets by Size,
Taken from http://lov.okfn.org/dataset/lov/

A significant driver for the re-use of best practice vocabularies is
the extensibility afforded by subscribing to a representation used by
other parties, in order to maximise the potential for easy data inte-
gration. Recently, catalogues of such ontologies and design patterns
(such as those shown in Figure 4.13) have become available online2345,
and are easily reused in new ontologies. However, many linked data
vocabularies cannot be directly reused:

• A large proportion of web datasets are intentionally written
in pure RDF or using RDFS semantics, which aids usability in
linked data applications but can lead to inconsistency in OWL
DL.

• Some ontologies provide are conformant to OWL DL, but re-
quire richer or looser semantics within a domain model (for ex-
ample the W3C Geo vocabulary [25])

2 http://lov.okfn.org/
3 http://www.gong.manchester.ac.uk/odp/
4 http://ontologydesignpatterns.org/
5 http://www.linkedmodel.org/

126 designing extensible models for large complex systems

• Many web ontologies written in OWL are technically outside
the scope of OWL DL, and fall into the OWL Full profile [223].

A method for reconciling such ontologies to the needs of the do-
main model under construction is required.This method should allow
linked ontologies to conform, but also encourage re-use according to
the original semantics of the vocabularies. In contrast to other ontol-
ogy re-engineering approaches, we aim here to maintain the original
structure and terminology of the original vocabularies, such that map-
ping between terms is trivial. Figure 4.14 shows the stages in re-using
best practice ontologies, and further explanation of each stage is pro-
vided below.

Establish ontology
expressivity

Remove out-of-scope
Axioms (Prune)

Align ontology to
proposed expressivity

Modify ontology
namespace

Evaluate ontology

Use automated or manual tools to establish the
semantic profile of the ontology to be reused.

Remove irrelevant axioms; those that are not
within the scope of the target ontology.

Patch ontology
Modify axioms between out-of-scope and in-
scope concepts in ontology for re-use

Manually align assertions in source profile to
target profile expressivity.

Create new namespace for modified ontology.

Test ontology by attempting representation of
knowledge from both the source use case and
the target use case.

Integrate with
target model

Integrate directly into ontology or use
<owl:import> mechanism

Figure 4.14: RaCoOn Methodology Ontology Integration Process

4.5.5.1 Establishing Ontology Expressivity

The first step in re-using best practice ontologies is to identify the
profile and axioms within the ontology. This is established either by
inspection or using online validators [105, 171]. Ontologies that are

4.5 stage 4: implementation and ontology reuse 127

valid in the target profile require no modification to their semantics
for re-use, significantly reducing the amount of reuse effort required.

4.5.5.2 Ontology Pruning

Ontology pruning [44] is the act of removing axioms from a candi-
date ontology for reuse, and is often considered as part of an ontology
modularisation and extraction process, in techniques such as those de-
scribed by Courtot et al. [41]. Irrelevant axioms may have a negative
effect on the target ontology by unnecessarily increasing the T-box
size and therefore increasing reasoning complexity. In some cases, in-
correct or incompatible axioms may also be removed. An example of
this is given in Section 5.3.2.2 where the NASA QUDT ontology is
partly re-used. A formal methodology for the pruning of OWL on-
tologies is given by Conesa and Olivé [39].

Conesa et al’s technique prioritises ontology soundness; it does
not allow the removal of irrelevant concepts that are depended on
by concepts in the desired part of the candidate ontology, and it di-
rectly removes all constraints which connect relevant with irrelevant
concepts. Here, we propose a more pragmatic manual approach, and
‘patch’ ontologies to approximate their original semantics.This patch-
ing process is undertaken by:

1. Identification of constraints between relevant and irrelevant con-
cepts.

2. Manual curation and re-construction of constraints and class
hierarchies based on relevant concepts.

3. Removal of irrelevant concepts.

ontology alignment

This process seeks to convert the pruned ontology to the correct se-
mantic profile and structure of the target ontology. Terms that are ei-
ther too expressive or conflict with the target ontology profile may be
either deleted or reconstructed. For reuse in the RaCoOn ontologies,
this was undertaken manually, intuitively mapping RDFS ontologies
into OWL6, or reducing the expressivity of OWL Full ontologies to
suit our requirements, as in the following examples:

• Refinement or modification of property domains and ranges

6 Some semantic conflicts exist between RDFS and OWL, as discussed in Pan and
Horrocks [157]

128 designing extensible models for large complex systems

• Conversion of rdfs:Class concepts to owl:Class

• Assertion of owl:DatatypeProperty or owl:ObjectProperty
membership over property resources.

• Restriction of object property assertions to within the OWL DL
profile (from OWL full).

Additionally, consideration of how concepts fit with the target on-
tology meta-model should be made. In the RaCoOn ontologies, re-
used concepts were subclassed underneath existing categories and
classes, so as to fit with the existing ontology structure and to allow
conformance with existing constraints and axioms. Efforts were also
made to ensure that imported ontologies met the documentation stan-
dards set out in Section 4.7.2, which require that all concepts have a
minimal set of RDF annotations describing their purpose.

This method of ontology alignment pruning works well for extract-
ing vocabulary and patterns from large ontologies for reuse elsewhere.
It does, however, affect compatibility with the original models them-
selves, particularly where axioms have been altered to fit the expres-
sivity of the target ontology. This is a necessary trade-off where the
profiles of two models conflict, but limits compatibility with these ex-
isting models in the future.

4.5.5.3 Proposed Ontology Evaluation and Namespace Assignment

Once the alignment stage is undertaken, the candidate ontology should
be validated and tested, by:

• Checking its expressivity conforms to that expected and required
by the target ontology

• Testing that it can represent information in the target ontology
as expected, by evaluation against test data from the original
application and for the target domain ontology (see D’Aquin
[44])

The namespace of the modified ontology should be modified to re-
flect that it no longer reflects the exact same semantics as its original
model, and provenance information added to state this. In RaCoOn,
the original CURIE prefixes continue to be used, to visually indicate
that the re-used ontology is similar to its source and should be used
in the same way.

4.5 stage 4: implementation and ontology reuse 129

4.5.5.4 Ontology Integration

Re-used ontologies can be integrated either through owl:imports

declarations in the target ontology, or through adding axioms to the
document directly. In RaCoOn, ontologies representing small design
patterns were integrated directly (such as the W3C Geo vocabulary)
whilst larger ontologies such as PROV andQUDTwere imported from
local files.

4.5.6 Expressivity and Reasoning

OWL allows ontologies to be built with a high level of expressivity; in-
deed, this is one of the motives for its choice as an ontology language
for the models described in this thesis. However, highly expressive on-
tologies that take full advantage of the semantic constructs OWL DL
provides are difficult to reason over: the worst case N2EXP-time per-
formance characteristic means that inference over large knowledge
bases can be impossible using standard tools. Although optimised rea-
soners show better performance, full DL reasoning over large knowl-
edge bases is still unfeasible [104], and other approaches are often
required.

To better understand the implications of ontology axioms and in-
ference, it is worth highlighting three applications for an ontology
written using OWL, considered in Chapter 2:

1. OpenWorld reasoning: using formal semantics to deduce addi-
tional information that is useful to a domain or set of systems.

2. Closed World reasoning and constraint checking, to provide
data validation. In this way, a new set of assertional data about
a system can be checked to see if it conforms to an ontology’s
model of the domain.

3. Detailed conceptual modelling: using OWL as a language with
which to formally describe a domain or system, with little em-
phasis on reasoning. Such models are typically created in OWL
Full, and ignore OWL DL semantic restrictions where conve-
nient.

In the case of open world reasoning, three general use cases for an
industrial domain ontology are envisaged:

1. Materialisation and validation of the ontology (T-box) itself
using reasoning.

130 designing extensible models for large complex systems

2. Enrichment of small assertional models (such as static railway
network data) by inferring axioms from a domain ontology.

3. Web-scale reasoning over large or federated knowledge bases
or mapped systems, in order to infer extra semantics based on
domain logic. Examples are shown in Chapter 6.

The requirements of these use cases lead to different characteris-
tics of ontologies to be designed. Axioms required by detailed concep-
tual models lead to performance decreases in reasoning, and design
patterns designed using expressive OWL DL characteristics may be
better re-written using different constructs if web-scale reasoning is
required.

4.5.6.1 Model Expressivity

It is likely that a domain ontology will be used in all three of the de-
scribed situations. For small models, expressive ontologies provide a
way of inferring data about a set of knowledge, and for large models
reasoning provides a way of encapsulating domain knowledge and
business rules, as long as it is reasonably efficient to compute these
rules. The logical modularisation approach shown in Section 4.3 al-
lows combinations of different modules to be used in different sce-
narios.

In the RaCoOn ontologies, each semantic module is split into two
logical modules: a ‘core’ module containing terminology, T-box re-
lations, and other minimal semantics7, and a ‘constraints’ module,
containing restrictions on classes and more highly expressive con-
structs. This allows construction of expressive and descriptive ontolo-
gies, whilst allowing only the core part of the model and to be used
in applications where scale and speed are more essential. Table 4.3
shows the constructs which are placed in each ontology.

This approach provides an alternative to simply choosing to inter-
pret a subset of a DL ontology’s semantics when scalability and per-
formance is required. It has several advantages:

• Easier predictability of inferred axioms. By having an RL-compliant
core subset and using an OWL RL reasoner over this subset,
sound and complete reasoning over it is achieved. If using an
OWL RL reasoner on an OWL DL ontology, knowing what in-
ference behaviour to expect requires in-depth knowledge of the
OWL RL profile.

7 both the upper and rail core ontologies conform to OWL 2 RL

4.6 stage 5: validation, evaluation, and iteration 131

Table 4.3: Division of OWL constructs between core and constraints ontolo-
gies

Core Constraints

Classes Property chain restrictions
Object & Datatype Properties owl:EquivalentClass assertions
Core Individuals owl:subClassOf restrictions
Class and property hierarchies Cardinality restraints
Annotation properties Closure axioms
Simple domain and range
restrictions9

Complex domain/range
restrictions

• Finer control over expensive constraint axioms: some assertions
in the constraints module are valid in OWL RL, but still expen-
sive and have limited use in large scale applications.

4.6 stage 5: validation, evaluation, and iteration

In light of existing state-of-the-art ontology validation approaches, as
described in Section 2.4.8, several techniques are suggested for use in
the RaCoOn methodology. Owing to the nature of the industrial do-
main ontologies the methodology is intended for, many conventional
validation techniques cannot be used. The need for additional mod-
ules to satisfy any one application’s requirements, for example, makes
corpus-based evaluation difficult. Four goals are focussed on, which
are applicable to domain ontologies with a high degree of knowledge
re-use, as follows:

• Goal: Structural, syntactic, and logical correctness. These fac-
tors can be assessed through inspection using automatedmeans.
Ontologies should be checked to see that they conform to rele-
vant RDF and OWL profiles, and that the structure of the model
conforms with expected semantics.

• Goal: Domain Coverage and Scope. The scope of the model
should be assessed through consultation with industry experts
and stakeholders, and through comparison with similar modu-
larisation approaches shown in literature.This is achieved through
comparison with existing models and expert knowledge.

• Goal: Assess Suitability.The usefulness of themodels should be
assessed through in-use validation. Legacy systems and applica-

132 designing extensible models for large complex systems

tions should be re-implemented using the model framework in
order to assess system functionality and suitability.

4.6.1 Logical Validation

Structural, syntactic, and logical validation is an initial ontology val-
idation step that guarantees at least structural, syntactic, and logical
interoperability with other models. Here, we suggest three methods
for validating models that check conformance with OWL and analyse
ontology quality using automated means. Owing to its automated na-
ture, this form of validation can be carried out at the end of every
design iteration. Analysis results can then be used in the following it-
eration of the ontology design process to address any inconsistencies
or issues in model design.

rdf and owl conformance

RDF syntax compliance is a requirement of all semantic models and
vocabularies suggested in this methodology. To ensure RDF validity,
two approaches are suggested:

• Development of ontologies in RDF-centric development tools
such as Topbraid Composer and Protégé, as well as RDF APIs,
restricts ontology development to valid RDF documents. Where
other toolswere used in the development of the RaCoOnmodels
(such as text editors), ontologies were validated by inspection
in Topbraid Composer.

• Validation and debugging using the W3C RDF Validator10 at
milestones. This relies on a different parser implementation to
those used in Jena and the OWL API, and can be used to con-
firm the validity of document syntax. A screenshot is shown in
Figure 4.15.

For ontologies (T-boxes), all models should conform to the OWL
DL profile. Listing 4.3 shows a method that calls upon he OWL API
to check both syntax and conformance to all OWL profiles.

An alternative to this custom validator is the Manchester OWL 2
Validator11, a web application built on the OWL API that provides a
similar service, but presents its results in an easier to read format and
provides additional information on complex axioms.

10 http://www.w3.org/RDF/Validator/
11 http://owl.cs.manchester.ac.uk/validator/

4.6 stage 5: validation, evaluation, and iteration 133

Figure 4.15: W3C RDF Validator Results for Upper Ontology

public void profileOntology() throws OWLException {
// Get hold of an ontology manager

OWLOntology o = m.loadOntologyFromOntologyDocument(new
File(”ontology.rdf”));↪→

ArrayList<String> conformantProfiles = new
ArrayList<String>();↪→

for (OWLProfile profile : PROFILES)
{

OWLProfileReport report = profile.checkOntology(o);
for (OWLProfileViolation v :

report.getViolations())↪→

System.err.println(v.toString());
if (report.isInProfile())

conformantProfiles.add(profile.getName());
}
System.out.println(String.format(”Ontology is in

profiles %s”,conformantProfiles.toString()));↪→

return;
}

Listing 4.3: Ontology Validator Method Listing

134 designing extensible models for large complex systems

logical analysis using oops!

The OntOlogy Pitfall Scanner (OOPS!) [168] is a validation tool that
uses an automated tool to check several OWL ontology characteris-
tics, and its use is suggested in the RaCoOn methodology to check
for common pitfalls in ontology design to evaluate work throughout
the development process. It categorises these characteristics into six
groups, including human understanding, consistency and compliance,
modelling issues, and import resolution. Results from OOPS! should
be considered with some caveats:

• Some OOPS! ‘pitfalls’ are the result of intentional design deci-
sions and misdiagnosed, and discretion should be used when in-
terpreting results. For example, OOPS! misdiagnoses ‘missing’
inverse properties even if they are intentionally omitted.

• OOPS! does not consider ontology re-use or modularisation:
tested models must be complete and compliant. This can create
validation warnings for several reasons, even if the ontology is
logically consistent. Errors occur, for example, when re-using
non-DL web ontologies from other sources.

• Warnings about missing axioms in imported ontologies. OOPS!
analyses the union of an ontology and its imports: errors present
in third party ontologies are presented in the sameway as warn-
ings about the authors’ models.

Thus, the results of theOOPS! scanner are an indication of the likely
quality of an ontology, but some ‘minor’ pitfalls are expected from
large ontologies. The RaCoOn ontologies are validated in this way in
Section 5.5.

4.6.2 Ontology Coverage through Application Data Mapping

When designing models for domains that currently employ a large
number of heterogeneous information systems, it is possible to draw
upon some of these systems to validate candidate new models. Au-
thoritative data models and sources are utilised for initial ontology
design, scope, and construction, and smaller applications and models
can be used to verify and validate that a model’s scope and implemen-
tation are appropriate.

One metric for validation of the usefulness of an ontology proposed
here is its ability to represent data from such applications; especially

4.6 stage 5: validation, evaluation, and iteration 135

those not initially drawn upon in the knowledge engineering stage.
In the absence of a gold standard model or a large corpus of domain-
centric text, application data models can be used to elicit domain
terminology and relationships manually. By creating mappings from
known real-world data sources to the ontologies, a measure of cover-
age and modelling quality can be established. An approach that ap-
plies this is suggested as follows:

1. Discovery and choice of legacy applications and correspond-
ing datasets for integration. Choice should be based on the scope
of applications themselves rather than underlying data models
to avoid bias against those known to include concepts foreign
the testing ontologies.

2. Conceptualisation of legacy data.The semantics of data present
in amodel should be re-established, either through consultation
with an appropriate schema, through use of the application it-
self, or through consultation with application users.

3. Mapping of legacy data to ontology under test. This could be
undertaken using manual or automated schema mapping tools,
OWLmapping languages, or bespoke software. Such approaches
are not discussed in detail here; overviews of ontologymapping
techniques are provided by Kalfoglou and Schorlemmer [118]
and Rahm [174].

4. Analysis of initial coverage:

• How much of the information represented in the legacy
model can be represented in the ontology appropriately?

• How much of the information represented in the legacy
model can be represented, but with unintended semantic
repercussions?

• Are axioms present in the ontology invalidated by legacy
data? Is this caused by false assumptions in the legacy
model or false assumptions in the ontology?

5. Ontology extension. In the case where legacy data is not fully
represented, can extensions be used to encompass all data?

6. Analysis of extension

• Was extension impeded by the ontology at any point (for
instance through overly restrictive constraints)?

• Should any of the knowledge in the extension ontology be
present in the domain ontology?

136 designing extensible models for large complex systems

7. Evaluation and Iteration: Metrics from the above questions should
be compiled to give an indication of validity based on integrat-
ing this system. The ontology may be extended in light of gaps
or errors found, and the process repeated.

This approach provides an indication of the quality and scope of
the part of a domain model corresponding to a given application’s
use case.The techniques used to identify necessary ontology concepts
vary between mappings; in some cases, manual schema mappings of
a small data model may validate some part of an ontology, whilst in
others a formal project to map all elements of a more comprehensive
legacy data model may be necessary to more accurately establish cov-
erage.

The application of this approach to the RaCoOn models is shown
in Section 5.5.

4.6.3 In-use Validation

As an extension to the ontology mapping approach outlined above,
domain model usability in the RaCoOn model was further evaluated
through its use in several in-depth application implementation projects.
In Chapter 6, the development of several real-world use cases around
railway data is described, all of which extend RaCoOn models to suit
their applications.These projects warranted extensions to the domain
ontology to represent missing concepts, relationships, and axioms,
and created application-specific ontology modules for this purpose.

A measure of coverage for the base (domain) ontology can thus be
achieved through analysis of the concepts present in the extension
ontologies. In Section 5.5, concepts created in the application ontolo-
gies are categorised according to their purpose (domain or applica-
tion) and detail, so that concepts missing from the core ontology can
be identified. OWL concepts and relationships are rated with a mea-
sure of certainty into one of the following categories:

1. Application-specific.This concept has been created only for the
use of the application itself, and does not have any wider use in
a domain ontology.

2. Subdomain-specific. This concept is common to the railway do-
main, but does not fit into the remit of the core ontology.

3. Domain-wide. This concept should be in an existing domain
model.

4.6 stage 5: validation, evaluation, and iteration 137

By evaluating concepts in this way and inspecting results, a further
measure of domain ontology coverage and quality can be obtained.
Entities that are categorised as ‘domain-wide’ are likely to indicate
concepts that are either missing from the core ontology, mis-labelled,
or have incorrect semantics.

4.6.4 Similarity Measurement Through Expert Knowledge Elliciation

To further assess domain coverage, and accuracy of the obtainedmodel,
a method for evaluation through workshops with domain experts is
described in Section 5.5. Rather than trying to validate every term in
the vocabulary of a candidate domain model, this approach aims to
elicit a wide range of concepts and relationships such that a set of
ontologies can be evaluated against another conceptualisation of the
domain. The workshop aims were as follows:

1. Elicit a list of top level domain concepts from attendees, to fur-
ther evaluate the scope of the model against perceptions of the
wider domain.

2. Generate a set of key subdomain terms, to evaluate ontology
coverage of chosen subdomains.

3. Gather sets of interrelationships between terms, to ‘spot check’
relationships gathered in the domain ontology.

The approach was designed to gain the best possible conceptual
view from a group of experts without pre-biasing them towards the
ontology that had already been created. An exhaustive approach to
this task would have been prohibitively expensive or time-consuming
(in effect, it asks attendees to fully conceptualise a domain themselves,
so that an ontology can be compared to the ‘correct’ answer), but the
idea of asking attendees to assert random facts onto their constructed
models allowed us to take advantage of the depth of their knowledge.
A partial workshop conceptualisation that agrees with the domain
ontology constructed implies that the quality of the modelling in the
domain ontology is good; missed axioms that are considered ‘in scope’
implies that the model is not yet thorough enough.

4.6.5 Iteration and Version Control

To track the iterative design process, it is useful to record and recall
different versions of ontologies over time. Version Control Systems

138 designing extensible models for large complex systems

(VCSs) are used widely in software engineering to manage collabora-
tive software development, and allow tracking and backup of progress
through time. In the development of RaCoOn ontologies, the Git12
VCS was used to facilitate iterative design in the following ways:

• Commits to the repository are snapshot backups of the set of
ontologies at the time they are made. Commits were made of-
ten, marking development progress of the ontology on a day-
to-day basis. Commit messages allow the progress undertaken
to be documented in one or several lines of documentation.

• Branches were used to allow the development of a pattern or
feature, and provide an easy way of documenting progress or
design of new functionality.

• Mergeswere undertaken to combine features back into themas-
ter set of ontologies.

In software development, VCS systems such as Git allow automatic
merging of different feature branches, based on line-by-line differ-
ences between versions. In OWL, care must be taken when merging
files, as an ontology’s consistency can be affected. For this reason,
manual merges were performed in the RaCoOn development process.
Figure 4.16 shows an extract of the RaCoOn ontology’s development
history.

Figure 4.16: RaCoOn Ontology Git Commit History

12 http://git-scm.com

4.7 best practice implementation design patterns 139

4.7 best practice implementation design patterns

As part of the RaCoOn ontology engineering methodology, we also
describe several additional ontology design patterns in addition to
those already mentioned that encourage model extensibility and ease
of reuse. These patterns are implemented in the ontologies described
in Chapter 5, and examples provided here.

4.7.1 Annotation Best Practice and Naming Conventions

‘Self-documenting’ ontologies help users intuitively understand mod-
els, and our ontologies should be annotated accordingly. Annotation
patterns used follow linked data best practice and are summarised in
this section. Firstly, ontological entities are annotated in natural lan-
guage using additional owl:AnnotationPropertys, which have no
impact on its formal semantics. Each entity should provide at least
the following attributes:

• rdf:label provides a human-readable label for each concept

• rdfs:comment provides a design comment for each entity

Additionally, individuals should bemarked upwith a dc:description
to provide a brief description of what they represent. Extension mod-
ules should also follow this pattern, other motives for which are sum-
marised in Allemang and Hendler [5]. Secondly, consistent naming
conventions are used throughout all ontologies as follows:

• Ontology namespaces should convey provenance. Ontologymod-
ules built by the same author, in a hierarchy, should follow
a URI pattern that reflects this hierarchy. If appropriate, URIs
should correspond to an organisation’s web presence.

• All newly defined entities should be assigned URIs correspond-
ing to the namespace of the ontology module they belong to, as
described in Section 5.2.1

• Classes and individuals should be named according to their iden-
tity criteria in English, in UpperCamelCase.

• Properties should be named by noun (without a preposition),
and are in lowerCamelCase. Inverse property namesmatch orig-
inal property names but are suffixed in some way: for example
u:measurement owl:inverseOf u:measurementOf.

Ontology prefixes used across the RaCoOn project are shown in
Section B.1.

140 designing extensible models for large complex systems

4.7.2 Ontology Self-documentation

Documentation of ontology design patterns is typically carried out by
annotating constructs and axioms within the ontology, and providing
accompanying textual documentation separately13. In the RaCoOn
methodology, we present a new pattern to allow concepts associated
with ODPs to be documented through further OWL meta-links to in-
dividuals representing the ODPs themselves.This allows ontologies to
be somewhat self-documenting, and aids new users. The DUL ‘Con-
tent Pattern Annotation Schema’ ontology also provides a set of prop-
erties for representing a design pattern in OWL, but no mechanism
for defining them as entities14).

implementation

An implementation of this pattern is provided in the RaCoON docu-
mentation ontology, described in Chapter 5. An annotation property
and class, doc:partOfODP and doc:ODP are provided. A doc:ODP in-
stance represents one design pattern, and all entities that are part of
this pattern are linked to via doc:partOfODP. The design pattern en-
tity can then be annotated using standard vocabularies to suit the doc-
umentation format.

example

Figure 4.17 shows how this pattern is used to describe the mea-
surement pattern documented in Section 5.3.2.2, providing a name,
comment, and link to HTML documentation.

file://patterns.htm#
MeasurementPattern

s

Measurement Design
Pattern

s

Measurement

unit

value

Unit

ODP

MeasurementPat
tern

partofODP

partofODP

partofODP

partofODP

dc:description

rdfs:label

Ternary relationship
pattern to describe…

s

rdfs:comment

Figure 4.17: Documentation Pattern for Representing Content Pattern Asso-
ciation in OWL

13 Well-regarded design patterns from the literature are almost always presented in
this way, for example: Dodds and Davis [51], Gangemi and Presutti [71] and [5].

14 http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

4.7 best practice implementation design patterns 141

4.7.3 Provenance, Trust, and Metadata

Provenance is information about the origin of a set of data, such as the
organisations responsible for creating or modifying it, the activities
used to generate it, and when or where it originated. Such informa-
tion is of great importance when considering data interoperability,
and can drive choices and considerations on how a dataset is inter-
preted, either at a system design level or during evaluation by a ma-
chine. Even if the explicit semantics of a dataset are fully considered,
its origin and the context under which it was created can have a sig-
nificant bearing on its use. Provenance in the RaCoOn ontologies is
represented by considering two scenarios:

1. The provenance of an individual represented within the model,
such as an instance of a class ex:Document.

2. The provenance of assertions made in the semantic data models
themselves, i.e. model metadata.

Here, three levels of granularity for encoding provenance in RDF
models are considered:

1. Graph provenance. Metadata can be added to RDF graphs in or-
der to represent the provenance of a physical or logical dataset
itself.

2. Concept provenance: encoding the provenance of classes and
individuals within an RDF model using annotation properties.

3. Triple level provenance: where finer description of data prove-
nance and trust is required, triples can use context identifiers to
encode an additional URI to represent additional data.

For domain ontologies, we suggest that provenance of data sets
should be asserted at both the graph level and at the concept level.
Two patterns using existing ontologies facilitate this, and are recom-
mended for use when asserting provenance of assertional data.

4.7.3.1 Graph Level Provenance and Dataset Descriptors

When considering interoperability between RDF datasets, provenance
of the document itself becomes valuable. For example, an application
displaying rail infrastructure by combining several data sources may
wish to prioritise information from one publisher over that of another.

142 designing extensible models for large complex systems

TheRDF datamodel does not provide any explicit mechanisms for rep-
resenting such provenance information, but linked data standards for
doing so have emerged.

Ourmethodology recommends that ontologies and assertional datasets
follow include RDF metadata expressed using the Vocabulary of In-
terlinked Datasets (VoID) vocabulary [4], which provides data prove-
nance such as versioning and ownership, as well as other annotational
information. Whilst VoID is primarily a tool to aid linked data vocab-
ulary discovery, and is designed to describe large datasets of instance
data rather than ontologies themselves, the vocabulary it provides is
effective for describing ontologies too. Dedicated ontology metadata
models also exist [96], but are far less widely used then VoID. A min-
imal example is provided in Listing 4.4.

<http://purl.org/ub/upper/> rdf:type void:Dataset, owl:Ontology
;↪→

foaf:homepage <http://purl.org/ub/upper/> ;
dc:title ”BCRRE Upper Ontology” ;
dc:description ”A simple upper ontology intended for use with

pragmatic industrial data models” ;↪→

dcterms:publisher <http://jtutcher.co.uk/jon> ;
void:dataDump <http://purl.org/ub/upper/> ;

Listing 4.4: Example VoID Description of Upper Ontology

This data can be thought of as ‘global’ provenance and metadata of
a data set, and is used to represent unchanging, model-wide informa-
tion. In an application that draws upon multiple datasets, this infor-
mation could be used to express descriptions, or data origin, to allow
consuming applications to decide whether to trust and incorporate a
data source.

4.7.3.2 OWL Concept Provenance Using Meta-modelling

Several ontologies for representing information provenance exist, with
the W3C PROV-O ontology recently having become a de facto stan-
dard amongst the linked data community. It is a widely reusedmethod
for representing the provenance of information resources, and is thus
a desirableway of representing such data in domainmodels.Themeth-
ods and constructs for representing data provenance using PROV-O
are not discussed here, but are overviewed succinctly in the W3C
PROV Model Primer [76].

PROV-O is designed to model the provenance of real world con-
cepts such as documents (physical or digital) and artifacts, and repre-

4.7 best practice implementation design patterns 143

sents these real world entities using OWL individuals. In other words,
it is designed to model the provenance of the thing expressed by its
OWL representation, and not the provenance of the OWL concept
itself. To document an ontology, a form of meta-modelling must be
used to allow the assertion of provenance about OWL concepts them-
selves. This is easily accomplished using owl:AnnotationProperty

relations, which maintain a logical distance between the concept and
its meta-modelled provenance.

implementation and example

To illustrate this approach to meta-modelling the provenance of con-
cepts in PROV, an example is provided below in three stages:

1. Firstly, a prov:Entity individual is created to represent the
provenance of a particular class, property, or collection of terms.

2. Appropriate provenance information is asserted on this indi-
vidual according to the PROV-O ontology. Information may in-
clude details such as author, modification date, and other tools
or PROV entities that contributed to the creation of the term(s)
that provenance is being expressed on.

3. Classes within the candidate ontology are linked to this prov-
:Entity individual by means of an owl:AnnotationProperty.
As such, rich provenance information can be expressed about
any OWL or RDF terminology expressed in the ontology with-
out affecting the logical characteristics of the terms themselves.

Whilst this is not an intuitive approach, it allows the assertion of
provenance on all concepts in the ontology under development very
succinctly, using a known vocabulary and toolset. Provenance can be
asserted over the design of the ontology with the full power of the
PROV-O model, allowing changes to its structure and ownership of
different parts of models to be tracked and controlled. It does, how-
ever, have several disadvantages. Firstly, the use of OWL annotation
properties with no formal semantics mean that provenance informa-
tion cannot be easily used to reason over the ontology itself. Sec-
ondly, storage of provenance metadata alongside domain knowledge
in an ontology increases its total number of concepts, and could af-
fect reasoning performance as the provenance entities are still first-
class OWL constructs. One solution to this may be to store detailed
provenance information in seperate ontology modules as required, al-
though this possibility is not explored further here.

144 designing extensible models for large complex systems

An example of this technique is shown in Figure 4.18.

ex:ExampleClass

ex:ExampleClass2

prov:Activity

TopDownCreationActivity

prov:Agent

JonTutcher

prov:Entity

ActivityXProvenance

ex:provenanceInfo

ex:provenanceInfo

ex:provenanceInfo

prov:wasAttributedTo

prov:wasGeneratedBy

prov:wasAssociatedWithex:exampleProperty

Figure 4.18: Example Use of Meta-modelling to Assert Provenance Informa-
tion on Ontology Concepts

4.7.3.3 RDF Triple Provenance Using Named Graphs

Occasionally, it may be necessary to represent the provenance of one
particular (or one group of) RDF triples. This can be undertaken by
taking advantage of RDF quads, or ‘named graphs’, which append
a fourth ‘context’ item to each triple. Named graphs are used (and
abused) for many purposes, but can only be used in one particular
way in each application. Our methodology recommends that the use
of named graphs is reserved for representing provenance information:

• Assigning named graphs to sets of triples allows an RDF triple-
store to treat some sets of data differently to others, whilst main-
taining the ability to query across all datasets. Stardog [37] for
example allows reasoning capabilities to be specified per graph.

• Named graphs are part of the SPARQL 1.1 specification, and al-
low users to query across any logical combination of graphs.
If they are used to represent data provenance, the capabilities
of SPARQL queries for extracting data are extended. Assuming
that each data supplier is assigned a named graph, it is for ex-
ample possible to easily answer the query ‘which organisations
hold information about asset X’ using SPARQL.

• Named graphs are not part of the OWL specification, and most
OWL tools do not support their use to imply concept semantics.
By restricting their use to data provenance, the use of OWL
toolsets for ontology creation is simplified.

This technique is used extensively in Chapter 6 to integrate asset
monitoring and passenger information data from multiple sources.

4.8 summary 145

4.8 summary

This chapter has summarised a new ontology engineering methodol-
ogy for creating semantic domain models using ontology engineers,
expert knowledge and existing enterprise information resources. It
outlined pragmaticmethods for scoping, building, and validating such
ontologies in the absence of a defined set of final use cases—a property
which allows such models to be built to assist data sharing across a
domain, as is the requirement in this thesis. Importantly, the method-
ology was developed during work with several railway companies,
and addresses some of the practical barriers encountered during this
process.

The next two chapters use the methodology described here to build
a set of domain ontologies for the railway (Chapter 5) and two ap-
plications with accompanying application ontologies (Chapter 6) to
demonstrate real-life system implementations. These applications ad-
ditionally allow the domain ontologies to be assessed and validated ac-
cording to the techniques proposed in Section 4.6.3, and for the other
design practices outlined in this chapter to be demonstrated.

5
RACOON : PRAGMAT IC ONTOLOG IES FOR THE
RA I L INDUSTRY

5.1 introduction

As described in Chapter 4, the Rail Core Ontologies (RaCoOn) are a set
of novel ontology modules that together form a conceptualisation of
part of the railway domain. The ontologies were designed according
to the methodology set out in the previous chapter, and are focussed
on infrastructure-centric concepts and provide a set of practical mod-
els for use in data exchange applications.
This chapter presents the implementation and content of this set of
ontologies, and shows the results from validation of these ontologies
according to the methodology set out above. It overviews concepts
included in the cross domain and rail domain modules, and explains
design decisions made in each case. To start, a description of the mod-
ular structure adopted by the RaCoOn ontologies is given.

5.2 modular ontology design

5.2.1 Ontology Module Structure

To enable maximum extensibility, the RaCoOn ontologies are divided
into several subject-basedmodules based on the principles outlined in
Section 4.3. The two principle modules are described in detail in this
chapter. The first, a ‘cross domain’ ontology, provides a conceptuali-
sation of cross-domain concepts, including space, time, concept type,
and documentation. The ‘rail core’ module extends this upper ontol-
ogy with generic railway domain concepts and relationships, to act as
a base domain ontology and vocabulary for exchange of data across
applications. Three small subdomain placeholder ontologies are sug-
gested for rolling stock, infrastructure, and timetabling, although these
were not the primary focus of this thesis. A diagram of RaCoOn on-
tology modules is provided in Figure 5.1.

The granularity of these modules is based upon the use cases dis-
cussed in Chapter 4. The scope of each was determined by the mod-
elling process, using knowledge from existing resources and experts.
Each module imports relevant modules from higher levels but none

147

148 racoon: pragmatic ontologies for the rail industry

3rd Party
Ontologies

Task
Ontologies

Rail
Core

Cross-
domain

Cross-
domain3D4D

3D
Core

Rail
CoreConstraints

Constraints

ISRSTT

Application
Ontologies RCMCustomer Information

Franchise
Handover

Asset
Management

Delay
Attribution

uses

QUDT

Collections

PROV-O

Key

uses

Figure 5.1: RaCoOn Ontology Modules Structure

from lower levels. The purpose, namespace, and dependencies of each
module are shown in Table 5.1.

Thus, applications which require a particular subset of features can
import only the modules they require. In OWL, dependencies are as-
serted by the owl:imports property on an ontology entity, and so are
transitive—using the ‘3D Core’ module imports the core vocabulary,
cross-domain ontology base, and cross-domain 3D modules.

5.2.2 Key Concepts and Semantic Trade-offs

To facilitate the requirements for an industrial data exchange ontol-
ogy given in Section 4.2, certain high level design decisionsweremade
in the design and implementation of the RaCoOn ontologies in OWL.
These were as follows:

• Minimal constraints. RaCoOn does not assert the types of con-
tent constraints that could be associated with railway applica-
tion models, as these rarely hold across an entire domain, and
the model is not intended to provide closed world data valida-
tion. Typical restrictions avoided include: the confinement of
railway components to pre-enumerated types; existential rela-

5.2 modular ontology design 149

Table 5.1: RaCoOn Modules and Dependencies

Module Name Namespace
prefix

Dependen-
cies

Description

Cross domain—Base u: None Base concepts
Cross domain—4D u4d: u: Base 4D ontology
Cross domain—3D u3d: u: Base 3D ontology
Cross domain—
Constraints

ucv: u: (3D) Constraint
Annotations

Rail core—Base rcn: u: Railway vocabulary
Rail core—3D core3d: u3d: , rcn: 3D core axioms
Rail
core—Constraints

corecv: core3d: ,
ucv:

(3D) Railway
constraints

Timetable tt: core3d: (3D) Timetable
module

Infrastructure is: core3d: (3D) Infrastructure
module

Rollingstock rs: core3d: (3D) Rolling stock
module

tions for expected characteristics (for example ‘stations must
have platforms’). Constraints are asserted where it makes on-
tological sense to do so, such as restricting spacial properties
to linking only spacial things, and where there is an immedi-
ate reasoning need to do so, such as the assertion of equivalent
classes to identify characteristics.

• Pragmatism over correctness. Where possible, simple and ex-
tensible concepts have been used in place of more verbose but
more expressive alternatives. The set of ontologies is intended
as a practical tool and follows ‘linked data’ best practise, rather
than a philosophically perfect mirror of reality. Examples of
this include the approach taken to representation of quantities,
units, and scales, and how time is encoded.

• Self-documentation over semantic perfection in annotation.
Labels and names in ‘plain English’ are used to identify terms,
rather than equivalent ontology engineering terms. Terms like
‘endurant’ and ‘fluent’ are avoided in favour of more easily un-
derstandable words.

150 racoon: pragmatic ontologies for the rail industry

5.3 the cross-domain ontology

The RaCoOn cross-domain (‘upper’) ontology comprises a simple set
of extensible high level concepts that provide a foundation for domain-
level industrial ontologies. It is intended as a minimal set of axioms to
support the lower level domain ontologies rather than as a true upper
level model, and seeks to address the following design questions:

• How can we represent the upper level concepts required for
realisation of a railway domain ontology?

• How are these concepts conceptualised in a domain-independent
way, such that the potential for re-use and extensibility across
other industries is maximised?

• What are the basic distinctions between things in the real world?

• What high level concepts are subclasses of other high level con-
cepts?

