823 research outputs found

    Biological neural networks as model systems for designing future parallel processing computers

    Get PDF
    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence

    Haar-like Rectangular Features for Biometric Recognition

    Get PDF

    A Framework for Coupled Simulations of Robots and Spiking Neuronal Networks

    Get PDF
    Bio-inspired robots still rely on classic robot control although advances in neurophysiology allow adaptation to control as well. However, the connection of a robot to spiking neuronal networks needs adjustments for each purpose and requires frequent adaptation during an iterative development. Existing approaches cannot bridge the gap between robotics and neuroscience or do not account for frequent adaptations. The contribution of this paper is an architecture and domain-specific language (DSL) for connecting robots to spiking neuronal networks for iterative testing in simulations, allowing neuroscientists to abstract from implementation details. The framework is implemented in a web-based platform. We validate the applicability of our approach with a case study based on image processing for controlling a four-wheeled robot in an experiment setting inspired by Braitenberg vehicles

    A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Get PDF
    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed
    corecore