612 research outputs found

    Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation

    Get PDF
    We consider the weighted belief-propagation (WBP) decoder recently proposed by Nachmani et al. where different weights are introduced for each Tanner graph edge and optimized using machine learning techniques. Our focus is on simple-scaling models that use the same weights across certain edges to reduce the storage and computational burden. The main contribution is to show that simple scaling with few parameters often achieves the same gain as the full parameterization. Moreover, several training improvements for WBP are proposed. For example, it is shown that minimizing average binary cross-entropy is suboptimal in general in terms of bit error rate (BER) and a new "soft-BER" loss is proposed which can lead to better performance. We also investigate parameter adapter networks (PANs) that learn the relation between the signal-to-noise ratio and the WBP parameters. As an example, for the (32,16) Reed-Muller code with a highly redundant parity-check matrix, training a PAN with soft-BER loss gives near-maximum-likelihood performance assuming simple scaling with only three parameters.Comment: 5 pages, 5 figures, submitted to ISIT 201

    Decoding Reed-Muller Codes Using Redundant Code Constraints

    Get PDF
    The recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller (RM) codes was recently introduced by Ye and Abbe. We show that the RPA algorithm is closely related to (weighted) belief-propagation (BP) decoding by interpreting it as a message-passing algorithm on a factor graph with redundant code constraints. We use this observation to introduce a novel decoder tailored to high-rate RM codes. The new algorithm relies on puncturing rather than projections and is called recursive puncturing-aggregation (RXA). We also investigate collapsed (i.e., non-recursive) versions of RPA and RXA and show some examples where they achieve similar performance with lower decoding complexity

    A survey of Reed-Muller codes from polar coding perspective

    Get PDF
    A survey of Reed-Muller (RM) coding is given with the goal of establishing a continuity between RM codes and polar codes. The focus is mainly on recursive decoding methods for RM codes and other ideas that are most relevant to polar coding

    Versatile Error-Control Coding Systems

    Get PDF
    $NC research reported in this thesis is in the field of error-correcting codes, which has evolved as a very important branch of information theory. The main use of error-correcting codes is to increase the reliability of digital data transmitted through a noisy environment. There are, sometimes, alternative ways of increasing the reliability of data transmission, but coding methods are now competitive in cost and complexity in many cases because of recent advances in technology. The first two chapters of this thesis introduce the subject of error-correcting codes, review some of the published literature in this field and discuss the advan­tages of various coding techniques. After presenting linear block codes attention is from then on concentrated on cyclic codes, which is the subject of Chapter 3. The first part of Chapter 3 presents the mathemati­cal background necessary for the study of cyclic codes and examines existing methods of encoding and their practical implementation. In the second part of Chapter 3 various ways of decoding cyclic codes are studied and from these considerations, a general decoder for cyclic codes is devised and is presented in Chapter 4. Also, a review of the principal classes of cyclic codes is presented. Chapter 4 describes an experimental system constructed for measuring the performance of cyclic codes initially RC5GI5SCD by random errors and then by bursts of errors. Simulated channels are used both for random and burst errors. A computer simulation of the whole system was made in order to verify the accuracy of the experimental results obtained. Chapter 5 presents the various results obtained with the experimental system and by computer simulation, which allow a comparison of the efficiency of various cyclic codes to be made. Finally, Chapter 6 summarises and dis­cusses the main results of the research and suggests interesting points for future investigation in the area. The main objective of this research is to contribute towards the solution of a fairly wide range of problems arising in the design of efficient coding schemes for practical applications; i.e. a study of coding from an engineering point of view

    Topological Code Architectures for Quantum Computation

    Get PDF
    This dissertation is concerned with quantum computation using many-body quantum systems encoded in topological codes. The interest in these topological systems has increased in recent years as devices in the lab begin to reach the fidelities required for performing arbitrarily long quantum algorithms. The most well-studied system, Kitaev\u27s toric code, provides both a physical substrate for performing universal fault-tolerant quantum computations and a useful pedagogical tool for explaining the way other topological codes work. In this dissertation, I first review the necessary formalism for quantum information and quantum stabilizer codes, and then I introduce two families of topological codes: Kitaev\u27s toric code and Bombin\u27s color codes. I then present three chapters of original work. First, I explore the distinctness of encoding schemes in the color codes. Second, I introduce a model of quantum computation based on the toric code that uses adiabatic interpolations between static Hamiltonians with gaps constant in the system size. Lastly, I describe novel state distillation protocols that are naturally suited for topological architectures and show that they provide resource savings in terms of the number of required ancilla states when compared to more traditional approaches to quantum gate approximation