• What properties are required to encompass high level and com-
mon relationships between entities?

In pursuing answers to these questions, several more specific ques-
tions are raised, which are themselves answered by content patterns
introduced later. The cross-domain ontology was created in collabo-
ration with the railway domain modules described in Section 5.4, and
as a result many of the concepts it includes are in direct response to
needs of the domain model itself.

reuse of concepts from standard upper ontologies

The cross-domain ontology does not directly reuse any existing upper
ontologies (as reviewed in Section 3.6.1) , but reuses certain concepts
from other models. Existing upper ontologies evaluated either did not
fit the domains addressed by the RaCoOn models, or introduced a
large amount of abstraction and verbosity in order to properly repre-
sent concepts across all domains. This abstraction conflicts with the
the requirement for understandability set out in Section 5.1.

Ideas taken from the Basic Formal Ontology (BFO) are used to dis-
tinguish between between dependent and independent entities and to
consequently provide a way of using RaCoOn vocabularies in both
3D and 4D, as described in Section 5.3.2.1. The cross-domain ontol-
ogy subclasses dependent and independent entities separately, and

5.3 the cross-domain ontology 151

allows both temporal paradigms to be used to describe information.
Where these are used, they are noted in subsequent sections.

5.3.1 Conceptualisation, Structure and Patterns

This section will outline the structure and concepts present in the
cross-domain ontology, and provide details of their implementation
as a set of reusable design patterns.

5.3.1.1 Top-level Conceptualisation

The RaCoOn cross-domain ontology defines a top-level class hierar-
chy fromwhich to extend domain and taskmodels.The first two levels
of this hierarchy are shown in Figure 5.2.

The main classes in this top-level conceptualisation were arrived at
firstly through top-down consideration of what concepts should exist
in an upper ontology (driven by the design questions approach doc-
umented in the previous chapter) and also iteratively in conjunction
with the rail domain ontology described further in this chapter. The
semantics of these key entities are presented in the following sections.

discrimination based on dependence

u:IndependentThing and u:DependentThing represent the distinc-
tion between entities that can exist in their own right, and concepts
which are dependent upon some other entity. u:IndependentThing
represents ‘real world’ physical and abstract entities such as railway
objects and information assets, and anything whose identity crite-
ria can exist in the real world its own right. u:DependentThing is
the class of dependent entities such as measurements, attributes, and
functions. Dependent objects can be broadly viewed as objects that de-
scribe independent objects, and are thus distinguished from indepen-
dent objects. u:IndependentThing and u:DependentThing are simi-
lar to dul:PhysicalObject and dul:SocialObject respectively.

events and time

u:Event is the class of events: things that cause change in other enti-
ties. Examples are a train departure, the activity of building a railway,
or the act of observing a measurement in a condition monitoring sys-
tem.

152 racoon: pragmatic ontologies for the rail industry

Figure 5.2: OWLViz Diagram of RaCoOn Cross-domain Ontology

5.3 the cross-domain ontology 153

metadata

doc:MetaThing represents meta-modelling and annotation concepts,
such as specific methods for documentation of data provenance and
design. The concepts discussed in Section 4.7.2 are subclassed as part
of doc:MetaThing, as are representations of dialect and presentation.

5.3.1.2 Key Design Patterns

characteristics and convenience properties

In OWL and DL models, the semantics of certain axioms allow a level
of assertional redundancy. For example, defining the rdfs:range of
an owl:ObjectProperty allows a reasoner to infer the class member-
ship of an object (its type); conversely, linking to an individual of a
particular rdf:type can portray additional semantics about the link
without using a specialised property. For example, given the set of
facts shown in Listing 5.1 and the DL axiom below, a new set of facts
can be inferred, as illustrated in Listing 5.2:

⊤ ⊑ ∀ speed SpeedCharacteristic (Range axiom)
⊤ ⊑ ∀ traction TractionCharacteristic (Range axiom)

:Train :speed :_CharacteristicX .
:Train :traction :_CharacteristicY .

Listing 5.1: Example Assertions to Demonstrate rdfs:range Restrictions

:_CharacteristicX rdf:type :SpeedCharacteristic .
:_CharacteristicY rdf:type :TractionCharacteristic .

Listing 5.2: Example Inferences Made Through rdfs:range Restrictions

In the ontologies described here, it is often useful to define charac-
teristics by creating specific owl:Classes to convey their semantics:
this avoids the proliferation of many confusing object properties, and

154 racoon: pragmatic ontologies for the rail industry

allows greater extensibility. It is recognised, however, that more spe-
cific sub-properties may be easier to understand and use, and may
facilitate use of the knowledge base without inference at all. The fol-
lowing design recommendations are therefore made:

1. Characteristics adhering to some design pattern that may re-
quire future extensibility are specialised by their rdf:type and
related through a generic owl:ObjectProperty.

2. Commonly used relations to one particular subclass should use
amore specific and descriptive property, which should be named
as such and should be a sub property of the generic property.

3. These sub-properties should not be relied upon to infer the rdf-
:type of their object; this should be asserted explicitly.

These properties will be referred to throughout this thesis as con-
venience properties, as they do not provide new expressivity to the
model.

optional property assertions

OWL is a monotonic language. If a restriction is asserted over a class,
this restriction must hold true at all times, and no exceptions to it can
be made. Consequently, care must be taken to only assert class and
property restrictions where necessary, so that infrequent exceptions
to expected norms can still be expressed.

For ontology users, an indication of the optional properties expected
of an individual could be useful, in order to provide further documen-
tation of interactions within the domain modelled. Two solution pat-
terns are used in RaCoOn to convey this information.

• Solution 1: Several owl:AnnotationProperties are defined to
allow the assertion of optional properties. Users can either ex-
press optional property assertions using string literals (plain
text), or by linking to owl:Restriction entities through these
properties. The latter approach is more intuitive when reading
documentation in ontology editors and in some serialization
languages, but is not OWL DL compliant.

• Solution 2: The more widely used solution in documentation of
RaCoOn is the use of zero cardinality restrictions to signify op-
tional properties. Rather than enforcing a mandatory property
(in open or closed world) by using an existential restriction, a
cardinality restrictionwithminimum value 0 is asserted instead.
This has no semantic consequence, but allows the ontology user
to see that a relationship of this type may be expected.

5.3 the cross-domain ontology 155

5.3.2 Representation of Common Concepts

The following sections outline descriptions and patterns for represent-
ing core concepts in the RaCoOn cross-domain ontology. methods for
describing temporally-changing data, quantities and units, and mere-
logical concepts (composition and aggregation) are overviewed.

5.3.2.1 Representing Temporal Data

The RaCoOn ontologies focus on representing data in 3D, and pro-
vides a set of patterns and restrictions to allow static and dynamic
data to be represented using this paradigm. The majority of use cases
considered in Chapter 4 centre around information which is either
static, or can be temporally expressed using versioning systems or
metadata.

It is also, however, recognised that some applications may be bet-
ter suited to a 4D paradigm. Rather than creating a complex single
model to encompass both points of view, the RaCoOn module pro-
vides a skeleton 4D framework to re-use vocabulary in a 4D context.

Within the 3D paradigm, the n-ary relations pattern is used to reify
temporal extents as described in Section 2.6.1.3, and as shown again
in Figure 5.3. This pattern was chosen so as to reduce complexity and
increase understandability of the application, and is described fully
with regard to train timetabling in Section 6.2.6.3. The relationships
and constraints discussed in the rest of this chapter are implemented
in the 3D model, whilst terminology is in another ontology to facili-
tate the use of the four-dimensional module.

Signal3191@Time1

Banbury Oxford

Signal3191@Time2

1949 s

2004 s

2004 s

Now

controlledBy

from

to

from

to

controlledBy

Figure 5.3: Representation of Temporally Changing Data in RaCoOn Cross-
Domain Ontology

To represent data using the 4D paradigm, a module implementing
the pattern described by Welty, Fikes, and Makarios [225] is also pro-

156 racoon: pragmatic ontologies for the rail industry

vided, which defines a new set of classes and properties to represent
fluents and relationships. Although this vocabulary is missing the se-
mantics and constraints of the 3D implementation of the ontology, it
is useful for capturing knowledge using the same classes and proper-
ties as the 3D model.

5.3.2.2 Quantities, Units and Dimensions

Representing quantities, units, and dimensions in a data model is a
recurring cross-domain problem, and one for which a number of so-
lutions with different merits exist. Although the thought of a mea-
surement such as ‘twenty-seven degrees’ is intuitive to humans, such
a measurement actually makes a number of assumptions physically
and meta-physically, and representing the exact semantics of such a
measurement can be a challenge.The representation of these concepts
is a fundamental part of the RaCoOn upper ontology, and builds on
current state-of-the-art as discussed in Section 3.6.3. The following
CQs set out examples of knowledge that should be encoded using the
patterns in this section.

• What is the length is Entity X?

• What units is the length of Entity X expressed in?

• What is the length of Entity X in metres?

solution

In RaCoOn, an approach based on QUDT is taken for modelling direct
properties, and multidimensional properties are modelled in a similar
fashion to in ISO 15926. RaCoOn defines a ‘Measurement’ class, which
is the class of dimensional properties, and defines constraints such
that a measurement is linked to a unit and a value datatype property.
The definition of a dedicated class for measurements allows the defini-
tion of axioms and constraints, as well as measurement subclasses for
specific purposes. An example of this pattern is shown in Figure 5.4.

Length

LengthOfX

Measurement
Unit

Metre

45 d

Train

Class167
:measurement

u:unit

u:value

rdfs:subClassOf

:length

Figure 5.4: Example of Measurement Design Pattern in RaCoOn Ontologies

5.3 the cross-domain ontology 157

This is a specialisation of the ‘Ternary Relations’ pattern shown
in Section 2.6.1.3, and is rich enough to sufficiently represent sin-
gle dimensional units. It requires fewer triples than the QUDT ap-
proach, but sacrifices some expressiveness. Using blank nodes and
convenience properties, it allows measurements in an ontology to be
represented in one line of Turtle, as shown in Listing 5.3. Vocabulary
and properties from the QUDT ontology are used under a seperate
namespacewithin the RaCoOn ontology, allowing restrictions on unit
types and classes to be utilised.

:Class167Train :length [:unit :Metre, :value ”167”^^xsd:Double]

Listing 5.3: Demonstration of Ternary Relations Measurement Pattern in
Turtle

Multi-dimensional properties aremodelled through the use of other
u:Measurement subclasses, each ofwhich links to one dimension through
an appropriate object property.The geographic locations pattern shown
in Section 5.4.4.5 provides a specialism of this pattern, where it is ex-
plained in more detail.

5.3.2.3 Representing Composition and Aggregation

Mereology is the study of parts and wholes, and is a long established
area of philosophical debate. Various mereologies, that is, ways of
conceptualising part-whole relationships, have been formalised into
OWL, and a comparison of these techniques is provided by Fernández-
López, Gómez-Pérez, and Suárez-Figueroa [64].

Although it is foreseeable that complex part-whole relationships
may need to be represented in applications based on RaCoOn, this
need did not arise in the requirements elicitation process, and does
not manifest itself in any of the existing data models studied. As such,
we use the pattern from DUL [70], and model only very general mere-
ological axioms. Those that are provided can be specialised and ex-
tended by applications and subdomains that require amore expressive
way of representing such knowledge, and the simple representation
included serves to infer component membership allow property in-
heritance. The simple competency questions required to model this
basic mereology are:

• What parts does Entity X contain?

158 racoon: pragmatic ontologies for the rail industry

• What other entities is Entity X a part of?

• What logical components does Entity X have?

• What is Entity X a logical component of?

implementation

Two sets of object properties are provided to model entities as com-
ponents of other entities:

• Reflexive properties u:physicalpart and u:partOf are analo-
gous to dul:hasPart and dul:partOf respectively, and repre-
sent the physical composition of an entity. These properties are
transitive: if [A] u:part [B], and [B] u:part [C], it is inferred
that [A] u:part [C].

• u:logicalPart and u:logicalPartOf represent logical com-
position, and are not transitive. They are used to mitigate the
transitivity of u:part inferring that logically composed entities
share each others’ physical parts. These properties are similar
dul:hasConstituent and dul:isConstituentOf, and are nec-
essary because RaCoOn does not distinguish between entities
identified by function and those identified by spatial extent1.

example

Figure 5.5 shows the composition of a points machine from the per-
spective of its functional and physical components.

PointsMachine

PointsMachineX

ex:DetectionSystem

PointsDetectionSystemX

ex:ActuatorSystem

ActuatorSystemX

ex:Actuator

PointsActuatorX

ex:StrainGauge

StrainGaugeX partOf

functionallyComprises functionallyComprises

functionallyComprises functionallyComprises

partOfpartOf

Figure 5.5: Example of Composition Design Pattern Showing High Level
Points Machine Components

The patterns shown above are the key ontology design character-
istics of the RaCoOn upper ontology. The patterns provided by this

1 or, as described by West [226], “things you can kick”

5.4 the rail core ontology 159

ontology are designed to be simple, pragmatic, and lightweight, such
that adoption of the ontology is easy and concepts can be extended
where necessary. In the following section, a railway domain model
that builds on the high level concepts presented here will be described.

5.4 the rail core ontology

The RaCoOn core ontology represents key railway concepts elicited
from subject experts and existing data models. It seeks to represent
knowledge that is commonly used across the railway domain, sum-
marised by the following design questions:

• How can I represent the fundamental concepts of any set of
railway industry data examined in Chapter 4?

• What common vocabulary should be represented in order to
ease data exchange in infrastructure-based railway applications
and what interactions exist between these concepts?

From these high level questions and the use cases discussed in Chap-
ter 4, several more specific aims can be stated to shape the key parts
of the vocabulary:

• How is track topology and geography represented? What net-
work information in existing railway data models should be in-
cluded in a high level domain model?

• How can the capabilities and characteristics of railway assets
be modelled such that applications can infer class membership
based on known information?

• What extension points can be provided to allow easier reuse
and development of subdomain ontologies?

This first parts of this section describes a number of design patterns
implemented in the RaCoOn core ontology to address these questions
and provide ways of modelling common railway concepts. The final
section (Section 5.4.7) also describes and documents a process of cu-
rating and utilising a set of existing vocabulary for use within the
ontology from RailML [177], as recommended in Chapter 4.

5.4.1 Subdomains and Terminology

In line with consensus from stakeholder workshops and from exist-
ing data models, the RaCoOn rail domain ontology provides a set of

160 racoon: pragmatic ontologies for the rail industry

meta-classes based on railway subdomains. This improves readability
and documentation of the ontology, provides semantics for property
restrictions, and creates explicit extension points for subdomain on-
tologies. In cases where concepts span multiple subdomains, multiple
inheritance is used to assert their membership of both superclasses.
The subdomains provided in the rail domain ontology are as follows:

• The rcn:InfrastructureConcept class contains the set of all
possible railway infrastructure-related terms. The scope of this
class is consistent with the scope of the RailML infrastructure
subschema, and can be thought of as the class of all things that
are, or are intended to be statically positioned assets. Examples
include railway stations, tracks, and signals.

• rcn:RollingstockConcept represents the class of railway ve-
hicle concepts. Whilst not extensively defined in the core ontol-
ogy, concepts in this class include different representations of
trains and vehicles based on formation, physical or functional
role, or owner.

• rcn:InformationConcept refers to the class of railway-related
information assets such as timetables, tickets, and standards
documents.

All of these concepts inherit from rcn:RailwayDomainConcept,
and it is anticipated that future applications will extend this conceptu-
alisation into other subdomains, with each new module specialising
one particular class. For example, the core ontology makes no explicit
mention of timetabling or signalling concepts, although these would
make valid subdomain additions to the core ontology.

5.4.2 Local Naming Pattern

It is recognised that many organisations and groups use specific di-
alects to refer to railway entities, and represent certain concepts with
different terms to those formalised by the ontology. For example, the
term ‘train’ has one meaning to a maintenance engineer, and another
to a signaller. In order to build applications around this domain ontol-
ogy, a method for representing different dialects to different parties
is required, and may be applied for different companies or disciplines.
The set of competency questions set out that must be met by this ap-
proach is as follows:

• What descriptions are available for Concept X?

5.4 the rail core ontology 161

• What is the description of Concept X in Dialect Y?

• What dialects are present in the knowledge base?

• What items are described in Dialect Y?

• What is the generic label for Concept X?

solution

The ternary relations pattern is used to create a doc:EntityDescription
class, which relates a term to a doc:dialectLabel and a doc:dialect,
which are the preferred term literal and u:Dialect individual respec-
tively.This pattern is intended for use for both A-box and T-box terms.

example

In Figure 5.6, the rcn:TrainConsist entity is assigned two different
labels for maintenance and signalling applications.

TrainConsist EntityDescription

:_Bnode2

:_BNode1

Dialect

MaintenanceDialect

SignallingDialect

Physical Train s

Train s

dialectLabel

dialect

a

a

dialectLabel

dialect

dialectTerm

dialectTerm

a

a

Train Consists

rdfs:label

Figure 5.6: Example Showing Local Naming Design Pattern

discussion

This method of representing different terms and dialects is verbose
when compared with other methods. One alternative, for example, is
to exploit RDF literal language tags to encode different dialogs. Since
it is expected that dialect terms will usually be applied to (relatively
small) T-box concepts only, the increase in verbosity is seen to be
worth the additional semantic information and provenance it is capa-
ble of representing.

162 racoon: pragmatic ontologies for the rail industry

5.4.3 Representing Asset Capabilities and Characteristics

Railway assets have a set of domain-specific traits and capabilities
that often require representation in a data model. These include con-
cepts such as traction characteristics, conformance to standards, and
supported communications systems. In many OWL models, object
properties are used for this purpose: new properties are created for
each new type of characteristic and used to assert information about
entities. In RaCoOn, it is expected that a plethora of characteristics
will be present in instance data, and an approach that provides finer
control over the relationships between characteristics is required.The
design question this section seeks to answer is:

“How can we use OWL inference to represent the capa-
bilities of railway concepts and assets?”

To answer it, the following competency questions outline the re-
quirements to be addressed:

• What characteristics does track Section X possess?

• What type(s) of electrification does track Section X possess?

• Is track Section X ERTMS compatible?

• What characteristic changes are present on the track along Sec-
tion X, Section Y, and Section Z?

• What type(s) of electrification are there?

solution

A class, rcn:RailwayCharacteristic was defined, and used to link
concepts with their characteristics. In this way, defining conformance
to a standard or particular capability is asserted through either the u-
:characteristic property or a more specific subclass of it. Addition-
ally, classes whose identity criteria depend upon a set capability can
define owl:EquivalentClass axioms through this relation to create
the necessary and sufficient conditions for class membership needed,
as shown in the example below.

5.4 the rail core ontology 163

example

The following DL snippet shows how the capability pattern could be
used to infer the set of ERTMS-compatible entities, and the set of
radio-protected track:

ERTMSCompliantThing ≡ ⊤⊓ ∃characteristic.ERTMSCapability
ProtectedTrack ≡ TrackSection ⊓ ∃characteristic.TrainProtectCapability

In Figure 5.7, a piece of trackwith an asserted rcn:ERTMSL2Capability
is shown. As a consequence of this, OWL axioms can infer mem-
bership of the ex:ERTMSCompliantThing class as well as the ex:-

ProtectedTrack class.

TrackSection

TrackSectionX

ERTMSCapability

ERTMSL2Capability

ex:ERTMSCompliantThing ≡ ex:ProtectedTrack≡

TrainProtectCapability

a
a

characteristic

rdfs:subClassOf

Figure 5.7: Design Pattern ShowingAssertion of ERTMSCapability on Track
Section and Class Inference

discussion

The modelling of characteristics as OWL classes rather than object
properties allows more detailed knowledge to be expressed over the
characteristics themselves. For example, it is possible to define an indi-
vidual named DieselAndElectricTractionCharacteristic, which
belongs to both the electric and diesel traction classes. More specific
properties can be created when required in applications, through sub
properties of u:capability. Relationships of this kind asserted through
rcn:inheritedCapability will be inherited by components of the
original high level concept in OWL DL.

5.4.3.1 Changing Capabilities

The capabilities of railway track vary depending on position, and the
majority of data models reviewed in Chapter 3 provide some way of
expressing how these capabilities change over the length of a railway
network or line. All take the same approach scale: assuming linear
positioning along a track and a characteristic X, a list of points along

164 racoon: pragmatic ontologies for the rail industry

a track is enumerated with values for X at every point at which the
value of the characteristic changes—for example electrification, gra-
dient, or signalling system. The characteristic is maintained until the
next point is reached assuming direction of travel, and applications
using these models implement sufficient logic to infer the capabilities
of a piece of track by interpolating.

Whilst this approach is structurally simple, it is not consistent with
the view of the world in the RaCoOn model. Instead, it is more appro-
priate to define an area of track and represent the capabilities of that
particular section, as described in Section 5.4.4.2. Where capabilities
change, a new network node should be defined, such that the track is
modelled in enough detail to assert capabilities on.

It is, however, recognised that this method is not always optimal.
Assertion of the same characteristics many times over a dense graph
may result in unnecessarily large models, and so a rcn:Character-

isticChange concept is also provided. This concept links an initial
capability with a changed capability, and is associated with a route
node through the rcn:characteristicChange property. In this way,
only changing characteristics are represented, which could then be re-
constructed by a tool that parses the network. rcn:Characteristic-
Change entities can additionally add information about the change
itself (such as insulated areas in the case of electrification changes),
and may be used in addition to the standard chracteristic representa-
tion pattern, as shown in Figure 5.8.

NodeX

Arc1

Arc2

ElectrificationChange

:_CChange

OLETractionPower

ThirdRailTractionPower InsulatedSectionX

characteristic

characteristicChange

characteristic

changedCharacteristic

initialCharacteristic ex:insulatedSection

CharacteristicChange

rdfs:subClassOf

Figure 5.8: Example Showing Track Characteristic Change Design Pattern

5.4.4 Geographical Positioning and Location

Much of the data within the established scope for the RaCoOn on-
tology is strongly associated with physical assets and infrastructure
across the railway. RaCoOn takes cues from other railway and trans-
portation models, and provides a geography-based perspective with

5.4 the rail core ontology 165

which to represent assets. Existing approaches include those taken by
models described in Chapter 3:

• RailML, SDEF, TrackMaps, and other signalling, simulation and
maintenance tools [77, 173]normalise the position railway tracks
and locate assets relative to them.This approach has historically
been used by the railways, with signals and track layouts in the
UK represented by chainage, or ‘miles from London’.

• Geographical Information System (GIS) systems represent in-
formation using three-dimensional cartesian co-ordinates based
on a known reference system such asWGS842 or OSGB363.This
method is commonly used for a variety of use cases, includ-
ing route planning/evaluation [27], asset management [90] and
for interoperability with other sources. OpenStreetMap4 and
Google Maps5 both present railway information in this way.

5.4.4.1 Modelling Railway Networks

One of the most important components of the RaCoOn core ontology
is its conceptualisation of railway infrastructure, and in particular,
the railway network itself. The current and legacy models reviewed
in this thesis are all (with the exception of the Rail Functional Ar-
chitecture) modelled around this infrastructure, and as such it is of
great importance to model it in a way that aids data exchange. From
the literature discussed in Section 3.3, commonalities can be found be-
tween approaches to representing railway network topologies. These
commonalities are as follows:

• Railway networks are modelled as graphs, with a set of nodes
and edges.

• All but one of the models provided several views on network
data by means of aggregation—encoding railway networks as a
series of layers at different levels of detail, with detailed com-
ponents subsumed by more generalised routes or areas. Most
considered two or three discrete levels: a track level, a network
level.

The infrastructure topology model in RaCoOn takes a similar ap-
proach, based on design questions derived from the top level require-
ment to provide integration with existing models:

2 WGS84 is a positioning standard used by Global Positioning Systems
3 OSGB36 is a reference grid used by Ordnance Survey in the United Kingdom
4 http://wiki.openstreetmap.org/wiki/Railways
5 http://www.google.co.uk/transit

166 racoon: pragmatic ontologies for the rail industry

1. How can the network topology of the railway be represented,
along with its navigability?

2. How can the track-centric position of railway assets be described
unambiguously?

3. How can absolute (geographic) positioning of railway assets be
described?

These questions are addressed with a series of ontology design pat-
terns that follow in subsequent sections.

5.4.4.2 Representing Basic Track Topology

In order to answer design question #1, methods for representing rail-
way topology must be examined. Topology can be naturally repre-
sented as a graph at many levels of abstraction, owing to its physical
manifestation as nodes (stations and junctions) and edges (lines or
tracks). Figure 5.9 shows such a fictional railway network, with four
destinations A to D represented as nodes or vertices, and three routes
connecting them shown as lines. A valid train travelling through the
network may traverse the graph via [C, B, A, D] to provide a service
to those four stations.

A E F CB G

D

Figure 5.9: Example of ‘Network Level’ Railway Route Graph

For representing timetabling or journey planner information, this
level of detail may be sufficient: a timetable can specify the times at
which a train should arrive and depart a station, and and a journey
planning application can suggest routes based on this data. For other
purposes, a more detailed view of the network may be required, as in
Figure 5.10.

E

F CG

D

A BH J

L M

K

Figure 5.10: Example of ‘Route Level’ Railway Route Graph

5.4 the rail core ontology 167

The information represented here includes not only the paths from
one station to another, but the choice of railway tracks and junctions
that are used to do so. Elements shown in orange with dashed out-
lines are junctions: switches and crossings where multiple physical
railway lines intersect. At this level, signallers can assign routes be-
tween trains, and occupied routes can be associated with signals and
interlockings. Route [H, J, K] (highlighted in red) is an example of an
invalid route—a route that cannot physically be taken by a train due
to the constraints of the switch and vehicle. Route [H, K, M], shown
highlighted in green, is an example of a valid route—one that can be
traversed by a train.

Thus, the basic requirements for representation of track topology as
required by design question #1 are provided by a graph representation
of the railway network, and are illustrated in these CQs:

• Which other topology nodes is Node X connected to?

• What are the track arcs downstream of Node X?

• What are the track arcs upstream of Node X?

• What is the start node for track Arc Y?

• What is the end node for track Arc Y?

These basic CQs are met by descriptions in the following section.

graphs of graphs

To represent a basic, directed graph in OWL is simple, as assertions
form a graph themselves. The following DL expression shows three
destination nodes linked by an arc relation:

arc(Destination_A,Destination_B),
arc(Destination_B,Destination_C)

Owing to the semantics of the OWL language, this approach only
allows assertion of properties on track nodes such as stations, and
does not allow the representation of characteristics relating to the arcs
(tracks). Modelling tracks as nodes instead avoids this problem but
prevents representation of information about stations and junctions.
To combat this, and to aid understandability and self-documentation,

168 racoon: pragmatic ontologies for the rail industry

a form of reification6 is employed, with both nodes and arcs repre-
sented as owl:Individuals of differing types. This approach is sim-
ilar to the ‘Qualified Relation’ pattern described in Dodds and Davis
[51] and concepts used to this end are shown in Table 5.2.

Although railway networks are inherently undirected in that there
is no limitation on the direction of travel, it is desirable to represent
railway networks with an arbitrary directivity in RaCoOn to allow
greater flexibility in positioning of assets and the expression of nav-
igability. IN RaCoOn, this is represented by introducing several sub-
properties which allow the assertion of direction between along graph
nodes and arcs:

startingArc ⊑ arc,
endingArc ⊑ arc,
startNode ⊑ node,
endNode ⊑ node

It is suggested that this directivity corresponds to the track location
positioning system used, as shown in Figure 5.11. The knowledge rep-
resented in the original graph above now becomes:

Destination_A : Node
Destination_B : Node
Destination_C : Node
Arc_X : Arc
Arc_Y : Arc
startNode(Arc_X,Destination_A)
endNode(Arc_X,Destination_B)
startNode(Arc_Y,Destination_B)
endNode(Arc_Y,Destination_C)

restrictions on route graph concepts

The RaCoOn ontology places few restrictions on network layouts, but
does assert some axioms about the route graph to enable inferences

6 for an explanation of reification, see Section 2.6.1.3

5.4 the rail core ontology 169

Ta
bl
e
5.2

:B
as
ic

Tr
ac

k
To

po
lo
gy

D
es
ig
n
Pa

tte
rn

O
W

L
Co

ns
tru

ct
s

Co
nc

ep
t

D
es
cr
ip
tio

n

rc
n:

-
Ro

ut
eG

ra
ph

Th
e
cl
as
so

fa
ll
in
di
vi
du

al
st

ha
tc

re
at
e
a
ra
ilw

ay
ne

tw
or

k
gr

ap
h

rc
n:

Ro
ut

eN
od

e
Th

e
cl
as
so

fn
od

es
(st

at
io
ns

,j
un

ct
io
ns

,t
er
m
in
i)

rc
n:

Ro
ut

eA
rc

Th
e
cl
as
so

fa
rc
s(

pa
th
s,
tra

ck
s,
lin

es
of

w
ay

)
rc

n:
no

de
Co

nn
ec

ts
an

ar
ct

o
a
no

de
rc

n:
ar

c
Th

e
in
ve

rs
e
pr

op
er
ty

of
rc

n:
no

de
,a

nd
co

nn
ec

ts
a
no

de
w
ith

an
ar
c.

170 racoon: pragmatic ontologies for the rail industry

A B C D

Down Track

W X Y Z

Up Track

101 104 109 113
Chainage

Figure 5.11: Example of Arbitrary Graph Directivity in Track Topology

about nodes and arcs. In addition to domain and range assertions,
these are as follows:

arc ≡ node−,
startingArc ≡ startNode−,
endingArc ≡ endNode−,
RouteArc ⊑ 1 startNode ⊓ 1 endNode ⊓

(∀ startNode(RouteNode))
⊓ (∀ endNode(RouteNode))

• rcn:RouteArc classes have exactly one rcn:startNode and ex-
actly one rcn:endNode property.

• rcn:node and rcn:arc are inverse properties, as are their chil-
dren. Thus, an arc V having a rcn:startNode X infers that
X has rcn:startingArc V. These properties have domain and
range rcn:RouteArc and rcn:RouteNode accordingly.

• rcn:RouteNode has no cardinality restraints—a node may be
joined to as many vertices as necessary.

By asserting inverse properties, this pattern then also allows the
inference of:

arc(Destination_A,Arc_X),
arc(Destination_A,Arc_Y)
...

5.4 the rail core ontology 171

5.4.4.3 Representing Different Levels of Abstraction

Having established howbasic railway topology graphs are represented,
the following design questions can now be addressed:

“How can we provide views on a railway network at dif-
fering levels of abstraction/detail? How canwemake data
available at one level useful to applications that view the
network at another?”

As stated at the start of this section, many infrastructure design use
cases require the representation of a railway network at varying levels
of detail. This is explicitly encoded in existing models, where multi-
ple interconnected layers provide views ranging from broad country-
level route networks to detailed representations of track sections and
joints. Existing models require that characteristics are represented in
their entirety at every level of abstraction, but this results in data du-
plication and inhibits compatibility between tools. In RaCoOn,we pro-
vide a way to infer track characteristics at a particular level of detail,
based on what other information is available in the ontology.The first
set of competency questions required to model these capabilities are
as follows:

• What levels of track detail are presented in this data set?

• What level(s) of detail does Abstraction level X generalise?

• What level(s) of detail does Abstraction level X specify fur-
ther?

• At what level of detail does Node X present topological infor-
mation?

• What other infrastructure does Node X encompass and gener-
alise?

• Is Node X abstracted by any other objects?

• What characteristics does Node X possess?

• What characteristics does Node X inherit?

solution

To allow extensibility, track and arcs are defined according to sub-
classes of rcn:RouteArc and rcn:RouteNode, and bound to a de-
fined level of abstraction through the rcn:trackAbstraction prop-
erty. Subclasses instantiated in the vocabularymodel include ‘LineLevel’

172 racoon: pragmatic ontologies for the rail industry

‘LineDetail’ ‘NetworkLevel’ and ‘ELRLevel’7. Each is defined with the
following restriction:

SomeDetailLevelNode ⊑ RouteNodeSomeDetailLevelNode ≡
∃trackAbstraction.SomeDetailLevel

As such, a set of classes for routes and nodes are created represent-
ing different levels of track modelling detailed, which creates a set of
distinctmodeling levels. Two newobject properties, rcn:comprisesRouteElement
and its inverse, link more generalised concepts to more specific ones.
These properties are defined as transitive and irreflexive, such that
links between adjacent levels of detail also hold transitively up the
generalisation hierarchy. Finally, a rcn:inheritedCharacteristic

property is defined with a property chain axiom that associates low
level concepts with inheritable characteristics asserted on higher level
elements.

example

An example of this pattern is shown in Figure 5.12.

LoWAbstraction

TrackAbstraction

ELRAbstraction
TrackLevelNodeX

LineLevelNodeXACElectrification

inheritedCharacteristic

characteristic LineLevelNode ≡

TrackLevelNode ≡

a

a

generalises
specialises

generalises
specialises

comprisesRouteElement

TrackLevelNodeY

trackAbstractionLevel

trackAbstractionLevel

a

Figure 5.12: Example Showing Track Inheritance Design Pattern

discussion

This pattern relies heavily on OWL DL reasoning to work. As such,
its applications may be limited to small scenarios or to relatively un-
changing situations where inferences can be materialised in advance.
It is also recognised that the assertion of rcn:inheritableProperty
is not intuitive, but this is necessary to distinguish between proper-
ties that can be inherited at lower levels (such as electrification type)

7 Across the UK Rail Network, an Engineers’ Line Reference is a unique Identifier
(ID) assigned to a particular route or part of route

5.4 the rail core ontology 173

and those that cannot (such as weight). Given a class hierarchy with
this knowledge, the assertion of rcn:inheritableProperty could
be automated using rule-based reasoning instead.

5.4.4.4 Representing Linear Positions

So far, only the track topology has been represented. To represent
knowledge according to design question #2, the following additional
CQs must be answerable:

• Which part(s) of a network is Entity X located on?

• What is the position of Entity X on track Arc Y relative to
Node Z?

• What is the linear position (chainage) of Entity X

To encode this knowledge, an approach similar to that taken in the
UIC RailTopoModel [114] is employed, allowing two different repre-
sentations:

• Track elements or assets assert their linear position relative to
a global/line reference. Given a track arc, elements use the rcn-
:relativePosition property to associate with a relative po-
sition individual—a measurement with an associated element
reference. This relation simply infers the same semantics as are
present in UK TrackMaps: that an entity has a position some
length away from a reference point.

• Railway assets may position themselves relative to an arc itself.
In some cases it may be suitable to assert the position of an
asset relative to the arc that it is placed on. In this case, a pro-
portion or absolute position is represented relative to the start
node of an arc, as shown in Figure 5.13. Related components in
the ontology are given in Table 5.3.

For both methods, RaCoOn provides the content pattern illustrated
in Figure 5.13.

Elements represented by a linear position (such as a chainage) spec-
ify a rcn:LinearPosition individual to record their position from
a start point. They may optionally assert rcn:locatedOn to convey
that these components are located on a particular track section. The
semantics of u:Measurement provide a way of expressing the correct
units and scale. This approach is also applicable to track nodes them-
selves, who can assert the same rcn:LinearPosition to establish

174 racoon: pragmatic ontologies for the rail industry

Table
5.3:LinearTrack

Positioning
O
W

L
Constructs

Concept
D
escription

rcn:LinearPosition
Subclassof

u:Measurement
providing

a
length

and
position

reference
rcn:-

RelativeTrackPosition
Subclassof

rcn:Measurement
equivalentto

locating
com

ponenton
track

rcn:PositionReference
Th

e
classofallthingsthatactasposition

references
rcn:position

Th
e
position

ofthe
entity

relative
to

rcn:locatedOn
Th

e
spatialrelationship

betw
een

an
entity

and
anotheron

w
hich

itislocated
rcn:positionReference

Th
e
(optional)‘shortcut’elem

entthatthe
entity

ispositioned
on

5.4 the rail core ontology 175

their chainage.

As rcn:position is transitive, track arcs which assert their rcn:-
position as another entity (such as an rcn:RouteArc) inherit their
position.

To place elements relative to a track arc, they may assert rcn:-
RelativeTrackPosition relations instead, which foregoes the need
to explicitly state that they are rcn:locatedOn a component.

TrackPlacement

_TrackPlacement

RouteArc

Arc52

RelativePosition

_Position

PositionReference

LondonPaddington

380.5 d

DeciChainage

Signal

SignalXY
:position

:position

:elementReference

:positionReference

u:value

u:unit

Figure 5.13: Track Element Positioning Design Pattern

This method has some caveats, and was designed to provide the
most intuitive encoding of track position in most basic circumstances.
It does not allow the assertion of two different positions for an asset
(as may be the case on signal bridge shared between railway lines),
as it correlates the asset with its position, which may not be the case.
Patterns to express this differently are discussed in Section 5.4.3.

5.4.4.5 Location Design and Spatial Relations

Design question #3 concerns representing the absolute geographic
locations of assets, as may be required by a Geographical Informa-
tion System (GIS). The set of competency questions that should be
answered by the patterns presented in this section is as follows:

• What is the absolute location Location Y of Entity X, in lati-
tude, longitude, and altitude?

• What units are the attribtues of Location Y expressed in?

• What measurement system is used to represent Location Y?

Geographic representations of network entities are somewhat eas-
ier to represent in OWL than the linear positioning systems shown

176 racoon: pragmatic ontologies for the rail industry

above, as several well-defined conceptualisations of 3D space already
exist. In the UK, the commonly used reference formats for these are
WGS84, a geodesic reference mapping used in Global Positioning Sys-
tem (GPS) systems, and OSGB36, which is used by Ordnance Survey
in the United Kingdom [153].
In RaCoOn, the locations of entities are represented through the u:-
location property, and the semantics of the location imparted by the
rdf:type of its object. This pattern allows any geographic reference
system to be used with preserved semantics, such that conversions be-
tween them can be carried out by external tools if information about
these co-ordinate systems is known.

Thing

RailwayAsset

GeodesicLocation

_WGS84Position

Measurement

_Lat

Measurement

_Lon

Measurement

_Alt

u:location

52.0 d

WGS84Degree

1.5 d

0.0 d

Metres

rc:lat

rc:lon

rc:alt

u:value

u:unit

:unit

u:value

u:value

u:unit

Figure 5.14: Example WGS84 Position Represented Using Location Pattern

This pattern draws upon the W3C Geo RDF vocabulary [25], but
provides a more expressive representation in OWL that accounts for
differing measurement units and datum. Core concepts are shown in
Table 5.4.

