2,220 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Global Tracking Passivity--based PI Control of Bilinear Systems and its Application to the Boost and Modular Multilevel Converters

    Full text link
    This paper deals with the problem of trajectory tracking of a class of bilinear systems with time--varying measurable disturbance. A set of matrices {A,B_i} has been identified, via a linear matrix inequality, for which it is possible to ensure global tracking of (admissible, differentiable) trajectories with a simple linear time--varying PI controller. Instrumental to establish the result is the construction of an output signal with respect to which the incremental model is passive. The result is applied to the boost and the modular multilevel converter for which experimental results are given.Comment: 9 pages, 10 figure

    Optimal state observation using quadratic boundedness: application to UAV disturbance estimation

    Get PDF
    This paper presents the design of a state observer which guarantees quadratic boundedness of the estimation error. By using quadratic Lyapunov stability analysis, the convergence rate and the ultimate (steady-state) error bounding ellipsoid are identified as the parameters that define the behaviour of the estimation. Then, it is shown that these objectives can be merged in a scalarised objective function with one design parameter, making the design problem convex. In the second part of the article, a UAV model is presented which can be made linear by considering a particular state and frame of reference. The UAV model is extended to incorporate a disturbance model of variable size. The joint model matches the structure required to derive an observer, following the lines of the proposed design approach. An observer for disturbances acting on the UAV is derived and the analysis of the performances with respect to the design parameters is presented. The effectiveness and main characteristics of the proposed approach are shown using simulation results.Peer ReviewedPostprint (author's final draft

    Robust Control of Mechanical Systems

    Get PDF

    Generalized recursive least squares: Stability, robustness, and excitation

    Get PDF
    We study a class of recursive least-squares estimators in an errors-in-variables setting where disturbances affect both the regressor and the regressand variables. We prove the existence and stability of an optimal steady state and robustness with respect to the disturbances in form of input-to-state and input–output stability relative to the unperturbed steady-state trajectories. Depending on the choice of some design parameters, different specific estimators can be realized within the considered class, each of which is associated with a different underlying optimization problem and with different excitation requirements for the unperturbed regressor. As expected, we find that persistence of excitation is associated with uniform, in fact exponential, convergence. In addition, we also show that choices of the design parameters are possible for which convergence and robustness hold without persistence of excitation and with the same asymptotic gain, the only difference being a loss of uniformity in the convergence rate

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies
    corecore