    Design and implementation of decoders for error correction in high-speed communication systems

    Full text link
    This thesis is focused on the design and implementation of binary low-density parity-check (LDPC) code decoders for high-speed modern communication systems. The basic of LDPC codes and the performance and bottlenecks, in terms of complexity and hardware efficiency, of the main soft-decision and hard-decision decoding algorithms (such as Min-Sum, Optimized 2-bit Min-Sum and Reliability-based iterative Majority-Logic) are analyzed. The complexity and performance of those algorithms are improved to allow efficient hardware architectures. A new decoding algorithm called One-Minimum Min-Sum is proposed. It reduces considerably the complexity of the check node update equations of the Min-Sum algorithm. The second minimum is estimated from the first minimum value by a means of a linear approximation that allows a dynamic adjustment. The Optimized 2-bit Min-Sum algorithm is modified to initialize it with the complete LLR values and to introduce the extrinsic information in the messages sent from the variable nodes. Its variable node equation is reformulated to reduce its complexity. Both algorithms were tested for the (2048,1723) RS-based LDPC code and (16129,15372) LDPC code using an FPGA-based hardware emulator. They exhibit BER performance very close to Min-Sum algorithm and do not introduce early error-floor. In order to show the hardware advantages of the proposed algorithms, hardware decoders were implemented in a 90 nm CMOS process and FPGA devices based on two types of architectures: full-parallel and partial-parallel one with horizontal layered schedule. The results show that the decoders are more area-time efficient than other published decoders and that the low-complexity of the Modified Optimized 2-bit Min-Sum allows the implementation of 10 Gbps decoders in current FPGA devices. Finally, a new hard-decision decoding algorithm, the Historical-Extrinsic Reliability-Based Iterative Decoder, is presented. This algorithm introduces the new idea of considering hard-decision votes as soft-decision to compute the extrinsic information of previous iterations. It is suitable for high-rate codes and improves the BER performance of the previous RBI-MLGD algorithms, with similar complexity.Esta tesis se ha centrado en el diseño e implementación de decodificadores binarios basados en códigos de comprobación de paridad de baja densidad (LDPC) válidos para los sistemas de comunicación modernos de alta velocidad. Los conceptos básicos de códigos LDPC, sus prestaciones y cuellos de botella, en términos de complejidad y eficiencia hardware, fueron analizados para los principales algoritmos de decisión soft y decisión hard (como Min-Sum, Optimized 2-bit Min-Sum y Reliability-based iterative Majority-Logic). La complejidad y prestaciones de estos algoritmos se han mejorado para conseguir arquitecturas hardware eficientes. Se ha propuesto un nuevo algoritmo de decodificación llamado One-Minimum Min-Sum. Éste reduce considerablemente la complejidad de las ecuaciones de actualización del nodo de comprobación del algoritmo Min-Sum. El segundo mínimo se ha estimado a partir del valor del primer mínimo por medio de una aproximación lineal, la cuál permite un ajuste dinámico. El algoritmo Optimized 2-bit Min-Sum se ha modificado para ser inicializado con los valores LLR e introducir la información extrínseca en los mensajes enviados desde los nodos variables. La ecuación del nodo variable de este algoritmo ha sido reformulada para reducir su complejidad. Ambos algoritmos fueron probados para el código (2048,1723) RS-based LDPC y para el código (16129,15372) LDPC utilizando un emulador hardware implementado en un dispositivo FPGA. Éstos han alcanzado unas prestaciones de BER muy cercanas a las del algoritmo Min-Sum evitando, además, la aparición temprana del fenómeno denominado suelo del error. Con el objetivo de mostrar las ventajas hardware de los algoritmos propuestos, los decodificadores se implementaron en hardware utilizando tecnología CMOS de 90 nm y en