Table 5.4: Geodesic Location Representation OWL Constructs

Concept Description

rcn:-
GeodesicLocation

Similar to geo:Point: defines a point location

rcn:-
WGS84Location

Class of locations that match WGS84 characteristics

u:location Upper level property to link to location
representation

rcn:lat Measurement convenience property to relate a
point to its latitude

rcn:lon Convenience property for longitude
rcn:alt Property to define height from sea level in metres

5.4 the rail core ontology 177

Thesemeasurement properties are subproperties of u:measurement,
and link a location point with values for each attribute. The following
DL shows these subproperties, and provides a definition for a valid
WGS84 measurement:

lat ⊑ measurement,
lon ⊑ measurement,
alt ⊑ measurement,

WGS84Measurement ≡ Measurement
⊓ (∀lat.Measurement(∀unit.WGS84Degree))
⊓ (∀lon.Measurement(∀unit.WGS84Degree))
⊓ (∀alt.Measurement(∀unit.Metre))
⊓ (∃lat.Measurement) ⊓ (∃lon.Measurement)

The unit rcn:WGS84Degree captures the knowledge that measure-
ments are referenced from the WGS84 datum, without modelling the
intricacies of the geodesic system explicitly. Note that there is no re-
striction on altitudemeasurements, so measurements with no altitude
are still considered to be valid WGS84 measurements.

compatibility with w3c geo ontology

Interoperability with the widely-used W3C Geo ontology [25] is pos-
sible through a simple mapping, expressed in Listing 5.4.

CONSTRUCT {?point a geo:Point ;
geo:lat ?lat .
geo:lon ?lon .
geo:alt ?alt .

} WHERE {
?point a rc:WGS84Location ;

rc:lat [u:value ?lat] ;
rc:lon [u:value ?lon] ;
rc:alt [u:value ?alt];

}

Listing 5.4: Example SPARQL Location Mapping Between RaCoOn and the
W3C Geo Ontology

The mappings required to import data in W3C Geo representation
to a knowledge base using the RaCoOn ontologies additionally re-
quire the assertion of new u:Measurement entities with appropriate

178 racoon: pragmatic ontologies for the rail industry

u:units and values. This could be achieved using another similar
SPARQL CONSTRUCT query to that shown in Listing 5.4.

5.4.5 Representing Diagrammatic Network Layouts

In addition to the representation of ‘real world’ positioning systems,
Railway networkmodels also often encode one or several non-geographic
‘presentation’ layouts, to aid cross-organisation working, which it is
important for a domain model to represent. Thus, a new design ques-
tion is posed:

“How can we support diagrammatic views of railway net-
work topologies?”

In Figure 5.15, an example signalling layout application is shown,
using data from the Invensys LayoutDescription Language (LDL) data
model. Although this information can be considered to be more spe-
cialist in scope than other areas of the RaCoOnmodel, it was included
owing to its presence across many other existing rail data models, and
its percieved importance in cross-application working.

Figure 5.15: Screenshot From Invensys Westlock Interlocking Simulator

The competency questions arising from the need to provide this
representation are as follows:

• What is the presentation position of Entity X?

• What type of units is the presentation position of Entity X

given in?

• Does the presentation position of Entity X have a reference
point to draw from?

5.4 the rail core ontology 179

solution

In SDEF, RailML, Invensys LDL and Railsys, diagrammatic loca-
tions are notated as a set of co-ordinates with no explicit reference
system. RaCoOn therefore provides a doc:position property that
relates elements to abstract positioning characteristics as part of the
rail core module. A similar pattern to as used with geographic co-
ordinates is employed: A class of doc:ViewPosition is defined as are
properties doc:xPos, doc:yPos, and doc:zPos, each of which relates
a doc:ViewPosition individual to a u:Measurement class. Option-
ally, a rcn:positionReference relationship can provide an origin.

Whilst this pattern does not explicitly cover the representation of
the same entities from multiple viewpoints (such as signals that are
shown in many different application displays), this could easily be ac-
commodated by subclassing doc:ViewPosition in an extension on-
tology.

example

A rcn:RouteNode positioned according to a unit-less cartesian co-
ordinate system with no reference point, shown in Figure 5.16

RailwayNode

NodeX

PresentationPosition

:_BlankNode

Measurement

_X

Measurement

_Y

pres:viewCharacteristic

52.0 d

unit:Unitless

1.5 d

view:x

view:y

u:value

u:unit

:unit

u:value

Figure 5.16: Example XY Presentation Position Represented Using Location
Pattern

discussion

Arbitrary dimensions are either created as u:Measurementwith u:unit
unit:Unitless, or created as instances of u:UnitlessMeasurement,
which makes the same inference:

UnitlessMeasurement ≡ Measurement⊓ (∀unit.Unitless)

180 racoon: pragmatic ontologies for the rail industry

Unitless dimensions by their nature assume some implicit position-
ing/presentation system, but this is assumed by the task-oriented na-
ture of this pattern.

5.4.6 Navigability and Routing Across Networks

The next design question considered relates to the transportation ca-
pabilities of a physical railway network:

“How can the physical navigability of a railway graph be
represented in OWL”

The route navigability of a railway network is vital to many rail-
way applications such as maintenance, signalling design, and passen-
ger information. Trains can only move physically across junctions in
pre-defined ways, and so the ways in which they can traverse the net-
work are restricted. For example, Figure 5.10 highlights in red an in-
valid route across a railway switch. In order to properly represent the
ways in which railway infrastructure can be physically traversed, ad-
ditional knowledge must be appended to the network representations
mentioned so far. Thus, several additional competency questions are
presented:

• Is the route from Node X to Node Z through Node Y navigable?

• Is the route from Node X to Node Z through Node Y impossible
to navigate?

• Is the route from Arc X to Arx Z through Node Y navigable?

• Is the route from Arc X to Arc Z through Node Y impossible to
navigate?

Note that a negative answer to the question ‘is Node X navigable…‘
does not imply that a route is impossible to navigate owing to the
OWA, so additional competency questions are required as shown.

solution

Navigability is provided to route arcs through the rcn:navigable

and rcn:notNavigable object properties. Navigable routes across a
node can be found using the transitive rcn:nodeOf property and sim-
ple queries.

5.4 the rail core ontology 181

example

In Figure 5.17, Node G is a switch. Arcs X, Y and Z represent tracks
connectingwith the switch. Routes [XY] and [YX] are ‘normal’ routes,
[YZ] and [ZY] are diverging routes, whilst routes [XZ] and [ZX] are
not navigable. The navigabilities of these routes are asserted by ex:-

ArcY rcn:navigable ex:ArcZ, ex:ArcX (and their inverses), and by
ex:ArcZ rcn:notNavigable ex:ArcX (and its inverse).

rc:navigable

RouteNode

NodeG

RouteArc

ArcX

RouteArc

ArcY

RouteArc

ArcZ

rc:notNavigable

rc:node rc:node

NodeG

Figure 5.17: Example Representation of Network Navigability Across Routes

discussion

Whilst this approach appears odd compared to asserting the navigabil-
ity of a route on the nodes themselves (a points machine will always
have a characteristic navigability), it is intuitively simpler than other
approaches, and the chain of rcn:navigable relations across a net-
work creates a directed graph onto which routing algorithms can be
directly applied. The two properties are not asserted to be symmetric,
as it is feasible in some circumstances that a route cannot be passed
in both directions8.

disadvantages

This approach requires assertion of route navigation onto each route
arc (including on straight lines), and in both directions. This can be
mitigated to some extend by the inclusion of inference rules to assume
that tracks passing through nodes with only two edges are navigable
in both directions.

8 Such an example can be found in ‘sprung’ railway switches, which are designed to
allow the passage of a vehicle in the ‘normal’ direction even when the points are
set against it

182 racoon: pragmatic ontologies for the rail industry

5.4.7 Re-engineering Knowledge from RailML

A large part of the vocabulary and semantics present in the RaCoOn
core ontology are re-engineered from existing information resources,
rather than being explicitly given by human domain experts. This sec-
tion examines how knowledge from one such resource was mapped
into the ontology using the technique shown in Chapter 4.
After undertaking a survey of existing knowledge for re-use in the
RaCoOn ontologies, RailML [177] was identified as an existing re-
source that provided an extensive and accurate model of railway in-
frastructure and operations. Consequently, parts of this model were
re-engineered into OWL, principally to grow the RaCoOn core ontol-
ogy’s vocabulary and reinforce the semantics of existing concepts.
RailML comprises five components: common (CO), infrastructure (IS),
timetable (TT), rolling stock (RS), and interlocking (IL). In the RaCoOn
ontologies, knowledge was elicited from the common, infrastructure,
and rolling stock subschemas, corresponding to the areas of interest
identified in Chapter 4. Figure 5.18 shows an overview of RailML sub-
schemas and shows some example concepts from each.

5.4.7.1 RailML Structure and Automated Mappings

When considering knowledge extraction from existing non-ontological
resources, it is sometimes possible to use automated systems to ex-
tract terms and semantics from existing models and transform them
into ontologies, with or without assistance. Such automatic systems
were considered in mapping RailML to RaCoON but not ultimately
chosen for several reason. These reasons include:

1. Model expressivity is confined to the original semantics of XML.
More intuitive representations of elements may be possible by
human interpretation of XML schemas, but automated tools
have no mechanism for detecting and modelling such interpre-
tations.

2. Semantic work-arounds encoded as XML are mis-mapped into
OWL. For instance, RailML utilises high level group elements to
structurally contain different parts of the model, which is not
necessary in OWL. These elements are mis-mapped as OWL
classes.

3. Partial mappings are difficult. The scope of RailML exceeds the
scope of RaCoOn, and automated tools do not provide a method
for mapping only concepts that are in scope.

5.4 the rail core ontology 183

Ra
ilM

L
2.

2

In
fr

as
tr

uc
tu

re
(IS

)
Ro

lli
ng

st
oc

k
(R

S)
Ti

m
et

ab
le

 (T
T)

C
om

m
on

 (C
O

)
In

te
rlo

ck
in

g
(IS

)

Tr
ac

ks
Sw

itc
he

s
To

po
lo

gy
Si

gn
al

s
C

iv
ils

B
ou

nd
ar

ie
s

Pr
es

en
ta

tio
n

Ve
hi

cl
es

Fo
rm

at
io

ns
C

on
si

st
s

Tr
ac

tio
n

de
ta

ils

Ro
st

er
in

g
Ti

m
et

ab
le

s
Tr

ai
n

fo
rm

at
io

ns
Sc

he
du

lin
g

M
et

ad
at

a
U

pp
er

 le
ve

l c
on

ce
pt

s
In

te
rlo

ck
in

g
ty

pe
s

Lo
ca

l r
ou

te
s

Tr
ac

k
de

te
ct

io
n

Si
gn

al
lin

g

Ke
y

Sc
he

m
a

N
am

e

Ex
am

pl
e

El
em

en
ts

D
ra
ft

 s
ch

em
a

Pr
op

os
ed

 e
le

m
en

ts

Fi
gu

re
5.1

8:
O
ve

rv
ie
w

of
Ra

ilM
L
Su

bs
ch

em
as

an
d
ex

am
pl
e
el
em

en
ts

184 racoon: pragmatic ontologies for the rail industry

Whilst such techniques work well for simple schemas with seman-
tics that align directly with a target conceptualisation [22, 61], it was
found that better results could be obtained by using a manual schema
transformation process. For reference, an automated mapping of the
entire RailML schema using the XSD2OWL tool García [73] is avail-
able online9, and shows how RailML XSD semantics mapped directly
to OWL appear.

5.4.7.2 Manual Mapping Process

Amanual re-engineering processwas undertaken to transformRailML
concepts into the RaCoOn ontology. This process allows the XML
schema’s explicit semantics (found in its structure and attributes) to
be combined with its implicit semantics (found both in the model’s
documentation and in external domain knowledge) to form a bet-
ter representation of domain knowledge in OWL. The process un-
dertaken is shown in Figure 5.19, and adapts elements of the NeON
methodology for non-ontological resource re-use [44].

Key elements of this process are described as follows:

• Filter terms by scope. Using RailML documentation, we deter-
mined whether the term was inside the core scope of the rail
core ontologies. Task or application-specific vocabularywas avoided,
and terms thought to be more appropriate in subdomain ontolo-
gies were omitted.

• Analyse term. The exact semantics implied by RailML and its
documentation were determined, and evaluated against exist-
ing terms in the ontology, other datamodels, and domain knowl-
edge.

• Re-engineering methods: One of three methods was used to
integrate the term with the RaCoON ontology:

– Re-use existing pattern.Thismethodwas undertakenwhere
a design pattern already existed for a conceptually similar
term. The new term was added according to this pattern

– Extend existing pattern. Where a term could not be di-
rectly re-engineered using an existing pattern but could
be through extending it, this approach was preferred to
establishing new patterns.

– Create new pattern. For concepts that had little or no cov-
erage in the ontology or could not be represented using
current patterns, a new pattern was created.

9 http://phd.jtutcher.co.uk/examples/railml2owl

5.4 the rail core ontology 185

Obtain Model

Extract Lexical Terms

Filter Terms By Scope

Re-use Existing Pattern

Extend Existing Pattern

Create New Pattern

Analyse Term

Document Term & Pattern
Used

Acquire XML Schema for analysis

Manually extract terms, excluding
semantically identical concepts

Establish terms that are within the
scope of the ontology, and discard
others.

Deduce the correct semantics of a
term from model structure and
documentation, or domain
knowledge.

Identify an existing ontology content
pattern, and re-use to map new term to
ontology.

Identify an existing pattern that can be
extended in some way to encompass
the semantics of a term.

Create a new content pattern that can
be used to correctly represent the term.

or

or

Record the pattern used, both with the
documentation ontology design
pattern and using a ‘filing card’

next term

Figure 5.19: Flowchart Showing RailML Re-engineering Workflow

186 racoon: pragmatic ontologies for the rail industry

• Following the re-engineering of each term, its method of trans-
formation was documented both in the ontology itself and in-
dependently.

dis-ambiguating railml concepts

RailML specifically includes many concepts that are interrelated, in
order that intended semantics are contained within the XML schema
structure. An example of this is the frequently used pattern of defin-
ing both an XSD element and XSD complex type for each item: the
element definition states where and how an item should be defined
within a document, and the complex type contains its attributes and
restrictions:

<xs:complexType name=”eMileageChanges”>
\rdfe{xs}{sequence}

<xs:element name=”mileageChange”
type=”rail:tMileageChange” minOccurs=”0”
maxOccurs=”unbounded”>

↪→

↪→

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:complexType name=”tMileageChange”>

\rdfe{xs}{complexContent}
<!-- content -->

</xs:complexContent>
</xs:complexType>

Listing 5.5: Extract from RailML Infrastructure Model Showing Complemen-
tary Elements and Types

The full list of terms drawn from RailML was compiled by aggre-
gating information in these connected elements into one ‘semantic’
element, which was then mapped according to the schema’s content
across all similar elements.

5.4.7.3 RailML Transformation Patterns

In addition to a set of content patterns, other ODPs and considera-
tions were made when manually transforming RailML concepts into
RaCoOn. These were made in order to better align the transformed
knowledge to the other needs of the ontology and to improve under-
standability, and are shown as follows.

5.4 the rail core ontology 187

maintaining mappings to railml

To encourage re-use, mappings from RailML to RaCoOn were docu-
mented within the ontology using an annotation pattern, showing the
origin of the mapping in RailMLwithin the RaCoOn core ontology. To
create this mapping pattern, some competency questions were consid-
ered:

• What semantic match for Term X exists in RailML?

• What similar RailML term exists for Term X?

When mapping another data model into OWL, concepts and rela-
tionships are represented differently, and owing to the difference in
expressivity between RailML and RaCoOn, no formal mappings be-
tween the models are specified. The annotation of terms in the ontol-
ogy aims to guide users into modelling RailML data correctly using
the ontology, and to consider new ways of conceptualising this data
in the cases where direct alignment does not exist.

solution

Annotation properties rcn:RailMLExactMatch and rcn:RailMLCloseMatch
are provided to take string literal representations of CURIE-formatted
RailML terms. As they are annotation properties (with no OWL se-
mantics), they can be asserted on properties as well as classes.

example

Figure 5.20 shows two entities, rcn:Signal and rcn:Platform, and
their exact or close RailML entity matches.

Platform

Signal

InfrastructureConcept is:Signal s

railMLExactMatch

is:PlatformEdge s

railMLCloseMatch

rdfs:subClassOf

rdfs:subClassOf

Figure 5.20: RailML Entity Provenance Annotation Pattern

188 racoon: pragmatic ontologies for the rail industry

5.4.7.4 Dealing with Constraints

RailML is designed as a task-specific data exchangemodel, and defines
set restrictions on data which assures validation for users and appli-
cations, but which may not necessarily hold in a wider domain view
of the world. For example, RailML requires that a railway junction be
defined as one of a particular type of track switch or crossing, which
allows applications to make assumptions based on a valid choice for
this attribute.

The RaCoOn ontologies are designed to be extensible, and should
thus avoid such constraints unless there is certainty of their applica-
bility in all possible circumstances. As such, constraints from RailML
are avoided and included as either annotations or minimum cardinal-
ity 0 restrictions (as discussed in item 5.3.1.2).

Examples of this include the RailML definition of a railway signal,
which is asserted to have ‘min 0’ cardinality restrictions for rcn:-

sightDistance and rcn:interlocking.

other transformation patterns

Several other patterns employed do notwarrant full explanationswithin
this thesis, but are briefly overviewed below.

railml naming pattern

Where possible and semantic meanings are identical, terms mapped
from RailML are given identical names in RaCoOn, excluding any
RailML prefix. One example is that eSignal and tSignal transform-
ing to rcn:Signal.

railml element id pattern

RailML issues each element within its model with a unique ID. In
RaCoOn these elements are not transformed; instead, individual URIs
are considered to be RailML IDs.

5.4.7.5 RailML-specific Vocabulary and Content Patterns

The majority of RailML-derived content patterns used in RaCoOn are
not overviewed here for brevity; they are documented in the ontology

5.4 the rail core ontology 189

itself10 and shown in Section C.1, where a list of RailML vocabulary
concepts mapped is also shown. Two key patterns are described here.

representing groups

Groups of elements are represented readily in RailML through the
xdd:sequence feature of XML schema. OWLdoes not represent groups
natively, but several RailML concepts, for example BaliseGroup and
SignalGroup, rely upon the grouping of entities for a particular pur-
pose or function. To implement groups, we reuse the Collections On-
tology [35] in the following ways:

• The collections ontology (co:) is imported into the RaCoOn vo-
cabulary ontology, but with many of its restrictions extracted
and placed into the RaCoOn ‘constraints’ ontology to allow it
to adhere to OWL RL.

• Grouped concepts such as rcn:SignalGroup are defined as equiv-
alent to co:Collection containing elements only of type rcn-
:Signal, allowing OWL representations of collections accord-
ing to that ontology’s definitions. An example is shown in Fig-
ure 5.21.

Signal

SignalX

Signal

SignalY

SignalGroup≡

rdf:type

co:Set

SignalGroupA

co:element

co:element

co:Collection

rdfs:subClassOf

Figure 5.21: Example of a RailML Signal Group, Represented Using the Col-
lections Ontology

route profiles

Another recurring theme in RailML was the dependence of character-
istics and concepts on ‘routes’—preset paths through a network that
are used for signalling. A number of track characteristics depend on
these routes, such as speed profiles for trains that vary depending on
the path taken through a network. The Collections Ontology is also
used to represent these:

10 http://purl.org/rail/core/vocab

190 racoon: pragmatic ontologies for the rail industry

• A rcn:Route class is created as a subclass of co:List, with a
constraint that only rcn:RouteGraph elements may be associ-
ated through the co:element predicate. This allows an ordered
list of route elements to be represented.

• The characteristic representation design pattern is then used to
link speed profiles to routes, through the rcn:characteristic
property. An example is shown in Figure 5.22.

RouteNodeX

1i
co:listIndex

3i
co:listIndex

2i
co:listIndex

co:item

co:item

co:item

co:ListItem co:RouteNode

a

a

a

a

a

a

co:List RouteSection1

RouteSection2

RouteSection3

a

Route

RouteXYZ

3 i

co:firstItem

co:item

co:nextItemco:size

X

Y

Z

A

RouteNodeX

RouteNodeY

Figure 5.22: Example Showing Route Profile Design Pattern Across Three
Route Nodes

5.5 racoon ontology evaluation

Validation of the RaCoOn core and upper ontologies was performed
using the techniques identified in Section 4.6. Firstly, automated tech-
niques were used to establish the structural, syntactic, and logical va-
lidity of the ontology as an OWL document. Then, the models were
evaluated against a shared conceptualisation elicited from a set of ex-
pert workshops. Finally, validation of task suitability and accuracy is
established through establishing mappings from and to several exist-
ing railway data exchange formats.

5.5.1 Structural and Syntactic Validation

For the RaCoOn upper and domain ontologies, automated validation
was used to establish their structural, syntactic, and logical correct-
ness. Three tools were used: an RDF validator to detect problems in
the underlying syntax of each model, an OWL validator to check the
models’ conformance to syntactic and semantic restrictions, and a
multi-purpose ‘ontology pitfall scanner’ to detect further logical and
semantic issues, as well as certain content anti-patterns.

5.5 racoon ontology evaluation 191

5.5.1.1 OWL 2 Validator Results

All ontology modules were checked for conformance against the set
of OWL 2 expressivity profiles using a Java application based on Sec-
tion 4.6.1 . The results can be seen in Table 5.5, where tick marks
show conformance to a particular profile, and dashes indicate non-
conformance.

Table 5.5: OWL Expressivity Profiles of RaCoOn Modules

Ontology Module Full DL RL EL QL

Upper (3D) ✓ ✓ ✓ - -
Upper (4D) ✓ ✓ ✓ - -
Upper (Constraints) ✓ ✓ - - -
Core (3D) ✓ ✓ ✓ - -
Core (Constraints) ✓ ✓ - - -

This result is as expected: the vocabulary and simple axioms mod-
ules conform to OWL DL and OWL RL, but not to any less expressive
OWL fragments. The ‘constraints’ modules contain more expressive
axioms, including constraints and restrictions on classes, and so only
conforms to OWL DL.

5.5.1.2 OOPS! Ontology Pitfall Scanner Results

Due to the dependence of ontology modules on each other, ontologies
submitted to the OOPS! scanner were grouped into ‘cross-domain’
and ‘core’ ontology groups and validated in this way. The results of
the validation were as follows:

cross-domain (3d) ontology

The OOPS! verdict for the full cross-domain ontology, encompassing
the 3D vocabulary and constraints, is shown in Figure 5.23. These pit-
falls were:

• P04: UnconnectedOntology Elements.This pitfall was detected
due to the documentation meta-model being unconnected with
the rest of the ontology. This is by design.

• P11: Missing Domain or Range. This pitfall highlights three el-
ements of the co: ontology as having no domain or range as-
sertion. This is due to the complex constraints used in this on-

192 racoon: pragmatic ontologies for the rail industry

tology and its inverse relationships; the domain and range of
these properties are left to be inferred based on their inverses.

• Suggestions: Transitive or symmetric properties. The proper-
ties highlighted here have been designed as not transitive, as
discussed in Section 5.3.2.3.

Figure 5.23: Screenshot of Oops! Result for 3D Cross-domain Ontology

Several more evaluation pitfalls occur when validating the 3D core
ontology. This module depends on and so includes the upper ontol-
ogy, and the pitfalls listed below are those unique to the lower level
module.

core (3d) ontology

The cross domain ontology suffered several more pitfalls in validation
by OOPS, mostly owing to the large number of vocabulary terms and
imported concepts. In addition to those shown above, explanations
for several others are provided:

• P07: Merging different concepts into the same class is caused
by over-generalised QUDT vocabulary, for example EnergyAnd-
WorkUnit. OOPS recommends against this in favour of creating
individual classes for each.

• P13: Missing inverse relationships highlights the fact that not
every property in the RaCoOn ontology is defined with an in-
verse. This is mostly for readability and efficiency reasons: In-

5.5 racoon ontology evaluation 193

verse properties to those linking to reified ternary relations are
never likely to be needed.

• P30: Missing equivalent classes is shown because several on-
tology classes share the same domain and range, and are distin-
guished at a high level by their use only.

5.5.2 Workshop Evaluation

Evaluation of the context of the rail ontologies was provided by work-
shops undertaken at the University of Birmingham and Invensys Rail
Group headquarters during 2012. These workshops elicited a high
level view of the railway domain, with attendees having no prior
knowledge of the RaCoOn ontology project. Figure 5.24 and Figure 5.25
show photos of each session.

Figure 5.24: Photograph of RaCoOn Validation Session at the University of
Birmingham

Although the half-day workshops only allowed very high level elic-
itation of railway domain knowledge, results from the workshops
did provide an opportunity to evaluate the scope and context of the
RaCoOn models in the context of the wider railway industry. For the
duration of each session, attendees were split into groups of 5–6 peo-
ple, with effortsmade to distribute the expertise of partipants between
groups according to discussions prior to the start of theworkshop.The
following tasks were then undertaken:

1. A high level conceptualisation of the railway domain

194 racoon: pragmatic ontologies for the rail industry

Figure 5.25: Photograph of RaCoOn Validation Session at the University of
Birmingham

2. Conceptual modelling of identified subdomains

3. Detailedmodelling and elicitation of relationships between iden-
tified concepts.

Attendance at each workshop was as follows:

• Edgbastonworkshop: Eighteen attendees divided into three teams,
comprising sixteenUniversity of Birmingham staff and students
and two attendees from Network Rail. Knowledge possessed
by attendees varied, and included experts in rolling stock, sig-
nalling, strategy, and infrastructure.

• Chippenham workshop: Ten attendees divided into two teams,
comprising eight Invensys Rail Group engineers and two Uni-
versity of Birmingham staff. Most attendees possessed detailed
knowledge of railway signalling and control systems.Thiswork-
shop was intentionally held at IRG to emphasise concepts relat-
ing to the use cases described in Section 5.1.

The difference in expertise and outlook at each session is reflected
in the outputs presented below, and it should be noted that

5.5.2.1 Task 1: Top-down Domain Coverage

Teamswere first asked to break railway systems down into constituent
high level subsystems. Most teams found between six and ten rail-
way industry sub-categories, and it was possible to establish a ‘room

5.5 racoon ontology evaluation 195

consensus’ on these categories in both workshops without interfer-
ence from the workshop organisers. Categories given are shown in
Table 5.6, and a diagram of the original ideas elicited by each individ-
ual group at the University of Birmingham in Figure 5.26. The full list
of domains is given in Section C.2.

Table 5.6: Rail Domain Subsystems Validation Workshop Consensus

Edgbaston Consensus Chippenham Consensus

Operations Service
Infrastructure Assets, Infrastructure, Maintenance
Rolling Stock Customers
People External Stakeholders
Regulation Organisations & Governance
Commercial/social Environment Resources (suppliers, land, energy)

The core concepts elicited by each group in Table 5.6 align well
with each other, with some exceptions. The Edgbaston cohort treated
‘people’ as a general theme where the Chippenham workshop dis-
tinguished between ‘customers’ and ‘external stakeholders’, whilst
they generalised ‘assets, infrastructure and maintenance’ into a sin-
gle theme. The Chippenham workshop also separately identified ‘Re-
sources’ as a theme, where ‘Commercial and social environment’ was
separately chosen in Edgbaston.

5.5.2.2 Task 2: Subdomain Decomposition

In the second task, each teams were was assigned one or two of the
high level areas already elicited, and asked to decompose them into
a number of subdomains. The aim of this task was to build a more
detailed view of subdomains within the industry as perceived by ex-
perts, and no further direction was given to groups.

In both workshops, the resulting decomposition consisted of con-
cepts, use cases, and motivations in each subdomain, although mod-
elling in the Edgbaston workshop produced a far greater corpus of
results. Diagrams of ideas from both are available in Appendix Sec-
tion C.2. Results from the Edgbaston workshop for the ‘Infrastructure’
category are presented in Figure 5.27.

196 racoon: pragmatic ontologies for the rail industry

Edgbaston

Group 1 Group 2

Group 3

Physical
Transport

Transport
Informatio

n

Rules and
Standards

Support
Loads

VehiclesControl

Strategy

People Economy

Signalling

Rolling
Stock

Infrastruct
ure and
Track

Customers

Stations

Drains

Depots

Finance

Trains

Infrastruct
ure Operations

People

Business
and

Revenue

Figure 5.26: Railway High Level Systems As Conceptualised by Groups at
Edgbaston Validation Workshop

5.5 racoon ontology evaluation 197

Infrastructure

Laws

Suspension

Bogie

Acceleration

HVAC

OTMR

Range

Configurati
on

Flexibility

Unit
Flexibility

Depot

Customer
Info.

System

Speed

Automatic
Train

Protection

Air
Condition-

ing

Train and
Passenger

Traction
Control

Windows

Aesthetics

Mass

Recover-
ability

Doors

Facilities /
Auxiliaries

Gauge

Brakes

Braking
Capacity

Mainten-
ance

Wheelsets

Access

Power
Source

Energy
Storage

Contact
System

Track
Gauge

Loading
Gauge

Structure
Gauge

Kinematic
Gauge

Warning
Systems

Couplers

Tilt

Common
Carrier

Figure 5.27: Edgbaston Validation Workshop: Results of ‘Infrastructure’ Cat-
egory Decomposition

198 racoon: pragmatic ontologies for the rail industry

5.5.2.3 Task 3: Interaction Identification

In the third task, individuals were taken out of their groups and in-
vited to identify low level interactions between any concepts identi-
fied by workshop participants. An example interaction provided to
the groups is shown in Figure 5.28. This task was designed to elicit
some dependencies and relationships that may be reflected in a do-
main ontology, such that relationships that were in scope but missing
from RaCoOn ontologies could be explored further.

Passenger
Service Timetable

Maintenance

requires scheduled by

depends on

Figure 5.28: Example Interaction for Validation Workshops

The resulting interactions identified by participants are listed in
Section C.2. Responses from this task varied in style to those expected,
with most participants identifying high level themes between subdo-
mains rather than low level relationships between themes. Examples
of relationships elicited include those shown in Table 5.7.

Table 5.7: Table Showing Example Interactions Elicited from Ontology Eval-
uation Workshops

Subject interaction Object

Infrastructure track/train gauge Rolling stock
Operations cargo Rolling stock
People maintenance staff Operations
Assets require investment by Resources

5.5.2.4 Analysis of Ideas Generated By Workshops

Analysis of the results obtained from these workshops allowed a num-
ber of key concepts to be extracted and used. Firstly, around half of

5.5 racoon ontology evaluation 199

the the high level categories identified by the workshop overlapped
with the defined RaCoOn ontology project scope. These concepts and
their alignment with the ontology are shown in Figure 5.29.

However, several themes discussed had been given no considera-
tion in the initial scoping of the ontologies. These areas were:

• Stakeholders. The relationships between actors in the railway
system and assets/processes. A meta-class and concept for u-
:Actor and rcn:Stakeholder were added to the ontology to
provide a standard definition for these concepts, but no further
modelling was undertaken.

• Governance and regulation /Commercial and social environ-
ment. Although signalling standards were considered, wider
adherence to regulation and commercial environment was not
considered as part of the initial ontology scope.Themodel’s bias
towards infrastructure terms somewhat explains this, although
the groups’ emphasis on these themes show that topics in these
areas may require representation in a wider domain model. The
representation of these concepts is left for extension into sub-
domain ontologies by further work.

5.5.3 Measuring Ontology Fit Using Railsys

Following the workflow set out in Section 4.6.3, a brief evaluation of
the core ontologywas undertaken using data fromRailsys11, a railway
simulation package used extensively by Network Rail and across the
industry to test and optimise timetables, energy profiles, and other
scenarios [173]. The railsys application was selected for validation for
three reasons:

• A corpus of Railsys model data was available for analysis and
use

• The Railsys data model has not previously been considered as a
knowledge source for ontology design

• The scope and use case of the application fit with the scope and
use case of the model as outlined in Chapter 4.

11 http://www.rmcon.de/index.php?page=railsys-classic-planning

200 racoon: pragmatic ontologies for the rail industry

In scope or directly extensible
Partly in scope

O
ut of scope

Edgbaston
Scope

Chippenham
Scope

Ontology
Application Scope

Additional
Concepts

Operations

Infrastructure

Rolling Stock

People

Regulation

Commercial /
Social

Environment

Service

Assets
Infrastructure
Maintenance

Customers

External
Stakeholders

Organisation
and

Governance

Resources

Operations

Planning

Maintenance

Change

Stakeholders

Figure 5.29: Alignment Between High Level Railway Themes Elicited in
Workshops and RaCoOn Scope

5.5 racoon ontology evaluation 201

5.5.3.1 Railsys Evaluation: Technique and Aims

A set of 119 Railsys XML infrastructure files for the East Coast Main
Line was obtained for analysis. These files do not conform to a pub-
lished XML Schema, but were found all to conform to the same im-
plicit structure when analysed. Oxygen XML Editor12, a piece of XML
authorship software, was used to generate an explicit XSD schema
document from this set of files, and this schema used as a basis for
data transformation. Figure 5.30 shows an extract of the schema’s def-
inition for line.

Figure 5.30: XML Schema Definition of line from Railsys Example Docu-
ments

12 http://oxygenxml.com/

202 racoon: pragmatic ontologies for the rail industry

From this document, elements and their attributes were extracted
and listed in a spreadsheet for review. No documentation was avail-
able alongside Railsys, and semantics for all terms were established
through manual inspection and analysis of the schema’s structure,
term names, and data types and ranges across the set of Railsys files.
Examples of the semantics extracted are shown in Table 5.8.

Table 5.8: Table Showing Disambiguation of Railsys platform element

Attribute Type Disambiguation

platform element Used as a sub-attribute of ‘track’
endPos xs:integer Platform position relative to absolute reference
left xs:boolean The alignment of a platform (L/R)
open xs:boolean The status of the platform (open/closed)
startPos xs:integer
width xs:integer

In total, 91 unique concepts or attributes were extracted, of 201 total
entries in the spreadsheet. Attributes with the same name, type, and
value ranges in inspected models were assumed to be identical, and
marked as duplicates.

5.5.3.2 Railsys Mapping and Conceptualisation

Having compiled all of the terms in the Railsys model into a spread-
sheet, each term and its potential transformation into OWL was con-
sidered. Firstly, a ‘best guess’ pattern for mapping each term into the
existing ontologywas considered and categorised, based on the term’s
meaning and example data given in the East Coast Main Line (ECML)
files. For terms that could not be represented using existing patterns
or extensions to them was then further discussed, with likely candi-
date patterns presented as ‘extension mappings’ in the spreadsheet.
The resulting categories created were as follows:

• Concepts considered expressible using only existing domain on-
tology, including its vocabulary (marked ‘mappable’)

• Concepts that could likely be expressed by a small extension of
an existing pattern (marked ‘extension’)

• Concepts that were not mappable using current ontology, and
would require a more significant extension to the ontology, or
new design patterns (marked ‘new’)

5.5 racoon ontology evaluation 203

• Concepts or attributes that are prohibited from being expressed
using the current domain ontology (marked ‘difficult’).

Following this categorisation based on ontology coverage, terms
were also subjectively marked as either ‘relevant’ or ‘irrelevant’. This
distinction was made in order to discount terms that are intentionally
out of scope of the domain ontology. Mappings for concepts marked
as ‘new’ but ‘relevant’ were then considered and added to the table,
providing a set of entries that could be compared for coverage against
the RaCoOn models.

An example spreadsheet entry after this process is shown in Ta-
ble 5.9.

5.5.3.3 Analysis of Coverage and Quality

The completed spreadsheet found the following:

• 67 out of 91 unique Railsys concepts or attributes could bemapped
directly into the RaCoOn ontology using existing patterns

• Six concepts were found to be relevant but not currently repre-
sentable in the RaCoOn ontology

– One of these six were deemed ‘difficult’ to model by ex-
tending the current ontology. The railsys ‘track’ element
defines a relationship between a train station’s platforms
and their track, and uses a perspective that is not directly
representable in RaCoOn.

– Theother fivewere found to be easily representable through
the extension of design patterns, but not currently included.
Three concepts were versioning attributes, for represent-
ing specific version numbers (which the RaCoOn ontol-
ogy and OWL itself lacks). Of the other two, the first was
a trackRouting attribute to represent how vehicles are
routed on a set of tracks (on the left or on the right), and
the secondwas interlockingMachine, an attribute to rep-
resent the type of signalling interlocking used by an en-
tity.

• Thirteen concepts were deemed irrelevant (out of scope) but eas-
ily representable. These concepts should be implemented in an
application ontology rather than a domain ontology. Concepts
in this category included specific signalling characteristics, con-
trol area borders, and preset routes into railway stations.

204 racoon: pragmatic ontologies for the rail industry

Table
5.9:Extractfrom

RailsysTransform
ation

Table
Show

ing
‘Station’Pattern

Status1
Status2

Elem
ent

Usage
Type

D
isam

biguation
Core

M
apping

Ext.M
ap

N
otes

M
appable

Relevant
station

vocab:Station
-

M
appable

Relevant
kilom

etre
xs:decim

al
vocab:RelativePosition

-
M
appable

Relevant
nam

e
req.

rdfs:label
-

M
appable

Relevant
stationID

req.
xs:N

CN
am

e
u:id

-

M
appable

Relevant
xN

et
req.

xs:double
Local
positioning

[vocab:GeodesicPosition
vocab:lat]

-
’Required’because
Railsysisa

sim
ulator

M
appable

Relevant
xW

GS84
xs:double

[vocab:W
GS84Pos

vocab:lat]
-

M
appable

Relevant
yN

et
req.

xs:double
Local
positioning

[vocab:GeodesicPosition
vocab:lon]

-
’Required’because
Railsysisa

sim
ulator

M
appable

Relevant
yW

GS84
xs:double

[vocab:W
GS84Pod

vocab:lon]

‘Ext.M
ap’indicatesan

externalm
apping

pattern
(notused

in
thisexam

ple)
‘req.’indicatesa

required
attribute

in
Railsys

5.6 summary 205

• Five attributes were found to be irrelevant (out of scope) but
difficult to implement with current patterns. Application on-
tologies using these features would be required to create new
patterns. Four of these attributes related to the spatial repre-
sentation of railway switches, which are represented by dis-
tances down main and converging railway lines rather than in
3D space. The other was representation of the ‘number’ of a
track passing through a railway station for signalling purposes.

From the evaluation carried out, 67 of 73 concepts deemed within
scope of the intended rail ontology use case were found to be directly
representable using existing patterns, indicating a high degree of cov-
erage of the domain. No Railsys concepts were found to be inexpress-
ible.

5.5.4 In-use Validation

The utility of the RaCoOn ontologies is further validated in Chapter 6,
where they are extended and used in the storage and integration of
data for two railway applications. Section 6.2 builds upon the RaCoOn
ontologies to create a flexible asset monitoring system, whilst Sec-
tion 6.3 implements a real time train tracking ontology based on net-
work topology and track characteristics.

5.6 summary

This chapter has shown in detail how a set of railway domain models
were created using the RaCoOnmethodology shown in Chapter 4.The
resulting ontologies encode knowledge from existing railway data
models and systems, as well as concepts elicited from industry and
academic experts over the course of this project.

The domain ontologies presented focus predominantly onmodelling
concepts around railway infrastructure and operations. Although this
is evidently a subset of the full breadth of concepts used across the
entire railway industry and amongst passengers, the emphasis pro-
vided fits well with the majority of use cases and existing models ex-
amined in this thesis, and provides a relatively rich set of concepts
and patterns in areas that are commonly used by railway information
systems, such as geography, network layout, infrastructure character-
istics, and timing. The modular ontology design approach taken pro-
vides a way of extending the models at a later date; the cross-domain
ontology described provides a more generalised extension point from

206 racoon: pragmatic ontologies for the rail industry

which to further specify concepts for other domains and applications.

The RaCoOn models are intentionally inexpressive in some areas
to allow for practical uptake of both the ontologies and reasoning;
complex OWL axioms that encode knowledge are often omitted for
the sake of computation simplicity. For the intended uses of the do-
main model, it is more important to provide a set of models that are
simple enough to allow useful reasoning than to formally encode all
knowledge and end upwith an almost intractable ontology.The use of
annotation properties, as discussed in item 5.3.1.2 allows this knowl-
edge to be maintained within the model rather than omitting it for
the sake of reasoning simplicity.

In Chapter 6, the ontologies shown here are built upon and utilised
to present two demonstrators based on semantic web technologies
and ontology reasoning.

6
I N TEGRAT ION OF RA I LWAY REMOTE
COND I T ION MONI TOR ING DATA

6.1 introduction

Over the summer of 2014, the author and collaborators at Siemens Rail
Automation participated in a feasibility study project funded by the
Future Railway, a UK body seeking to encourage innovation across
the industry. The ‘FuTRO Universal Data Challenge’ sought novel
approaches for handling dynamic data in the railway industry, and
the team’s response to the challenge was a set of demonstrators and
documentation based on the author’s work described in Chapter 5
illustrating how semantic data modelling techniques could be used
to assist data sharing for two differnet use cases. This chapter docu-
ments the author’s contribution to the two demonstrators, which are
summarised as follows:

• AMaaS is an asset monitoring and management framework for
use by railway maintainers and managers based on cloud com-
puting technologies and graph data storage. Using the RaCoOn
model as a base, the demonstrator provides a flexible platform
for processing and viewing asset monitoring data from diverse
wayside data sources, and uses the domain ontology to provide
enriched contextual information for this information .

• The Train Locator is a small passenger information system sim-
ulator that shows how simple reasoning and inference can be
used to aid knowledge management across system upgrades.
Using a small set of custom OWL axioms and rules, the web ap-
plication shows how ontology-based systems can easily trans-
form data to allow legacy systems to continue operating with-
out changes.

6.2 the amaas application

Asset Monitoring As A Service (AMaaS)1 is a system designed by
Siemens Rail Automation and the author that utilises semantic web
technology to provide a scalable software framework for railway as-
set monitoring and management. Built upon a prototype application

1 http://purl.org/rail/futro

207

208 integration of railway remote condition monitoring data

developed by Siemens for their rail asset monitoring customer base,
AMaaS uses commercial off-the-shelf software with the RaCoOn on-
tology, and demonstrates how semantic data modelling can be used
to add flexibility and value to existing asset monitoring data. Here, de-
tails of the author’s contributions to the whole system are presented,
including implementation details and ontology design decisions.

As discussed in Section 1.1.2, asset management systems used by
railway maintainers and operators in the UK are usually closed sys-
tems that operate independently of other railway systems and rely
upon human operators to input information about the state of the
railway. Remote Condition Monitoring systems such as the recent
instrumentation of London’s Victoria Line [55] are implemented in
similar ways, with off-the-shelf applications relying on maintenance
staff to transfer information between monitoring systems where ap-
propriate. By working with the Siemens team during the implemen-
tation of AMaaS, the author was given the opportunity to demon-
strate how ontology-based systems improve data representation and
management in such a system, and the resulting benefits that can be
achieved.

6.2.1 Overview and Use Case

6.2.1.1 Project Motivations and Requirements

Siemens’ initial motivation for designing a new asset monitoring sys-
temwas to provide a generic, scalable platform that could be used and
customised for each client, but share the same technology and infras-
tructure, following the Software-as-a-Service (SaaS) paradigm.

The cloud platform was to form part of a whole condition moni-
toring solution, with all components provided by the company: sen-
sors and data acquisition hardware, back-end data processing soft-
ware, and front end applications for a variety of different users. A
key requirement of the AMaaS system was that it could scale over
time and respond to customers’ changing requirements, as they incor-
porate more and varied data sources into the platform, as shown in
Figure 6.1. The use of a semantic data model had been previously con-
sidered by the Siemens team to allow flexibility in provisioning and
managing data sources, but had not yet been implemented—design of
the AMaaS system in its entirely provided an opportunity to fully de-
velop this part of their prototype system.

6.2 the amaas application 209

AMaaS

Common System Architecture
Common Data Model

Customer
Model

Customer
Extension

Customer
Model

Customer
Extension

Customer
Model

Customer
Extension

RaCoOn AMaaS Core

Figure 6.1: AMaaS Modularity

Alongside Siemens’ goals for AMaaS itself, the FuTRO Data Chal-
lenge brief required that candidate technologies should be capable of
integrating and interacting with data from inside and outside of the
system. This led to the production of several more high level require-
ments by the University of Birmingham for the project:

• Demonstration of data integration between heterogeneous datasets,
and proof of specific benefits gained from an asset monitoring
and maintenance perspective.

• Design of an open platform to allow data to be harnessed from
other, external, information sources and to allow publication of
system data for use by other platforms.

• Development of a system in RDF/OWL to show proof of con-
cept for semantic interoperability using linked data technology
and web ontologies.

• Demonstration of semantic enrichment of system information
through RDFS and OWL ontology reasoning.

• Proof of feasibility of implementation using off-the-shelf, scal-
able technology.

The creation of such a system was also intended to publicise the
advantages of data interoperability across the rail industry, through
exposure generated in response to the FuTRO Universal Data Chal-
lenge project.

6.2.1.2 Selected Applications

The demonstration scenario created for AMaaS was constructed from
two known application use cases, as detailed below. The value gained

210 integration of railway remote condition monitoring data

through better management of maintenance data is demonstrated for
both groups of users, and this added value provided a strong incentive
for development of the project in these areas.

AMaaS

Asset
Monitoring

Infrastructure
Data

WTT Data

Asset Data

Maintainer Signaller

Figure 6.2: Data Sources And Actors In AMaaS

• Infrastructure Maintenance and Asset Management was cho-
sen as the primary application area for the AMaaS project. In-
frastructure managers have a need to track the health of assets
on the railway, and condition monitoring systems allow them
to better assess and react to deterioration of assets. Combin-
ing Remote ConditionMonitoring (RCM) and historic asset data
provides a fuller picture of the state of an asset, allows clearer
decisions to be made on maintenance and management, and fa-
cilitates easier day-to-day operations through immediate access
to location and asset register information.

• Signalling and Control systems do not usually include any ex-
tra contextual information on the railway network, instead rely-
ing on signallers to gather this information from other sources.
Although newer technology allows for basic monitoring and
alarm inputs to be used [115], the provision of rich asset infor-
mation directly to such systems may allow signallers and train
operators to make better informed or more timely decisions in
the case of degraded railway operation.

6.2.1.3 Demonstrator Application Storyboard

Taking into account these two use cases, an application storyboard
was created for the demonstrator, showing a number of steps through
the application, each of which add a new feature and exemplify its
advantages. These steps are shown in Figure 6.3.

6.2 the amaas application 211

An application that reports the status of several pieces of
railway condition monitoring equipment is presented. The
system acquires readings from RCM hardware and generates
either ‘faulty’ or ‘healthy’ verdicts based on internal data
analysis algorithms. This system has no new functionality
compared to traditional RCM systems, but data is stored as a
graph and aligned to an ontology, allowing users to view
asset fault and condition data either through lists or by
navigation through the graph.

Users view information in the entity browser, a view that
captures all known information about a thing. Each real
world thing is uniquely identifiable, and this view becomes
richer as new data sources and associations are added. The
entity browser is used as the basis for information to be
conveyed to maintenance users, and displays custom views
for certain information types.

Asset register data is brought into the model, and links
created between monitoring equipment and railway assets.
This association between asset and asset monitor allows
maintainers to easily relate faults to physical pieces of
equipment, even as machinery and track layouts change
over time. Infrastructure (track) information is also included,
aligned to the rail ontology. Asset information is associated
with locations in the infrastructure, allowing users to view
asset status on a trackmap or signalling diagram.

By using facts present in the ontology, diagnoses made in
various monitoring systems can now influence the stored
condition of pieces of infrastructure-a points machine that is
displaying a swing fault is inferred as being failed, and the
infrastructure view updated. By extension, based on
knowledge of the underlying infrastructure, the status of
dependent components is also inferred (for instance if a
piece of track is out of action due to a signal failure, or a
points machine relying on a faulty electricity supply).

A Wheel Impact Load Detector device is introduced into the
infrastructure and asset monitoring models. It is
automatically classified by AMaaS and its condition
displayed. After loading scheduling data into the system,
another view within AMaaS allows the correlation of train
running data with WILD observations. This is possible
through the alignment of timetable data with known
locations, which are in turn associated with infrastructure
and thus assets.

Figure 6.3: System Design Storyboard for AMaaS System

212 integration of railway remote condition monitoring data

6.2.2 Existing Prototype Architecture

The Architecture of the AMaaS platform is based on a prototype sys-
tem conceived by Siemens Rail Automation before the start of the
project2. Whilst this chapter focusses largely on the novel data model
used inAMaaS, the following section describes elements of the Siemens
prototype system used or adapted for the implementation of AMaaS.

6.2.2.1 Siemens System Architecture

Prior to the development of the AMaaS system, the Siemens Rail Au-
tomation prototype used cloud computing technologies to provide
volume scalability and resilience. A high level diagram of the initial
architecture is provided in Figure 6.4. The prototype includes a num-
ber of components that were built upon and extended over the course
of the development of AMaaS, and these are explained briefly below.

Siemens
Fastflex

Hardware

Sensor

Sensor

AMaaS Cloud

Message Queue

Analysis
Worker

Data
Store API

Web
Application

User

User

UserSensor

Lineside User Applications

Figure 6.4: Siemens Cloud-based Asset Monitoring System Architecture

data acquisition

The Siemens Fastflex condition monitoring system [210] was chosen
as the data acquisition stage for AMaaS. The system provides data
acquisition and limited analysis functionality, and comprises the fol-
lowing components:

• Sensors instrument railway assets, and provide an initial input
to the system. In a typical Points Condition Monitoring (PCM)
scenario, current sensors detect motor torque characteristics,
whilst microswitches and temperature sensors establish move-
ment state and environmental condition.

• Data acquisition input/output and conversion hardware pro-
vides an interface between the sensors and the Fastflex soft-
ware.

2 This prototype is unrelated to the Siemens Energy system described in Chapter 3

6.2 the amaas application 213

• Aggregators acquire signals from sensors or other input de-
vices, and process them according to application. In the proto-
type system, Siemens Fastflex control units act as aggregators,
and process data for up to four points machine monitoring de-
vices. An industrial Personal Computer (PC) inside the Fastflex
unit is used to encode data and either store it onboard, raise
alarms via digital (hardware) outputs and relays, or transmit it
to a maintenance control centre. The flexibility of the PC-based
software approachmeant that it could be modified as part of the
AMaaS project to transmit data using standardised linked data
protocols.

processing

The ‘cloud’ component of the prototype system was built using a
service-oriented architecture, and used a message queue system to
process data arriving from wayside RCM hardware and service re-
quests from applications. Monitoring and state data was stored in a
document database (MongoDB) and key-value store (Redis), and pre-
sented over a web API to interface with the AMaaS web application.
The modular nature of the system allowed it to respond to changing
demand by provisioning new worker nodes to provide more comput-
ing power as necessary.

front end

The prototype system’s front end was developed as a web application,
presenting asset information to users in tabular form.Theweb applica-
tion submitted requests to a web API residing inside the AMaaS cloud
for each view, and information was displayed through an HTML in-
terface. Application logic was encoded into the web API, such that it
could fulfil the tasks necessary to display asset information to users.

6.2.3 Proposed System Architecture

Given the existing system architecture, aims and requirements dis-
cussed earlier, a modified system design was proposed for the AMaaS
demonstrator. This system architecture builds on the architecture al-
ready in place, but uses a distributable RDF triplestore to store both
the domain ontologies (T-box) and instance data in the asset monitor-
ing system (A-box). An overview of this system architecture is shown
in Figure 6.5. The initial architectural design of the system required
the following tasks to be undertaken:

214 integration of railway remote condition monitoring data

Siemens FastFlex Device

Generic Asset Monitoring Device

Points CM
Devices

Aggregator

Aggregator Legacy
Device

Other
Device

AMaaS Cloud

Ontology
& Asset

Info
Value
Store

Worker
NodeWork
Node

Message Queue

AMaaS Web API

SPARQL
(Linked

Data) Server

AMaaS Views

Client
1 Client … Client

n

Other Rail
ApplicationsOther Rail
Applications

RDF

Web Server

Figure 6.5: AMaaS Demonstrator System Architecture

• Extension of RaCoOn ontology to facilitate asset self-description,
condition monitoring observations, and associated metadata.

• Selection and configuration of off-the-shelf RDF triplestore to
replace relational database in prototype system.

• Development of Siemens Fastflex software to provide asset self-
description and alignment to ontological models.

• Alignment of prototype system data model with new AMaaS
ontology.

• Provision of Linked Data Platform compliant public endpoint
for integration with other data sources.

• Capture and conversion of logic from prototype system into
AMaaS ontology; re-implementation of prototype front end as
SPARQL compliant application.

• Extension of front end applications to cover demonstration use
cases.

These tasks are discussed in the next section.

6.2.3.1 T-box vs A-box Knowledge

In traditional schema-based data storage systems, the terminology, or
domain knowledge (T-box), is usually inherently separated from the

6.2 the amaas application 215

instance data (real world facts, or A-box). XML models make this dis-
tinction by encoding T-box (domain) knowledge into the structure,
or syntax, of an XML schema document, and storing the A-box (in-
stance) data according to these definitions. Relational databases and
spreadsheets do the same, by encoding domain knowledge into table
structures and labels. In RDF, both T-box and A-box assertions are
stored as triples in the same data store, although it is useful for rea-
soning to keep the two sets of facts separate from each other.

6.2.3.2 System Requirements

The functional requirements for each of the storyboard stages given in
Section 6.2.1.3 are summarised in Table 6.1. Progression through each
stage of the demonstrator brings new requirements, and the features
implemented along the way are discussed in the following section.
Modelling tasks (shown in bold) are discussed in particular detail.

6.2.3.3 Implementation Technology Choices

In creating the demonstrator application, it was important that the
technology and implementation used could be easily replicated and
used by developers in the rail industry. The technology choices made
during the implementation of AMaaS reflect this, where only very
well supported or standardised technologies have been used. The se-
lection of these tools also aided rapid development, and allowed de-
velopers at Siemens to draw upon existing work.

rdf data store

The requirements for a well-supported, standardised system led to a
commercial, off-the-shelf RDF triplestore being used for AMaaS. A
number of such triple stores exist, with several performance reviews
examining the effectiveness of each in different situations [138, 139].
Five were selected for comparison for the AMaaS project, based on
factors including reasoning performance, scalability, and ease of de-
velopment use. An overview of their feature sets are shown in Ta-
ble 6.2.
Given the rapid development lifecycles in triplestore software (Star-
dog advanced three minor versions over the course of the project), it
is anticipated that a production implementation of AMaaS would con-
duct a more detailed evaluation of available options and potentially
reconsider choice of a triplestore at a later date.

• Cluster Ready indicates whether or not a triplestore is scal-
able within the AMaaS cloud framework; in practical terms,

216 integration of railway remote condition monitoring data

Table 6.1: Functional Requirements Defined From AMaaS Storyboard

Storyboard
Stage

Data Model and Interface Requirements

1. Basic Asset Monitoring
Taxonomy of asset monitoring system (for navigation)
Base model of asset monitoring equipment
Current and historic observations for each device
Current diagnoses and analysis of assets
PCM-specific application: fine-grained data display

2. Entity Browser
User interface to allow navigation through system

3. Infrastructure-linked Asset Data
Asset register and infrastructure model and
information
Signalling (track map) view
Links between assets and asset monitors

4. Status Inference and Dependent Devices
Fault diagnoses and correlated asset health
‘Dependence’ relations and reasoning semantics
Links between dependent assets on trackmap
Indication of asset health on track view
Alarm panel for unhealthy assets

5. Wheel Impact Load Detector (WILD) extension
WILD device information
WILD display (trackmap) information
WILD condition
(WILD observations displayed using generic model)

6. WILD Rolling Stock Correlation
Working timetable (WTT) model and data
Infrastructure-linked route data
Inference of rolling stock traffic on infrastructure
WILD-specific application extension (Train finder view)

6.2 the amaas application 217

Table 6.2: Comparison of Features Across Popular RDF Triplestores

Triplestore Standards
Compliant?

Cluster
Ready?

Reasoning Cost

Stardog
Community
Edition4

X X DL (T-box)
/RDFS/Rule (A-box)

Free

Virtuoso
Enterprise

X X Rule-based Paid

Virtuoso Open
Source

X - Rule-based Free

OWLIM
Enterprise

X X OWL RL/Rule Paid

Allegrograph X X RDFS/Rule/
Temporal

Paid

whether it offers a clustered/distributed configuration option.
Many triple stores scale to billions of triples, but these often
rely upon centralised/single server solutions.

• Standards Compliant indicates whether each triplestore com-
plies with semantic web standards. Minimally, these are RDF
1.0 and SPARQL 1.1 Query and Graph Store, although many
support RDF 1.1 and a larger subset of the SPARQL 1.1 specifi-
cation.

• Reasoning gives an indication of the level of reasoning support
provided by the triple store. Reasoning poses a huge problem
for web-scale data, as discussed in Section 4.5.6, andmany triple
stores provide intelligent mechanisms for realising some level
of reasoning. In AMaaS, both OWL RL and reasoning are used
with a view towards ultimate scalability of the solution.

• Cost indicates whether a license for the triple-store was free
of charge, or paid for. Triplestores available for free all impose
functionality or licensing restrictions to prevent enterprise use;
the requirements of AMaaS were well within these limits.

Clark & Parsia’s Stardog triplestorewas chosen for usewith AMaaS
as it satisfied key requirements for scalability, reasoning, standards-
compliance, and usability. Stardog’s reasoning capability providesOWL
2DL reasoning across the ontological part of the triplestore, and OWL
2 RL across the A-box (instance) data, allowing the the semantics of

218 integration of railway remote condition monitoring data

the RaCoOn ontology to be reasoned over whilst maintaining suffi-
cient speed and scalability for the demonstrator. The reasoner uses
query rewriting, or backward-chaining, so reasoning is only triggered
at query time, rather than storing and maintaining a set of inferred
axioms persistently.

back-end and front-end technologies

Influenced by the initial prototype, both the aggregator (Fastflex) soft-
ware and front end web applications for AMaaS were constructed us-
ing Microsoft’s .NET technology stack. The Aggregator software was
extended from a C# .NET application running on an embedded Mi-
crosoft Windows PC, and the AMaaS web application developed in
C# on Microsoft Internet Information Services. In both cases a well-
written and compatible codebasewas already available, and third party
libraries were used to allow easy compliance with semantic web in-
terface standards.
For the demonstrator’s implementation, a Microsoft Azure virtual ma-
chine was used to run the web (front end) API, message broker, anal-
ysis workers, and the Stardog triplestore.

messaging middleware and analysis

The AMaaS cloud used an off-the-shelf Service-oriented Architecture
framework to queue and handle incoming and outgoing requests. Data
producers or consumers, such as RCMdevices or web APIs, create and
send messages to a central message broker, which then queues the
messages for processing. Worker agents subscribed to the message
queue carry out fixed processing tasks on the message content (such
as analysis or data storage), and any number of workers can be pro-
visioned according to purpose and demand. Pivotal RabbitMQ5 was
chosen as the message-brokering software to be used in AMaaS, due
to its compliance with the web-standard Advanced MessageQueuing
Protocol (AMQP) messaging protocol.

To allow appropriate workers to be assigned the correct tasks in
the AMaaS cloud, a service registry is maintained within RabbitMQ.
To further encourage interoperability it was desirable that a method
for semantic description of services (to facilitate flexibility as the sys-
tem grows) should be used, but current methods for achieving this too
immature or overly complex for implementation within the project’s
time constraints. The Semantic Automated Discovery and Integration

5 http://www.rabbitmq.com

6.2 the amaas application 219

design pattern [228] provides one appropriate methodology for im-
plementing this as the project is developed further in the future.

data modeling and transmission standards

In addition to using OWL and RDF tomodel data in the RaCoOn ontol-
ogy and the AMaaS application, RDF data serialised using Turtle was
employed in the transmission of messages from RCM equipment to
the AMaaS cloud. The front end application, hosted separately from
the main platform, used SPARQL 1.1 queries to request RDF infor-
mation from the triplestore. These choices mirror those made in the
Linked Data Platform 1.0 recommendation [229]. In a production sys-
tem, binary formats such as HDT [62] may be considered in order to
achieve higher compression of transmitted messages.

fine-grained data

One weakness of RDF is that it is inefficient for storing very fine-
grained data such as waveforms with correct semantics. This was
found to be an issue in the AMaaS PCM application—current, tem-
perature, and switching waveforms are generated for every PCM ob-
servation, and this data must be stored and displayed to users, as well
as used for analysis. Storing such data as RDF with exactly preserved
semantics would require assertion of huge number of triples (>100
000 per observation), compared to only a few kilobytes of binary data.
As such, a clustered key-value store, Redis, was used to store mea-
surement data for the PCM system, and mappings created in RDF to
allow applications to access and query this data in appropriate ways
(as described in Section 6.2.4.4).

Binary data in Redis was serialised into a C# object storage for-
mat, and queried directly by the front end application. Representa-
tion of fine-grained data in a semantic model requires trade-offs be-
tween modelling perfection and pragmatism; an alternative approach
considered was to represent data as encapsulated Comma Separated
Values (CSV) within RDF triples. This use case is not limited to the
AMaaS project, and a vocabulary for describing CSV semantics in RDF
is listed as a current deliverable for theW3C ‘CSV OnTheWeb’ work-
ing group6.

6 http://www.w3.org/2013/csvw/

220 integration of railway remote condition monitoring data

sparql endpoint

The demonstrator includes a SPARQL 1.1 endpoint to enable other
systems to take advantage of data capturedwithinAMaaS.The system
exposes a single federated endpoint, which provides access to both the
Stardog data store and a custom Redis interface to fine-grained data
designed by Siemens. Data flow in the system is shown in Figure 6.6.

O
pe

nR
D

F
Fe

de
ra

to
r S

er
vi

ce

C

M
ap

pe
r

Se
rv

ic
e

Re
di

s

Public
SPARQL
Request

St
ar

do
g

SPARQL Query

RDF Response

SPARQL Query

RDF Response

Redis Request

ASCII Response

Combined
RDF

Response

Figure 6.6: Block Diagram Showing Query Activity across Federated Data
Stores in AMaaS

6.2.4 Stages 1 & 2: Asset Monitoring System Implementation

The following sections highlight specific technical details from the
implementation of the AMaaS system. This first section describes im-
plementation of asset monitoring fundamentals, and specifically the
conversion of the Siemens prototype asset monitoring system to use
an OWL model and RDF data storage. The model itself is presented,
as well as how the initial application works and is presented to users.

Having established the overall system architecture, the first stage in
development of the AMaaS prototype was to ensure that asset mon-
itoring concepts involved with the system could be correctly repre-
sented in an ontological model. Identification of ontology concepts for
both generic asset monitoring devices and then for more application-
specific PCM devices was undertaken; implementation of these new
concepts took the form of both an OWL extension of the RaCoOn on-
tology described in Chapter 5, and a set of natural language design
patterns for documentation.

6.2.4.1 Fundamental Asset Monitoring Concepts and Patterns

To model the layout of asset monitoring equipment in the railway
infrastructure, the AMaaS ontology extends concepts in the core on-

6.2 the amaas application 221

tology. Subclassing existing classes allow other applications to infer
traits of asset monitoring equipment7, whilst retaining expressivity
necessary for the AMaaS application. An example model of the pro-
posed pattern, showing both core domain level concepts and AMaaS
asset monitoring concepts, is given in Figure 6.7.

u:DomainSpecificThing

vocab:RailwayDomainConcept

u:ContinuantThing

amaas:RailwayAsset

amaas:EAssetMonitor

amaas:EI2MBoxamaas:EVirtualMonitor

amaas:EPointEndMonitor

VirtualMonitor1 PointEndMonitorX

FastFlexA

:subClassOf:subClassOf

:subClassOf

:subClassOf

:subClassOf:subClassOf

a

a
a:functionallyComprises:functionallyComprises

:subClassOf

Sensor

TempSensorZ

EquivalentClass ≡

Kelvin

:measurementType

:subClassOfLine Label

Figure 6.7: AMaaS Component Topology Design Pattern

Thekey new subclasses in this pattern are amaas:RailwayDomainConcept
and amaas:EAssetMonitor, whose members are all railway domain
objects and spacio-temporal entities. amaas:EAsset is the class of
all railway assets, and amaas:Sensor and amaas:EVirtualMonitor

allow the representation of ‘virtual’ asset monitors within physical
hardware. Properties to allow modelling of compositional elements
are provided, and link to quantity/type definitions provided by the
core ontology.The combination of these elements allow for basic mod-
elling of asset monitoring concepts, without the need for additional
constraints. Other useful concepts include:

• ‘Virtual’ devicemonitors are related to physical devices through
the u:functionallyComprises relation.The same object prop-
erty can also be used to build a hierarchy through asset monitor-
ing devices, such as in the case of distributed mesh networked
sensors.

• amaas:sensor defines the mapping between a hardware sensor
and the acquisition device it is connected to.

• amaas:I2MBox is the Siemens-specific subclass used for its ‘Fast-
flex’ branded asset monitoring devices.

7 For example, subclassing physical concepts as rcn:InfrastructureThing infers
that they are physical, located objects on the railway.

222 integration of railway remote condition monitoring data

creation vs reuse

Ontology design methodologies heavily favour re-use of existing pat-
terns and concepts over re-invention. Before creating key patterns for
the AMaaS ontology, a review of existing patterns was undertaken,
and theW3C’s Semantic Sensor Network ontology [38] was identified
as a possible candidate for re-use. Conclusions drawn from a review
of the Semantic Sensor Network (SSN) ontology were as follows:

• The Semantic Sensor Observation pattern [117] represents ob-
servations andmeasurements correctly, but is unnecessarily com-
plex for the AMaaS application. The AMaaS observation pat-
tern mostly aligns with the Semantic Sensor Observation pat-
tern, but implements more granular temporal representation
of measurements. Extensions were also made to allow for rep-
resentation and diagnoses of measurements stored outside of
the RDFmodel—allowing the inclusion of fine-grainedmeasure-
ment data.

• Sensor characteristics are modelled effectively in SSN, and this
pattern could be used in the AMaaS ontology to capture details
of asset monitoring sensors, although its use was felt to be be-
yond the scope of the AMaaS demonstrator.

• Groups of observations can be represented using the Semantic
Sensor Network ontology, but not in a way that is optimised for
use cases such as PCM, where one “observation” will always in-
volve a set of sensors. As this model is frequently required in
AMaaS, a different pattern requiring less complexity was cre-
ated to cater for it.

Owing to the need for variations as outlined above, the Semantic
Sensor Network ontology itself was not usedwithin AMaaS. However,
care was taken to keep concepts semantically similar such that inte-
gration and extension with SSN concepts is possible through simple
mappings or OWL axioms.

6.2.4.2 The Observation Pattern

Central to the model of asset monitoring is the notion of an observa-
tion or event; some observed change by a device at or over a specified
time. In the case of PCM, this is usually a points swing, but the ex-
act nature of these observations varies in other cases. In AMaaS, an
observation is defined as a distinct set of measurements to which a di-
agnosis can be attributed, providing a sensible way to aggregate data

6.2 the amaas application 223

from multiple sensors8. Additional property chain axioms have been
added in the AMaaS ontology to allow the inference of extra proper-
ties for measurements themselves:

startTime ⊑ measurement ◦ startTime
unit ⊑ observationOf ◦ unit

Figure 6.8 demonstrates an example of the observation design pat-
tern, including inferences made based on these axioms.

Observation

MeasurementY

“2014-11-10T12:28:
50Z”^^xsd:dateTime

Observation

MeasurementX

Observation

ObservationX

:measurement

:startTime

TemperatureSensor

PointEndSensorX

Celsius

:observationOf

:startTime

:measurement

CurrentSensor

CurrentSensorY

DataKey

KeyXYZ

:observationOf

:values

:unit

:unit

:startTime

Figure 6.8: AMaaS Observation Pattern

ASiemens FastFlex PCMdevice utilises this design pattern formark-
ing up data in the following ways.

• Following a points swing, an amaas:Observation entity is cre-
ated. This entity is marked up with a start time (as well as op-
tionally other temporal attributes) and a number of amaas:-

measurement relations asserted.

• Each amaas:measurement assertion links an observation with
either a particular measurement or a sub-observation, repre-
senting a particular sensor’s observation for that time. The ob-
servation’smetadata is then inferred through the axioms shown

8 When considering systems (such as weather monitoring) that continuously observe
conditions, the division of measurements into discrete observations seems counter-
intuitive. It does, however, make asset monitoring data more manageable, and since
none of the data semantics are lost, was considered a good approach in AMaaS.

224 integration of railway remote condition monitoring data

above. This compositional approach allows diagnoses or meta-
data to be attached to either the parent observation (the points
swing) or an individual sensor’s output.

• Metadata relating the original sample data to the points move-
ment is added in the form of URI pointers, as described in Sec-
tion 6.2.4.4.

6.2.4.3 AMaaS Front End

The User Interface for the AMaaS demonstrator user interface is an
extension of that provided by Siemens in their original asset monitor-
ing system. It is written as a web application, and communicates with
the AMaaS web API. In the initial stage of the demonstrator, where
only asset monitoring concepts are represented, its key feature is the
Entity Browser, a viewwhich allows railwaymaintainers to view asset
monitoring information in text form.

Navigation in the entity browser is done by hyperlinks between
asset monitoring devices based on relations in the AMaaS ontology.
Each class or individual has a page, and most relations from each
entity are displayed in a table9. As a result of this, the structure of
the user interface mirrors precisely the structure of the data avail-
able in the ontology, and allows it to adapt immediately to new re-
sources, classes, or other extensions that are loaded into AMaaS—a
feature which is used extensively as new functionality is introduced.
At this stage, navigation between asset monitoring devices is pro-
vided through the hierarchy of the AMaaS system, as described in
Figure 6.9.

EAssetMonitor

AMaaS

EI2MBox

I2MBox1

EI2MBox

I2MBox2

EPointsMonitor

PointsMonitor2

EPointsMonitor

PointsMonitor3

EPointsMonitor

PointsMonitor1

u:functionallyComprises

u:functionallyComprises u:functionallyComprises

Figure 6.9: Hierarchy of PCM Devices in AMaaS Demonstrator System

9 Some RDFS andOWL built-ins are intentionally excluded from the user interface for
usability reasons; these include OWL restriction axioms and documentation prop-
erties.

6.2 the amaas application 225

The entity browser presents information on an asset based on its
URI. Information about each entity is gained by submitting a request
to the web API over SPARQL, and then formatting the response to
return a web page containing the content. Rather than the web appli-
cation resolving each entity’s URI directly, they are passed into the
entity browser as a request parameter, ensuring that the application
only presents a useful subset of asset data to users. Figure 6.10 shows
a screenshot of the Entity Browser.

Figure 6.10: Screenshot of the AMaaS Entity Browser

6.2.4.4 Referencing Sample Data

The decision to allow fine-grained sample data from RCM systems to
be stored separately from the RDF store led to the need for a way of
representing links to external systems within the AMaaS main plat-
form. This was modelled in RDF in the following way:

• amaas:ExternalStoreObject was created to represent exter-
nal data sources.Whilst full semantic description of accessmech-
anisms to such external objects is complicated, the creation of

226 integration of railway remote condition monitoring data

this entity allows for some description of how agents may in-
terface with them.

• Amaas:MovementRecordObject entities are created for each new
external data store object, and record an identifier for use in the
external system, as well as a relationship to the correct amaas-
:ExternalStoreObject from which the information can be re-
trieved.

• AMaaS observations are linked to these objects through the
amaas:movementRecordObject relation. Enough information
is now present for an application to correctly retrieve sample
data relating to an observation10.

In AMaaS, every PCM measurement is described in RDF and writ-
ten to the triplestore. Sample data is independently uploaded to a Re-
dis key-value store as a serialised JSON object, and a pointer to its loca-
tion attached to each observation object in the RDF store. Figure 6.11
shows the activity flow across AMaaS when a PCM measurement is
taken.

Acquire Data

Create RDF Data Create Points
Profile

Queue Sample
DataQueue RDF Data

Store RDF Data

Store Sample
Data

Analyse &
Diagnose

Create RDF
Analysis

Queue Analysis
Data

Store RDF Data

[trigger]

[movement end]

[transaction
complete]

[transaction
complete]

[RMQ message]
[finish analysis]

[transaction complete]

Fa
st

fle
x

PC
M

 A
gg

re
ga

to
r D

ev
ic

e
Ra

bb
itM

Q
St

ar
do

g
Re

di
s

A
na

ly
si

s
W

or
ke

r

Figure 6.11: AMaaS Observation Pattern

At this stage, diagnostic data is asserted for each points movement
profile, using either pre-defined or new instances of the amaas:Condition

10 More specific metadata for samples, such as sample rates and error tolerance, were
not recorded in the prototype AMaaS system, and instead rely upon application-
level logic for this information. It is likely that as the system is further developed and
extended, proper mechanisms for handling different external data stores (perhaps
assuming a standardised web architecture) will be created.

6.2 the amaas application 227

class. Each points movement is viewable in the AMaaS front end,
which is invoked when a user clicks on a point end monitor asset
in the Entity Browser (see Figure 6.12).

Figure 6.12: AMaaS Web Application Profiles View

6.2.5 Stages 3 & 4: Infrastructure Integration and Reasoning

Stages three and four of the AMaaS demonstrator integrate infrastruc-
ture data with monitoring equipment, such that inferred faults and
conditions can be assigned to assets across the railway system. Most
information monitoring systems accomplish this by contextualising
through labelling of condition monitoring equipment in databases or
‘hard-coding’ in user interfaces—for instance Siemens’WestCAD con-
trol system [115], which uses graphical ‘signalling schemes’ to contex-
tualise train describer information. Linked data instead allows linking
two datasets together dynamically, such that information from both
sources is enriched, and changes in either data set are seen across
systems.

• Asset monitoring information remains as in the first stage of
the demonstrator—metadata is represented as RDF and sample
data stored separately. AMaaS analysis worker nodes diagnose
the condition observed for each measurement.

228 integration of railway remote condition monitoring data

• Infrastructure and asset register information is mapped from
proprietary formats into RDF, following design patterns defined
in RaCoOn and extensions to AMaaS.

6.2.5.1 Mapping Infrastructure Data into RDF

A subset of infrastructure data was mapped into RDF from Network
Rail Sectional Appendices. Track layout information from the vicinity
of Coventry railway station (Figure 6.13) was selected and mapped ac-
cording to RaCoOn design patterns, andthe initial mapping structure
defined in Table 6.3. The resulting RDF data was used for the AMaaS
demonstrator.

Figure 6.13: Railway Layout Around Coventry Station According to Open-
StreetMap

Several amaas:Points entities were created at assumed junctions,
some ofwhichwere later associatedwith demonstration Siemens Fast-
flex PCM equipment, as described in the following sections.

6.2.5.2 Presenting Infrastructure Data Graphically

To convey inferred asset health information on rail infrastructure,
a graphical depiction of the track layout was created for use in the
AMaaS web application. Intended to show the use of the AMaaS sys-
tem for signallers, the diagram is similar in layout to British Rail stan-
dard signalling and control interfaces11, and shows all elements that

11 Care was taken to ensure that the diagram looked different from British Rail stan-
dard user interfaces for signalling systems, such that users did not expect similar
functionality.

6.2 the amaas application 229

Ta
bl
e
6.3

:R
aC

oO
n
El
em

en
ts

Us
ed

fo
rA

M
aa

S
In
fra

st
ru

ct
ur

e
M
ap

pi
ng

s

El
em

en
t

D
es
cr
ip
tio

n

rc
n:

Li
ne

De
ta

il
No

de
Cr

ea
te
d
fo
re

ve
ry

ju
nc

tio
n
on

th
e
tra

ck
m
ap

rc
n:

Li
ne

De
ta

il
Ar

c
Cr

ea
te
d
fo
re

ve
ry

pi
ec

e
of

tra
ck

on
th
e
tra

ck
m
ap

(b
et
w
ee

n
ea

ch
no

de
)

rc
n:

Li
ne

Le
ve

lN
od

e,
rc

n:
Li

ne
Le

ve
lA

rc
s

D
efi

ne
d
fo
rm

aj
or

ju
nc

tio
ns

rc
n:

st
ar

tN
od

e,
rc

n:
-

en
dN

od
e

D
efi

ne
d
be

tw
ee

n
al
la

rc
sa

nd
no

de
s

rc
n:

St
at

io
n

Ad
de

d
fo
re

ve
ry

ra
ilw

ay
st
at
io
n
on

m
ap

rc
n:

Po
in

ts
As

se
rte

d
fo
r(

fic
tio

na
l)
po

in
ts

m
ac

hi
ne

en
tit

ie
s

230 integration of railway remote condition monitoring data

were mapped into RDF. A Scalable Vector Graphics diagram(shown
in Section D.1) with embedded RDFa was written, containing entity
URIs for each element. Site note: The Scalable Vector Graphics (SVG)
diagram with embedded RDFa data is also available online12.