dispositivos FPGA basados en dos tipos de arquitecturas: completamente paralela y parcialmente paralela utilizando el método de actualización por capas horizontales. Los resultados muestran que los decodificadores propuestos e implementados son más eficientes en área-tiempo que otros decodificadores publicados y que la baja complejidad del algoritmo Modified Optimized 2-bit Min-Sum permite la implementación de decodificadores en los dispositivos FPGA actuales consiguiendo una tasa de 10 Gbps. Finalmente, se ha presentado un nuevo algoritmo de decodificación de decisión hard, el Historical-Extrinsic Reliability-Based Iterative Decoder. Este algoritmo introduce la nueva idea de considerar los votos de decisión hard como decisión soft para calcular la información extrínseca de iteracions anteriores. Este algoritmo es adecuado para códigos de alta velocidad y mejora el rendimiento BER de los algoritmos RBI-MLGD anteriores, con una complejidad similar.Aquesta tesi s'ha centrat en el disseny i implementació de descodificadors binaris basats en codis de comprovació de paritat de baixa densitat (LDPC) vàlids per als sistemes de comunicació moderns d'alta velocitat. Els conceptes bàsics de codis LDPC, les seues prestacions i colls de botella, en termes de complexitat i eficiència hardware, van ser analitzats pels principals algoritmes de decisió soft i decisió hard (com el Min-Sum, Optimized 2-bit Min-Sum y Reliability-based iterative Majority-Logic). La complexitat i prestacions d'aquests algoritmes s'han millorat per aconseguir arquitectures hardware eficients. S'ha proposat un nou algoritme de descodificació anomenat One-Minimum Min-Sum. Aquest redueix considerablement la complexitat de les equacions d'actualització del node de comprovació del algoritme Min-Sum. El segon mínim s'ha estimat a partir del valor del primer mínim per mitjà d'una aproximació lineal, la qual permet un ajust dinàmic. L'algoritme Optimized 2-bit Min-Sum s'ha modificat per ser inicialitzat amb els valors LLR i introduir la informació extrínseca en els missatges enviats des dels nodes variables. L'equació del node variable d'aquest algoritme ha sigut reformulada per reduir la seva complexitat. Tots dos algoritmes van ser provats per al codi (2048,1723) RS-based LDPC i per al codi (16129,15372) LDPC utilitzant un emulador hardware implementat en un dispositiu FPGA. Aquests han aconseguit unes prestacions BER molt properes a les del algoritme Min-Sum evitant, a més, l'aparició primerenca del fenomen denominat sòl de l'error. Per tal de mostrar els avantatges hardware dels algoritmes proposats, els descodificadors es varen implementar en hardware utilitzan una tecnologia CMOS d'uns 90 nm i en dispositius FPGA basats en dos tipus d'arquitectures: completament paral·lela i parcialment paral·lela utilitzant el mètode d'actualització per capes horitzontals. Els resultats mostren que els descodificadors proposats i implementats són més eficients en àrea-temps que altres descodificadors publicats i que la baixa complexitat del algoritme Modified Optimized 2-bit Min-Sum permet la implementació de decodificadors en els dispositius FPGA actuals obtenint una taxa de 10 Gbps. Finalment, s'ha presentat un nou algoritme de descodificació de decisió hard, el Historical-Extrinsic Reliability-Based Iterative Decoder. Aquest algoritme presenta la nova idea de considerar els vots de decisió hard com decisió soft per calcular la informació extrínseca d'iteracions anteriors. Aquest algoritme és adequat per als codis d'alta taxa i millora el rendiment BER dels algoritmes RBI-MLGD anteriors, amb una complexitat similar.Català Pérez, JM. (2017). Design and implementation of decoders for error correction in high-speed communication systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86152TESI

    [Research Pertaining to Physics, Space Sciences, Computer Systems, Information Processing, and Control Systems]

    Get PDF
    Research project reports pertaining to physics, space sciences, computer systems, information processing, and control system

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF
    corecore