The track view, shown in Figure 6.14, provides a visual indication
of the state of assets within the AMaaS system. After querying the
AMaaS RDF store for asset status, each unavailable element is shown
in red on the diagram. By interacting with elements, users can access
further details of assets, including detailed fault information. Asset
condition information is combined with infrastructure layout using
OWL inference, allowing users to easily geographically locate faults.

Figure 6.14: Screenshot of AMaaS Track View

6.2.5.3 Integration and Inference between PCM System and Infrastruc-
ture Model

In order to enable reasoning on data across the various systems in the
AMaaS demonstrator—resulting in a richer knowledge of the system
as a whole—links were manually created between the asset monitor-
ing (PCM) dataset and the transcribed asset infrastructure informa-
tion. Assetmonitoring equipmentwas linked to infrastructure through
the u:monitors relation, which, when used in conjunction with the

12 http://phd.jtutcher.co.uk/futro/tracklayout

6.2 the amaas application 231

design patterns explained below, facilitates inference of infrastructure
condition.

inference of asset condition

With new knowledge of the the relationships between assets and as-
set monitors in place, AMaaS can use links between systems to in-
fer information about the assets themselves. The most useful of these
link asset monitor observations to asset hardware, as illustrated in
Table 6.4:

Table 6.4: Example of Asset Data Contextualisation using Asset Monitoring
System Data

Asset (Asserted) Asset Monitor Asset (Inferred)

Westlock Points Machine Points Monitor Westlock Points Machine
Installed: 1992 Observation: 20:00 Installed: 1992
Maintained: 2014 Health: Faulty Maintained: 2014
Location: B29 6PQ Location: B29 6PQ

Observation: 20:00
Health: Faulty

Given two entities linked by a u:monitors relation, it follows that
any observation made by a monitoring device is an observation of the
health of the asset it monitors. The amaas:associatedObservation
models this using the following DL axioms:

associatedObservation ⊑
monitoredBy ◦ observedEvent

⊤ ⊑ ∀associatedObservationObservation

This first axiom states using a property chain that any observation
made directly by a device that monitors an asset, is an associated ob-
servation of the asset itself, whilst the second restricts the property’s
range.The full turtle serialisation of this entity is shown in Listing 6.1.

This pattern has the result that clients can query asset condition
using the amaas:associatedObservation relation, and retrieve all
asset observations related to the subject asset. In the demonstrator,
this is exploited both in the track view and in the entity browser, with

232 integration of railway remote condition monitoring data

:associatedObservation
a owl:ObjectProperty ;
rdfs:comment ”An indirect observation of an entity (through

another monitoring method etc) {@en} - this is how assets
are linked to their observations through assetmonitors”@en
;

↪→

↪→

↪→

rdfs:domain u:IndependentThing ;
rdfs:label ”Associated Observation”^^xsd:string ;
rdfs:range u:Observation ;
owl:propertyChainAxiom (:monitoredBy :observedEvent) .

Listing 6.1: OWL Axiom Asserting Observation Relation Properties

current status being shown using a SPARQL query.

As a result of the use of the 3D paradigm in RaCoOn, the creation
of an OWL relation linking an asset to it’s most recent observation is
not achievable in the AMaaS system. Rule reasoning, however, does
allow this, and a amaas:currentObservation predicate was created
using Stardog Rules to infer the value of the most recent observation
on an entity. For the purposes of the demonstrator, the AMaaS appli-
cation assumes that the most recent observation recorded is current,
and does not consider validity periods for measurements. This issue
would need to be considered further in a commercial implementation
of the system. The Stardog rule used to implement this is shown in
Listing 6.2.

@prefix rule: <tag:stardog:api:rule:> .
[] a rule:SPARQLRule ;

rule:content ”””
PREFIX :<urn:test:>

IF {
SELECT ?asset ?condition (MAX(?tstamp) as ?date)
where {

?asset amaas:associatedObservation ?o .
?o amaas:startTime ?tstamp .
?o amaas:calculatedCondition ?condition

} GROUP BY ?asset
} THEN {

?asset amaas:currentCondition ?condition
}””” .

Listing 6.2: Stardog Rule for Inference of Current Asset Condition

6.2 the amaas application 233

inference of fault

Although diagnoses of health for differing assets can be queried using
the patterns described above, the Track View application and alarms
panel present in AMaaS require a more generalised diagnosis for each
asset of ‘available/unavailable’. Inference was used to achieve this by
creating a new set of axioms to define healthy and failed observations
as follows:

HealthyCondition ⊑ Condition,
FailedCondition ⊑ Condition,

AcknowledgedCondition ⊑ Condition,

HealthyStateObservation ≡ Observation
⊓ (∃observedCondition.HealthyCondition),

FailedStateObservation ≡ Observation
⊓ (∃observedCondition.FailedCondition)

After firstmanually classifying existing individuals of type amaas:Condition-
:as either HealthyCondition or FailedCondition, inference could
be used to populate the classes amaas:HealthyStateObservation

and amaas:FailedStateObservation with the appropriate observa-
tion instances. Using a backward-chaining reasoner (as discussed in
Section 2.6.4.1), these classes become populated whenever an applica-
tion queries for such individuals.

Membership of the amaas:AcknowledgedCondition class is asserted
on observationswhich are still (potentially) in a faulty state, butwhose
status has been acknowledged by a system operator, to allow the ap-
plication to discount observations that have already been dealt with.

As a result of the inference options above, AMaaS front end appli-
cations are able to directly query for available and unavailable assets,
rather than rely on bespoke interfaces between systems. As the plat-
form grows, its ontology can be further extended to encompass more
cues to assert the status of an asset, and the front end application will
continue to function without the need for significant updates.

asset dependencies

In many operational scenarios, the failure of a railway asset leads to
other systems and infrastructure being put out of use due to inter-
dependencies between components. For example, if a railway switch

234 integration of railway remote condition monitoring data

fails to move when requested, routes cannot be set across it and the
connected tracks may become unusable13. Failing utilities can also
pose problems to maintainers—a power outage can adversely affect
the operation of many parts of a system. The interdependence of as-
sets was modelled in the AMaaS ontology, allowing users to instantly
understand what parts of the railway are at risk or affected by a faulty
component. Assets are first linked together using the transitive amaas-
:dependsOn , such that if asset A depends on asset B’s operation, and
asset B depends on asset C, a fault with C will affect assets A and B.
This example is shown in Figure 6.15, where the amaas:dependentObservation
property is inferred on dependent assets.

vocab:RouteLevelArc

LineOfWay_C

infra:Points

RailwaySwitch_B

infra:PointsMachine

PointsMachine_A

amaas:VirtualMonitor

PointsMonitor_X

u:monitoredBy

:dependsOn:dependsOn

amaas:Observation

Observation_Y
u:observation

:dependentObservation
:dependentObservation

FailedStateObservation ≡

a

:dependsOn

:associatedObservation

Figure 6.15: Asset Dependency and Fault Inheritance Design Pattern

In the AMaaS demonstrator, dependence reasoning of this type can
be seen when a PCM fault is observed. Having introduced triples into
themodel that assert dependencies between railway switches and rail-
way track, the track view displays unavailable track elements in red
when points faults are observed. The same pattern could also be used
to establish availability of rolling stock in a maintenance application,
allowing staff to quickly establish the state of a train based on the
information reported by its subsystems.

6.2.6 Stages 5 & 6: Integration of Timetable Data and Inference of
Rolling Stock Faults

The final use case for the AMaaS demonstrator was to show how
knowledge of railway scheduling, combined with infrastructure and
asset monitoring data, can bring immediate benefit to signallers and
maintainers. Firstly, theAMaaS assetmonitoring systemwas extended
to encompass a simulatedWheel Impact Load Detector, and then pub-

13 In practice, points are often ‘locked’ in one position rather than taken out of use
completely.

6.2 the amaas application 235

licly available Working Timetable (WTT) data was mapped into the
AMaaS ontology. WILDs are used across the UK rail infrastructure
to check for troublesome rolling stock wheels, and monitor trains as
they pass over a set of sensors. By exploiting existing timetable data,
the AMaaS system was able to infer which WILD observations cor-
responded to which timetabled train services, solving a known data
integration problem for rolling stock maintainers and infrastructure
managers across the industry.

6.2.6.1 The Case for Inclusion of Wheel Impact Load Detectors

WILDs are used by railway infrastructure managers to warn of and
detect destructive or dangerous wheel faults in operational railway
rolling stock. They are installed as part of the wayside infrastructure,
and usually take the form of instrumented sleepers, installed in sec-
tions of the network that experience large volumes of traffic. Strain
sensors placed on the rail head measure the impact load of passing
wheels, with large impact loads usually indicating wheel flats that re-
quire (sometimes immediate) corrective maintenance.

Current WILD systems in use within the UK, such as Gotcha [129]
provide only information about the number of axles of each passing
train, their spacing, and individual axle load. Measurements exceed-
ing a dangerous threshold cause the system to register an alarm with
the signaller, who then alerts train drivers to take their trains out of
service. Vehicle maintainers who have access to the Gotcha data must
then manually cross-reference train schedule data with wheel impact
load records, identify high load measurements, and then infer which
wheel(s) caused the alarm.

6.2.6.2 Adding Wheel Impact Monitors to AMaaS

In the demonstration system, a simulated WILD sensor was added
to the ontology as part of stage 4. Unlike the PCM hardware, data
was not taken from Siemens devices and simulators, but instead de-
rived from historic WheelChex14 data already held at the University
of Birmingham as a component of previous projects (see Appendix D).
Given the pre-defined asset monitoring design pattern, extending the
application to includeWILD asset monitors was simple and consisted
of the following stages:

14 WheelChex is the brand name for a Wheel Impact Load Detector product sold by
AEA Technology and fitted across the UK rail network.

236 integration of railway remote condition monitoring data

1. A new RDF file, containing extensions to the AMaaS T-box was
created. amaas:EWILDwas created as a subclass of amaas:EAssetMonitor,
as a class for all WILD devices.

2. An instance of amaas:EWILD, amaas:CoventryWILD was cre-
ated, to represent the new WILD device, a sensor installed line-
side outside Coventry rail station.

3. Manual XML to RDF mappings for WILD data were created as
amaas:Observation instances. WILD data was placed in an-
other RDF file and loaded into Stardog.

The use of amaas:Observation allows the AMaaS application to
treat WILD measurements in the same way as it does PCM measure-
ments, even though the underlying data differs between the two sys-
tems.The track view, for example, is able to displayWILD faults with-
out any further application logic being necessary.

For WILDmeasurements, post-analysis metadata is stored for each
observation, including wheel impact values for each axle. Once the
WILD observation is entered into the AMaaS system, worker nodes
diagnose high wheel impacts based on threshold values, and a diagno-
sis asserted on each observation. High WILD observations are shown
in the AMaaS front end in the same way as PCM observations, with
faultyWILD events shown both in the track view, entity browser, and
alarms panel.

6.2.6.3 Mapping Timetable Data

To show that wayside WILD data can be correlated with rolling stock
asset identities, a timetable of scheduled services was obtained, and
used as an indication of actual train movements through time. His-
toric WILD measurements used in AMaaS were re-played to create
artificial Class 390 wheel impact faults15, and ontology inference used
to identify likely passing trains.

UK timetable data is provided by ATOC publicly, as ASCII data
files. Using open source software tools and the RaCoOn ontology, the
March 2014 Working Timetable was mapped into RDF for use in the
AMaaS application.

15 British Rail Class 390 rolling stock are commonly known as Virgin Pendolino trains,
and form a large majority of high speed rolling stock travelling through the AMaaS
demonstrator infrastructure.

6.2 the amaas application 237

mapping tools: cifreader and openrefine

Mapping of Working Timetable data was aided by the use of several
software tools: CIFReader, by Tom Cairns16, mySQL, and OpenRe-
fine17 with the Digital Enterprise Research Institute (DERI) RDF ex-
tension18. Mapping was done in several stages:

1. WTT data was downloaded from ATOC19 as a Common Inter-
face Format (CIF) bundle, containing the entire UK’s working
timetable.

2. The CIF bundle was imported into CIFReader, and mapped to a
SQL database

3. Data was loaded into MySQL for querying and exporting.

4. SQL queries were constructed and used to create single table
exports of:

• Any services timetabled to run through Coventry station
• All railway station locations

5. These single tableswere loaded intoOpenRefine, and data cleans-
ing applied. Location records were matched to existing location
URIs in the AMaaS data store using OpenRefine’s RDF reconcil-
iation tool.

6. TheDERI RDFmapping tool for OpenRefine, shown in Figure 6.16
was used to build RDF mappings according to design patterns
shown in Chapter 5. Extensions to the core design patternswere
made to include more specific timings (timetabled vs. public ar-
rival and departure times) and further rolling stock information.
Mappings from the CIF schema to RDF (via OpenRefine) are
shown in Table 6.5 and Figure 6.16.

The resulting files produced by OpenRefine contained details of
all services running through Coventry Railway station, and totalled
around 20k triples. Services were linked (through RDF reconciliation)
to existing infrastructure, allowing the ontology to infer which ser-
vices travel overwhich pieces of infrastructure. Figure 6.16 also shows
the RDF mappings configured in OpenRefine.

16 https://github.com/swlines/CIFReader
17 http://openrefine.org/
18 http://refine.deri.ie/
19 http://data.atoc.org/

238 integration of railway remote condition monitoring data

Table 6.5: Working Timetable Attribute Mappings

CIF Attribute OpenRefine
Attribute

Description

Record ID id Unique key per train service
(timetabled train)

location_type loc]ation_type(URI) Origin, intermediate, or destination
Point

tiploc_code tiploc_uri Location URI, reconciled from known
stations

arrival arrTime Timetabled arrival time
public_arrival pubarrTime Published arrival time
pass passTime Timetabled passing time21

departure depTime Timetabled departure time
pub-
lic_departure

pubDeparture Published departure time

order ordTime Aggregated time for ordering nodes
location_order Location index on route

platform platform Platform number of calling station to
be used

Figure 6.16: Screenshot of OpenRefine RDF Mapping Plug-in

6.2 the amaas application 239

rolling stock design

CIF Working Timetable files also contain some information about
rolling stock used on each train service, an extract of which is shown
in Table 6.6. For the AMaaS demonstrator, and in lieu of detailed infor-
mation on the actual vehicle formations involved, some of the rolling
stock identifiers shown in schedule data were mapped to represen-
tative rolling stock types, according to the rolling stock ontology ele-
ments discussed in Chapter 5.The inclusion of formation information
allowed additional logic to be used in the Train Finder view, and for
trains to be identified based on axle count.

Table 6.6: Selected Records from CIF ‘Schedules’ Schema Table

unique_id date_fromcate-
gory

train_id… power tim-
ing_load

speed rs_id

G217… 08/12/
13

OO 2O50 EMU 75 ME134900

L382… 08/12/
13

OO 9A38 EMU 375 75 LO971800

C107… 09/12/
13

XX 1P00 DMU V 125 XC478000

Entities of type rs:TrainSet were created for several known Vir-
gin Pendolino Class 390 train sets, using information gathered and
mapped from Wikipedia. A tt:TrainConsist entity was created for
several scheduled service entities to represent each relevant rolling
stock ID, and this entity linked to both the tt:ScheduledService

and the relevant rs:TrainSet trains. Each rs:TrainSet that was
created comprised several carriages, enabling the number of axles of
each vehicle to be deduced through rule reasoning. Figure 6.17 shows
a design pattern encompassing all of the above.

6.2.6.4 Inference of Train Position and User Interface

The final step in linking wayside fault observations to passing trains
was implemented in the AMaaS ‘Train Finder’ view, shown in Fig-
ure 6.18.

The Train Finder is displayed by default as a view on WILD mea-
surements, and can be accessed either through the Entity Browser or
through the Track View interfaces. From the Train Finder view, users
can select any one of a number ofWILD observations, and viewwheel

240 integration of railway remote condition monitoring data

tt:TrainConsist

XC478000

rs:Class390Set

Class390005

Vehicle39069601 Vehicle39069901

rs:Class390696 rs:Class390699

u:capability value
rs:DisabledToiletF
acility

∃
rs:Class390Vehicle

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type

rs:comprisesVehicle

rs:comprisesVehicle

rs:axles value
2^^xsd:integer

∃

rdfs:subClassOf

rdfs:subClassOf

2 i

rs:axles
rs:axles

“Intermediate
motor: first
class open”

s

dc:description

“Intermediate
motor: standard
class open (with
disabled
seating)”

s

dc:description

Vehicle39068901

rs:comprisesVehicle

tt:vehicle

rs:DisabledToilet
Facility

u:capability

Figure 6.17: AMaaS Rolling Stock Design Pattern & Example Data

Figure 6.18: Screenshot Showing AMAaaS Train Finder View

6.2 the amaas application 241

impactmeasurements on a graph. Highwheel impacts are shown both
in the ‘alarms’ panel, and highlighted in red in the Train Finder view.
After selecting an event, clicking the Find Trains button finds one or
more matching trains for eachWILD observation. Each train can then
be viewed in the entity browser for further analysis.

The Train Finder view works as follows:

• Upon loading the view with a valid WILD detector URI as argu-
ments, a SPARQL query is triggered to load recent WILD obser-
vations.

• Key metadata from each observation is displayed in table form.
Maximum wheel impact load, diagnosis, and number of axles
are all included. Calculation of maximum wheel impact is per-
formed by the triplestore at query time.

• A second query uses the location on infrastructure of theWILD
device to calculate the traffic crossing it. The query filters traffic
to those vehicles within a 2 minute window around the time of
the measurement, and to those vehicles that match the number
of axles seen by the WILD observation.

• Vehicle axle counts are calculated through a Stardog rule, using
knowledge of a train’s composition found through the rolling
stock ontology.

• Returned vehicle URIs are displayed on the web page, allowing
users to validate WILD faults on rolling stock manually.

Although automatic assertion of rolling stock faults fromWILD de-
vices is possible using reasoning, this was not implemented for several
reasons. Firstly, the trade-off between expressivity and performance
must be considered when implementing ontology-based systems; im-
plementing a rule to associate WILD observations with rolling stock
is possible but is computationally expensive.

The backward-chaining architecture of the Stardog reasoner does
not assert inferred tripleswhen triggered, and so each lookup of rolling
stock statuses using such a rule would require a new query to com-
plete, slowing the system significantly. An alternative approach, likely
to be undertaken in future work, is to implement a worker node to
run such queries when new WILD observations are recorded, and as-
sert diagnosis data on rolling stock directly. Whilst this does expose
the system to inconsistency, it is significantly less computationally

242 integration of railway remote condition monitoring data

expensive to perform. Using such an agent would also allow further
vehicle identification algorithms to be employed to provide extra ac-
curacy in ambiguous cases, such as where more advanced deduction
approaches are required than those provided by OWL reasoning.

6.3 the train locator application

This section describes design and implementation of the second demon-
strator created as part of the FuTROUniversal Data Challenge project,
which explores methods for maximising the reach and utility of infor-
mation from railway subsystems, and how to ensure compatibility
between them through upgrades and evolution.

Using RTPI as a case study, this demonstrator shows how data from
two separate passenger information systems can be combined to pro-
vide greater resilience during degraded service and increased accu-
racy during normal operation. It shows how such a system removes
the need for data semantics to be encoded in each application, and
how they can thus continue to function as input data sources change
and evolve.

6.3.1 Motives for Second Demonstrator

Until recently, customer information systems for railways in the UK
were designed and run completely separately, with bespoke inter-
faces created between data sources as required, (shown in Figure 1.2).
ATOC’s DARWIN [209] will soon provide a unified customer infor-
mation system and data model across the UK [53, 183], and whilst the
system, due in April 2015, is undoubtedly an improvement on previ-
ous practise in the industry, the use of an ontology-based semantic
data model for the same task could provide even greater benefits. The
Train Locator application produced as the second FuTRO demonstra-
tor shows a number of benefits of using such a model for this purpose,
as well as mechanisms for aiding data integration.

The demonstrator aims to show how an ontology-based solution
can be used as an alternative to traditional approaches in passenger
information systems, and how they can greatly reduce effort and ex-
pense inmaintaining such systems as they grow and change over time.
The project considers the following aims and associated benefits:

6.3 the train locator application 243

• Use of an RDF-based system for describing live train running
data, and for providing data to two passenger information ap-
plications:

1. A mock-up ‘Live Departure Boards’ application, intended
to mimic station platform displays and provide arrivals
and departures information.

2. A ‘Map View’, intended for travellers wishing to know
their geographic location more accurately.

• Integration and enrichment of train running and passenger in-
formation data fromdisparate and/or upgraded information sys-
tems.

• Resilience of legacy systems in response to environmental change—
use of ontology reasoning to allow legacy systems to run on
data from new systems without modification.

• Performance in degraded operation—inference of ‘best guess’
location data for use in train location systems when high reso-
lution positioning information is unavailable.

TheTrain Locator demonstrator is designed around a single railway
route, where two separate (fictional) passenger information systems
are used, each based on a single, disparate source data set. Most com-
mercial customer information systems in the UK depend upon track
circuits (or train describer systems) and mass detectors to find train
locations and report that information to customers, but fail to take ad-
vantage of the higher locational accuracy provided to TOCs by GPS
positioning devices present on some trains. The demonstrator utilises
both track circuit and GPS mileage data, and provides a number of
mappings between them for differing applications.

The application also identifies and documents fundamental data in-
tegration design patterns, with the expectation that such design pat-
terns will also find uses in other enterprise and railway linked data
applications.

6.3.2 Design

Like the AMaaS demonstrator, the Train Locator was designed ac-
cording to a storyboard, to show a series of benefits by leading the
user through an application in stages. As the FuTRO calls themselves
placed very few restrictions on the team in terms of pre-defined re-
quirements, the creation of storyboards allowed the expected benefits

244 integration of railway remote condition monitoring data

of each demonstrator to be highlighted and worked towards. The sto-
ryboard for the Train Locator demonstration is shown in Figure 6.19.

A passenger information (live departure board) system is
created, using approximate train locations taken from
signalling (track circuit) triggers. It displays projected
arrival times for each train, based on distance and speed.
This system’s interfaces use a RaCoOn-based RDF data store.

As part of an upgrade programme (such as a migration to a
more modern/higher capacity signalling system such as
ERTMS), the existing low resolution track circuit positioning
system is replaced with a more accurate solution. Data from
this system is aligned with the RaCoOn ontology, and stored
in triples.

The legacy system no longer has access to the data it
expects, as track circuit location data is no longer available
as assertional RDF. Without using a semantic data model,
adjustments to application logic in the original system
would need to be made in order for it to understand the new
positioning format. In an ontology-based system, domain
logic resolving the relationship between track circuit and
mileage can be introduced in the model itself, allowing the
data store to answer the original application’s queries as
normal.

A new passenger information system is introduced utilising
this new data source, detailing train positions more
accurately on a map. This system uses the asserted train
mileage locations natively as an information source.

In case of ERTMS failure, the train system degrades to
manual (telephone) signalling. Signallers use track circuit
positions to detect train location, and set routes accordingly.
Although mileage locations are no longer available to the
new application, rule reasoning infers ‘best guess’
approximations of mileage, allowing the application to
continue providing useful information.

Figure 6.19: System Design Storyboard for FuTRO Train Locator Applica-
tion22

6.3 the train locator application 245

6.3.2.1 System Components

Derived from the storyboard above, three separate application views
were created. Each draws on data provided by the ontology system,
and behaves differently depending on available input data.

• The Legacy Departure Board System. In this view, a user can
select a train station and observe a simulation of a platform-
based passenger information board, including departure point,
destination location, and the scheduled/expected timings of ser-
vices.

• Train Position Map. The train position map shows the map lo-
cations of each train on the network. Train chainage informa-
tion stored in the ontology is mapped to GPS co-ordinates, and
located on a satellite map of the countryside. Where chainage
information is not available, ontology inference is used to fall
back and infer position information by other means.

• Entity InformationView (Using LinkedData& Inference).The
final screen presents all knowledge available about an entity to
the user, whether through assertion or inference. In the case of
train services, inference is used to provide information about
the rolling stock itself as well as the train service; for locations,
reasoning provides additional information such as touching/
neighbouring entities and line reference information.

To allow end users to observe how the system reacts to data sources
becoming available or unavailable, several configuration options are
presented on the main page of the web application as follows:

• Track circuit data on/off. This switch controls the system’s ac-
cess to legacy train location information, as typically provided
by a Train Describer service.

• High resolution positioning data on/off controls access tomore
accurate, GPS or European Rail Traffic Management System
(ERTMS)-style positioning data intended for use by the map-
ping view.

• Reasoning on/off. Configures the inference behaviour of the
triplestore itself, in order that users can see the effect of the
RDFS, OWL, and rule reasoning axioms across the demonstra-
tor. Reasoning allows views to draw upon data from multiple

22 Photo attribution: https://www.flickr.com/photos/joshtechfission/8901326919/,
http://www.ianbritton.co.uk/

246 integration of railway remote condition monitoring data

sources, and disabling it illustrates how certain views can only
work with their original data source.

The behaviour of the system under differing data source availabil-
ity is described in Table 6.7, and each sub-application’s behaviour is
discussed further in Section 6.3.3.

Table 6.7: Matrix of Train Locator System Behaviour Using Different Data
Sources

Track Circuit Data Mileage (Moving
Block) Data

Departure Board
View

Asserted (‘real’) track circuit
data.

Inferred track
circuit data based
on train mileage.

Train Map View Inferred (approximate) train
location based on known track
circuit positions.

Asserted (‘real’)
mileage data.

Train Map View
(with all datasets
available)

Rule reasoning chooses optimum location object for the task.

6.3.2.2 System Architecture

The Train Locator system was designed with a simple system archi-
tecture based on the Model-View-Controller (MVC) software design
paradigm. A data model containing static and dynamic (simulator)
data is used as a single, centralised data source, whilst a server/client-
based web front end presents information to users. The key compo-
nents that make up this architecture are shown in Figure 6.20.

• Static Data & Train Locator Ontology. RDF files for infrastruc-
ture/timetable data and OWL files for the Train Locator (TLOC)
ontology are used for reference.

• RDF Triple Store. As in the AMaaS system, Clark & Parsia Star-
dog was used as a data store.

• Separate Stardog Ruleswere encoded as RDF, stored in the Star-
dog triplestore, and are activated and deactivated by the demon-
strator.

6.3 the train locator application 247

ClientServer

Static
Data

Ontology

Train
Simulator

Stardog
Triplestore

Stardog
Rules

Web App Client
(Browser)

SPARQL
Endpoint

Client
(Machine)

Figure 6.20: FuTRO Train Locator Key Components

• Train Simulator. The train simulator is a Java application that
generates fictional train movements over a given railway using
infrastructure information provided by the triple store.

• TLOC Web Application. The TLOC web application, contains
both control and views for the demonstrator. It emulates the
two demonstration use cases discussed earlier:

• Client-side, front end code presents information to users, fires
SPARQL queries for updated information, and stores session
data.

Interface technology choice was determined by FuTRO’s require-
ment that demonstrators should be easily understandable to a wide
railway user base.This requirement again led to the decision to build a
web-based demonstrator, relying on users’ computers andweb browsers
to act as interfaces to the system. Further technological decisions cen-
tred around understandability of the demonstrator’s architecture for
readers and ease of development; widely-supported and well-tooled
technologies were adopted where possible.

named graphs

To show live integration between several data sources, it was neces-
sary to keep simulated data (for mileage and track circuit locations)
logically separate for each application, so users could explore the ef-
fects that the availability or otherwise of such information has on the

248 integration of railway remote condition monitoring data

application, rather than by storing them in separate applications.This
was achieved by storing data in four separate RDF graphs23 within a
single Stardog database. This approach facilitated simpler implemen-
tation of the system whilst allowing the logic used across it to remain
similar to if physically diverse data stores were used.

6.3.3 Front End Application Implementation

TheTrain Locatorweb application provided all of the application logic
and user interface presentation for the demonstrator. It consisted of
two components: a server-side application to serveHTMLpages (views)
and data (API) to users’ browsers, and client-side javascript codewhich
contained further logic for querying dynamically updating data.When
users requested a page in the demonstrator, the application responded
by serving a web page to the user’s browser, which then made further
web requests to populate each page with current data from the Train
Locator API. An example of this interaction is shown in Figure 6.21,
which demonstrates two requests to the ‘mapper’ view. To suit the
rapid development of this demonstrator, widely used open sourceweb
application stacks and standardised interface protocols were used:

• Express24 is aMVC javascriptweb framework built onNode.js25,
and was used for the server-side element of the web application.
Express includes built-in route and view management, and en-
abled easy development of both the sub-application views and
the JSON API utilised in Asynchronous Javascript and HTML
(AJAX) requests. The Stardog.js library26 was used by the appli-
cation to read RDF from the triple store.

• HTML, CSS, and client-side javascript were used to create the
front end. When served to the web browser, these web pages
load system data by issuing AJAX calls to the Train Locator API,
using W3C standard interfaces and best practice techniques.

• The Train Locator API implemented REST-ful web services, al-
lowing clients to issue it requests to retrieve data for each view.
The API provides a number of services, each of which return
data in a structure tailored to each client-side view.

23 The ontology itself formed one graph, whilst static infrastructure data, track circuit
data, and mileage data formed the other three respectively.

24 http://expressjs.com
25 http://nodejs.org
26 https://github.com/clarkparsia/stardog.js

6.3 the train locator application 249

U
se

r
B

ro
w

se
r

V
ie

w
 S

er
ve

r
D

at
a

A
PI

Tr
ip

le
st

or
e

Ro
ut

er

Re
qu

es
t

m
ap

 v
ie

w

Se
le

ct
ne

w
 tr

ai
n

N
ew

vi
ew

G
ET

 /m
ap

G
ET

 /m
ap

H
TT

P
re

sp
on

se

G
ET

/a
pi

/t
ra

in
?i

d=
…

G
ET

ap
i/t

ra
in

?i
d=

…
SP

A
RQ

L

JS
O

N
-L

D
re

sp
on

se
JS

O
N

re
sp

on
se

Po
pu

la
te

d
vi

ew

G
ET

/a
pi

/t
ra

in
?i

d=
…

G
ET

ap
i/t

ra
in

?i
d=

…
SP

A
RQ

L

JS
O

N
-L

D
re

sp
on

se
JS

O
N

re
sp

on
se

Se
le

ct
io

n
C

ha
ng

e

Pa
ge

 V
ie

w

Em
pt

y
vi

ew

Fi
gu

re
6.2

1:
UM

L
Se

qu
en

ce
D
ia
gr

am
Sh

ow
in
g
H
ig
h
Le

ve
lD

at
a
Fl
ow

fo
rR

eq
ue

st
of

Li
ve

D
ep

ar
tu
re

Bo
ar
d
Vi

ew

250 integration of railway remote condition monitoring data

• Session cookies were used to keep track of application state,
such thatmultiple users can use the system simultaneouslywith-
out interaction.

Table 6.8: Views Provided by Train Locator Application

View
Route

Function Calls

/ Configuration page;
entity view

/api/, /api/?id=…

/track Track circuit view /api/list?id=…, /api/?id=…,
/api/track/?id=…

/train Live train mapper view /api/map/route/, /api/train/,
/api/train/?id=…

/route Track circuit & route
view

/api/map/circuits/, /api/map/route/

/dep Departure boards view /api/dep/, /api/dep/?id=…,
/api/?id=…

The web application includes five views, including one for each
sub-application, as shown in Table 6.8. Each view requests data from
the API, which ultimately calls the triple store. Table 6.9 lists and de-
scribes the application’s supporting API functions, and results vary
depending on the current session’s selected data sources and reason-
ing capabilities.

As a result, the scenarios outlined in the application storyboard are
shown in the application by alteration of data source availability by
the user.

6.3.4 Source Data and Simulation

The Train Locator application depends on a variety of static and dy-
namic data sources. Like AMaaS, the data supporting the application
was acquired through both publicly available sources and through cre-
ation of fictional sources where real data would be inappropriate, dif-
ficult to obtain, or overly complex for the needs of the project. After
deciding on one railway line to use as a demonstration scenario for
the Train Locator application, requirements for data to drive both ap-
plications can be listed as follows:

• Railway line topology, including interconnections between sta-
tions, track circuit locations, and line direction.

6.3 the train locator application 251

Table 6.9: Train Locator API Calls and associated functionality

API Route Query
parameter

Function

/ (none) Get current configuration
/ id [URI] RDF entity inforrmation
/list id [URI] List all entities of type ‘id’
/dep (none) Get list of stations for departure board view
/dep id [URI] Get station departure board info for ‘id’
/map/
circuits

(none) Get all track circuits in use by system (for
map view)

/map/
route

(none) Get all routes for map view

/track id [URI] Get details of track circuit with URI ‘id’
/train (none) List all trains currently in system
/train id [URI] Get information about train with URI ‘id’

• Railway geography, including line of way positioning, railway
station positioning, and rolling stock positioning.

• Dynamic (changing) rolling stock location data.

Static data used by the systemwasmapped fromvarious non-ontological
resources into RDF form, as detailed in the following section.

6.3.4.1 Infrastructure Data Model and Sources

The static infrastructure data used in the demonstrator was taken
from three disparate railway data sources: theATOCWorking Timetable,
Network Rail geographic location data, and additional crowd-sourced
information taken from DBpedia. Using the RaCoOn ontology and a
selection of RDF tools, data from each source was taken and combined
into a single RDF file detailing all train stations (and their topologic
connections) on the line between BirminghamNew Street and Cardiff
Central station27. The process that was undertaken is shown in Fig-
ure 6.22.

An example of a fully enriched station is shown in Listing 6.3. This
information is shown to users on the live departure boards stage, and

27 OpenRefine provides RDF entity resolution by attempting to match cell contents to
the rdf:labels of entities in a knowledge base.

252 integration of railway remote condition monitoring data

Obtain List of ELRs

Extract Entities

Openrefine
Manipulation

DBpedia
Reconciliation

Using the Network Rail National Electronic
Section Appendixes and Quail maps, a list of
ELRs for the railway from Birmingham New
Street to Cardiff was established.

Using data mapped from CIF into RDF, stations
and calling points on each of these ELRs were
cropped from the full dataset.

Geographic and track data provided by
Network Rail as a Microsoft Access database
was imported into OpenRefine. Using the
system’s ‘RDF Reconciliation’ feature, this data
was mapped to existing station entities in RDF,
and provided with GPS and Ordnance Survey
co-ordinates, as well as mileage locations for
each station.

The DBpedia 4.2 knowledge base was
downloaded and hosted on a local instance of
OpenRDF Sesame. OpenRefine was again used
to reconcile RDF station information against
DBpedia entities, enriching the data further
with postcodes and addresses.

Figure 6.22: Train Locator Infrastructure Data Mapping Workflow

6.3 the train locator application 253

demonstrates the potential for further integration, for instance with
multi-modal transport planning systems.

:CardiffCentralCDFStation
a vocab:Station ;
rdfs:label ”Cardiff Central”^^xsd:string , ”Cardiff
Central”@en ;↪→

dc:description ”Cardiff Central”@en ;
is:tiploc :TiplocCRDFCEN ;
is:tiplocCode ”CRDFCEN” ;
is:county ”Cardiff - Caerdydd”^^xsd:string ;
is:crs :CRSLocationCDF ;
is:district ”Cardiff - Caerdydd”^^xsd:string ;
is:govRegion ”Wales - Cymru”^^xsd:string ;
is:locationString ”CF10 1EP, UK”^^xsd:string ;
is:nlcCode ”389900” , ”3899”^^xsd:string ;
is:nuts2Code ”UKL2”^^xsd:string ;
is:nutsRegion ”East Wales”^^xsd:string ;
is:owner :TOCArrivaTrainsWales ;
is:stanox :StanoxLocation77301 ;

Listing 6.3: Extract of RDF Station Information from Train Locator Knowl-
edge Base

6.3.4.2 Simulation Data Patterns

The purpose of the train simulator is to provide a fictional source of
train movement data to the application. Whilst initially this was at-
tempted using a system that ‘re-plays’ timestamped RDF triples in
and out of Stardog, the final approach taken was to physically model
the track. Its output was designed according to the patterns andmodel
described in Chapter 5 and Section 6.2.5.1, with several slight exten-
sions. Its operation is beyond the scope of this thesis and will only be
described briefly; a full code listing is available online28.

On startup, the simulator queries Stardog using Apache Jena29 for
infrastructure data about the line it is configured to simulate, finding
track circuits and locations. It then creates objects for the railway sys-
tem, track circuits, and trains, and positions a set number of trains
randomly along the railway (in both up and down directions). The
positions of these trains are then added as assertions into the Star-
dog data store using Apache Jena, and updated based on an assumed
speed every ten seconds.

28 http://phd.jtutcher.co.uk/simulator
29 http://jena.apache.org/

254 integration of railway remote condition monitoring data

package
uk.co.jtutcher.trainupdater
Scopes show

n: private, package, protected, public
O

m
itted m

ethods: getter and setter, overriding m
ethods

-trainU
pdater

-trainU
pdater

-updateService

-stardogW
riter

+trackC
ircuit

~trackC
ircuits* -trains

*

~sim
ulatedLine

+trackC
ircuits

*

+trains

n

-stardogW
riter

+open()
+getC

ircuits()
+close()
+w

riteG
raph(G

raph,
boolean)

-connected: boolean

StardogW
riter

#startU
p()

#runO
neIteration()

#shutD
ow

n()
#scheduler()

~started: boolean

U
pdateService

+m
ain(String[n])

+start()
+stop()
+run()

TrainSim
ulator

+getLabel()
+getFQ

N
am

e()
-m

akeU
RI(String)

+getTC
U

RI()
+getD

ir()
+getFrom

()
+getTo()

+nam
e: String

+code: String

Train

+addTrain(Train)
+rem

oveTrain(Train)
+getTrains()
+m

oveTrains()

-nam
e: String

Railw
aySystem

+doAuto()
+doU

pdate(int)
-insertProgress(int)
+doN

extU
pdate()

-connected: boolean
-currentB

atch: int
-m

axB
atch: int

TrainU
pdater

+getM
id()

+nam
e: String

+m
inM

iles: double
+m

axM
iles: double

TrackC
ircuit

Figure
6.23:UM

L
ClassD

iagram
Show

ing
Structure

ofFuTRO
Train

Sim
ulator

6.3 the train locator application 255

On each update, the simulator erases the previous triples and as-
serts new ones; observation times are not recorded. Trains that reach
the end of a line change direction and travel in the opposite direction.
This simulation, whilst simple, provides enough information for the
demonstrator to operate properly.

The simulator outputs positions to two named graphs in Stardog;
one simulating the Track circuit data source, and one simulating the
Mileage data source.The design pattern used can be seen in Figure 6.24:

• Both types of assertions rely on the tt:ServiceNode design
pattern. Each train is an instance of tt:ServiceInstance, and
new tt:ServiceNodes indicating the location of the train are
created at each update. The simulator also asserts train origin
and destination information, and a headcode identifier.

• Mileage locations are asserted through the rcn:RailwayMileage
entity and used by the map view application. They are stored in
named graph http://purl.org/ub/demo/graph/miles

• Track Circuit locations are asserted through the rcn:tcPos ob-
ject property and stored in named graph http://purl.org/

ub/demo/graph/track. Each track circuit exists in the infras-
tructure data set, and is located on a railway line by its is:-

chainage values.

Train1X34

ServiceInstance

Direction

UpDirection

Bir…BHMStation

Che…CNMStation

6e5d5c44-b20e…

ServiceNode

TrackCircuit

TrackCircuit82

85.442 d

:mileage

:tcPos

:serviceNode

:origin

:destination

InfraStation

:direction

a

a

83.5d

89.1 d

:begin

:end

Figure 6.24: Design Pattern Used for Train Locations in Train Locator
Demonstrator

256 integration of railway remote condition monitoring data

6.3.5 Live Departure Boards View & Reasoning

The Live Departure Board view shown in Figure 6.25 is the first of two
sub-applications in the Train Locator demonstrator. It is a simplified
mock-up of platform information screens found across the UK rail-
way, and provides information to users on trains and times approach-
ing a station. The Live Departure Board (LDB) view relies upon pro-
vision of track circuit and train describer data to present users with
approximations of arrival times, and emulates the behaviour of typi-
cal RTPI platform level systems.

The LDB view can operate using either explicitly asserted track cir-
cuit data (generated by the train simulator) or, in its absence, using
data inferred by the ontology derived from train chainages. In the case
of an upgrade from fixed block to moving block signalling, this ability
allows the application to continue functioning without modification,
despite the physical changes to the railway network.

6.3.5.1 Legacy Operation

The LDB view is shown in Figure 6.25. To use it, a user first selects
a train station (shown top) from a pre-populaed list. The application
requests data for that station from the web API, then displays station
information and the upcoming departures. Each upcoming train’s ID,
origin, destination and expected arrival time is shown, and each en-
tity can be clicked for further information.

This application calculates expected arrival times based on a static
metric for time distance between stations. A new relation, demo:-
timing, was added to each track circuit entity within the ontology,
showing a time in minutes (between 0 and 70) that represent a train’s
expected progress through the system.The live departure board appli-
cation queries the timings present at the trains’ track circuit locations,
and at the station itself, and displays the difference between these val-
ues as expected arrival time30.
The query employed in the application to retrieve trains’ forecast ar-
rival times is given in pseudo-code (Listing 6.4) and then as SPARQL
in Listing 6.5.

30 This method of forecasting train arrivals is over-simplified and does not take into
account varying train speeds, timetable, or any other factors. It is intended only
to illustrate the basic concept, and is unlikely to reflect real the way in which real
customer information systems predict timings.

6.3 the train locator application 257

Figure 6.25: Screenshot of Train Locator Live Departure Board View

SELECT all services WHERE
each service has a current node [node] and a direction
[dir]↪→

each [node] has a location of track circuit [node_tc]
[station_tc] is the track circuit located at current train
station↪→

[node_tc] and [station_tc] both have a timing value
attached↪→

[time] is [node_tc] minus [station_tc] or the other way
round, depending on direction↪→

FILTER out all trains that have passed the station already

Listing 6.4: Natural Language Query for Train Forecast in Train Locator Ap-
plication

258 integration of railway remote condition monitoring data

SELECT DISTINCT ?service ?label ?nodeloc ?nodelabel ?time ?dir
?from ?to WHERE {↪→

BIND (ex:current_station as ?station) .
?station is:tiploc ?tiploc .
?tiploc is:mileage [u:value ?tmileobj] .
?tc a is:TrackCircuit ;
is:minLocation ?tiploc ;
demo:timing ?sTime .
?service a tt:ServiceInstance ;
tt:serviceNode ?node;
rdfs:label ?label;
tt:origin ?from ;
tt:destination ?to ;
tt:direction ?dir.
?node is:tcPos ?nodeloc .
?nodeloc demo:timing ?tTime ;
rdfs:label ?nodelabel ;
is:minLocation [is:mileage [u:value ?mileage]] .
FILTER (((?mileage <= ?tmiles) && ?dir = tt:UpDirection) ||
((?mileage >= ?tmiles) && ?dir = tt:DownDirection)) .↪→

BIND ((?tTime - ?sTime) AS ?time)
} ORDER BY ASC (?service)

Listing 6.5: SPARQL Query for Train Forecast in Train Locator Application

The is:mileage property shown above represents the linear posi-
tion of the entity along the railway track. rcn:RailwayMileage en-
tities represent this value in miles and chains31. In normal operation,
the system depends upon knowing track circuit locations to predicate
times.

6.3.5.2 Upgraded Operation

A key aim of the Train Locator demonstrator was to show how rea-
soning can allow legacy systems to continue operating as the data
structures around them change. In the case of the LDB view, this is
demonstrated by the fictional upgrade of a train signalling/position
reporting system. Instead of assertions about the track circuits oc-
cupied, the new system instead contains an exact mileage value for
each train, linked to the tt:ServiceNode entity. Without the origi-

31 Railway running distances are measured in miles and chains, as a result of the Vic-
torian construction of the railway, during which time construction was measured
using fixed length chains of 22 yards. This unit of measurement continues to be
used, and values usually measured as ‘miles from London’. Chainage zero points
are also recorded, and can be seen in Quail maps (diagrams produced for the UK
railway industry that show infrastructure and signalling on a railway line, as well
as locations for every major component).

6.3 the train locator application 259

nal data source, no triples of type is:TrackCircuit exist, and the
query shown in the previous section returns no results. The applica-
tion fails, as it is unable to use the is:mileage values associated with
each train.

Whilst in this case it is trivial to modify the application to use
new data, a real railway system with multiple subsystems (such as
DARWIN) may require costly modification or the continued mainte-
nance of the legacy data source itself. Using the existing semantic
data model, a rule asserting the relationship between track circuit lo-
cations and mileage locations can be implemented, allowing systems
to continue functioning with no modifications. This rule calculates
the track circuit of a train based on its mileage, and is shown in List-
ing 6.6.

IF {
?node a tt:ServiceNode .
?node u:location ?nodeloc .
?nodeloc is:elr ?elr .
?nodeloc is:mileageLocation [u:value ?mileage] .
?tcPos a is:TrackCircuitLocation .
?tcPos is:elr ?elr .

?tcPos is:minLocation [u:value ?min] .
?tcPos is:maxLocation [u:value ?max] .
?tc is:tcPos ?tcPos .

FILTER(?mileage < ?max && ?mileage > ?min)
} THEN {

?node is:trackCircuit ?tc .
}

Listing 6.6: Stardog Rule to Assert Track Circuit Mileage in Train Locator
Application

With reasoning enabled,the LDB application’s query on is:Track-

Circuit now triggers execution of the above rule, returning an in-
ferred track circuit location for the train queried.Thus, the application
is provided with the data it expects, and is able to continues running
as normal.

6.3.5.3 Legacy Design vs. Semantic Design

In the LDB view, reasoning is used to aid compatibility and infer track
circuit locations for trains. However, information is lost in this con-
version and the accuracy of arrival estimates suffer due to the appli-

260 integration of railway remote condition monitoring data

cation taking only explicit track circuits as location cues, as shown in
Figure 6.26.

Train Position: 12.4

Track Circuit Centre: 13.0

Reported Train Position: 13.0

Figure 6.26: Demonstration of Train Location as Reported by Train Locator

Amore accurate approach in a system known to be using semantic
models would be to rely on more fundamental concepts for informa-
tion retrieval. Consider that in the application logic, what is necessary
for arrival time estimation (in this case) is the track length between
the train and the station.The ‘mileage’ of the train could be requested
instead, but this assumes that mileages and references will not change
over time.

Another alternative could be to request u:position, use the model
to establish and convert between measurement units, and present the
result. Furthermore, a is:lengthBetween predicate is could be used,
providing the distance between two locations inferred by a rule that
utilises route knowledge and railway network graph structure. Here,
the trade-off between modelling correctness and pragmatism must
again be considered, as discussed in Section 4.5.6.

6.3.6 Train Mapper View & Reasoning

The second sub-application, the TrainMapper view, allows users to ge-
ographically view a railway network and the position of trains within
it as they progress in near real time. It illustrates how fine-grained
chainage data generated by moving block control systems may be
used for passenger information—users curious about their journeys
or the journeys of others can look up trains and see their position
rather than simply their expected arrival time into the next station.
Its operation and interactionwith the application ontology also shows

6.3 the train locator application 261

how semantic data models and reasoning can be used to allow such
systems to continue operating in times of degraded operation, by pro-
viding ‘best guess’ data when a primary source is unavailable.

Figure 6.27: Screenshot of Train Locator Map View

The Train Mapper view is shown in Figure 6.27. In normal opera-
tion, the map view uses chainage data provided by the simulator to
establish train position down a route. The line of way is interpolated
between known geographic locations given by the static infrastruc-
ture data (as explained in Section 6.3.4), and the position of track
circuits and trains is calculated by the application based on mileage
data. In this demonstrator, reasoning is used to establish the correct
location data to use, rather than directly referencing asserted data,
allowing the model to dictate what data is best used by the demon-
strator.

6.3.6.1 Prioritisation of and ‘Best Guess’ Location Data

Reasoning allows the data model to return the most accurate location
information available for a particular asset: either an accurate mileage
measurement for train location, or a ‘best guess’ assertion from other
sources. A new design pattern and Stardog rules are used for this pur-
pose, allowing the ontology to reason in a ‘closed world’ manner over
data that is present. It is implemented as follows:

• A new predicate, tloc:preferredLocation is declared, repre-
senting the inferred most accurate location for an entity.

262 integration of railway remote condition monitoring data

• Another predicate, tloc:preferredOver, is asserted across lo-
cation classes that are preferred (more accurate) over other lo-
cation classes.

• A Stardog rule infers the most accurate location, based on the
transitive tloc:preferredOver properties as tloc:preferred-
Location when triggered. The rule (in Stardog rules syntax) is
shown in Listing 6.7:

IF {
?entity u:location ?location1 .
?entity u:location ?location2 .
?location1 a ?locationClass1 .
?location2 a ?locationClass2 .
?locationClass1 tloc:preferredOver ?locationClass2 .

} THEN {
?entity tloc:preferredLocation ?locationClass1 .

}

Listing 6.7: Stardog Rule to Present Preferred Data in Train Locator Applica-
tion

This pattern for prioritising locations is illustrated in Figure 6.28,
and by designing the TrainMapper to query using the tloc:preferred-
Location predicate, the model is able to continually resolve the most
appropriate location for the application. The demonstrator makes the
assumption that whatever entity is returned will have an associated
(asserted or inferred) mileage property, and by querying the entity’s
rdf:type, it is possible to gain more information about the accuracy
of the data.

vocab:RailwayMileage

Mileage

_:Measurement

is:CrsLocation

tloc:preferredOver

tloc:preferredOver

12.3d

13d

:measurement

:value

:value:measurement

ServiceNodeX

u:location

tloc:preferredLocation
u:location

is:TrackCircuitLocation

Mileage

_:Measurement

Figure 6.28: Pattern for Prioritising Knowledge in TLOC Ontology

6.4 summary 263

The results of this reasoning can be seen in the Train Mapper by
viewing the simulator with mileage data, track circuit data, and both.
The design pattern used here is a generic ODP that could be used for
other applications, examples of which are:

• Estimation of passenger numbers on trains arriving at stations
for route prioritisation purposes. Low certainty estimates (based
on headcode or service type) could be returned if more accurate
estimates (train consist details, ticket reservations) are known.

• Fault reporting using fault hierarchies. In many situations it is
useful for faults to be asserted at a particular level of granularity.
ex:DoorFaultmay be a superclass of ex:DoorMotorFault. Us-
ing a variation on this patternever, the most specific fault type
can always be displayed rather than the most generic class.

6.4 summary

Through the description and implementation of the two use cases
shown in Section 6.2 and Section 6.3, two novel applications of se-
mantic data models in the railway domain have been demonstrated,
and have shown that:

• Ontologies can be used to facilitate syntax-agnostic applications
that adapt to changing sources and formats, as demonstrated by
the Train Locator demonstrator.

• ‘Common sense reasoning’ can be used to enrich existing infor-
mation and add business value in the context of an asset moni-
toring system.

• A pre-defined, standard ontology can be used to integrate data
between diverse industrial software systems across the railway,
as shown by both demonstrators.

• Systems built on the RDF/OWL technology stack can be imple-
mented using well-supported software development tools, and
can easily be incorporatedwith existing enterprise software sys-
tems.

TheAMaaS project implemented a railway assetmonitoring system
using RDF to both represent its operational data and the state of the
system itself. The use of a semantic data model to describe the AMaaS
system architecture allowed new types of asset monitoring devices to
be incorporated into the system with no change to the application

264 integration of railway remote condition monitoring data

itself, through using OWL logic and reasoning. This illustrates the
power of using this approach for data integration; as new and legacy
components come and go, storing logic and semantics in a domain
data model rather than hard-coding them into applications allows a
great deal of flexibility, and reduces the effort needed to maintain and
evolve the system.

The demonstrator described in Section 6.3 further exploited this ca-
pability, and showed how logic captured in a semantic data model can
be used in conjunction with reasoning to present information from a
single data source to multiple data consumers in different ways. In
abstracting semantics away from individual applications, legacy in-
formation systems can be kept running effectively, without any need
for individual system components to be altered. Taking this idea fur-
ther, the train locator demonstrator also showed how rules in OWL
can be used to prioritise, canonicalise, and present multiple conflict-
ing sources of data as a single source, such that applications can con-
tinue functioning in degraded states using ‘common sense’ reasoning,
much as a human operator carrying out the same role might.

Both demonstrators show small proof-of-concept ideas that illus-
trate the real-life gains to be had from using semantic data models
to contextualise data across heterogeneous systems. The work under-
taken in the FuTRO project is currently being developed further in
collaboration with several new railway asset monitoring suppliers, in
order to build new ontology extensions and facilitate full data shar-
ing between products from these vendors. A further summary of the
work undertaken in these projects will be provided in the next and
final chapter of this thesis.

7
CONCLUS IONS DRAWN AND F URTHER WORK

The work undertaken in this thesis serves to provide a baseline set of
methods, models, and reference implementations for those seeking to
further implement semantic data models for data integration across
industrial domains. This chapter provides a summary and set of con-
clusions drawn from the work undertaken in chapters four, five, and
six. Section 7.1 outlines the findings and key contributions made; Sec-
tion 7.2 discusses known limitations of the work undertaken and in
the use of semantic models in the railway industry in general. Finally,
Section 7.3 suggests further work that could be undertaken based on
the findings of this thesis, and describes projects already underway to
do so.

7.1 key findings and contributions made

This thesis has made novel contributions to knowledge in three ar-
eas, each written as one of the previous chapters: by providing a new
methodology for creating industrial data models (Chapter 4), defining
a new set of railway ontologies (Chapter 5), and by providing a set
of demonstration implementations based on known use cases (Chap-
ter 6). These contributions are discussed as follows.

7.1.1 RaCoOn Methodology

In Chapter 4, a new ontology engineeringmethodologywas presented
based on current state-of-the-art. It was designed to allow the creation
pragmatic industrial domain models, and achieved this by describing
the following:

• A method for scoping domain ontologies, based on analysis of
existing resources and evaluation against possible use cases.

• A design approach based on iteration and scope refinement, and
driven by existing resources and expert knowledge.

• A set of ontology design patterns to encourage the creation of
modular and pragmatic OWL models.

• An approach to validation of industrial domain models based
on state-of-the-art and ‘in use’ testing.

265

266 conclusions drawn and further work

The methodology was used in the creation of the RaCoOn ontologies,
and was therefore designed with the challenges of creating a railway
domain ontology in mind. In particular, the main challenge addressed
by themethodology described herewas that of designing a domain on-
tology to support future interoperability between applications, rather
than to address the needs of any particular initial system(s). Conse-
quently, the methodology works from a set of very high level require-
ments, and draws upon guidance by domain experts and knowledge
present in existing information resources to assist in both scoping and
conceptualising models.

7.1.2 The RaCoOn Ontologies

Chapter 5 detailed the design and implementation of a set of modu-
lar ontologies to support data interoperability in the railway indus-
try based on requirements given in Chapter 4. The chapter also out-
lined how these ontologies were created according to the methodol-
ogy shown in the same chapter, and included the following contribu-
tions:

• A cross-domain ontology for pragmatically representing non-
railway-specific concepts in RDF and OWL, such as temporal
data, provenance, composition, and entity type.

• A set of design patterns for representing these concepts in subject-
specific ontologies, addressing trade-offs between expressivity
and functionality.

• A set of railway domain ontologies that model railway infras-
tructure, geography, and signallng concepts, as well as basic
rolling stock and maintenance information

• Documentation patterns to express mappings of terms between
non-ontological resources (principally RailML) and the core on-
tologies.

• Validation of the above models using approaches described in
Chapter 4, including descriptions of a set of validation work-
shops.

The ontologies presented draw on current state-of-the-art in mod-
elling high level concepts, and reuses terminology and semantics from
existing industrial models in the rail domain. Ideas for time represen-
tation, quantities and units, mereology, and provenance come from
well-known ‘gold standard’ ontologies, and some railway specific con-
cepts are drawn from RailML and RailTopoModel.

7.1 key findings and contributions made 267

7.1.3 The FuTRO Case Studies

The final chapter of this thesis studied two use cases for data sharing
across the railway industry. The first of these described in Chapter
4 shows an ontology-based system for integrating heterogeneous re-
mote condition monitoring information, developed in collaboration
with Siemens, using data from existing products. This section pre-
sented novelty in several areas:

• Description of an AMaaS task ontology and set of patterns for
representing railway asset monitoring data in OWL, addressing
the following subjects:

– Topology of the AMaaS system, allowing sensors andmea-
surements to be abstracted away from physical or logical
organisation of lineside equipment.

– Measurement and diagnostic (good/bad) data, and meth-
ods for pointing to fine-grained data stored in other repos-
itories.

– Data acquisition equipment modelling, allowing integra-
tion of new types of equipment using existing semantics.

• Demonstration of the use and extension of RaCoOn infrastruc-
ture concepts and DL reasoning to map condition monitoring
equipment and state onto railway infrastructure. The AMaaS
system showed how sensors in the asset monitoring system
could be associated with track in a network model and infer
network state and condition.

• Demonstration of the extension of the AMaaS system to include
new Wheel Impact load Measurement (WILM) equipment and
data, using existing applications.

• Extension of the RaCoOn ontology to include timetable infor-
mation, and mapping of real-world data into the newly created
subdomain model.

• Demonstration of fault and condition inference on rolling stock
using location information and rule reasoning, allowing the in-
tegration of data between the infrastructure and rolling stock
subdomains.

The second case study showed proof-of-concept for data integra-
tion in a railway passenger information system. Utilising ontology
and rule reasoning, it showed how diverse and legacy passenger in-
formation systems could be integrated and work together, and made
the following contributions:

268 conclusions drawn and further work

• Extension of the RaCoOn ontology to store train running and
passenger information data, using existing infrastructure con-
cepts.

• Implementation of an RDF-based application to store and dis-
play train running and passenger information data from two
heteregeneous data sources at different levels of accuracy (GPS-
based and track circuit-based).

• Design and implementation of a set of rules to allow conversion
of location information between these two levels of accuracy,
and subsequent representation as common RDF concepts.

• Web-based demonstration of how this integrated data can be
used to power a ‘legacy’ system, using ontology reasoning to
present data from either source in its expected representation.

• Implementation of design patterns and rules to allow accurate
information to take precedence over less accurate information.

• Demonstration of these rules in a web application, showing
how systems continue functioning in a ‘graceful degradation’
state when high accuracy information is not available.

7.2 limitations of approaches taken

When discussing new information technology techniques and pro-
cesses, it is tempting to describe them as ‘silver bullets’—solutions
that magically solve all of an organisation’s needs with seemingly lit-
tle effort or risk. As well as inherent limitations in the capabilities of
the technologies adopted in this thesis, the methodologies and ontolo-
gies designed have some limitations. These are outlined below.

7.2.1 RaCoOn Methodology

scalability

The methodology described suits modelling of domains that can be
broken into submodules, each of which can be feasibly understood
and managed by human ontology engineers. The iterative approach
shown relies uponmanual processes, andmay constitute a huge amount
of work for those wishing to model areas requiring large vocabularies
in domains such as medicine. In these circumstances, semi-automated
approaches to knowledge acquisition should be used.

7.2 limitations of approaches taken 269

reliance on domain experts

The RaCoOn methodology requires that domain experts are available
to steer the direction of modelling and act as sources for model knowl-
edge, and are available to interact directly with ontology engineers. It
is realised that such experts may not be available in some circum-
stances, and that in some organisations a collaborative approach to
ontology building may be more appropriate. In these cases, collabora-
tive methodologies exist to assist with ontology building, and may be
combined with the methodology described here.

validation

TheRaCoOnmethodology is designed for the creation of non-application-
specific domainmodels, and does not assume an exact scope at project
start. As such, validation against low level functional requirements
is not undertaken, and objective assessment of ontology coverage is
not possible. The validation approaches suggested do provide a mea-
sure of domain coverage and fitness-for-purpose, but do not utilise
formal requirements validation technique such as those suggested in
the NeON methodology[203].

change control

Change management of ontology modules is not explicitly addressed
as part of the described methodology. The use of subdomain-specific
disjoint modules provides a degree of reusability and maintainability,
as well as an easy way of asserting ownership, but does not guarantee
compatibility between modules as they change and evolve. It is likely
that software engineering change control techniques such as package
management and build control could assist in this regard.

7.2.2 The RaCoOn Ontologies

expressivity

Many of the benefits of using ontological models in information sys-
tems arise from their ability to infer new knowledge from existing
data. Whilst some of this inference can be done in an efficient man-
ner, much of the OWL DL language requires reasoning algorithms
that do not scale to large volumes of data. In the RaCoOn models, a
trade-off between reasoning performance and scalability is made in
order to provide a ‘best fit’ point, and DL axioms are only asserted

270 conclusions drawn and further work

where they add significant value to the model.
Themodels do not provide full coverage of domain semantics in order
to allow for more efficient reason in most situations. They therefore
exhibit two limitations owing to their chosen expressivity:

• Some applicationsmay require axioms that are not present.These
must be implemented in seperate models or in application logic,
which lessens the data exchange advantages of the models.

• Applications requiring DL reasoning may not perform well at
scale. Axioms present in the ontology may not be required by
the applications, and alternative approaches to computing in-
ferences may be required.

Ongoing research in ‘web-scale’ reasoning techniques combined with
state-of-the-art RDF graph storage technology is likely to bring in-
creased performance in the future, but using reasoning over large
datasets using highly expressive OWL models is currently a signifi-
cant challenge. It is suggested that a combination of DL materialisa-
tion and rule reasoning using less expressive profiles may be appro-
priate for applications using the RaCoOn ontologies at scale.

coverage

The RaCoOn models do not provide coverage of knowledge of the
whole railway domain, for practicality reasons and owing to the di-
minishing benefit of modelling parts of the industry that may have
less use for a model to support data exchange. Future mapping of
other railway domain models such as the RFA may encourage further
adoption, and could be undertaken on demand as necessary.

reusability

A stated aim of the RaCoOn models was to provide reusable domain
models for other applications, whilst maintaining a practical model
that could be used in software systems.Thus, a number of parts of the
models exchange full semantic correctness for brevity in representa-
tion. Whilst it is likely that the semantics expressed in the models will
be sufficient for most applications (or extendible as necessary), there
may still be some instances where this is not the case.

conflicting data and validation

The majority of design patterns specified in the RaCoOn ontologies
do not enforce or check the validity of data input. This is by design;

7.2 limitations of approaches taken 271

the assertion of such axioms could severely impede the performance
of open world DL reasoners. However, it places a dependency upon
correct and non-conflicting data being entered in the models, as no
mechanism for resolving conflicting data is provided. In an applica-
tion, rule reasoning could be used to assert further (closed world)
constraints axioms over knowledge requiring validation, and could
prevent or control the entry of conflicting data.

7.2.3 Other Limitations

7.2.3.1 Architecture and Distribution

The practical implications of implementing systems in RDF and OWL
at scale are only briefly considered in Chapter 6, where the availability
of efficient, federated query systems are assumed. This is not a trivial
assumption, and the architecture of amulti-stakeholder systemwould
need to be carefully considered prior to implementation.
Data sharing on the semantic web shares this limitation: to make use
of another dataset, one must either download it in its entirety to inter-
act with locally, or rely on the provider’s processing power and avail-
ability using a SPARQL endpoint. Possible alternative approaches in-
clude bespoke Service-oriented Architectures as used in Chapter 6,
more HTTP-based linked data best practice solutions such as Apache
Marmotta and the Linked Data Platform [229], and Linked Data Frag-
ments [215], a systemwhich uses smaller data dumps to facilitate local
querying of federated data.

7.2.3.2 Security, Data Value, and Business Case

The issue of data ownership and value is touched upon in Chapter 1.
Whilst this thesis assumes a set of use cases and stakeholders that
have a desire to cooperate and share data, many real-world stake-
holders suffer disincentives from doing so. Although an argument for
Open Data asserts that the value of sharing data often exceeds the
value lost by giving it away ‘for free’, this argument may not hold in
enterprise environments. From progress in the railway domain seen
so far, it is likely that the business case for data sharing will come
through mandate from key stakeholders rather than through a vol-
untary consensus, as witnessed by progress arising from recent EU
interoperability legislation [58].

A related issue is that of data security. Secure transmission of data
itself is not considered in this thesis, but is likely to draw upon known
approaches for TCP/IP stacks when implementing Service-oriented
Architectures or federated queries. A more challenging prospect is

272 conclusions drawn and further work

that of access control to RDF data stores. In a multi stake-holder sys-
tem, organisations may wish to restrict the actions of certain actors
across a dataset, for instance by providing only a subset of data to
external parties, whilst allowing internal users to view or modify all
data. Currently, no standard approach for providing these rules ex-
ist, although proprietary approaches are implemented in triplestores
such as Stardog1, Virtuoso2, and Oracle3, and other methods are pre-
sented in the literature [158].

7.3 planned and possible further work

The initial outputs of this PhD lend themselves to a number of further
projects in two interlinked areas:

• Development of subdomain and application railway models.

• Development of architecture, platforms, and tools to support
future deployment.

The work undertaken in this thesis aimed to create both a domain
model and a methodology for building similar such models in the rail-
way industry. As such, a key piece of future work is the extension of
this ontology to provide wider coverage of other railway application
areas, and to build data integration implementations based on further
industrial use cases.

7.3.1 Possible Extensions

In addition to projects underway, this thesis raises new questions that
could be addressed in further work. Suggestions for such work are as
follows:

• Application of state-of-the-art stream reasoning to support
real-time decision support in railway systems.The use of stream
reasoning to integrate heterogeneous realtime data sets has re-
cently been shown for applications in Smart Cities [206] and
sensor networks [46, 227] amongst other areas. The use of RDF
streams could allow real time decision support in railway ap-
plications, by integrating data about timetabling, maintenance,
and external transportation systems.

1 http://docs.stardog.com/#_permissions
2 http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
3 http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/

rdfsemantic-graph–1902016.html

7.3 planned and possible further work 273

• Formalisation of recent EU-mandated interoperability concep-
tual models into RDF and OWL. As described in Chapter 3,
railway undertakings around Europe are currently developing
systems to allow interoperability of some passenger, infrastruc-
ture, and freight information according to a common concep-
tual model.The use of OWL rather than XML for data exchange
in these areas would allow companies to additionally share data
not demanded by the specification, such that other stakeholders
with an interest in the additional data could use it. Extension of
RaCoOn to fully encompass the TSI TAP and TAF frameworks
would facilitate this use.

• Use of rail core ontology and transformed UK railway data in
Open Data applications. Although not widely discussed in this
thesis, applications and research into using railway data for pub-
lic services such as journey planning is growing, with services
such as Realtime Trains4 and the Transport API5 using openly
available rail data to provide passengers with services not of-
fered by railway companies themselves. These applications pro-
vide benefits to both the rail industry and application develop-
ers, and the development of linked datasets based on RaCoOn
ontologies could aid reuse in the public domain even further.

7.3.2 Work Currently Underway

As a direct extension to the work discussed in this thesis, a two year
collaborative industry-funded project is now being undertaken as a
continuation of the FuTRO feasibility study described in Chapter 6.
The new project will implement several ontology extensions and im-
plement data sharing applications in three new areas, and also aims
to increase awareness and skillsets in RDF/OWL modelling through
work with industry project partners and development of tutorial ma-
terials. Key outputs will address several of the limitations described
in Section 7.2:

1. A reference software architecture for the fusion of railway data
in RDF/OWL.

2. A set of standard processes, tutorials, and reference implemen-
tations illustrating the use of this architecture and the rail core
ontologies.

4 http://www.realtimetrains.co.uk/
5 http://www.transportapi.com/

274 conclusions drawn and further work

3. A set of ontology extensions and implementations for a range
of rail industry asset types:

• Track-side Equipment (with Siemens ITS)
• On-board Equipment (with Arrowvale Electronics)
• Traffic Management (with IRG)

The project is supported and funded by Future Railway, and collab-
orators include and outputs from it will be dissemintated across the
railway industry and academia. It is likely that the resulting increase
in Technology Readiness Level for the application of semantic web
tools and technologies across the railway will allow stakeholders to
begin implementing such systems in earnest, and to realise the bene-
fits stated throughout this thesis.

A
L I ST OF CODE AND ONTOLOG IES HOSTED
ONL INE

Rather than providing full code andOWL listings in print, source code
for many of the applications and ontologies designed as part of this
thesis are available online, and can be accessed by the following URLs:

• http://phd.jtutcher.co.uk/examples/ontologies

– RaCoOn Ontologies (Redirect)

• http://phd.jtutcher.co.uk/examples/railml2owl

– Automated RailML XSD2OWL Mapping Results

• http://phd.jtutcher.co.uk/futro/tracklayout

– AMaaS RDFa SVG Track Diagram

• http://phd.jtutcher.co.uk/simulator

– FuTRO Train Locator Simulator Application (in Java)

275

B
REFERENCE D IAGRAMS AND L I STS

b.1 list of curie prefixes used throughout thesis

The following list shows all URI prefixes used throughout this thesis
as well as their corresponding full URIs. For new ontologies, a list of
high level namespaces is given in Table B.1.

Table B.1: Ownership Denoted by URI Namespaces

Organisation or ontology Domain or URI

Siemens /AMaaS http://amaas-siemens.com/
RaCoOn Railway Ontologies http://purl.org/rail/
RaCoOn Cross-domain Ontologies http://purl.org/ub/

Prefix Full URI
amaas: http://amaas-siemens.com/ontology/
amres: http://amaas-siemens.com/resource/
co: http://purl.org/co/
core: http://purl.org/rail/core/
core3d: http://purl.org/rail/core/3d/
corecv: http://purl.org/rail/core/vocab/
dbp: http://dbpedia.org/ontology/
dc: http://purl.org/dc/elements/1.1/
dcam: http://purl.org/dc/dcam/
dct: http://purl.org/dc/terms/
doc: http://purl.org/ub/doc/
dul: http://www.loa-cnr.it/ontologies/DUL.owl#
ex: urn:example
foaf: http://www.loa-cnr.it/ontologies/DUL.owl#
geo: http://www.opengis.net/ont/geosparql#
gml: http://www.opengis.net/ont/gml#
is: http://purl.org/rail/is/

277

278 reference diagrams and lists

owl: http://www.w3.org/2002/07/owl#
po: http://www.loa-cnr.it/ontologies/DUL.owl#
prov: http://www.w3.org/ns/prov#
qudt: http://qudt.org/schema/qudt#
rcn: http://purl.org/rail/core/vocab/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
res: http://purl.org/rail/resource/
rs: http://purl.org/rail/rs/
rule: tag:stardog:api:rule:
sf: http://www.opengis.net/ont/sf#
skos: http://www.w3.org/2004/02/skos/core#
time: http://www.w3.org/2006/time#
tloc: http://purl.org/ub/demo/ontology/
tt: http://purl.org/rail/tt/
tzont: http://www.w3.org/2006/timezone#
u: http://purl.org/ub/upper/
u3d: http://purl.org/ub/upper/3d/
u4d: http://purl.org/ub/upper/4d/
ucv: http://purl.org/ub/upper/cv/
unit: http://qudt.org/vocab/unit#
vocab: http://purl.org/rail/core/vocab/
wgspos: http://www.w3.org/2003/01/geo/wgs84_pos#
xml: http://www.w3.org/XML/1998/namespace
xs: http://www.w3.org/2001/XMLSchema#
xsd: http://www.w3.org/2001/XMLSchema#

b.2 iso 15926 express-g notation diagrams

Minimal explanation of the EXPRESS-G graphicalmodelling language
used in ISO 15926 is provided from International Standards Organisa-
tion [112, p. 21].

Figure B.1 shows how entities, subtypes, and relationships are rep-
resented.

Figure B.2 provides a legend for symbols used when representing
individuals and design patterns.

B.2 iso 15926 express-g notation diagrams 279

a_entity

c_entity_
subtype_of_a

d_entity_
subtype_of_a

1

b_entity
a�ribute_of_b_1

a�ribute_of_b_2

Figure B.1: EXPRESS-G Model Diagram

a classification relationship, the arrow head indicates the
member of the class

a class that is a model entity type, where “id” is its identifier

a relationship that is not a classification or a specialization,
role1 and role2 are the role names of the relationship

a class of relationship, where “id” is its identifier

a specialization relationship, the circle indicates the subclass

#id
a possible individual temporal part, where “id” is its
identifier

a class, where “id” is its identifierid

id

id

a relationship that cannot be modelled using EXPRESS

the list of elements of a multidimensional object, the
numbers 1,2,3 etc indicate their order

role1 role2

role1 role2

1
2
3

Figure B.2: EXPRESS-G Instance Diagram

C
RACOON ONTOLOGY RESOURCES

c.1 racoon ontology class terms

Section C.1.1 and Section C.1.2 list the full set of class concepts iden-
tified and modelled in the RaCoOn ontologies. Full ontologies can be
found online, as detailed in Appendix A.

c.1.1 List of Cross-domain Ontology Terms

u:AbsoluteLocation

u:Agent

u:Area

u:Characteristic

u:ContinuousMeasurement

u:Customer

u:DataConcept

u:DependentThing

u:Dialect

u:DomainSpecificThing

u:Event

u:Function

u:IndependentThing

u:InformationThing

u:Location

u:Measurement

u:NonSpatialThing

u:Observation

u:Organisation

u:Person

u:PhysicalAgent

u:PhysicalDimension

u:Place

u:ProvenanceConcept

u:RelativePosition

u:Resource

u:Role

u:SpatialThing

u:Stakeholder

u:TopologicalThing

u:Unit

co:Bag

co:Collection

co:Item

co:List

co:ListItem

co:Set

doc:AnnotationODP

doc:EntityDescription

doc:MetaThing

doc:ODP

doc:OntologyViewAffiliation

doc:PresentationODP

owl:Nothing

owl:Thing

prov:Activity

prov:Agent

prov:Dictionary

prov:Entity

prov:Influence

prov:InstantaneousEvent

prov:Location

prov:Organization

prov:Person

prov:Role

281

282 racoon ontology resources

c.1.2 List of Railway Domain Ontology Terms

rcn:AbsoluteChainage

rcn:RCMElement

rcn:AmberSignalAspect

rcn:ATPProtect

rcn:AxleCounter

rcn:AxleWeight

rcn:ChainageMeasurement

rcn:Balise

rcn:BaliseGroup

rcn:BlockingSignal

rcn:Bogie

rcn:Border

rcn:BrakingCharacteristic

rcn:RSBrakingSystem

rcn:BranchLine

rcn:Bridge

rcn:BufferStop

rcn:Building

rcn:CharacteristicChange

rcn:RSCarriage

rcn:ChainageZero

rcn:CharacteristicChangeSignal

rcn:CivilThing

rcn:CombinedSignal

rcn:CommunicationsDevice

rcn:ComputerInterlocking

rcn:ConnectingTrack

rcn:Contract

rcn:Crossing

rcn:Customer

rcn:Cutting

rcn:DataSource

rcn:RSDieselLoco

rcn:DieselPropulsion

rcn:DieselTractionCharacteristic

rcn:DirectionCapability

rcn:DistantSignal

rcn:DMU

rcn:RSDoorSystem

rcn:DoubleAmberSignalAspect

rcn:RSElectricLoco

rcn:ElectricPropulsion

rcn:ElectricalTractionCharacteristic

rcn:ElectrificationChange

rcn:TrackPlacedElement

rcn:ELRArc

rcn:ELRNode

rcn:Engineer’s Line Reference

(ELR)

rcn:EMU

rcn:EnumeratedCharacteristic

rcn:ETCSL0Standard

rcn:ETCSL1Standard

rcn:ETCSCharacteristicSignal

rcn:ETCSL2Standard

rcn:ETCSL3Standard

rcn:ETCSSignallingChange

rcn:ETCSStandard

rcn:ExitSignal

rcn:ExternalInterface

rcn:FeatureSignal

rcn:RSFireSystem

rcn:FixedSpeedSign

rcn:FourAspectSignal

rcn:FreightService

rcn:FreightTrain

rcn:OrientedElement

rcn:GreenSignalAspect

rcn:HomeSignal

rcn:RCMHABD

rcn:IDCode

rcn:IdentityConcept

rcn:IDOrganisation

rcn:IDPerson

rcn:InfraControlElement

rcn:InfrastructureConcept

rcn:InfrastructureModel

rcn:Interlocking

rcn:Junction

rcn:IntermediateSignal

rcn:RSInternalSystem

rcn:Lease

rcn:LevelCrossing

rcn:LineDetailArc

rcn:LineDetailNode

rcn:LineLevelArc

C.1 racoon ontology class terms 283

rcn:LineLevelNode

rcn:LORLine

rcn:LinearPosition

rcn:RelativeTrackPosition

rcn:LoadingGauge

rcn:LocalRoute

rcn:LocatedThing

rcn:Location

rcn:RSLocomotive

rcn:MainLine

rcn:MainSignal

rcn:MainTrack

rcn:MaintenanceSystem

rcn:MandatoryBrakingSpeedChange

rcn:MandatoryStopSpeedChange

rcn:MechanicalInterlocking

rcn:MeterloadMeasurement

rcn:MovementAuthoritySignal

rcn:RSMultipleUnit

rcn:RailwayMultipleUnit

rcn:RSMultipleUnitTrainSet

rcn:NetworkArc

rcn:NUTS2

rcn:TrainFormation

rcn:OHLEPropulsion

rcn:OpenEnd

rcn:OCP

rcn:PassengerInformationSystem

rcn:PassengerService

rcn:PassengerTrain

rcn:PhysicalThing

rcn:Platform

rcn:Points

rcn:PointsMachine

rcn:RCMPoints

rcn:Position

rcn:PowerTransmission

rcn:RSPushPullTrainSet

rcn:RailStandard

rcn:RailwayAssetConcept

rcn:RailwayBusinessEvent

rcn:RailwayFunction

rcn:RailwayCarriage

rcn:RailwayCharacteristic

rcn:RailwayConditionMonitoringSystem

rcn:RailwayContract

rcn:RailwayDomainConcept

rcn:RailwaySystem

rcn:RailwayLine

rcn:RailwayLocomotive

rcn:RailwayMaintainer

rcn:RailwayMileage

rcn:RailwayMileageRef

rcn:RailwayOperationalIncident

rcn:Signal

rcn:RailwaySignaller

rcn:RailwaySpecificEvent

rcn:RailwayStaff

rcn:Station

rcn:RailwayTicket

rcn:RailwayTrain

rcn:RailwayUnit

rcn:RailwayVehicle

rcn:RCMWheelchex

rcn:RedSignalAspect

rcn:Regulator

rcn:RelayInterlocking

rcn:RepeaterSignal

rcn:RSCharacteristic

rcn:RollingStockComponent

rcn:RollingStockConcept

rcn:ROSCO

rcn:RSPart

rcn:RSPowerSystem

rcn:RSPropulsionSystem

rcn:RollingStockThing

rcn:Route

rcn:RouteAbstraction

rcn:RouteArc

rcn:RouteBoundary

rcn:RouteConcept

rcn:RouteGraphConcept

rcn:RouteNode

rcn:RouteTerminus

rcn:RSBogie

rcn:RSDieselMU

rcn:RSElectricMU

rcn:RSTrainSet

rcn:RSVehicleType

rcn:RuleCodeElement

rcn:SafetyCharacteristic

rcn:SILCharacteristic

284 racoon ontology resources

rcn:SafetySystem

rcn:SecondaryTrack

rcn:Service

rcn:ServiceCharacteristic

rcn:ServiceConcept

rcn:ShuntingSignal

rcn:SideOfTrackPosition

rcn:SidingTrack

rcn:SignalAspect

rcn:SignalBox

rcn:SignalGroup

rcn:SignalThing

rcn:SignalWithAspect

rcn:SignalWithLocationFunction

rcn:SignalWithRole

rcn:SignallingChange

rcn:SignallingStandard

rcn:Slope

rcn:SSIInterlocking

rcn:SpacialMeasurement

rcn:SpeedCapability

rcn:GradientChange

rcn:SpeedChange

rcn:SpeedProfile

rcn:SpeedRange

rcn:SpeedSign

rcn:StandardsCapability

rcn:StationTrack

rcn:StationWithWGS84

rcn:Status

rcn:Stop

rcn:StopPost

rcn:Subcontractor

rcn:Switch

rcn:SwitchPosition

rcn:SwitchableSignal

rcn:SwitchableSpeedSign

rcn:TestClass

rcn:ThirdRailPropulsion

rcn:ThreeAspectSignal

rcn:TiltCharacteristic

rcn:GeodesicLocation

rcn:Track

rcn:TrackAssociatedElement

rcn:TrackAxleWeight

rcn:TrackCharacteristic

rcn:TrackCircuit

rcn:TrackCircuitLocation

rcn:TrackComms

rcn:TrackCondition

rcn:Electrification

rcn:TrackElement

rcn:TrackGauge

rcn:TrackGaugeCapability

rcn:TrackGradient

rcn:TrackOperationMode

rcn:TrackRelatedPosition

rcn:TrackRadius

rcn:TrackRadiusChange

rcn:TrackSection

rcn:TrackServiceProvider

rcn:TrackSide

rcn:TrackSignallingMethod

rcn:TractionCharacteristic

rcn:TractionPackage

rcn:TrainConductor

rcn:TrainControlCapability

rcn:TrainControlStandard

rcn:TrainDetector

rcn:TrainDriver

rcn:TrainOperatingCompany

rcn:TrainProtectCapability

rcn:TrainProtectStandard

rcn:TrainProtectionInfrastructureElement

rcn:TrainStopProtect

rcn:Tunnel

rcn:UKSignal

rcn:ViewConcept

rcn:ViewGraphPosition

rcn:WeatherEvent

rcn:MassMeasurement

rcn:WGS84Measurement

rcn:WGS84Location

rcn:WILD

C.2 validation workshop results 285

c.2 validation workshop results

c.2.1 High Level and Subdomain Concepts Elicited FromRaCoOnWork-
shops

c.2.1.1 Results from Edgbaston Workshop

• Operations

– Routing
– Planning
– Maintenance
– Passenger Flow
– Stations
– Ticketing
– Food and Beverages
– Work Rotas
– Retail
– Fueling
– Passenger Informa-

tion Provision
– Signalling
– Inspection
– Driving
– Signage
– Timetabling
– External Communica-

tion and Media

• Infrastructure

– Laws
– Suspension
– Bogie
– Acceleration
– HVAC
– OTMR

– Range
– Configuration Flexi-

bility
– Unit Flexibility
– Depot
– Cusomer Information

System
– Speed
– Automatic Train Pro-

tection
– Air Conditioning
– Train and Passenger
– Traction Control
– Windows
– Aesthetics
– Mass
– Recoverability
– Doors
– Facilities /Auxiliaries
– Gauge
– Brakes
– Braking Capacity
– Maintenance
– Wheelsets
– Access
– Power Source
– Energy Storage
– Contact System

286 racoon ontology resources

– Track Gauge
– Loading Gauge
– Structure Gauge
– Kinematic Gauge
– Warning Systems
– Couplers
– Tilt
– Common Carrier

• Rolling Stock

– Drains
– Ballast
– Tamping
– Grinding
– Inspection
– Gradients
– Switches & Crossings
– Cabling
– Formation
– Renewal
– Track Quality
– Condition Monitoring
– Mapping
– Transformers
– Depot
– Conductor Rail
– Overhead Line Electri-

fication
– Track
– Bridges
– Tunnels
– Civil Works
– Maintenance
– Cuttings

– Embankments
– Station
– Points
– Signals
– Interlocking
– GSMR Equipment
– Track Circuits
– Axle Counters

• People

– Employees
– Design
– Research
– Station Staff
– Cleaning
– Passengers
– Journalists /Media
– Drivers
– Conductors
– Level Crossing Opera-

tors
– Maintenance
– Demographic
– First Class
– Pedestrians
– Ticket Sales Staff
– Dispatcher
– HR
– Families
– Emergency Services
– Politicians
– Standard Class
– Health and Safety
– Maintenance Staff
– Signaller

C.2 validation workshop results 287

– Salaries
– Car Drivers

• Regulation

– Good Will
– Directive
– Standards
– Inspection
– Economic Regulation
– Credit Rating
– Authority
– Corporate Policy
– Rules
– Education and Train-

ing
– Corporate Culture
– General Policy
– Manuals
– Train Control
– Citizenship
– Laws
– Stakeholders
– Public Relations
– Assurance
– Approvals Boards
– Regulatory Bodies

• Commercial /Social

– Contracts
– Rate of Return
– Borrowing
– Incentives
– Project Management
– DDA
– HLOS
– SOFA
– Business Aim
– Performance
– Pricing
– Fundraising
– Carbon Accounting
– Value of Asset Base
– ‘Cool’ Railway
– Image
– Sustainability
– Demand
– Class Mix
– Suicide
– Industrial Relations
– Age Profile
– Employment Level
– NIMBYs

c.2.1.2 Results from Chippenham Workshop

• Service & Operations

– Timetable Design

– Timetable Delivery

– Staff Rotas & Dia-
grams

– Rolling Stock Dia-
grams

– Providing Informa-
tion

– Management of Per-
turbations

288 racoon ontology resources

– Passenger Safety
(BTP, CCTV etc)

– On Train Catering
– Selling Tickets
– Managing Reserva-

tions
– Revenue Protection
– Passenger Experience

• Assets & Infrastructure/
Maintenance

– Permanent Way
– Civil Engineering

(Cuttings, Tunnels,
Bridges)

– Electrification
– Signalling (Signal sets,

control centres)
– IT (Fibre, Computers

etc)
– Buildings
– Rolling Stock
– Vehicles (Cars, Vans,

etc)
– Redundant Asset

Maintenance
– Gardening
– Cleaners (Train/

Station)
– Rolling Stock Mainte-

nance
– Signalling Mainte-

nance
– Building Maintenance

• Customers

– Passengers

– Freight
– Information Con-

sumers
– Potential Customers
– Train Operators
– Advertisers
– The Queen
– Topic

• External Stakeholders
– NIMBYs
– Shareholders
– Farmers
– Emergency Services
– Tenants
– Sufferers of Interfer-

ence (Noise/EM)
– Taxi Firms
– Level Crossing Users
– Bus Service Operators
– Other Railways
– Thieves
– Airports
– Unions
– Metro Systems

• Organisation & Gover-
nance/Business

– Regulatory
– Train Operating Com-

panies (TOCs)
– ROSCOs
– Infrastructure Compa-

nies
– Penalties
– Rolling Stock Builders
– Public Subsidy

C.2 validation workshop results 289

– Staff

– Signalling Suppliers

– Public Relations

– Topic

• Resources

– Pollution/Waste

– Water, Air

– Power, Energy, Fuel

– Land/Space

– Money/Finance
– Staff
– Raw Materials
– Suppliers
– Intellectual Property
– Legal System
– Research, Academia
– Train-spotters
– Property Leases
– Food

c.2.2 Domain Interactions Elicited From RaCoOn Workshops

Table C.1 and Table C.1 show the full list of interactions between con-
cepts identified during two RaCoOn Validation Workshops, held at
the University of Birmingham, Edgbaston and at Invensys Rail Group,
Chippenham respectively.

290 racoon ontology resources

Table C.1: Railway Domain Interactions Elicited From Edgbaston Validation
Workshop

Subject Object Relationship

People Commercial related to
People Commercial citizenship & perception
People Commercial sustainability & politicians
People Commercial travel class & comfort
People Regulation culture
People Regulation rules
People Infrastructure maintenance staff
People Infrastructure station staff
People Infrastructure signalling staff
People Infrastructure car drivers
People Operations maintenance staff
People Operations train drivers
People Rolling stock train drivers
People Rolling stock maintenance staff
People Rolling stock dispatcher
Commercial Regulation commercial regulation
Regulation Rolling stock design and standards
Regulation Operations related to
Regulation Infrastructure related to
Infrastructure Operations maintenance & infrastructure
Infrastructure Operations related to
Infrastructure Operations passengers
Infrastructure Rolling stock gauge
Infrastructure Rolling stock structures
Infrastructure Rolling stock OHLE (electrification)
Infrastructure Rolling stock wheel-rail interface
Infrastructure Rolling stock bogie & wheelset
Infrastructure Rolling stock body & suspension
Operations Rolling stock maintenance
Operations Rolling stock cargo

C.2 validation workshop results 291

Table C.2: Table Showing Railway Domain Interactions Elicited From Chip-
penham Validation Workshop

Subject Object Relationship

Organisation Service related to
Organisation Resources regulations
Organisation Resources staff
Organisation Resources polution
Organisation Stakeholders public relations
Organisation Customers related to
Organisation Assets related to
Organisation Assets interface managed by
Service Resources constrained by
Service Resources related to
Service Stakeholders related to
Service Customers used by
Service Customers demand quality of
Service Assets requires
Service Assets constrained by
Stakeholders Resources suffer
Stakeholders Assets affect
Customer Assets use (infrastructure)
Customer Assets affected by reliability of
Assets Resources requires
Assets Resources requires (investment)

292 racoon ontology resources

c.3 racoon railsys validation

C.3 racoon railsys validation 293

Fi
gu

re
C.
1:

Ra
ils

ys
Ra

Co
O
n
Tr

an
sf
or

m
at
io
n
Va

lid
at
io
n
Sp

re
ad

sh
ee

t

294 racoon ontology resources

RailsysRaCoO
n
Transform

ation
Validation

SpreadsheetPage
2

C.3 racoon railsys validation 295

Ra
ils

ys
Ra

Co
O
n
Tr

an
sf
or

m
at
io
n
Va

lid
at
io
n
Sp

re
ad

sh
ee

tP
ag

e
3

296 racoon ontology resources

RailsysRaCoO
n
Transform

ation
Validation

SpreadsheetPage
4

C.3 racoon railsys validation 297

Ra
ils

ys
Ra

Co
O
n
Tr

an
sf
or

m
at
io
n
Va

lid
at
io
n
Sp

re
ad

sh
ee

tP
ag

e
5

298 racoon ontology resources

RailsysRaCoO
n
Transform

ation
Validation

SpreadsheetPage
6

C.3 racoon railsys validation 299

Ra
ils

ys
Ra

Co
O
n
Tr

an
sf
or

m
at
io
n
Va

lid
at
io
n
Sp

re
ad

sh
ee

tP
ag

e
7

300 racoon ontology resources

RailsysRaCoO
n
Transform

ation
Validation

SpreadsheetPage
8

C.3 racoon railsys validation 301

Ra
ils

ys
Ra

Co
O
n
Tr

an
sf
or

m
at
io
n
Va

lid
at
io
n
Sp

re
ad

sh
ee

tP
ag

e
9

D
F U TRO IMPLEMENTAT ION NOTES

This appendix provides details and notes of particular aspects of the
FuTRO projects described in Chapter 6.

d.1 amaas track layout graphics

Figure D.1 shows the track layout diagram used to identify assets in
the AMaaS demonstrator. It is encoded as an SVG diagram, with ad-
ditional RDFa markup to allow for the identification of components.

COVENTRY

COVENTRY YARD

CANLEY TI LE HI LL

Figure D.1: SVG Track Diagram Used in FuTRO AMaaS Project

303

304 futro implementation notes

<svg version=”1.1” class=”trackmap”>
<!-- CSS definitions removed -->
<g id=”Points”>

<rect rx=”5” ry=”5” x=”780” y=”304” class=”points”
width=”40” height=”32” about=”amres:TM14BPoints0”
typeof=”vocab:Points”></rect>

↪→

↪→

<!-- and more -->
</g>
<g id=”Stations”>

<rect rx=”5” ry=”5” x=”576” y=”400” class=”station”
width=”144” height=”32” about=”amres:TM14BStations0”
typeof=”vocab:Station”></rect>

↪→

↪→

<!-- and more -->
</g>
<g id=”CNN”>

<g id=”CNN_Switches”>
<polyline class=”low” points=”1272,448 1280,448

1312,384 1320,384 ” about=”amres:TM14BCNNCNN_Switches0”
typeof=”vocab:LineDetailArc”></polyline>

↪→

↪→

<!-- and more -->
</g>
<!-- more line definitions removed -->

</g>
<!-- more line definitions removed -->
<!-- labels removed -->

<g id=”LoWNodes”>
<line class=”nodes” x1=”32” x2=”32” y1=”128” y2=”128”

about=”amres:TM14BLoWNodes0”
typeof=”vocab:LineDetailNode”></line>

↪→

↪→

<line class=”nodes” x1=”0” x2=”0” y1=”128” y2=”128”
about=”amres:TM14BLoWNodes1”
typeof=”vocab:LineDetailNode”></line>

↪→

↪→

<!-- more nodes -->
</g>

</svg>

Listing D.1: Extract from RDFa Enriched SVG Code

D.2 legacy wheelchex data snippets 305

d.2 legacy wheelchex data snippets

Listing D.2 shows an anonymised extract from an operational WILD
system, which was used as a basis for the encoding of WILD data
within the AMaaS project (see Section 6.2).

<?xml version=”1.0” ?>
<WheelChexFullTrain

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>↪→

<WheelChexSite Name=”Dallam”>
<Track_Name Name=”Down Slow”>

<Train Train_Time=”2008-01-01T12:00:00”
Train_Speed=”97” Train_AxleCount=”12” Train_Length=”65”
Train_Tonnage=”1.5E002” Track_NormalDirection=”true”>

↪→

↪→

<Axle Axle_Number=”1” Distance_From_1st=”0”
AxleSpeed=”97”>↪→

<Wheel Train_Side=”Left” Wheel_Load=”60”
Wheel_Impact=”72” DynamicRatio=”1.2”></Wheel>↪→

<Wheel Train_Side=”Right” Wheel_Load=”67”
Wheel_Impact=”76” DynamicRatio=”1.1”></Wheel>↪→

</Axle>
<Axle Axle_Number=”2” Distance_From_1st=”2.5”

AxleSpeed=”96”>↪→

<Wheel Train_Side=”Left” Wheel_Load=”61”
Wheel_Impact=”70” DynamicRatio=”1.1”></Wheel>↪→

<Wheel Train_Side=”Right” Wheel_Load=”65”
Wheel_Impact=”75” DynamicRatio=”1.2”></Wheel>↪→

</Axle>
<!-- more axles -->
<Axle Axle_Number=”12” Distance_From_1st=”65”

AxleSpeed=”96”>↪→

<Wheel Train_Side=”Left” Wheel_Load=”54”
Wheel_Impact=”68” DynamicRatio=”1.2”></Wheel>↪→

<Wheel Train_Side=”Right” Wheel_Load=”72”
Wheel_Impact=”82” DynamicRatio=”1.1”></Wheel>↪→

</Axle>
</Train>

</Track_Name>
</WheelChexSite>

</WheelChexFullTrain>

Listing D.2: Example Wheelchex XML Data File

306 futro implementation notes

d.3 amaas stardog rules and queries

Listing D.3 shows the rule used in implementation of AMaaS to infer
the current condition of a particular railway asset. Listing D.4 shows
how knowledge in the triplestore can be exploited to create links be-
tween infrastructure assets and rolling stock.

@prefix rule: <tag:stardog:api:rule:> .

[] a rule:SPARQLRule ;
rule:content ”””

PREFIX :<urn:test:>
IF {

SELECT ?asset ?condition (MAX(?tstamp)
as ?date)↪→

where {
?asset amaas:indirectObservation ?o .
?o amaas:startTime ?tstamp .
?o amaas:calculatedCondition ?condition
}

GROUP BY ?asset
}

THEN {
?asset amaas:currentCondition

?condition↪→

}””” .

Listing D.3: Stardog Rule for Deriving Current Asset Condition in AMaaS

D.3 amaas stardog rules and queries 307

construct { ?service ?p ?o } where {
amaas:CoventryWILD amaas:sited ?l .
?service a tt:ScheduledService ;

tt:serviceNode ?origin ;
tt:serviceNode ?terminus ;

tt:serviceNode ?n ;
tt:runningDay time:Monday ;

tt:consist ?rollingStock ;
?p ?o;

u:id ?id .
?origin a tt:OriginNode ;

u:location [rdfs:label ?olabel].
?terminus a tt:TerminusNode ;
u:location [rdfs:label ?tlabel].

OPTIONAL{?rollingStock a [rdfs:label ?type]}.
OPTIONAL{?rollingStock is:axles ?axles ; is:axleLoad ?load }.

?n u:location ?l .
?n tt:ttOrder ?time .
FILTER (?time < ”13:10:00Z”^^xsd:time && ?time >
”12:50:00Z”^^xsd:time)↪→

} ORDER BY ASC(?time)

Listing D.4: SPARQL Query for Wheel Impact Load Detector Traffic Infer-
ence

B IBL IOGRAPHY

[1] B. Adida et al. RDFa Core 1.1 - Third Edition. 2015 (cit. on p. 46).
[2] H. Alani, C. Brewster, and N. Shadbolt. “Ranking ontologies

with AKTiveRank”. In: The Semantic Web - ISWC 2006. Lecture
Notes in Computer Science 4273 (2006). Ed. by I. Cruz et al.,
pp. 1–15 (cit. on p. 37).

[3] T. Albrecht and M. Dasigi. “ON-TIME–A framework for inte-
grated railway network operationmanagement”. In: Transport
Research Arena (TRA) 5th Conference: Transport Solutions from
Research to Deployment. 2014 (cit. on p. 73).

[4] K. Alexander et al. Describing Linked Datasets with the VoID
Vocabulary. 2011 (cit. on p. 142).

[5] D. Allemang and J. A. Hendler. Semantic web for the working
ontologist: modeling in RDF, RDFS and OWL. Morgan Kauf-
mann, 2008 (cit. on pp. 56, 63, 122, 139, 140).

[6] S. Auer and H. Herre. “Perspectives of Systems Informatics:
6th International Andrei Ershov Memorial Conference, PSI
2006, Novosibirsk, Russia, June 27-30, 2006. Revised Papers”.
In: ed. by I. Virbitskaite and A. Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007. Chap. RapidOWL -, pp. 424–
430 (cit. on p. 33).

[7] F. Baader, I. Horrocks, and U. Sattler. “Description Logics as
Ontology Languages For The Semantic Web”. In: Mechanizing
Mathematical Reasoning. Ed. by D. Hutter and W. Stephan.
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2005, pp. 228–248 (cit. on p. 26).

[8] F. Baader et al., eds. The Description Logic Handbook: Theory,
Implementation, and Applications. New York, NY, USA: Cam-
bridge University Press, 2003 (cit. on p. 52).

[9] C. Ballard et al. Data modelling techniques for Data Warehous-
ing. 1998 (cit. on p. 14).

[10] S. Batsakis, K. Stravoskoufos, and E. G. M. Petrakis. “Tempo-
ral Reasoning for Supporting Temporal Queries in OWL 2.0”.
In: Knowledge-Based and Intelligent Information and Engineer-
ing Systems. Ed. by A. König et al. Vol. 6881. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 558–
567 (cit. on p. 90).

309

310 Bibliography

[11] D. Beckett. RDF 1.1 N-Triples (cit. on p. 45).
[12] D. Beckett. RDF/XML Syntax Specification (Revised). 2004 (cit.

on p. 45).
[13] D. Beckett et al. Turtle - Terse RDF Triple Language - W3C Can-

didate Recommendation. 2013 (cit. on p. 45).
[14] P. M. Beevers and D. Fox. TAF TAP Implementation Strategy.

Tech. rep. November. Network Rail, 2013 (cit. on pp. 3, 75).
[15] C. R. Bell. “The business case for remote monitoring applica-

tions”. In: Proceedings of the 4th IET International Conference
on Railway Condition Monitoring (RCM 2008). Derby: Institu-
tion of Engineering and Technology, 2008, pp. 42–47 (cit. on
p. 4).

[16] Bentley. Bentley OPTRAM. 2015 (cit. on p. 71).
[17] T. Berners-Lee. Linked Data - Design Issues. 2006 (cit. on p. 42).
[18] T. Berners-Lee and M. Fischetti. Weaving the Web: The Origi-

nal Design and Ultimate Destiny of the World Wide Web by Its
Inventor. Texere, 2001 (cit. on p. 38).

[19] N. Besinovic et al. “Integrated Decision Support Tools for Dis-
ruptionManagement”. In: RailTokyo2015: 6th International Con-
ference on RailwayOperationsModelling andAnalysis, Narashino,
Japan, 23-26 March 2015. 2015 (cit. on p. 73).

[20] M. Birbeck and S. McCarron. CURIE Syntax 1.0. 2010 (cit. on
p. 44).

[21] C. Bizer et al. “The Semantic Web – ISWC 2013: 12th Interna-
tional Semantic Web Conference, Sydney, NSW, Australia, Oc-
tober 21-25, 2013, Proceedings, Part II”. In: ed. by H. Alani et al.
Berlin, Heidelberg: Springer BerlinHeidelberg, 2013. Chap. De-
ployment, pp. 17–32 (cit. on p. 46).

[22] H. Bohring and S. Auer. “Mapping XML to OWL Ontologies”.
In: Leipziger Informatik-Tage, volume 72 of LNI. GI, 2005, pp. 147–
156 (cit. on p. 184).

[23] R. Brachman and H. Levesque. Knowledge Representation and
Reasoning. San Francisco: Morgan Kaufmann, 2004, p. 381 (cit.
on pp. 26, 29, 56).

[24] C. Brewster et al. “Data driven ontology evaluation”. In: Pro-
ceedings of the 4th International Conference on Language Re-
sources and Evaluation. Lisbon, 2004 (cit. on p. 37).

[25] D. Brickley. W3C Basic Geo Vocabulary. 2003 (cit. on pp. 125,
176, 177).

Bibliography 311

[26] D. Brickley and R. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. 2004 (cit. on pp. 43, 50).

[27] R. Budden.GIS and Information Management on Crossrail C122
Bored Tunnels contract. 2011 (cit. on p. 165).

[28] M. Bunge. Treatise on Basic Philosophy: Ontology I: the Furni-
ture of the World. Springer Science & Business Media, 1977,
p. 354 (cit. on p. 23).

[29] M. A. Bunge. Treatise on Basic Philosophy Volume 1: Semantics
I - Sense and Reference. Dordrecht: Springer Netherlands, 1974,
p. 208 (cit. on p. 23).

[30] A. Burton-Jones et al. “A Semiotic Metrics Suite for Assessing
the Quality of Ontologies”. In: Data & Knowledge Engineering
55.1 (Oct. 2005), pp. 84–102 (cit. on pp. 36, 37).

[31] J. Cardoso. “The Semantic Web Vision: Where Are We?” In:
IEEE Intelligent Systems 22.5 (Sept. 2007), pp. 84–88 (cit. on
pp. 30, 31).

[32] S. Chadwick. Layout Description Language (LDL) Specification.
Tech. rep. Invensys Rail Group, 2007 (cit. on p. 77).

[33] B. Chandrasekaran, J. R. Josephson, andV. R. Benjamins. “What
are ontologies, and why dowe need them?” In: IEEE Intelligent
Systems 14.1 (Jan. 1999), pp. 20–26 (cit. on p. 5).

[34] E. Christensen et al.Web Services Description Language (WSDL)
1.1. Tech. rep.WorldWideWebConsortium, 2001 (cit. on p. 16).

[35] P. Ciccarese and S. Peroni. “The Collections Ontology: creat-
ing and handling collections in OWL 2 DL frameworks”. In:
Semantic Web 5.6 (2013), pp. 515–529 (cit. on p. 189).

[36] M. Ciocoiu, D. S. Nau, and M. Gruninger. “Ontologies for Inte-
grating Engineering Applications”. In: Journal of Computing
and Information Science in Engineering 1.1 (2001), pp. 12–22
(cit. on p. 21).

[37] Clark & Parsia. Stardog: The Enterprise Graph Database. 2014
(cit. on pp. 56, 57, 144).

[38] M. Compton et al. “The SSN Ontology of the W3C Semantic
Sensor Network Incubator Group”. In: Web Semantics: Science,
Services and Agents on the World Wide Web 17 (Dec. 2012),
pp. 25–32 (cit. on p. 222).

312 Bibliography

[39] J. Conesa and A. Olivé. “A General Method for Pruning OWL
Ontologies”. In: On the Move to Meaningful Internet Systems
2004: Coop. Ed. by R. Meersman and Z. Tari. Vol. 3291. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp. 981–998 (cit. on p. 127).

[40] O. Corcho, M. Poveda-Villalón, and A. Gómez-Pérez. “Ontol-
ogy engineering in the era of linked data”. In: Bulletin of the
American Society for Information Science and Technology 41.4
(2015), pp. 13–17 (cit. on p. 33).

[41] M. Courtot et al. “MIREOT: The Minimum Information to Ref-
erence an External Ontology Term”. In: Appl. Ontol. 6.1 (Jan.
2011), pp. 23–33 (cit. on p. 127).

[42] E. Dahlström et al. Scalable Vector Graphics (SVG) 1.1 (Second
Edition). Tech. rep. WorldWideWeb Consortium, 2011 (cit. on
p. 16).

[43] M.D’Aquin. “ModularizingOntologies”. In:Ontology Engineer-
ing in a Networked World. Ed. by M. Suárez-Figueroa et al.
Berlin: Springer Berlin Heidelberg, 2012. Chap. 10, pp. 213–
233 (cit. on p. 34).

[44] M. D’Aquin. “Modularizing ontologies”. In:Ontology Engineer-
ing in a Networked World. Ed. by M. Suárez-Figueroa et al.
Berlin: Springer BerlinHeidelberg, 2011. Chap. 7 (cit. on pp. 127,
128, 184).

[45] A. De Nicola and M. Missikoff. “A Lightweight Methodology
for Rapid Ontology Engineering”. In: Commun. ACM 59.3 (Feb.
2016), pp. 79–86 (cit. on p. 33).

[46] E. Della Valle et al. “It’s a Streaming World! Reasoning upon
Rapidly Changing Information”. In: IEEE Intelligent Systems
24.6 (2009) (cit. on p. 272).

[47] K. Dentler et al. “Comparison of Reasoners for Large Ontolo-
gies in the OWL 2 EL Profile”. In: Semantic Web (2011) (cit. on
p. 55).

[48] Department for Transport. How People Travel (Mode): Table
NTS0303, Average number of Trips (Trip Rates) by Main Mode:
England, Since 1995. 2014 (cit. on p. 1).

[49] C. Dickerson and D. N. Mavris. Architecture and Principals of
Systems Engineering. CRC Press, 2010, p. 451 (cit. on pp. 14,
101).

[50] M. Dimitrov. Using the OWLIM triplestore to power BBC‘s 2010
World Cup site. 2010 (cit. on p. 5).

Bibliography 313

[51] L. Dodds and I. Davis. “Linked data patterns”. In: A pattern cat-
alogue for modelling, publishing, and consuming Linked Data
(2011) (cit. on pp. 122, 123, 140, 168).

[52] P. Doran, V. Tamma, and L. Iannone. “Ontology Module Ex-
traction for Ontology Reuse: An Ontology Engineering Per-
spective”. In: Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management. CIKM
’07. New York, NY, USA: ACM, 2007, pp. 61–70 (cit. on p. 35).

[53] J. Durk. Developing the Rail Industry’s Customer Information
Strategy to Provide Accurate, Consistent, Timely and Relevant
Information. London, 2014 (cit. on pp. 3, 242).

[54] O. Erling. “Virtuoso, A Hybrid RDMS/Graph Column Store”.
In: IEEE Computer Society Bulletin of the Technical Committee
on Data Engineering 35.1 (2012), pp. 3–8 (cit. on p. 57).

[55] S. Etchell, D. Phillips, and B. Ward. Remote Condition Monitor-
ing of London Underground Track Circuits. Tech. rep. Railway
Safety and Standards Board, 2014 (cit. on p. 208).

[56] D.W. Etherington. Reasoning with Incomplete Information. San
Francisco:MorganKaufmann Publishers Inc., Feb. 1988 (cit. on
p. 65).

[57] EuropeanCommission.Commission Regulation (EU) No 1305/2014.
Tech. rep. EuropeanCommission, 2014, pp. 66–87 (cit. on pp. 73,
74).

[58] European Commission. TAF-TSI Master Plan. Tech. rep. Jan-
uary. European Commission, 2013 (cit. on pp. 76, 271).

[59] European Railway Agency. Rail System Register Of Infrastruc-
ture - Final Report. Tech. rep. European Railway Agency, 2010
(cit. on pp. 3, 72, 75).

[60] R. A. Falbo et al. “Developing Software For andWith Reuse: an
Ontological Approach”. In: International Conference on Com-
puter Science, Software Engineering, Information Technology, E-
Business and Applications, CSITeA 2002. ACIS, 2002, pp. 311–
316 (cit. on pp. 12, 124).

[61] M. Ferdinand, C. Zirpins, andD. Trastour. “LiftingXML Schema
to OWL”. In: Web Engineering. Ed. by N. Koch, P. Fraternali,
andM.Wirsing. Vol. 3140. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 354–358 (cit. on p. 184).

314 Bibliography

[62] J. D. Fernández et al. “Binary RDF representation for publica-
tion and exchange (HDT)”. In:Web Semantics: Science, Services
and Agents on the World Wide Web 19 (2013), pp. 22–41 (cit. on
pp. 45, 219).

[63] M. Fernández, A. Gómez-Pérez, and N. Juristo. “METHON-
TOLOGY: FromOntological Art TowadsOntological Engineer-
ing”. In: Proceedings of AAAI97 Spring Symposium Series, Work-
shop on Ontological Engineering. 1997 (cit. on pp. 30, 31, 36).

[64] M. Fernández-López, A. Gómez-Pérez, andM. C. Suárez-Figueroa.
“Selecting andCustomizing aMereologyOntology for Its Reuse
in a Pharmaceutical Product Ontology”. In: Proceedings of the
2008 Conference on Formal Ontology in Information Systems:
Proceedings of the Fifth International Conference (FOIS 2008).
Amsterdam,TheNetherlands,TheNetherlands: IOS Press, 2008,
pp. 181–194 (cit. on p. 157).

[65] M. Fernández-López,M. Suárez-Figueroa, andA. Gómez-Pérez.
“Ontology Development by Reuse”. In: Ontology Engineering
in aNetworkedWorld. Ed. byM. C. Suárez-Figueroa et al. Springer
Berlin Heidelberg, 2012, pp. 147–170 (cit. on pp. 121, 124).

[66] Fiatech. Introduction to ISO 15926. Tech. rep. Fiatech, 2011 (cit.
on p. 82).

[67] K. Forsberg and H. Mooz. “The Relationship of System Engi-
neering to the Project Cycle”. In: INCOSE International Sympo-
sium 1.1 (1991), pp. 57–65 (cit. on p. 102).

[68] F. Fuchs et al. “Towards Semantics-based Monitoring of Large-
Scale Industrial Systems”. In: 2006 International Conference on
Computational Inteligence for Modelling Control and Automa-
tion and International Conference on Intelligent AgentsWeb Tech-
nologies and International Commerce (CIMCA’06) (2006), pp. 261–
261 (cit. on p. 78).

[69] A. Gangemi. “OntologyDesign Patterns for SemanticWebCon-
tent”. In: The Semantic Web–ISWC 2005 (2005) (cit. on p. 120).

[70] A. Gangemi and V. Presutti. “Ontology Design Patterns”. In:
Handbook on Ontologies, 2nd Edition. Springer, 2009, pp. 221–
243 (cit. on pp. 81, 122, 157).

[71] A. Gangemi and V. Presutti. OntologyDesignPatterns.org. 2008
(cit. on pp. 122, 140).

[72] A. Gangemi et al. “Modelling ontology evaluation and vali-
dation”. In: The semantic web: research and applications. 2006,
pp. 140–154 (cit. on p. 36).

Bibliography 315

[73] R. García. “A Semantic Web Approach to Digital Rights Man-
agement”. PhDThesis. Universitat Pompeu Fabra, 2006 (cit. on
p. 184).

[74] M. Genesereth et al. Knowledge Interchange Format Version 3.0
Reference Manual. 1992 (cit. on p. 51).

[75] J. H. Gennari et al. “The evolution of Protégé: an environment
for knowledge-based systems development”. In: International
Journal of Human-Computer Studies 58.1 (Jan. 2003), pp. 89–
123 (cit. on p. 61).

[76] Y. Gil and S. Miles. PROV Model Primer. 2015 (cit. on p. 142).
[77] Graffica.HERMES Rail Simulation Platform. 2015 (cit. on p. 165).
[78] B. C. Grau et al. “A logical framework for modular integration

of ontologies”. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI). 2007, pp. 298–303
(cit. on p. 35).

[79] P. Grenon and B. Smith. SNAP and SPAN: Towards dynamic
spatial ontology. 2004 (cit. on p. 86).

[80] P. Grenon, B. Smith, and L. Goldberg. “Biodynamic Ontology:
Applying BFO in the Biomedical Domain”. In: Studies in Health
and Technology Informatics. IOS Press, 2004, pp. 20–38 (cit. on
p. 86).

[81] S. Grimm, B. Motik, and C. Preist. “The Semantic Web: Re-
search and Applications: 3rd European Semantic Web Confer-
ence, ESWC 2006 Budva, Montenegro, June 11-14, 2006 Pro-
ceedings”. In: ed. by Y. Sure and J. Domingue. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006. Chap. Matching S,
pp. 575–589 (cit. on p. 58).

[82] S. Groom. Personal Communication. 2014 (cit. on p. 69).
[83] T. R. Gruber. “A Translation Approach to Portable Ontology

Specifications”. In:Knowledge Acquisition 5.April (1993), pp. 199–
220 (cit. on p. 24).

[84] T. R. Gruber. “Toward principles for the design of ontologies
used for knowledge sharing”. In: International Journal of Human-
Computer Studies 43.5-6 (Nov. 1995), pp. 907–928. arXiv: 0701907v3
[math] (cit. on pp. 5, 33, 99).

[85] M. Gruninger and M. S. Fox. “The Role of Competency Ques-
tions in Enterprise Engineering”. In: Proceedings of the IFIP
WG5 (1994) (cit. on p. 30).

http://arxiv.org/abs/0701907v3
http://arxiv.org/abs/0701907v3

316 Bibliography

[86] N. Guarino, ed. Formal Ontology in Information Systems: Pro-
ceedings of the 1st International Conference June 6-8, 1998, Trento,
Italy. 1st. Amsterdam: IOS Press, 1998 (cit. on pp. 28, 113).

[87] N. Guarino and C. Welty. “Evaluating ontological decisions
with OntoClean”. In: Communications of the ACM 45.2 (Feb.
2002), pp. 61–65 (cit. on p. 37).

[88] R. V. Guha. Light at the End of the Tunnel - Slides Presented at
the 12th International Semantic Web Conference (ISWC) 2013.
2013 (cit. on p. 41).

[89] G. Guizzardi. “Ontological Foundations For Structural Con-
ceptual Models”. PhD Thesis. Telematica Institut, 2005 (cit. on
p. 21).

[90] H. Guler and S. Jovanovic. “The Application of Modern GIS
Technology in the Development of Railway Asset Manage-
ment Systems”. In: 2004 IEEE International Conference on Sys-
tems, Man and Cybernetics (IEEE Cat. No.04CH37583). Vol. 5.
IEEE, 2004, pp. 4153–4158 (cit. on p. 165).

[91] C. Gutierrez, C. Hurtado, and A. Vaisman. “Temporal RDF”. In:
The Semantic Web: Research and Applications (2005), pp. 93–
107 (cit. on p. 90).

[92] V. Haarslev et al. “The RacerPro Knowledge Representation
and Reasoning System”. In: Semantic Web 1 1 (2011), pp. 1–5
(cit. on p. 57).

[93] A. Halevy, N. Ashish, and D. Bitton. “Enterprise information
integration: successes, challenges and controversies.” In: Pro-
ceedings of the 2005 ACM SIGMOD international conference on
Management of data (2005) (cit. on p. 20).

[94] T. Halpin and T. Morgan. Information Modeling and Relational
Databases. San Francisco: Morgan Kaufmann Publishers Inc.,
Mar. 2008 (cit. on pp. 10, 12).

[95] F. van Harmelen et al. Handbook of Knowledge Representation.
San Diego, USA: Elsevier Science, 2007 (cit. on p. 52).

[96] J. Hartmann, R. Palma, and Y. Sure. “OMV – ontology meta-
data vocabulary”. In: ISWC 2005 Workshop on Ontology Pat-
terns for the Semantic Web. 2005 (cit. on p. 142).

[97] J. Hastings et al. “Interdisciplinary perspectives on the devel-
opment, integration, and application of cognitive ontologies”.
In: Frontiers in Neuroinformatics 8 (June 2014), p. 62 (cit. on
p. 86).

Bibliography 317

[98] T. Heath and C. Bizer. “Linked Data: Evolving the Web into
a Global Data Space”. English. In: Synthesis Lectures on the Se-
mantic Web: Theory and Technology 1.1 (Feb. 2011), pp. 1–136
(cit. on p. 42).

[99] M. Hepp and J. de Bruijn. “GenTax: A generic methodology for
deriving OWL and RDF-S ontologies from hierarchical classi-
fications, thesauri, and inconsistent taxonomies”. In: The Se-
mantic Web: Research and Applications (2007) (cit. on p. 30).

[100] M. Hepp. “GoodRelations: An Ontology for Describing Prod-
ucts and Services Offers on the Web”. In: Knowledge Engineer-
ing: Practice and Patterns. Ed. by A. Gangemi and J. Euzenat.
Vol. 5268. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2008, pp. 329–346 (cit. on p. 40).

[101] I. Hickson. HTML Microdata. 2013 (cit. on p. 46).
[102] E. F. Hill. Jess in Action: Java Rule-Based Systems. Greenwich,

CT, USA: Manning Publications Co., 2003 (cit. on p. 57).
[103] P. Hitzler et al. “Knowledge Representation for the Semantic

Web Part I : OWL 2”. In: Knowledge Creation Diffusion Utiliza-
tion (2009) (cit. on p. 57).

[104] A. Hogan. “Exploiting RDFS and OWL for Integrating Hetero-
geneous, Large-Scale, Linked Data Corpora”. PhDThesis. NUI
Galway, 2011 (cit. on p. 129).

[105] M. Horridge. OWL 2 Validator. 2009 (cit. on p. 126).
[106] M. Horridge et al. “The Manchester OWL Syntax”. In: Proceed-

ings of the 2006 OWLExperiences andDirectionsWorkshop (OWL-
ED2006). 2006 (cit. on p. 52).

[107] R. Hull and R. King. “Semantic database modeling: Survey, ap-
plications, and research issues”. In: ACM Computing Surveys
(CSUR) 19.3 (1987), pp. 201–260 (cit. on p. 4).

[108] InteGRail. InteGRail - Intelligent Integration of Railway Sys-
tems. 2011 (cit. on pp. 77, 78).

[109] InteGRail Consortium. Refined Conceptualization Model and
Services for Intelligent Monitoring Part II/II. Railway Domain
Ontology:Proposal for Standardisation. Tech. rep. InteGRail Con-
sortium, 2009 (cit. on p. 78).

[110] International Standards Organisation. BSI ISO 13374-2:2012 -
Condition Monitoring And Diagnositcs Of Machines - Data Pro-
cessing, Communication, And Presentation. Tech. rep. Interna-
tional Standards Organisation, 2007 (cit. on p. 84).

318 Bibliography

[111] International Standards Organisation. ISO 10303-11 2004: In-
dustrial automation systems and integration – Product data rep-
resentation and exchange – Part 11: Description methods: The
EXPRESS language reference manual. Tech. rep. International
Organization for Standardization, 1994 (cit. on p. 51).

[112] International Standards Organisation. ISO15926-2: Industrial
Automation Systems and Integration — Integration of Life-Cycle
Data for Process Plants Including Oil and Gas Production Facili-
ties: Part 2: Data Model. Tech. rep. International Standards Or-
ganisation, 2003 (cit. on p. 278).

[113] International Union Of Railways. Feasibility Report - UIC Rail-
TopoModel. Tech. rep. September. International Union of Rail-
ways, 2013 (cit. on p. 75).

[114] International UnionOf Railways.UIC RailTopoModel - Railway
Network Description. Tech. rep. International Union Of Rail-
ways, 2013 (cit. on pp. 75, 173).

[115] Invensys Rail Group.WESTCAD Scaleable train supervision (Prod-
uct Literature). 2010 (cit. on pp. 210, 227).

[116] N. Iscoe, G. B.Williams, andG. Arango. “DomainModeling for
Software Engineering”. In: Proceedings of the 13th International
Conference on Software Engineering. Austin: IEEE Computer
Society Press, May 1991, pp. 340–343 (cit. on pp. 11, 36).

[117] K. Janowicz andM. Compton. “The Stimulus-Sensor-Observation
Ontology Design Pattern and its Integration into the Semantic
Sensor Network Ontology.” In: SSN (2010) (cit. on p. 222).

[118] Y. Kalfoglou and M. Schorlemmer. “Ontology Mapping: the
State of the Art”. In: The knowledge engineering … 18.1 (2003),
pp. 1–31 (cit. on p. 135).

[119] E. Kharlamov et al. “The Semantic Web – ISWC 2014: 13th
International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I”. In: ed. by P. Mika et
al. Cham: Springer International Publishing, 2014. Chap. How
Semant, pp. 601–619 (cit. on p. 85).

[120] M. R. Khondoker and P. Mueller. “Comparing Ontology Devel-
opment Tools Based on an Online Survey”. In: Proceedings of
the World Congress on Engineering 2010 I (2010) (cit. on p. 61).

Bibliography 319

[121] A. Kiryakov, D. Ognyanov, and D. Manov. “OWLIM – A Prag-
matic Semantic Repository for OWL”. In:Web Information Sys-
tems Engineering – WISE 2005 Workshops. Ed. by M. Dean et al.
Springer Berlin Heidelberg, 2005, pp. 182–192 (cit. on pp. 56,
57).

[122] G. Klyne, J. J. Carroll, and B. McBride. RDF 1.1 Concepts and
Abstract Syntax. 2014 (cit. on p. 43).

[123] H. Knublauch. SPIN JavaScript Functions (SPINx). 2010 (cit. on
p. 56).

[124] R. Kontchakov, F.Wolter, andM. Zakharyaschev. “Logic-based
ontology comparison and module extraction, with an applica-
tion to DL-Lite”. In: Artificial Intelligence 174.15 (Oct. 2010),
pp. 1093–1141 (cit. on p. 35).

[125] A. Kossiakoff et al. Systems engineering principles and prac-
tice. Holboken, New Jersey: John Wiley & Songs, 2011 (cit. on
p. 10).

[126] M. Lebold and K. Reichard. “OSA-CBM architecture develop-
ment with emphasis on XML implementations”. In: Proceed-
ings of the Maintenance And Reliability Conference (2002) (cit.
on p. 85).

[127] R. Lewis and C. Roberts. “Using non-monotonic reasoning to
manage uncertainty in railway asset diagnostics”. In: Expert
Systems with Applications 37.5 (May 2010), pp. 3616–3623 (cit.
on p. 79).

[128] R. Lewis et al. “UsingOntology to Integrate RailwayCondition
Monitoring Data”. In: Railway Condition Monitoring, 2006. The
Institution of Engineering and Technology International Confer-
ence on Railway Condition Monitoring. 2006, pp. 149–155 (cit.
on pp. 78, 79).

[129] Lloyd’s Register Rail Europe BV. Gotcha Monitoring Systems.
Utrecht, 2011 (cit. on p. 235).

[130] M. J. Loux. Metaphysics: A Contemporary Introduction. Third.
Abingdon, Oxon: Routledge, 2006, p. 328 (cit. on p. 87).

[131] A. Lozano-Tello and A. Gómez-Pérez. “Ontometric: A method
to choose the appropriate ontology”. In: Journal of Database
Management 2.15 (2004), pp. 1–18 (cit. on p. 36).

320 Bibliography

[132] A. Maedche and S. Staab. “Measuring Similarity between On-
tologies”. In: Knowledge Engineering and Knowledge Manage-
ment: Ontologies and the SemanticWeb. Ed. by A. Gómez-Pérez
and V. R. Benjamins. Vol. 2473. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2002, pp. 251–263 (cit. on
p. 37).

[133] A.Margara et al. “Streaming theweb: Reasoning over dynamic
data”. In: Semantic Web 25 (2014) (cit. on p. 90).

[134] V. Mascardi, V. Cordì, and P. Rosso. “A Comparison of Upper
Ontologies”. In: Woa (2007), pp. 55–64 (cit. on p. 86).

[135] M. N. Meenachi and M. S. Baba. “Web Ontology Editors for
the Semantic web: A Survey”. In: International Journal of Com-
puter Applications 53.12 (2012) (cit. on p. 61).

[136] P. N. Mendes et al. “DBpedia Spotlight: Shedding Light on the
Web of Documents”. In: Proceedings of the 7th International
Conference on Semantic Systems. I-Semantics ’11. New York,
NY, USA: ACM, 2011, pp. 1–8 (cit. on p. 22).

[137] G. A.Miller. “WordNet: a lexical database for English”. In:Com-
munications of the ACM 38.11 (Nov. 1995), pp. 39–41 (cit. on
p. 25).

[138] G. E. Modoni, M. Sacco, and W. Terkaj. “A Survey of RDF
Store Solutions”. In: 20th International Conference on Engineer-
ing, Technology and Innovation, ICE’14 (2014), pp. 1–7 (cit. on
p. 215).

[139] M. Morsey et al. “Usage-Centric Benchmarking of RDF Triple
Stores”. In: AAAI Conference on Artificial Intelligence 26 (2012)
(cit. on p. 215).

[140] B. Motik, I. Horrocks, and U. Sattler. “Bridging the gap be-
tween OWL and relational databases”. In: Web Semantics: Sci-
ence, Services andAgents on theWorldWideWeb 7.2 (Apr. 2009),
pp. 74–89 (cit. on p. 58).

[141] B.Motik, U. Sattler, and R. Studer. “QueryAnswering for OWL-
DL with Rules”. In: Journal of Web Semantics. Springer, 2004,
pp. 549–563 (cit. on p. 56).

[142] B. Motik et al. OWL 2 Web Ontology Language Profiles. 2009
(cit. on p. 55).

[143] B. Motik et al. OWL 2 Web Ontology Language XML Serializa-
tion (Second Edition). 2012 (cit. on p. 52).

Bibliography 321

[144] National Rail Enquiries. Response to ORR Consultation on Real
Time Train Information. Tech. rep. National Rail Enquiries, 2012
(cit. on p. 71).

[145] Network Rail. Asset Management Strategy. Tech. rep. October.
Network Rail, 2014 (cit. on p. 71).

[146] Network Rail. Network Rail Technical Strategy. Tech. rep. Lon-
don: Network Rail, 2013 (cit. on pp. 72, 93).

[147] N. Noy et al. Defining N-ary Relations on the Semantic Web.
2006 (cit. on p. 48).

[148] N. Noy, M. Sintek, and S. Decker. “Creating Semantic Web
Contents With Protégé-2000”. In: IEEE Intelligent Systems 16.2
(2001) (cit. on p. 61).

[149] L. Obrst. “Ontologies for semantically interoperable systems”.
In: Proceedings of the twelfth international conference on In-
formation and knowledge management - CIKM ’03. New York,
New York, USA: ACM Press, Nov. 2003, p. 366 (cit. on p. 25).

[150] OECD. Infrastructure Investment (Indicator). 2015 (cit. on p. 1).
[151] Office of Rail Regulation. An Overview of the British Rail Indus-

try. 2014 (cit. on p. 2).
[152] Office of Rail Regulation. National Rail Trends 2010-2011 Year-

book. Tech. rep. London, UK: Office of Rail Regulation, 2011
(cit. on p. 1).

[153] Ordnance Survey.AGuide to Coordinate Systems inGreat Britain.
Tech. rep. Ordnance Survey, 2015 (cit. on p. 176).

[154] A. Ouskel and A. Sheth. “Semantic Interoperability in Global
Information Systems”. In: SIGMOD Record 28.1 (1999), pp. 5–
12 (cit. on p. 12).

[155] T. Özacar, Ö. Öztürk, and M. O. Ünalır. “ANEMONE: An envi-
ronment formodular ontology development”. In:Data&Knowl-
edge Engineering 70.6 (June 2011), pp. 504–526 (cit. on p. 33).

[156] L. Page et al. The PageRank citation ranking: Bringing order to
the web. 1999 (cit. on p. 38).

[157] J. Z. Pan and I. Horrocks. “RDFS (FA): Connecting RDF(S) and
OWL DL”. In: Knowledge Creation Diffusion Utilization 19.2
(2007), pp. 192–206 (cit. on p. 127).

[158] V. Papakonstantinou et al. “Access Control for RDF Graphs Us-
ing Abstract Models”. In: Proceedings of the 17th ACM Sympo-
sium on Access Control Models and Technologies. SACMAT ’12.
New York, NY, USA: ACM, 2012, pp. 103–112 (cit. on p. 272).

322 Bibliography

[159] C. Parent and S. Spaccapietra. “An Overview of Modularity”.
In: Modular Ontologies. Ed. by H. Stuckenschmidt, C. Parent,
and S. Spaccapietra. Vol. 5445. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2009, pp. 5–23 (cit. on p. 114).

[160] B. Parsia and E. Sirin. “Pellet: An OWL DL Reasoner”. In: Pro-
ceedings of the International Workshop on Description Logics.
Citeseer, 2004 (cit. on p. 57).

[161] J. Pathak, T. M. Johnson, and C. G. Chute. “Survey of Modular
Ontology Techniques and Their Applications in the Biomedi-
cal Domain”. In: Integrated Computer-Aided Engineering - Se-
lected papers from the IEEE Conference on Information Reuse
and Integration (IRI) 16.3 (Aug. 2009), pp. 225–242 (cit. on p. 34).

[162] H. S. Pinto and J. P. Martins. “Ontologies: How can They be
Built?” In: Knowledge and Information Systems 6.4 (Mar. 2004),
pp. 441–464–464 (cit. on pp. 29, 36).

[163] H. S. Pinto and J. P. Martins. “Reusing Ontologies”. In: Proceed-
ings of the AAAI 2000 Spring Symposium on Bringing Knowl-
edge to Business Processes. Karlruhe, Germany, 2000, pp. 77–84
(cit. on p. 124).

[164] H. S. Pinto, S. Staab, and C. Tempich. “DILIGENT: Towards a
fine-grained methodology for Distributed, Loosely-controlled
and evolvInG”. In: Proceedings of the 16th … (2004) (cit. on
pp. 30, 31).

[165] H. S. Pinto, C. Tempich, and S. Staab. “Ontology engineer-
ing and evolution in a distributed world using DILIGENT”. In:
Handbook on ontologies (2009) (cit. on p. 36).

[166] N. Plum. TRAK Enterprise Architecture Framework. 2008 (cit.
on p. 80).

[167] R. Porzel and R. Malaka. “A Task-based Approach For Ontol-
ogy Evaluation”. In: Proceedings of ECA 2004 Workshop On On-
tology Learning and Population. Valencia, Spain, 2004 (cit. on
p. 37).

[168] M. Poveda-Villalón,M. C. Suárez-Figueroa, andA. Gómez-Pérez.
“Validating Ontologies with OOPS!” In: Knowledge Engineer-
ing and Knowledge Management. Ed. by A. Teije et al. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 267–381 (cit. on pp. 37, 134).

[169] R. S. Pressman. Software engineering: a practitioner’s approach.
Palgrave Macmillan, 2005 (cit. on p. 11).

Bibliography 323

[170] V. Presutti et al. “Pattern-Based Ontology Design”. In: Ontol-
ogy Engineering in a Networked World. Ed. by M. C. Suárez-
Figueroa et al. Springer Berlin Heidelberg, 2012, pp. 35–64 (cit.
on p. 97).

[171] E. Prud’hommeaux. W3C RDF Validation Service. 2006 (cit. on
p. 126).

[172] E. Prud’hommeaux, A. Seaborne, and A. Seabourne. SPARQL
Query Language for RDF. 2008 (cit. on p. 43).

[173] A. Radtke and J.-P. Bendfeldt. “Handling of railway operation
problemswith RailSys”. In: Proceedings of the 5thWorld Congress
on Rail Research. 2001 (cit. on pp. 165, 199).

[174] E. Rahm. “Towards Large-Scale Schema and Ontology Match-
ing”. In: Schema Matching and Mapping. Ed. by Z. Bellahsene,
A. Bonifati, and E. Rahm. Data-Centric Systems and Appli-
cations. Springer Berlin Heidelberg, 2011, pp. 3–27 (cit. on
p. 135).

[175] Rail Safety and Standards Board. The Railway Technical Strat-
egy 2012. Tech. rep. Rail Safety and Standards Board, 2012 (cit.
on pp. 1, 93).

[176] Rail Safety and Standards Board and Railway Safety And Stan-
dards Board. The Railway Functional Architecture. 2013 (cit. on
pp. 13, 80).

[177] Railml.org. Home - railML.org. 2011 (cit. on pp. 159, 182).
[178] Y. Raimond et al. “Semantic Web Use Cases and Case Studies

Case Study : Use of Semantic Web Technologies on the BBC
Web Sites”. In: Linking Enterprise Data (2010) (cit. on p. 5).

[179] Y. Raimond et al. “The Music Ontology”. In: ISMIR 2007: 8th In-
ternational Conference on Music Information Retrieval 8 (2007),
pp. 417–422 (cit. on p. 27).

[180] A. L. Rector. “Modularisation of Domain Ontologies Imple-
mented in Description Logics and Related Formalisms Includ-
ing OWL”. In: Proceedings of the 2Nd International Conference
on Knowledge Capture. K-CAP ’03. New York, NY, USA: ACM,
2003, pp. 121–128 (cit. on pp. 34, 35).

[181] A. Rector et al. “Engineering use cases for modular develop-
ment of ontologies in OWL”. In: Applied Ontology 7.2 (2012),
pp. 113–132 (cit. on pp. 34, 35).

324 Bibliography

[182] A. Rector et al. “OWL Pizzas: Practical Experience of Teaching
OWL-DL: Common Errors & Common Patterns”. In: Engineer-
ing Knowledge in the Age of the Semantic Web. Springer Berlin
Heidelberg, 2004, pp. 63–81 (cit. on p. 66).

[183] O. o. R. Regulation. Passenger Information. Tech. rep. Decem-
ber. Office of Rail Regulation, 2012 (cit. on p. 242).

[184] C. Roberts et al. Rail Research UK Feasibility Account:The Speci-
fication of a System-wide Data Framework for the Railway Industry–
Final Report. Tech. rep. University of Birmingham, 2011 (cit. on
pp. 2, 42, 93, 104, 107, 116).

[185] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd Editio. Pearson, 2010 (cit. on p. 57).

[186] M. Sabou et al. “Evaluating the Semantic Web: A Task-Based
Approach”. In:TheSemanticWeb. Ed. by K. Aberer et al. Vol. 4825.
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2007, pp. 423–437 (cit. on p. 37).

[187] E. Santos et al. “Ontology Alignment Repair throughModular-
ization and Confidence-Based Heuristics”. In: PLoS ONE 10.12
(Dec. 2015). Ed. by P. Csermely, e0144807 (cit. on p. 35).

[188] J. Seidenberg and A. Rector. “Web Ontology Segmentation:
Analysis, Classification and Use”. In: Proceedings of the 15th
International Conference on World Wide Web. WWW ’06. New
York, NY, USA: ACM, 2006, pp. 13–22 (cit. on p. 35).

[189] L. Seremeti and A. Kameas. “A Task-Based Ontology Engin-
nering Approach for Novice Ontology Developers”. In: 2009
Fourth Balkan Conference in Informatics (2009), pp. 85–89 (cit.
on p. 37).

[190] R. Shearer, B.Motik, and I. Horrocks. “Hermit: A highly-efficient
owl reasoner”. In: Proceedings of the 5th International Work-
shop on OWL: Experiences and Directions (OWLED 2008). Ed.
by A. Ruttenberg, U. Sattler, and C. Dolbear. Karlruhe, Ger-
many: Citeseer, 2008 (cit. on p. 57).

[191] A. P. Sheth. “Changing focus on interoperability in informa-
tion systems: from system, syntax, structure to semantics”. In:
Interoperating geographic information systems (1999) (cit. on
p. 20).

Bibliography 325

[192] A. P. Sheth and V. Kashyap. “So Far (Schematically) yet So
Near (Semantically)”. In: Proceedings of the IFIPWG2.6 Database
Semantics Conference on Interoperable Database Systems (DS-5).
Amsterdam:North-Holland PublishingCo., Nov. 1992, pp. 283–
312 (cit. on p. 11).

[193] E. Simperl and M. Luczak-Rösch. “Collaborative ontology en-
gineering: a survey”. English. In: The Knowledge Engineering
Review 29.01 (May 2014), pp. 101–131 (cit. on pp. 30, 61).

[194] E. Simperl et al. “Achieving maturity: the state of practice in
ontology engineering in 2009”. In: On the Move to Meaningful
Internet Systems: OTM 2009. Springer, 2009, pp. 983–991 (cit.
on pp. 30, 31).

[195] D. Smallbone. Review of Asset Information Strategy - Phase 2:
ORBIS. Tech. rep. Office of Rail Regulation, 2012 (cit. on p. 65).

[196] B. Smith and C. Welty. “Ontology: Towards a new synthe-
sis”. In: Formal Ontology in Information Systems (2001) (cit. on
p. 24).

[197] J. Smith. A Rail Perspective - Intelligent Infrastructure: Network
Rail’s Strategy for RCM. Tech. rep. November. Network Rail,
2011 (cit. on pp. 68, 85).

[198] M. Sporny et al. JSON-LD 1.0. 2014 (cit. on p. 46).
[199] S. Staab and R. Studer. Handbook on Ontologies. 2nd. Springer

Publishing Company, Incorporated, 2009 (cit. on p. 51).
[200] M. Q. Stearns et al. “SNOMED clinical terms: overview of the

development process and project status.” In: Proceedings / AMIA
… Annual Symposium. AMIA Symposium (Jan. 2001), pp. 662–
6 (cit. on p. 5).

[201] H. Stuckenschmidt andA. Schlicht.Modular Ontologies. Vol. 5445.
2009, pp. 5–23 (cit. on pp. 33, 35).

[202] M. C. Suárez-Figueroa. “NeOn Methodology for Building On-
tology Networks: Specification, Scheduling and Reuse”. PhD
Thesis. Universidad Politécnica de Madrid, 2010, p. 268 (cit. on
p. 32).

[203] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-
López. “The NeON Methodology For Ontology Engineering”.
In: Ontology Engineering in a Networked World. Ed. by M. C.
Suárez-Figueroa et al. Springer BerlinHeidelberg, 2012. Chap. 1,
pp. 9–34 (cit. on pp. 30, 32, 97, 124, 269).

[204] Y. Sure, S. Staab, and R. Studer. “On-to-knowledge methodol-
ogy (OTKM)”. In: Handbook on ontologies (2004) (cit. on p. 30).

326 Bibliography

[205] M. Szluinska et al. Exploring IntelligentMobility–TheData Chal-
lenge. Tech. rep. Transport Systems Catapult, 2014, p. 28 (cit.
on pp. 43, 104, 108, 109).

[206] S. Tallevi-Diotallevi et al. “Real-TimeUrbanMonitoring inDublin
Using Semantic and Stream Technologies”. In: The Semantic
Web – ISWC 2013. Ed. by H. Alani et al. Vol. 8219. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 178–194 (cit. on p. 272).

[207] J. Tao et al. “Integrity Constraints in OWL”. In: Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI) (2010), pp. 1443–1448 (cit. on p. 59).

[208] TAP Phase Two Project Team. TAP TSI Phase Two Master Plan.
Tech. rep. DG Move, 2013 (cit. on p. 76).

[209] Thales.DARWINNational Real Time Database. Vélizy, 2009 (cit.
on p. 242).

[210] Transmitton. Fastflex RTU. 2005 (cit. on p. 212).
[211] J. Tutcher, J. M. Easton, and C. Roberts. “Enabling Data Inte-

gration in the Rail Industry Using RDF andOWL:TheRaCoOn
Ontology”. In: ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems, Part A: Civil Engineering (2015), F4015001
(cit. on p. 124).

[212] UK Government. Realising the Potential of GB Rail - Report of
the Rail Value For Money Study. Tech. rep. May 2011. London,
UK: UK Government, 2011 (cit. on pp. 1, 2).

[213] M. Uschold and M. Grüninger. “Ontologies: principles, meth-
ods, and applications”. In: Knowledge Engineering Review 11.2
(1996), pp. 93–155 (cit. on p. 121).

[214] M. Uschold and M. King. “Towards a Methodology for Build-
ing Ontologies”. In: Workshop on Basic Ontological Issues in
Knowledge Sharing, held in conductionwith IJCAI-95. Montreal,
1995 (cit. on p. 30).

[215] R. Verborgh et al. “Web-Scale Querying through Linked Data
Fragments”. In: Proceedings of the 7thWorkshop on Linked Data
on the Web (LDOW2014) at the 23rd International World Wide
Web Conference (WWW2014). 2014 (cit. on p. 271).

[216] F. B. Vernadat. Enterprise Modeling and Integration. Chapman
& Hall, 1996, p. 513 (cit. on p. 11).

Bibliography 327

[217] S. Verstichel et al. “Efficient data integration in the railway
domain through an ontology-based methodology”. In: Trans-
portation Research Part C: Emerging Technologies (Nov. 2010)
(cit. on pp. 78, 79).

[218] R. Volz, J. Kleb, and W. Mueller. “Towards ontology-based dis-
ambiguation of geographical identifiers”. In: CEUR Workshop
Proceedings 249 (2007) (cit. on p. 22).

[219] E.M. Voorhees. “UsingWordNet toDisambiguateWord Senses
for Text Retrieval”. In: Proceedings of the 16th Annual Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’93. New York, NY, USA: ACM,
1993, pp. 171–180 (cit. on p. 22).

[220] W3CData ShapesWorking Group.W3CData Shapes. 2015 (cit.
on p. 81).

[221] W3C OWL Working Group. OWL 2 Web Ontology Language
Document Overview. 2009 (cit. on pp. 43, 51, 52).

[222] G. Walker and P. Godwin. “Vision into Network Rail’s Intelli-
gent Infrastructure Monitoring Project”. In: Intelligent Infras-
tructure In Rail - Predict And Prevent. London: Institution of
Engineering and Technology, 2013 (cit. on pp. 4, 68).

[223] T. D.Wang et al.A Survey of theWeb Ontology Landscape. 2006
(cit. on p. 126).

[224] P. Warren.Ontology Users ’ Survey – Summary of Results. Tech.
rep. June. Milton Keynes: Knowledge Media Institute, 2013,
pp. 1–20 (cit. on p. 61).

[225] C. Welty, R. Fikes, and S. Makarios. “A reusable ontology for
fluents in OWL”. In: Formal Ontology in Information Systems.
Proceedings of the 3rd International Conference–FOIS (2006), pp. 226–
236 (cit. on pp. 65, 89, 155).

[226] M. West. Developing High Quality Data Models. Morgan Kauf-
mann Publishers Inc., 2011 (cit. on pp. 5, 9, 158).

[227] K.Whitehouse, F. Zhao, and J. Liu. “Semantic Streams: A frame-
work for composable semantic interpretation of sensor data”.
In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 3868 LNCS (2006), pp. 5–20 (cit. on p. 272).

328 Bibliography

[228] M. D. Wilkinson, B. Vandervalk, and L. McCarthy. “The Se-
mantic Automated Discovery and Integration (SADI) Web ser-
vice Design-Pattern, API and Reference Implementation.” In:
Journal of biomedical semantics 2.1 (Jan. 2011), p. 8 (cit. on
p. 219).

[229] World Wide Web Consortium. Linked Data Platform 1.0. 2015
(cit. on pp. 43, 219, 271).

[230] L. Yu. “Follow Your Nose: A Basic Semantic Web Agent”. In:
A Developer’s Guide to the Semantic Web. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 533–557 (cit. on p. 44).

[231] A. Zaveri et al. “Quality assessment for Linked Data: A Sur-
vey”. In: SemanticWeb 7.1 (Mar. 2015). Ed. by P. Hitzler, pp. 63–
93 (cit. on p. 33).

[232] L. Zhou, Q. E. Booker, and D. Zhang. “ROD - Toward Rapid
OntologyDevelopment for UnderdevelopedDomains”. In: Pro-
ceedings of the 35th Annual Hawaii International Conference on
System Sciences. Jan. 2002, pp. 957–965 (cit. on p. 30).

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Listings
	Acronyms

	1 Introduction and Problem Statement
	1.1 Project Background and Problem Statement
	1.1.1 Railway Fragmentation and Failure
	1.1.2 Information Silofication
	1.1.3 The Data-driven Railway
	1.1.4 Standardised Data Models

	1.2 Aims and Original Contributions
	1.3 Thesis Organisation and Structure
	1.4 Project Partners

	2 Modelling, Ontologies, and the Semantic Web
	2.1 Introduction
	2.2 Data Modelling and Knowledge Management
	2.2.1 Application and Domain Engineering
	2.2.2 Incentives for Standardised Models
	2.2.3 Syntax-based Models

	2.3 Semantic Modelling
	2.3.1 Flexiblity in Knowledge Representation
	2.3.2 Preservation of Context
	2.3.3 Interoperability and Expressivity

	2.4 Knowledge Representation and Ontology
	2.4.1 What Is An Ontology?
	2.4.2 Semantic Expressivity and Ontology Languages
	2.4.3 Data Models, Vocabularies, and Ontology
	2.4.4 Ontology Types
	2.4.5 Ontology Reasoning
	2.4.6 Ontology Engineering Methodologies
	2.4.7 Ontology Modularity
	2.4.8 Validation and Evaluation of Ontology Design

	2.5 The Semantic Web and the Linked Data Movement
	2.5.1 The Semantic Web
	2.5.2 The Linking Open Data Movement
	2.5.3 Disincentives to Uptake of Linked Open Data and Enterprise Ontology

	2.6 Core Technical Concepts and Notation Used
	2.6.1 The Resource Description Framework
	2.6.2 RDF Schema
	2.6.3 Ontology Languages, The Web Ontology Language and dl
	2.6.4 Reasoning and Inference in OWL and DL
	2.6.5 Terminological and Assertional Knowledge
	2.6.6 RDF Storage and Presentation
	2.6.7 Overview of Software Tools
	2.6.8 Querying RDF Data
	2.6.9 Presentation of OWL Examples and Patterns

	2.7 Practical Problems and Assumptions in OWL
	2.8 Summary

	3 Railway Data Management, Industrial Models, and Notable Ontologies
	3.1 Introduction
	3.2 State of UK Rail Data Management
	3.2.1 Current Wheel Maintenance Workflow
	3.2.2 Network Rail Intelligent Infrastructure
	3.2.3 DARWIN and Network Rail ORBIS

	3.3 Transportation Data Models and Frameworks
	3.3.1 RailML
	3.3.2 TAF/TAP TSI
	3.3.3 RailTopoModel and National Topology Models
	3.3.4 Proprietary Systems and Models
	3.3.5 InteGRail
	3.3.6 Rail Functional Architecture

	3.4 ISO15926
	3.5 Generic Asset Information Integration Standards
	3.5.1 MIMOSA OSA
	3.5.2 Siemens Ontology-based Data Access System

	3.6 Relevant Ontologies and Common Modelling Paradigms
	3.6.1 Upper Ontologies
	3.6.2 Approaches to Time Representation
	3.6.3 Approaches to Representing Quantities, Units, and Dimensions

	3.7 Summary

	4 Designing Extensible Models for Large Complex Systems
	4.1 Introduction
	4.1.1 Introduction to the RaCoOn Ontologies
	4.1.2 Methodological Requirements
	4.1.3 Proposed Approach

	4.2 Stage 1: Specification and Scope Definition
	4.2.1 Scope Definition Methododogy
	4.2.2 RaCoOn Stakeholder Requirements and Applications

	4.3 Stage 2: Architecture and Ontology Modularity
	4.3.1 Module Interdependence

	4.4 Stage 3: Knowledge Acquisition and Conceptualisation
	4.4.1 Top-down Knowledge Acquisition
	4.4.2 Initial Conceptualisation and Iteration of RaCoOn ontologies
	4.4.3 Knowledge Extraction from Non-Ontological Resources

	4.5 Stage 4: Implementation and Ontology Reuse
	4.5.1 Ontology Design and Implementation Best Practice
	4.5.2 Use of Ontology Design Patterns To Encourage Re-use
	4.5.3 Pattern Design vs. Reuse
	4.5.4 Developing Ontology Design Patterns
	4.5.5 Reusing Best Practice Ontologies and Patterns
	4.5.6 Expressivity and Reasoning

	4.6 Stage 5: Validation, Evaluation, and Iteration
	4.6.1 Logical Validation
	4.6.2 Ontology Coverage through Application Data Mapping
	4.6.3 In-use Validation
	4.6.4 Similarity Measurement Through Expert Knowledge Elliciation
	4.6.5 Iteration and Version Control

	4.7 Best Practice Implementation Design Patterns
	4.7.1 Annotation Best Practice and Naming Conventions
	4.7.2 Ontology Self-documentation
	4.7.3 Provenance, Trust, and Metadata

	4.8 Summary

	5 RaCoOn: Pragmatic Ontologies for the Rail Industry
	5.1 Introduction
	5.2 Modular Ontology Design
	5.2.1 Ontology Module Structure
	5.2.2 Key Concepts and Semantic Trade-offs

	5.3 The Cross-Domain Ontology
	5.3.1 Conceptualisation, Structure and Patterns
	5.3.2 Representation of Common Concepts

	5.4 The Rail Core Ontology
	5.4.1 Subdomains and Terminology
	5.4.2 Local Naming Pattern
	5.4.3 Representing Asset Capabilities and Characteristics
	5.4.4 Geographical Positioning and Location
	5.4.5 Representing Diagrammatic Network Layouts
	5.4.6 Navigability and Routing Across Networks
	5.4.7 Re-engineering Knowledge from RailML

	5.5 RaCoOn Ontology Evaluation
	5.5.1 Structural and Syntactic Validation
	5.5.2 Workshop Evaluation
	5.5.3 Measuring Ontology Fit Using Railsys
	5.5.4 In-use Validation

	5.6 Summary

	6 Integration of Railway Remote Condition Monitoring Data
	6.1 Introduction
	6.2 The AMaaS Application
	6.2.1 Overview and Use Case
	6.2.2 Existing Prototype Architecture
	6.2.3 Proposed System Architecture
	6.2.4 Stages 1 & 2: Asset Monitoring System Implementation
	6.2.5 Stages 3 & 4: Infrastructure Integration and Reasoning
	6.2.6 Stages 5 & 6: Integration of Timetable Data and Inference of Rolling Stock Faults

	6.3 The Train Locator Application
	6.3.1 Motives for Second Demonstrator
	6.3.2 Design
	6.3.3 Front End Application Implementation
	6.3.4 Source Data and Simulation
	6.3.5 Live Departure Boards View & Reasoning
	6.3.6 Train Mapper View & Reasoning

	6.4 Summary

	7 Conclusions Drawn and Further Work
	7.1 Key Findings and Contributions Made
	7.1.1 RaCoOn Methodology
	7.1.2 The RaCoOn Ontologies
	7.1.3 The FuTRO Case Studies

	7.2 Limitations of Approaches Taken
	7.2.1 RaCoOn Methodology
	7.2.2 The RaCoOn Ontologies
	7.2.3 Other Limitations

	7.3 Planned and Possible Further Work
	7.3.1 Possible Extensions
	7.3.2 Work Currently Underway

	A List of Code and Ontologies Hosted Online
	B Reference Diagrams and Lists
	B.1 List of CURIE Prefixes Used Throughout Thesis
	B.2 ISO 15926 EXPRESS-G Notation Diagrams

	C RaCoOn Ontology Resources
	C.1 RaCoOn Ontology Class Terms
	C.1.1 List of Cross-domain Ontology Terms
	C.1.2 List of Railway Domain Ontology Terms

	C.2 Validation Workshop Results
	C.2.1 High Level and Subdomain Concepts Elicited From RaCoOn Workshops
	C.2.2 Domain Interactions Elicited From racoon Workshops

	C.3 RaCoOn Railsys Validation

	D FuTRO Implementation Notes
	D.1 AMaaS Track Layout Graphics
	D.2 Legacy Wheelchex Data Snippets
	D.3 AMaaS Stardog Rules and Queries

	Bibliography

